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Abstract29

30

Many phenology models have been developed to explain historical trends in plant 31

phenology and to forecast future ones. Two main types of model can be distinguished: 32

correlative models, that statistically relate descriptors of climate to the date of occurrence of a 33

phenological event, and process-based models that build upon explicit causal relationships 34

determined experimentally. While process-based models are believed to provide more robust 35

projections in novel conditions, it is still unclear whether this assertion always holds true and 36

why. In addition, the efficiency and robustness of the two model categories have rarely been 37

compared.38

Here we aimed at comparing the efficiency and the robustness of correlative and 39

process-based phenology models with contrasting levels of complexity in both historical and 40

future climatic conditions. Models were calibrated, validated and compared using budburst 41

dates of five tree species across the French Alps collected during 8 years by a citizen-science 42

program.43

Process-based models were less efficient, yet more robust than correlative models, 44

even when their parameter estimates relied entirely on inverse modeling, i.e. parameter 45

values estimated using observed budburst dates and optimization algorithms. Their 46

robustness further slightly increased when their parameter estimates relied on forward 47

estimation, i.e. parameter values measured experimentally. Our results therefore suggest that 48

the robustness of process-based models comes both from the fact that they describe causal 49

relationships and the fact that their parameters can be directly measured.50

Process-based models projected a reduction in the phenological cline along the 51

elevation gradient for all species by the end of the 21st century. This was due to a delaying 52
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effect of winter warming at low elevation where conditions will move away from optimal 53

chilling conditions that break bud dormancy vs an advancing effect of spring warming at high 54

elevation where optimal chilling conditions for dormancy release will persist even under the 55

most pessimistic emissions scenario RCP 8.5.56

These results advocate for increasing efforts in developing process-based phenology 57

models as well as forward modelling, in order to provide accurate projections in future 58

climatic conditions.59

60

61

Key words: Budburst, elevation gradients, Alps, citizen science, endodormancy release,62
climate change impact63

64

65
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1. Introduction 66

Phenology is a key aspect of plant and animal life strategies because it determines the 67

timing of growth and reproduction. Life cycle of species must be adapted to the local weather 68

conditions and resources. As a consequence, phenology is one of the top controls of69

70

71

. Phenology also ultimately regulates many functions of ecosystems72

such as productivity (Richardson et al., 2012), ecosystem carbon cycling (Delpierre et al., 73

2009), water (Hogg et al., 2000) and nutriment cycling (Cooke and Weih, 2005).74

Since the 1970s, spring phenology has been reported to advance in response to 75

warming (Walther et al. 2002; Parmesan and Yohe, 2003; Menzel et al. 2006; Fu et al. 2014).76

For instance, it has been shown that the apparent response of leaf unfolding to temperature 77

was -3.4 days per °C between 1980 and 2013 in temperate Europe (Fu et al., 2015). This78

advance in spring phenology events is due to the warming of springs as bud growth rate is 79

positively and strongly related to temperature (see for review Chuine and Régnière, 2017).80

However, this trend has been slowing down by about 40% after 2000 (Fu et al., 2015). One of 81

the most likely hypotheses to explain this slowdown is the warming of winters (Asse et al., 82

2018). Indeed, most of temperate and boreal trees have developed a key adaptation to winter 83

cold: the inability to resume growth despite transient favorable growing conditions in terms 84

of temperature (Howe et al., 2000). This particular physiological state, called endodormancy85

(Lang et al., 1987), establishes in fall and disappears in early to late winter after a certain86

exposure to cold temperatures. Therefore, the warming of winters is suspected to delay 87

endodormancy release and be responsible for the apparent decrease in the response of leaf 88
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unfolding to warming after 2000. Ultimately, this lack of chilling temperatures might 89

compromise budburst itself at some point if warming continues (Chuine et al., 2016). Such a 90

situation is more likely to occur in populations inhabiting the warm edge of a species range 91

and/or lower elevations in mountain regions, where species are already in suboptimal chilling 92

conditions (Benmoussa et al., 2018; Guo et al., 2015). More than ever there is a need for 93

more accurate projections of tree phenology for the upcoming decades to remove the large 94

uncertainties that still remains.95

Two main categories of predictive phenology models exist although there can be a96

continuum in-between: correlative and process-based models (for review see (Chuine et al.,97

2013; Chuine and Régnière, 2017). Correlative models statistically relate descriptors of 98

climate to phenological variables (i.e. usually the occurrence dates of a phenological phase 99

such as bud break or flowering). In correlative models, parameters have no a priori defined 100

ecological meaning and processes can be implicit (process-implicit) (Lebourgeois et al., 101

2010). In contrast, process-based models are built around explicitly stated mechanisms and 102

parameters have a clear ecological interpretation that is defined a priori. In this category of 103

model, response curves are often obtained directly from experiments, contrasting with 104

empirical relationships of correlative models. Consequently, process-based models often 105

require a larger number of parameters to be estimated or measured, with the consequence of a106

higher level of complexity than correlative models. However, they provide greater insights 107

into how precisely each driver affects the trait, and they are expected to provide more robust 108

projections in new climatic conditions corresponding either to other geographical areas or 109

other time periods (Chuine et al., 2016)110
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Among the most widely used process-based phenology models, are the so-called 1-111

phase models that describe solely the ecodormancy phase, which follows the endodormancy 112

phase. During the ecodormancy phase, bud cell elongation can take place whenever 113

temperatures are appropriate, and the higher the temperature is, the higher is the rate of cell 114

elongation during this phase. This category of models has been shown to be efficient in115

predicting accurately budburst date under historical climate (Vitasse et al., 2011; Basler, 116

2016). Another category of models, called 2-phase models, describes additionally the 117

endodormancy phase, and take into account the possible negative effect of winter warming on 118

endodormancy release. This category of models is thus considered to provide more accurate 119

projections in future climatic conditions (Chuine, 2010; Vitasse et al., 2011). However, it has 120

been shown recently that this second type of models might suffer from flawed parameter121

estimation when dates of endodormancy release have not been used for their calibration122

(Chuine et al., 2016). Unfortunately, observations of endodormancy release date are very rare 123

because they are very difficult to determine (Jones et al., 2013; Chuine et al., 2016). Models 124

are thus usually calibrated using solely bud break or flowering dates (Chuine, 2000; Caffarra 125

et al., 2011; Luedeling et al., 2009; but see Chuine et al., 2016). Some other models go 126

further in the description of the processes by integrating a photoperiod cue (Schaber and 127

Badeck, 2003; Gaüzere et al., 2017). Some studies indeed support the hypothesis that in 128

photosensitive species, which might represent about 30% of temperate tree species (Zohner et 129

al., 2016), long photoperiod might compensate for insufficient chilling (Caffarra et al.,130

2011a; Gaüzere et al. 2017).131

There is now a large number of phenology models that differ in their level of 132

complexity and in the types of response function to environmental cues they use (see for 133

review Chuine et al., 2013; Basler, 2016; Chuine and Régnière, 2017). However, very few 134
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studies aimed at comparing their efficiency and robustness so far (Basler, 2016), especially in 135

future climatic conditions (but see Vitasse et al., 2011; Chuine et al., 2016; Gaüzere et al.,136

2017), while this has been done multiple times for species distribution models (e.g. Cheaib et 137

al., 2012; Higgins et al., 2012; Morin and Thuiller, 2009; Kearney et al., 2010) and crop 138

models (Lobell and Burke, 2010) for example. By efficiency, we mean here the ability of the 139

model to provide accurate predictions in conditions that have been used to calibrate the model140

(Janssen and Heuberger, 1995); and by robustness, we mean here the ability of the model to141

provide accurate predictions in external conditions (Janssen and Heuberger, 1995), i.e. other 142

conditions than those used to calibrate the model. Model robustness determines its 143

transferability in time and space.144

Process-based models are usually expected to provide more accurate projections for 145

the future than correlative models because they describe causal relationships. The effect of 146

each driver identified as affecting a particular trait value can be described by a causal 147

relationship, sometimes involving other drivers as well (interaction between drivers). For this 148

reason, process-based models have also an expected greater potential to deal with non-analog 149

situations. However, the putative higher robustness of process-based models could also come 150

from the fact that parameter values describing the causal relationships, or at least some of 151

them, can be measured directly (forward estimation of parameter values) instead of being152

inferred statistically through inverse modelling techniques and data assimilation (backward 153

estimation of parameter values). Yet, there has been no attempt so far to validate this widely 154

accepted expectation. 155

Here, we aimed at comparing the efficiency and robustness of correlative vs process-156

based phenology models with contrasting levels of complexity, both in space and time. More 157
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precisely, we aimed at answering the following questions: (1) Are process-based phenology 158

models more robust than correlative models? (2) If so, is it because they describe causal 159

relationships or because they can be less dependent on statistical inference (i.e. back 160

estimation of parameter values) and rely more on experimental measurements (i.e. forward 161

estimation of parameter values)? (3) How do projections of both types of model differ in 162

future climatic conditions?163

Using observations of budburst dates collected over the Western Alps by a citizen 164

science program during 8 years, and experimental data, we calibrated correlative and process-165

based phenology models with three levels of complexity for five major tree species: Corylus 166

avellana (L.), Fraxinus excelsior (L.), Betula pendula (Roth), Larix decidua (Mill.) and Picea 167

abies (L.). We then compared their predictions and projections over the Western Alps in 168

historical climate and in future climate respectively.169

The Western Alps are particularly interesting to evaluate phenology models because 170

the elevation gradient provides a wide temperature range on a very short distance. In addition, 171

the southern part of the Western Alps is nearly located at the warmest edge of the geographic 172

range of the five studied species, where it has been shown that winter warming is already 173

affecting endodormancy release and budburst (Asse et al., 2018). Finally, temperature has 174

already increased in the Western Alps twice as fast as in the northern hemisphere during the 175

20th century (Rebetez and Reinhard, 2008) and recent evidence indicates that the current 176

warming rate increases with increasing elevation (Mountain Research Initiative EDW 177

Working Group, 2015). Consequently, mountain summits might warm faster than lower 178

elevation sites, so that the response of mountain ecosystems to climate change might be non-179
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linear along elevation gradients. Therefore, ultimately, we aimed at answering a fourth 180

question: (4) How will climate change alter the budburst date of alpine species?181

182
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2. Methods 183

2.1. Phenological and meteorological data 184

We used observations of the budburst date, defined as the first day when 10% of185

vegetative buds of a given individual tree are opened (BBCH 07), of five common tree186

species: ash (Fraxinus excelsior L.), birch (Betula pendula Roth), hazel (Corylus avellana187

L.), larch (Larix decidua Mill.), and spruce (Picea abies L.). These species show different188

elevation ranges (from 150 - 1300 m a.s.l. for Corylus to 700 2100 m a.s.l for Larix), which189

allowed us to compare the two types of model over a large climatic gradient. The data were190

extracted from the Phenoclim database of CREA (Centre de Recherches sur les Ecosystèmes191

Chamonix, France) (www.phenoclim.org) which covers the entire French Alps 192

(for further details of the Phenoclim protocol see Appendix A) (Fig. 1). In total, and193

irrespective of species, 242 sites were surveyed for budburst between 2007 and 2014.194

Sixty of the observation sites (ranging from 372 to 1919 m a.s.l,) were equipped with 195

meteorological stations that recorded air temperature at 2-m height every 15 min with a 196

DA8B20 digital thermometer placed in a white ventilated plastic shelter (Dallas 197

Semiconductor MAXIM, "http://www.maxime-ic.com", operatin198

and an accuracy of ) (Fig. 1). These data were used to 199

calculate the daily mean air temperature at the sixty sites and were also interpolated at 200

observation sites without meteorological stations using a 25-m digital elevation model 201

(DEM) as follows. We first constructed a linear model of daily temperature at 2-m height as a 202

function of elevation. Residuals of this linear model were then interpolated using the 203

calibrations points over the entire French Alps according to the inverse distance weighted 204

algorithm (IDW; see also: Kollas et al., 2014; Cianfrani et al., 2015, for further details).205

In addition to Phenoclim data, we used data from an experiment on Larix decidua206
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realized at INRA UMR PIAF (Clermont-Ferrand, France) during winter 2010-2011. The aim 207

of this experiment was to determine the date of endodormancy release, the chilling required208

to break endodormancy and the response of bud growth to temperature during the209

ecodormancy phase of Larix decidua Mill. In a first experiment, 60 twigs of 30 to 40 cm,210

were sampled on 4 sites (Saulzet, Orcival, Lamartine, Laqueuille) on February 2nd and211

immediately taken to the laboratory. Twigs were recut under water and put in flasks filled up212

with water. Water was subsequently changed twice a week. Twigs were divided into six sub-213

sets that were placed in growth chambers (Sanyo MLR 351H) which were set to: 25, 20, 15,214

10, 5, 2°C with 16h photoperiod and a light intensity of 50 µE/m2/s, relative humidity (RH)215

of 70%, except for the 5°C and 2°C chambers which received 20 µE/m2/s and RH 50%. This216

experiment was designed to investigate the response to temperature of bud growth during the217

ecodormancy phase. In a second experiment, 5 twigs were sampled on 5 trees of Larix218

decidua Mill. from the end of September to early February on the same 4 sites at ten dates: 27219

Sep; 18 Oct; 17 Nov; 14 Dec; 29 Dec; 04 Jan; 11 Jan; 18 Jan; 24 Jan; 02 Feb. Twigs were220

recut under water and put in flasks filled up with water. Water was subsequently changed221

twice a week. Twigs were placed in growth chambers (Sanyo MLR 351H) at 20°C, 16h222

photoperiod, 50 µE/m2/s, RH 70%. This experiment was designed to determine the223

endodormancy release date and the chilling required to break endodormancy. In the two224

experiments, each bud of each twig was monitored every second day to determine the date of225

budburst (BBCH 07).226

227

2.2. Correlative phenology model 228

We used mixed-effects models for each of the five species with budburst dates as 229

response variables and with growing degree-days and chilling as predicting variables (Asse et 230
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al. 2018). We defined chilling for each species and each observation site as the frequency of 231

days with a daily temperature < 5°C from September 1st to December 31st of the calendar 232

year preceding budburst (Dantec et al., 2014). We then calculated for each species and each 233

observation site growing degree-days (GDD) defined as the sum of positive daily mean 234

temperature from January 1st to the median date of budburst observed over the 2007-2014 235

observation period. GDD was calculated with two different temperature thresholds: the more 236

commonly-used 5°C (hereafter designated as GDD5) and 0°C (hereafter designated as 237

GDD0) because daily mean temperatures between 0 and 5°C may contribute to trigger 238

budburst events in plants growing in mountainous environments (Körner 1999; Vitasse et al. 239

2016). We chose Jan 1st as the starting date of accumulation because the ecodormancy phase 240

can begin as early as January for some species and because the climatic conditions at the 241

beginning of this phase vary a lot between species, years, and sites along elevation and 242

latitudinal gradient (Asse et al., 2018).243

244

2.3. Process-based phenology models 245

We used several process-based phenology models to simulate the budburst dates of 246

each species.247

 First, we used 1-phase models, that describe the ecodormancy phase only and assume 248

that endodormancy-release always occurs before temperature can trigger cell elongation and249

that there is no effect of chilling on forcing requirement (Chuine et al., 2013). Budburst250

occurs at tf when the sum of the daily rates of development (Rf) reaches the critical value F*:251

(1)
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with t0 the starting date of forcing and Td the daily mean temperature.  252

We used several versions of the model that differed by the response function to253

temperature (Rf), which determines the daily rate of bud development:254

the Growing Degree Day function, similarly to the correlative models, 255

256

with the lower threshold temperature; 257

and two more complex functions: the sigmoid function, 258

with the steepness of the response and  the mid-response temperature;  259

and the Wang function (Wang and Engel, 1998) 260

261

with , and Tmin, Tmax and Topt the cardinal temperatures. 262

These models have from 3 to 5 parameters that were either calibrated using inverse 263

modelling techniques or prescribed using experimental data (see 2.4).264

 Second, we used sequential 2-phase models (Hanninen, 1987) that take into account 265

chilling requirements during the endodormancy phase (first phase) and forcing requirements266

during the ecodormancy phase (second phase; Chuine et al., 1999). The endodormancy phase267

ends at when the accumulation of the daily rates of dormancy release ) reaches the268

critical sum of chilling units269

(3)

(2)

(4)
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270

From to (date of budburst), forcing units are then accumulated as: 271

.272

We used several versions of the model that differed by the response function to273

temperature during the endodormancy phase (Rc) that determines the daily rate of274

endodormancy release:275

the Wang function (Eq. 4) and a simple lower threshold function, 276

277

For the ecodormancy phase we used the best Rf function found with the 1-phase model for 278

each species. These 2-phase models have 6 to 8 parameters that were either calibrated using279

inverse modelling techniques or prescribed using experimental data.280

281

2.4 Parameter value estimation 282

The data set was divided into several data subsets: data subset 1 corresponded to data 283

collected on sites equipped with a meteorological station; data subset 2 corresponded to data284

collected on sites not equipped with a meteorological station; data subset 3 corresponded to285

data from observation sites East of a species-specific longitudinal threshold; data subset 4286

corresponded to data from observation sites West of this threshold. The species-specific287

longitude corresponded to the longitude on both sides of which the species was equally288

present (i.e. 50% of the observation sites West of the longitude and 50% East of the289

longitude). The data subsets contained a similar number of data ( =12).290

(5)

(6)

(7)
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First, all models were calibrated using the phenological data and corresponding 291

meteorological data of data subset 1. The best models obtained were then additionally292

calibrated twice using data subset 3 and data subset 4 (Fig. 1). The three different calibrations293

aimed at evaluating the transferability of the models to conditions that differ from those used294

to calibrate the models (see section 2.6.1).295

Correlative phenology models which corresponded to mixed effects models were 296

generated in R (version 3.3.2; R Core Team, 2016) using the library nlme (Lindstrom & 297

Bates 1990; Pinheiro & Bates 1996) with observation sites as random effect. Indeed, there 298

may be some site-specific adaptations, which would blur an overall relationship between the 299

temperature-based predicting variables (i.e chilling, GDD) and budburst. We considered 300

models with all combinations of the two predicting variables (i.e. chilling and GDD), 301

including also univariate models. GDD with two different thresholds were tested separately 302

but in combination with chilling in multivariate models. 303

 Process-based models were adjusted by minimizing the residual sum of squares using 304

the simulated annealing algorithm of Metropolis (Chuine et al., 1998) using the Phenology 305

Modelling Platform software (PMP5; 306

http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform) (Chuine et 307

al., 2013). Adjustment was repeated 20 times to assure that the global optimum had been 308

reached.309

Finally, we also used the experimental observations on Larix to constrain the 310

calibration of the best 2-phase model. Using the results of the two experiments, we were able311

to estimate the critical sum of chilling during the endodormancy phase ( the response312

function to temperature (Rf) and the critical value F* of the ecodormancy phase. We thus313

fixed , the parameter values of the Rf function and F* to those estimates. This model is314
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called hereafter forward calibrated   315

316

2.5. Model comparison 317

Models were compared using four performance indices: adjusted R-square, s318

Information Criterion corrected for small sample size (AICC) (Burnham and Anderson, 319

2002); the efficiency (EFF) (Nash and Sutcliffe, 1970) ; the root mean square error for the 320

calibration (RMSE) and validation (RMSEP) data sets respectively, the systematic root mean 321

square error (RMSEs) that estimates the model linear error (or bias).322

323

324

RMSEP or 325

326

where  represents observed dates, represents projected dates,  represents regressed 327

prediction dates and N or n is the number of observations and k is the number of parameters.328

We also used the ratio of performance to interquartile distance (RPIQ) that takes both the 329

prediction error and the variation in observed values into account (Bellon-Maurel et al., 330

(8)

(9)

(10)

(11)
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2010). .  331

332

where Q1 represents the value below which we can find 25% of the sample and Q3 represents 333

the value below which we find 75% of the sample.334

Based on the AICc, EFF, RMSE, RMSEs, RPIQ and R2 (adjusted R-squared), we first 335

selected the best correlative model with GDD as variable, the best correlative model with336

GDD and chilling as variables, and the best 1-phase and 2-phase models. We additionally337

bootstrapped the best models (with 999 repetitions) to assess the effect of sampling bias on338

RMSE indices, a good overall measure of model performance. We then calibrated linear339

regressions of the model residuals (observed dates predicted dates) as a function of340

elevation.341

We additionally tested the performance of the two types of process-based model in342

usual vs unusual climatic conditions. We identified two climatically contrasted years over the343

observation period. First, a typical year with cold temperature during the fall and the early344

winter (called hereafter for the sake of simplicity winter period) followed by warm345

temperature during the late winter and the early spring (called hereafter for the sake of346

simplicity . Second, an unusually warm year with a warm winter period347

followed by a warm preseason period. Winter period corresponds to the development phase348

of endodormancy and preseason period corresponds to the development phase of349

ecodormancy. To identify the three climatically contrasted years, we compared quantile350

values of chilling and GDD between years for each species calculated as defined above.351

352

2.6. Model projections 353

(12)
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Following Bray & Storch (2009), we use the term to refer to outputs of 354

models corresponding to the conditions used for the calibration; and the term to355

refer to outputs of models corresponding to conditions not used for the calibration. The term356

conveys a sense of certainty, while the term conveys a sense of357

possibility.358

359

2.6.1. Projections across space  360

We performed three spatial cross-validations to assess the transferability of the best 361

models to a wider geographic area. First, we used models calibrated on observation sites with362

meteorological stations (data subset 1) to project the budburst date at observation sites363

without meteorological stations (data subset2) using interpolated 2-m temperature for the364

2007-2014 time period (see section 2.1). Second, we used models calibrated on observation365

sites West of the species-specific longitude (data subset 3) to project the budburst date on366

observation sites East of this longitude (data subset 4), and vice versa. The evaluation of the367

model performance with data subsets 3 and 4 provides a more robust estimation of their368

transferability compared to data subsets 1 and 2 because of the lower auto-correlation of the369

meteorological conditions between them.370

The accuracy of the projections was estimated using RMSEP, RMSES, RPIQ and R2. 371

We additionally bootstrapped models (with 999 repetitions) to assess the effect of sampling372

bias on RMSE indices. We finally calibrated linear regressions of the model residuals373

(observed dates projected dates) as a function of elevation.374

375

2.6.2. Projections across time using climate scenarios 376
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We compared the projections of the best models calibrated on observation sites with 377

meteorological stations, in historical (1950-2005) and future climatic conditions (2006 to378

2100). We used the climatic data generated by the ALADIN-Climat v5 RCM model (CNRM)379

for the CMIP5 experiment at a 12-km resolution and downscaled at 8-km resolution using380

quantile-quantile method (http://drias-climat.fr/). For the future period (2006-2100), we used 381

the scenario RCP8.5. We chose a single scenario because our objective here was to realize a382

sensitivity analysis of the different model types to climate change and not to provide impact383

projections. However, we chose the RCP 8.5 scenario because it is close to the current384

trajectory. Daily minimum and maximum temperatures were extracted for the grid covering385

the French Alps ( to to ). We compared the budburst dates386

projected by the best models for two different elevation ranges whose limits depended on the387

species distribution according to the CBNA (Conservatoire Botanique National Alpin)388

database.389

The annual shift of projected budburst dates was calculated as the S  estimator of 390

the slope of regressions (Sen, 1968) between projected budburst dates and years over the391

period 1950 to 2100. The shift in the budburst date over this period was also calculated.392

Budburst dates projected by each model over the 1950-2100 time period were plotted 393

with the associated confidence interval derived from the external validation (see section394

2.5.1.). The annual / decadal shift of projected budburst dates from estimator of slope395

was additionally provided for each model type and each of the 8-km cells in the French Alps396

for the same 1950-2100 period.397

The different models that were compared and the different calibrations, validations 398

and projections that were realized are summarized in Table 1.399

400
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401

Fig. 1: Locations of the data used for the study. Map showing the location of the study area 402
(western part of the Alps) at the scale of Europe (a). Maps showing the location of sites with 403
phenological records for the five species in the Western Alps (b-f): Betula pendula (birch) (b), 404
Corylus avellana (hazel) (c), Fraxinus excelsior (ash) (d), Larix decidua (larch) (e), Picea abies405
(spruce) (f). Sites without meteorological station are shown with filled white circles and sites with 406
meteorological station are shown with filled black triangles. The dotted lines correspond to the 407
species-specific longitudes separating West and East sites that defined the sub-datasets for each 408
species (see section 2.4).409

410

411

412
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413

Table 1: Summary of the different models that were compared and the different calibrations, 414
validations and projections that were realized. GDD is the abbreviation of growing degree 415
day function and TL of the threshold lower function. Meteo sites correspond to sites equipped 416
with a meteorological station, no meteo sites corresponds to sites not equipped with a 417
meteorological station, east sites correspond to observation sites East of a species-specific 418
longitudinal threshold, west sites correspond to observation sites West of this threshold.419

420
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3. Results421

3.1. Selection of the best models 422

Mixed effects models which best explained budburst dates were generally models 423

including GDD5, and chilling as predicting variables (Appendix B). However, budburst dates 424

of Corylus and Fraxinus were best explained by GDD0 together with chilling. Variance 425

partitioning also indicated an important joint contribution of GDD0 or GDD5 and chilling for 426

all species (Appendix B). However, over all 8 years and all locations, chilling did not explain 427

a significant part of the variance in spring phenology once forcing temperatures were taken 428

into account except in Picea (Appendix B). For further analysis we only present the results of 429

the correlative model with GDD0 or GDD5 (depending of the species) and chilling as 430

variables.431

The response function to temperature in process-based models that best explained the 432

budburst date was the lower threshold function for Fraxinus and Picea and the Wang433

function for the three other species for the endodormancy phase; and the sigmoid function for434

all species for the ecodormancy phase (Appendix C). However, because the differences in435

efficiency and AICc were very small between models using the Wang function and the436

threshold function, we selected the lower threshold function for all species for the rest of the437

analyses, for the sake of parsimony.438

Process-based models performed the best for Picea and Betula (Fig. 2, Appendix D,439

Appendix F and Appendix G). However, model error increased with the distance to the mean440

budburst date, irrespective of the model and the species, with a tendency towards 441

exaggerating early and late budburst dates (predicted dates too early or too late, respectively)442

(Appendix F and Appendix G). We found no trend in model residuals (observed predicted 443
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dates) along elevation, except for Larix for which observed budburst dates tended to occur 444

earlier than predicted by the models at low elevation and reversely at high elevation 445

(Appendix H and Appendix I).446

All performance indices indicated that correlative models predicted the budburst date 447

more accurately than process-based models whatever the calibration dataset for all species 448

(Appendix D). This result was confirmed by bootstrapped values of RMSE that were 449

significantly lower for correlative models than process-based models for all species (Fig. 2).450

Performance indices were only slightly better for 2-phase models than 1-phase models (Fig. 451

2, Appendix D). However, comparing the performances for an unusually warm year, i.e. with 452

warm winter and warm preseason, we found that 2-phase process-based models performed453

better for Corylus and Picea (Fig. 3). For the other species, model performance was similar 454

between the one- and 2-phase process-based models. For a typical year with a cold winter and 455

a warm preseason, performance indices were similar between the two types of process-based 456

model for all species (Fig. 3).457

458

3.2. Model transferability in space 459

Whatever the validation data subset, process-based models provided more accurate 460

projections of the budburst date than correlative models, except for Picea abies for which 461

performed similarly (Fig. 2, Appendix E). Performances were similar between 2-462

phase models and 1-phase models. Process-based models were thus more robust than 463

correlative models. Indeed, while RMSE increased from predictions to projections in 464

correlative models, they remained similar in process-based models (Fig. 2, Appendix E). 465

Therefore, model performance of process-based models was more stable (3.45 and 0.87 mean 466
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difference in RMSE between calibration and validation for the correlative and process-based 467

models respectively).468

Similarly to the predicted dates, error in projected dates increased with the distance to 469

the mean budburst date, irrespective of the model and the species (Appendix F and Appendix 470

G) with exaggerating early and late dates.471

Model residuals were linearly related to elevation for Corylus and Fraxinus 472

(correlative models only), and Larix (all models), with dates projected slightly too late at low473

elevation and too early at high elevation (Appendix H and I).474

475

3.3. Projections of the budburst date in future climatic conditions 476

Evolution across time 477

We compared the projections of the budburst date of the five species by the best 478

correlative model and the best process-based 1-phase and 2-phase models over the historical479

period and the 21st century in the French Alps using climatic data simulated by the ALADIN-480

Climat RCM. Uncertainties in the climatic data (minimum temperatures, maximum481

temperatures) were similar along the period and should not therefore add a bias across time in482

the model projections (Appendix J).483

Model projections differed substantially according to elevation and time period. At484

low elevation, up to 2050, correlative models and 1-phase models projected a continuous485

trend for earlier budburst dates -0.08 to -0.16 days/year and -0.09 to -0.12 days/year486

respectively; Fig. 4 & 5, Appendix K) while 2-phase models showed a much weaker trend for487

earlier budburst dates (-0.05 to -0.07 days/year; Fig. 4, Appendix K). Models projection488

diverged substantially after 2050. While correlative models projected still earlier budburst489
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dates (-0.27 to -0.48 days/year; Fig. 4, Appendix K), trend weakened in 1-phase models 490

projection (-0.03 to -0.20 days/year; Fig. 4, Appendix K); and vanished or even reverted in 2-491

phase models projection (-0.01 to +0.16 days/year; Fig. 4, Appendix K).492

At high elevation, correlative models provided astonishing projections with very low 493

interannual variability of budburst dates, a slight trend towards earlier date from 1950 to 2050494

(-0.005 to -0.07 days/year; Fig. 4, Appendix K) that steepened after 2050 (-0.13 to -0.28495

days/year; Fig. 4, Appendix K). Process-based models showed a trend for earlier budburst496

dates (-32 to -46 days) all along the 1950-2100 period. 1-phase models and 2-phase models497

both projected a remarkably similar trend towards earlier budburst dates all along the498

historical period and until 2050 (-0.16 to -0.21 days/year; Fig. 4, Appendix K). However,499

while after 2050, the trend towards earlier budburst dates remained similar between the two500

process-based models for Larix (-0.42 days/year) and Picea (-0.32 days/year), it weakened in501

the 2-phase model for the other species (Fig. 4, Appendix K).502

For Fraxinus, Betula and Picea, 2-phase models episodically projected budburst 503

failure due to endodormancy release failure because of a lack of chilling. This situation504

occurred especially at low elevation and with an increasing frequency along the 21th century505

(Fig. 5).506

507

Variation across space 508

Correlative models projected earlier budburst dates over the French Alps at an 8-km 509

resolution with a trend more pronounced in the outer and southern Alps than in the central510

Alps where the elevation is higher on average. The contrast between outer and central Alps511

was the most pronounced for Betula, Larix and Picea (Fig. 6). Reversely, 1-phase and 2-512
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phase models projected a steeper trend towards earlier budburst dates in the central Alps than 513

the outer Alps. However, contrary to 1-phase models, 2-phase models projected later dates in514

the southern Alps for all species, and also in the north of the outer Alps for Larix and Picea515

(Fig. 6). The contrasted projections between the outer and central Alps were more516

pronounced for Larix (Fig. 6).517

518

3.4. Performance of the forward calibrated model 519

The forward calibrated 2-phase model for Larix performed the worst on average 520

compared to other models in predicting the budburst date whatever the calibration data subset521

(Fig. 2, Appendix D), but nevertheless provided more accurate predictions of early dates than522

the 2-phase model calibrated with inverse modelling (Appendix L). The model also provided523

the most accurate projections for the sites without meteorological stations, but not for the524

other data subsets (Fig. 2, Appendix E). More interestingly, this model was the only one to525

provide a lower error on average with the validation data subsets than with the calibration526

data subsets (-0.39 vs +0.65 for 2-phase model and +0.84 for 1-phase model), and thus527

showed the reverse behavior we usually observe with models of an increased error in external528

(validation) conditions. Like other models (either correlative or process-based) for Larix529

decidua, residuals were linearly related to elevation, with projected dates tending to be530

overestimated at low elevation and underestimated at high elevation (Appendix M).531

Over the historical period and the 21st century, budburst dates projected by the 532

forward calibrated 2-phase model were very similar to those projected by the 2-phase model533

either at low or high elevation (Fig. 7). However, the forward calibrated model showed much534

more frequent endodormancy release failures than the 2-phase model which projected none535

for Larix (Fig. 5 g, h). For this reason, we could not represent the shift of the budburst date536
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projected by the forward calibrated model for Larix over the French Alps for each grid cell 537

for the period 1950-2100 (Fig. 6).538
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Fig. 2: Boxplots of bootstrapped values of RMSE (days). Performance of the best models in 540

predicting (a, c, e, g, i) and projecting the budburst date (b, d, f, h, j). Predictions correspond 541

to the budburst dates predicted by the models for their respective calibration dataset: sites 542

with meteorological stations (clear grey); sites West of the species-specific longitudinal 543

threshold (grey); sites East of the species-specific longitudinal threshold (dark grey).544

Projections correspond to budburst dates predicted by the three different versions of 545

calibrated models for respectively observation sites without meteorological stations (clear 546

grey); observations sites East of the species-specific longitudinal threshold (grey); 547

observation sites West of the species-specific longitudinal threshold (dark grey). Models on 548

the X axis are the same calibrated models on right and left panels which differ only by the 549

datasets used to evaluate the model performance distinguished by the different shades of 550

grey. Correlative 1 refers to the linear mixed model with GDD only. Correlative 2 refers to 551

the linear model with GDD and chilling as variables. PB 1-phase refers to the process-based 552

1-phase model. PB 2-phase refers to the process-based 2-phase model. Forward calibrated PB 553

refers to the forward calibrated process-based 2-phase model.554

555
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556

557

Fig. 3: Performance (Efficiency a, b; RMSE c, d) of the process-based models in predicting 558

the budburst date of the calibration data subset 1 (sites with meteorological stations) for a 559

year with a warm winter followed by a warm preseason (a, c) and a year with a cold winter 560

followed by a warm preseason (b, d). Process-based 1-phase models use a sigmoid function 561

of temperature for the ecodormancy phase. Process-based 2-phase models use a lower 562

threshold function of temperature for the endodormancy phase and a sigmoid function of 563

temperature for the ecodormancy phase. EFF, model efficiency; RMSE, roots-mean-squared 564

error (days). Model labels as in Fig. 2.565

566
567
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568
569

Fig. 4: Budburst date projected by the correlative 2 model (with GDD and chilling as variables) 570

(blue), the process-based 1-phase (grey) and the process-based 2-phase model (red) in571

historical climate and future climate according to scenario RCP8.5, in the Alps at low 572
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elevation (a, c, e, g, i) and high elevation (b, d, f, h, j). Elevation limits depend on the species. 573

Low elevation: Corylus= 100 to 1000m asl.; Fraxinus= 100 to 1000 m asl.; Betula= 100 to 574

1000 m asl.; Larix= 400 to 1500 m asl. and Picea= 100 to 1500 m asl.. For high elevation: 575

Corylus= 1001 to 2000m asl.; Fraxinus= 1001 to 2000 m asl.; Betula= 1001 to 2300 m asl.; 576

Larix= 1501 to 2700 m asl. and Picea= 1001 to 2500 m asl.. Bold lines indicate the projected 577

mean date and areas indicate the confidence interval of the model. Model labels as in Fig. 2.578

579
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580

581
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Fig. 5: Percentage of sites showing dormancy breaking failure under climate scenario582

RCP8.5 in the Alps along the years (a, c, e, g, i) and along the elevation gradient (b, d, f, h, j). 583

Grey dots indicate values for the process-based 2-phase model and black dots indicate values584

for the forward calibrated process-based 2-phase model. Note that the 2-phase process-based 585

model did not project dormancy breaking failure for Larix decidua. Model labels as in Fig. 2.586

587
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Fig. 6: Shift in budburst date projected by the correlative (with GDD and chilling as variables) 589

(a, d, g, j, m), the process-based 1-phase (b, e, h, k, n) and 2-phase (c, f, i, l, o) models in the 590

French Alps (spatial resolution: 8 km) between 1950 and 2100 (scenario RCP8.5). Shift was 591

592

and years over the period 1950 to 2100.593

594
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595

596
597

Fig. 7: Budburst date of Larix decidua projected by the 2-phase model (red) and the forward 598

calibrated 2-phase model (yellow) in historical and future climate (scenario RCP8.5) in the 599

Alps at low elevation (400 to 1500 m asl.) (a) and high elevation (1501 to 2700 m asl.) (b). 600

Red curves indicate the mean date projected by the 2-phase model and red areas indicate the 601

confidence interval of the model. Brown curves indicate the mean date projected by the 602

forward calibrated model and orange areas indicate the confidence interval of the model. 603

Because the forward calibrated model showed much more frequent budburst failures due to 604

endodormancy release failures than the 2-phase model, we could not represent the deviation 605

of budburst date projected by the calibrated model over the French Alps for the period 1950-606

2100. Model labels as in Fig. 2.607
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4. Discussion 610

4.1. Process-based phenology models provide more robust projections than correlative 611

models612

Linear mixed models using chilling days and growing degree days (GDD) were more 613

efficient than process-based models in predicting the budburst date in calibration conditions 614

(i.e. sensu Randin et al., 2006). However, process-based models were more efficient than 615

correlative models to project budburst date in external conditions (except for Picea for which616

the three model types revealed similar performance). Error in predicted dates and projected 617

dates increased with the distance to the mean budburst date of the calibration datasets,618

irrespective of the model and the species. This error inflation at the edge of the calibration 619

range leads to exaggerating early and late dates. However, errors were lower for process-620

based models compared to correlative models probably because the former formalize causal 621

relationships between the dependent variable and the independent variables across the range 622

of projection contrary to the latter. Although, these conclusions are dependent on the models 623

we have used for this study the way we chose the models asserts a certain degree of 624

generality to these conclusions because models differed essentially by their structure and not 625

by their predicting variables.626

Projections of the forward calibrated 2-phase model were not more accurate than 627

those of the other 2-phase models except for sites without meteorological stations. However, 628

it was the only model that did not show an increased error in external conditions. Increased629

accuracy in this model was mainly achieved through a more accurate prediction of early 630

dates. Our results robustness of process-based models can come additionally from 631

forward parameter estimation, but also that forward parameter estimation is not necessarily 632
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the Holy Grail that we should seek. Another study conducted on rice (Nagano et al., 2012;633

but see Satake et al., 2013) showed that phenology models calibrated by forward estimation 634

actually might perform worse in situ conditions than in controlled conditions and vice versa.635

This study suggests that either the effect of some abiotic factors and their interactions or the 636

daily variation of these factors in nature might be poorly represented under controlled 637

conditions, and that epigenetic or acclimation effects might interfere. Besides this, results 638

from experiments can sometimes be biased by ontogenetic effects when young cohorts of 639

individuals are used (Vitasse, 2013). Thus, it seems that backward and forward parameter 640

estimations have both biases that come from the same reason, i.e. incomplete sampling of the 641

environmental conditions that affect the phenology, wherever natural or artificial. 642

Therefore, obtaining r643

a combination of both the experimental approach 644

(forward estimation) and the statistical approach (backward estimation)645

646

647

648

649

650

651

652

653

Divergence between projections of correlative and 2-phase models in future climatic 654

conditions across the Alps are striking. For all species at high elevation over the 1950-2050 655
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period, correlative models projected earlier dates than 2-phase models, while after 2050, 656

projections were similar. Standard deviations of the projected dates before 2050 for 657

correlative models were also surprisingly small, particularly for Larix. This might be due to 658

the fact that the GDD variable was calculated over the same period of the year along the 659

elevation gradient. At high elevation, GDD remains low every year, yielding a low variation 660

in the projected budburst dates, which was particularly marked during the historical period. 661

Because Larix is the species that reaches the tree line, variations of GDD are even lower for 662

this species compared to the four other species. These results highlight the limitations of 663

correlative models to simulate budburst dates when transferred to another spatial or temporal 664

domain.665

Performance indices were similar between 1-phase models and 2-phase models for 666

predictions and projections in historical conditions, suggesting that so far chilling had no 667

major effect on the budburst date because it was sufficient to fully release endodormancy. 668

Consequently, this means that 1-phase models are complex enough to predict and project 669

budburst dates accurately in historical climatic conditions (Chuine et al., 1999 ; Linkosalo et 670

al., 2008 ; Vitasse et al., 2011). However, 2-phase models provided more accurate 671

predictions of the budburst date for particular recent years with warm winter. This was 672

especially marked for Corylus and Picea. Thus, a certain level of winter warming might have 673

been reached in the Alps, sometimes leading to non-optimal chilling conditions and later 674

dormancy release date compared to colder years. In such situation, the integration of an 675

endodormancy phase in the phenology model clearly increases the projections accuracy. The 676

negative effect of winter warming on endodormancy release in tree species has been shown in 677

a previous study (Asse et al. 2018) and has also been proposed as an explanation of the 678

dampening of the response of budburst to warming temperature over the past 25 years in 679
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Europe (Fu et al., 2015). Although 680

681

682

683

684

685

Although chilling was taken into account in the correlative models, they did not 686

project a negative effect of a lack of chilling on the budburst date like the 2-phase process-687

based model. Although the two types of models were calibrated with the same dataset which 688

contained only one exceptionally warm winter (2006-2007) which had a delaying effect on689

the budburst date (Asse et al., 2018), it seems that only the process-based model was able to 690

capture this important information.691

692

4.3. Evolution of the budburst date in the Alps over the 21st century 693

At low elevation, projected budburst dates were similar until ca. 2050 for all models 694

and for all species, with a weak linear trend towards earlier dates (Fig 5 & 6). This linear 695

trend is due to the warming of spring which accelerates cell elongation while the warming of 696

winter does not affect chilling accumulation until 2050 according to climate projections as 697

previously highlighted by Vitasse et al., (2011) ; Chuine et al., (2016) and Fig. 1 in Guo et 698

al., (2015). However, after 2050, while the linear trend towards earlier dates continues and 699

accelerates in correlative and 1-phase models (although less in the latter and especially for 700

Larix), this trend progressively vanished in 2-phase models.701
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At high elevation, projected budburst dates were similar for all species over the 21st702

century between 1-phase and 2-phase models, suggesting that at high elevation, chilling 703

requirements could be fulfilled until the end of the 21st century. 704

Thus, our results suggest that warmer winters might have opposite effects on spring 705

phenology at high compared to low elevation, by advancing vs delaying dormancy release706

respectively, and consequently reducing the phenological cline across the elevation gradient. 707

As a consequence, trees might become at increasing risk of late spring frost damage at high 708

elevation compared to low elevation in the upcoming decades. A preview of such situations709

have already been reported in the Swiss Alps over the last decades (Vitasse et al., 2017,710

2018). Considering that phenological traits have been shown to be primary determinants of 711

species range (Chuine & Beaubien, 2001; Chuine et al., 2013), a reduced phenological shift 712

across the elevation gradient might in the medium term alter the altitudinal zonation of the 713

vegetation.714

Our results also support the hypothesis of Vitasse et al., (2017) that winter 715

temperatures are currently actually colder than the optimal chilling temperature at high 716

elevation so that a warming of winter actually increases the number of chilling days and 717

advance endodormancy release, and consequently budburst. Bud endodormancy indeed 718

requires from a few weeks to several months of cold temperature, that can vary from 0°C to 719

12°C depending on the species, to be fully released (Lang et al., 1987; Caffarra et al., 2011a;720

Malagi et al., 2015).721

From 1950 to 2100, 2-phase models projected a trend for earlier budburst date in the 722

inner Alps (higher elevations), while they projected either very weak trend toward earlier 723

dates or a trend toward later dates in the outer Alps (lower elevations) (particularly for Larix724
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and Picea), and a trend toward later dates whatever the species in the Southern Alps, which 725

match or approach their southern range limit. In the short term, delaying effect of winter726

warming on budburst date might be beneficial to trees by reducing the risk of exposure to late 727

spring frost. But in the longer term, it is expected to 728

and at species southern range limit729

730

731

732

733

photoperiod compensating for a lack of chilling. Integration of this compensatory effect in the 734

models might change substantially the projections of budburst dates for the end of the 21st735

century for photosensitive species which might be the case for Picea abies (Blümel & 736

Chmielewski, 2012; Gauzere et al., 2017).737

738

Conclusion 739

Our results showed that (1) process-based phenology models are more robust than 740

correlative model even when they rely entirely on backward estimation (inverse modelling)741

of their parameter values. (2) They also demonstrated that the robustness of process-based 742

models could be increased, though not substantially, when their calibration could rely on 743

forward estimation. Therefore, the robustness of process-based models seems to come 744

primarily from the explicit description of causal relationships rather than from forward 745

estimation of model parameters, and we advise using, whenever possible, both backward and 746

forward estimation of model parameters. (3) In opposite to correlative models, process-based 747
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models projected a reduction in the phenological cline along the elevation gradient for all 748

species by the end of the 21st century. This later result suggests that using linear relationships 749

to provide projections for the second part of the 21st century will be vain, especially at low 750

elevation and at species southern range limits.751
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Appendix A 997
998

Phenoclim protocol999

Phenoclim is a citizen science program initiated in 2004 (www.phenoclim.org) by CREA 1000
, which aims at 1001

assessing the long-term effects of climate change on plant phenology over the French Alps.1002
The specificity of this program, compared to other existing citizen science initiatives, lies not 1003
only in its large geographic coverage in mountain environments, but also in its simultaneous 1004
acquisition of accurate temperature records in addition to phenological observations. 1005

In the Phenoclim protocol, budburst is defined as the first day at which 10% of vegetative 1006
buds of the crown on a given individual are opened (BBCH 07). At each site, observers 1007
survey at least two individuals per species. These individuals are chosen to be adult and 1008
dominant trees taller than 7 m, sharing similar environmental conditions (i.e. soil, slope and 1009
aspect) and at a maximum horizontal distance of 100 m from each other. Phenological 1010
observations were recorded weekly. For each species, yearly budburst dates were calculated 1011
as the mean date of individuals observed at a given site. The five surveyed species do not 1012
occur simultaneously at all sites, therefore, the number of years surveyed varies for a given 1013
site (Fig.1). In total, and irrespective of species, 242 sites for budburst were surveyed 1014
between 2007 and 2014.1015

1016
1017
1018
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Appendix C  
Parameter estimates obtained for each model when calibrated on observation sites with weather stations and 
performances indices. N: number of observations; k: number of parameters. N number of data; k number of 
parameters; SStot total variance (sum of squares), SSres residual variance (sum of squares); RMSE Root mean 
squared error; EFF efficiency; AICc Corr

1-phase model 2-phase model

Species GDD Sigmoïd Wang
Threshold 

lower/sigmoïd Wang/sigmoïd

C. avellana Parameters t0 = 1 t0 = 57 t0 = 51 t0 = -115 t0 = -119
F* = 21 F* = 8 F* = 6 C* = 145 C* = 150
Tb = 7.12 dT = -0.45 Topt = 27.95 F* = 11 F* = 4

T50 = 8.44 Tmin = -2.94 Th = 16 Topt = 5.07
Tmax = 41.13 dT = -0.38 Tmin = -4.47

T50 = 8.61 Tmax = 22.07
dT = -1.71
T50 = 7.91

Calibration performances

N 128 128 128 128 128

k 3 4 5 6 8

SStot 22262 19743 19743 19743 19743

SSres 16559 9815 9796 8564 7470

RMSE 10.91 8.76 8.75 8.18 7.64

EFF 0.26 0.5 0.5 0.57 0.62

AICc 626.51 563.80 565.72 550.72 537.74

F. excelsior Parameters t0 = 1 t0 = 54.7 t0 = 55 t0 = -77 t0 = -78

F* = 121 F* = 17 F* = 23 C* = 125 C* =125

Tb = 5.68 dT = -0.22 Topt = 16.2 F* = 9 F* = 9

T50 = 12.25 Tmin = -38.8 Th = 10.6 Topt = 0.1

Tmax = 20.8 dT = -0.2 Tmin = -36.6

T50 = 16.2 Tmax = 21.3

dT = -0.24

T50 = 10.41
Calibration performances

N 149 149 149 149 149

k 3 4 5 6 8

SStot 34545 31275 31275 31275 31275

SSres 19787 12559 12650 11958 12430

RMSE 10.98 9.22 9.21 8.96 9.13

EFF 0.43 0.59 0.60 0.62 0.60

AICc 732.52 670.37 672.20 665.98 676.19

B. pendula Parameters t0 = 1 t0 = 60 t0 = 62 t0 = -101 t0 = -108

F* = 72 F* = 1 F* = 9 C* = 127 C* = 157

Tb = 4.9 dT = -0.2 Topt = 17.4 F* = 5 F* = 5

T50 = 24.5 Tmin = -37.5 Th = 12.2 Topt = 3.4

Tmax = 21.5 dT = -0.2 Tmin = -9.9

T50 = 16.97 Tmax = 26.2

dT = -0.2

T50 = 14.7
Calibration performances

N 146 146 146 146 146

k 3 4 5 6 8

SStot 30844 30313 30313 30313 30313

SSres 14743 8425 8440 8298 7720

RMSE 9.69 7.6 7.6 7.5 7.27

EFF 0.52 0.72 0.72 0.73 0.75

AICc 677.86 600.36 601.89 602.46 596.38
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1-phase model 2-phase model

Species GDD Sigmoïd Wang
Threshold

lower/sigmoïd Wang/sigmoïd
L. decidua Parameters t0 = 1 t0 = 83 t0 = 83 t0 = -100.8 t0 = 66

F* = 3 F* = 6 F* = 6 C* = 184 C* = 134
Tb = 9.6 dT = -37 Topt = 10.1 F* = 6 F* = 6

T50 = 6.2 Tmin = 5.9 Th = 18.3 Topt = 9
Tmax = 37.7 dT = -37.4 Tmin = -38.9

T50 = 6.2 Tmax = 34.2
dT = -7.1
T50 = 6.2

Calibration performances
N 159 159 159 159 159

k 3 4 5 6 8

SStot 27728 26275 26275 26275 26275

SSres 54044 11328 11240 11297 10911

RMSE 17.83 8.44 8.41 8.43 8.28

EFF -0.95 0.57 0.57 0.57 0.58

AICc 930.83 686.58 687.47 690.43 689.31

P. abies Parameters t0 = 1 t0 = 83 t0 = 84 t0 = -100 t0 = -107

F* = 290 F* = 5 F* = 8 C* = 174 C* = 176

Tb = 2.96 dT = -0.1 Topt = 29.9 F* = 8 F* = 3

T50 = 24.2 Tmin = -36.3 Th = 13.9 Topt = 0.01

Tmax = 37.6 dT = -0.2 Tmin = -39.8

T50 = 18.1 Tmax = 24.9

dT = -0.2

T50 = 27.6

Calibration performances
N 112 112 112 112 112

k 3 4 5 6 8

SStot 22158 21453 21453 21453 21453

SSres 10623 4989 4984 4660 4753

RMSE 9.29 6.67 6.67 6.45 6.51

EFF 0.52 0.77 0.77 0.78 0.78

AICc 513.97 433.58 435.66 430.36 437.18
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Appendix F  

Comparison of predicted (a, c, e, g, i) and projected (b, d, f, h, j) budburst dates either by the 
correlative model (with GDD and chilling as variables) (blue dots) or the process-based 2-phase 
model (red dots) with observed budburst dates for each species. Linear regressions of 
predicted/projected dates on observed dates (superimposed lines) are shown for correlative model 
(blue) and process 2-phase model (red). Light grey area= ± .95 confidence interval of dates 
predicted/projected by the correlative model. Dark grey area= ± .95 confidence interval of dates 
predicted/projected by the 2-phase model.
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Appendix G 

Comparison of predicted (a, c, e, g, i) and projected (b, d, f, h, j) budburst dates either by the process 
1-phase model (grey dots) or the process 2-phase model (red dots) with observed budburst dates for 
each species. Linear regression of predicted/projected budburst dates on observed dates 
(superimposed lines) are shown for process 1-phase model (grey) and process 2-phase model (red). 
Light grey area= ± .95 confidence interval of dates predicted/projected by the 1-phase model. Dark 
grey area= ± .95 confidence interval of dates predicted/projected by the 2-phase model. 
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Appendix H 

Variation of the residuals of correlative models (with GDD and chilling as variables) (blue dots) and 
process-based 2-phase models (red dots) calculated either with the calibration data subset1 (a, c, e, g, 
i) or the validation data subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are 
linear regression of residuals on elevation (same color as symbols). 
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Appendix I 

Variation of the residuals of process-based 1-phase models (grey dots) and process-based 2-phase 
models (red dots) calculated either with the calibration data subset1 (a, c, e, g, i) or the validation data 
subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are linear regression of 
residuals on elevation (same color as symbols). 
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Appendix J 

Evolution and uncertainties of the climatic data generated by the ALADIN-Climat v5 RCM model 
(CNRM) for the CMIP5 experiment at a 12-km resolution, downscaled at 8-km resolution using 
quantile-quantile method (http://drias-climat.fr/). Daily minimum and maximum temperatures of 
RPC8.5 scenarios were extracted on the grid points of a rectangle area covering French Alps 

Black curve indicate the mean of annual mean temperature 
over the region (a), the mean of the annual average minimum temperature over the region (b), the 
mean of annual average maximum temperature over the region (d), and dark grey areas indicate the 
standard deviation. 
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Appendix L 

Comparison of the budburst dates of Larix decidua predicted (a) and projected (b) by the process-
based 2-phase model (red dots) and the forward calibrated process-based 2-phase model (brown dots)
with the observed budburst dates. Linear regression of predicted/projected budburst dates on observed 
dates (superimposed lines) are shown for the 2-phase model (red) and the 2-phase calibrated model 
(brown).  Red area= ± .95 confidence interval of dates predicted/projected by the 2-phase model. 
Orange area= ± .95 confidence interval of dates predicted/projected by the calibrated 2-phase model. 

80

100

120

140

160

80 100 120 140 160

Observed dates (day of year)

model process 2 phase process calibrated

80

100

120

140

160

80 100 120 140 160

(b) (a) 

Forward calibrated PBPB 2-phase



64

Appendix M 

Variation of the residuals of process-based 2-phase models (red dots) and forward calibrated process-
based 2-phase models (brown dots) calculated either with the calibration data subset1 (a, c, e, g, i) or
the validation data subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are linear 
regression of residuals on elevation (same color as symbols). 
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