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Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate
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Many phenology models have been developed to explain historical trends in plant phenology and to forecast future ones. Two main types of model can be distinguished: correlative models, that statistically relate descriptors of climate to the date of occurrence of a phenological event, and process-based models that build upon explicit causal relationships determined experimentally. While process-based models are believed to provide more robust projections in novel conditions, it is still unclear whether this assertion always holds true and why. In addition, the efficiency and robustness of the two model categories have rarely been compared.

Here we aimed at comparing the efficiency and the robustness of correlative and process-based phenology models with contrasting levels of complexity in both historical and future climatic conditions. Models were calibrated, validated and compared using budburst dates of five tree species across the French Alps collected during 8 years by a citizen-science program.

Process-based models were less efficient, yet more robust than correlative models, even when their parameter estimates relied entirely on inverse modeling, i.e. parameter values estimated using observed budburst dates and optimization algorithms. Their robustness further slightly increased when their parameter estimates relied on forward estimation, i.e. parameter values measured experimentally. Our results therefore suggest that the robustness of process-based models comes both from the fact that they describe causal relationships and the fact that their parameters can be directly measured.

Process-based models projected a reduction in the phenological cline along the elevation gradient for all species by the end of the 21 st century. This was due to a delaying effect of winter warming at low elevation where conditions will move away from optimal chilling conditions that break bud dormancy vs an advancing effect of spring warming at high elevation where optimal chilling conditions for dormancy release will persist even under the most pessimistic emissions scenario RCP 8.5.

These results advocate for increasing efforts in developing process-based phenology models as well as forward modelling, in order to provide accurate projections in future climatic conditions.

Introduction

Phenology is a key aspect of plant and animal life strategies because it determines the timing of growth and reproduction. Life cycle of species must be adapted to the local weather conditions and resources. As a consequence, phenology is one of the top controls of . Phenology also ultimately regulates many functions of ecosystems such as productivity [START_REF] Richardson | Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis[END_REF], ecosystem carbon cycling [START_REF] Delpierre | Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis[END_REF], water [START_REF] Hogg | Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the Western Canadian interior[END_REF] and nutriment cycling [START_REF] Cooke | Nitrogen storage and seasonal nitrogen cycling in Populus: Bridging molecular physiology and ecophysiology[END_REF].

Since the 1970s, spring phenology has been reported to advance in response to warming [START_REF] Walther | Ecological responses to recent climate change[END_REF][START_REF] Parmesan | A globally coherent fingerprint of climate change impacts across natural systems[END_REF][START_REF] Menzel | European phenological response to climate change matches the warming pattern[END_REF][START_REF] Fu | Recent spring phenology shifts in western Central Europe based on multiscale observations[END_REF].

For instance, it has been shown that the apparent response of leaf unfolding to temperature was -3.4 days per °C between 1980 and 2013 in temperate Europe [START_REF] Fu | Declining global warming effects on the phenology of spring leaf unfolding[END_REF]. This advance in spring phenology events is due to the warming of springs as bud growth rate is positively and strongly related to temperature (see for review [START_REF] Chuine | Process-Based Models of Phenology for Plants and Animals[END_REF]. However, this trend has been slowing down by about 40% after 2000 [START_REF] Fu | Declining global warming effects on the phenology of spring leaf unfolding[END_REF]. One of the most likely hypotheses to explain this slowdown is the warming of winters [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF]. Indeed, most of temperate and boreal trees have developed a key adaptation to winter cold: the inability to resume growth despite transient favorable growing conditions in terms of temperature [START_REF] Howe | Quantitative genetics of bud phenology, frost damage, and winter survival in an F 2 family of hybrid poplars[END_REF]. This particular physiological state, called endodormancy [START_REF] Lang | Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research[END_REF], establishes in fall and disappears in early to late winter after a certain exposure to cold temperatures. Therefore, the warming of winters is suspected to delay endodormancy release and be responsible for the apparent decrease in the response of leaf unfolding to warming after 2000. Ultimately, this lack of chilling temperatures might compromise budburst itself at some point if warming continues [START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF]. Such a situation is more likely to occur in populations inhabiting the warm edge of a species range and/or lower elevations in mountain regions, where species are already in suboptimal chilling conditions [START_REF] Benmoussa | Climate change threatens central Tunisian nut orchards[END_REF][START_REF] Guo | Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China[END_REF]. More than ever there is a need for more accurate projections of tree phenology for the upcoming decades to remove the large uncertainties that still remains.

Two main categories of predictive phenology models exist although there can be a continuum in-between: correlative and process-based models (for review see [START_REF] Chuine | Plant development models[END_REF][START_REF] Chuine | Process-Based Models of Phenology for Plants and Animals[END_REF]. Correlative models statistically relate descriptors of climate to phenological variables (i.e. usually the occurrence dates of a phenological phase such as bud break or flowering). In correlative models, parameters have no a priori defined ecological meaning and processes can be implicit (process-implicit) [START_REF] Lebourgeois | Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models[END_REF]. In contrast, process-based models are built around explicitly stated mechanisms and parameters have a clear ecological interpretation that is defined a priori. In this category of model, response curves are often obtained directly from experiments, contrasting with empirical relationships of correlative models. Consequently, process-based models often require a larger number of parameters to be estimated or measured, with the consequence of a higher level of complexity than correlative models. However, they provide greater insights into how precisely each driver affects the trait, and they are expected to provide more robust projections in new climatic conditions corresponding either to other geographical areas or other time periods [START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF] Among the most widely used process-based phenology models, are the so-called 1phase models that describe solely the ecodormancy phase, which follows the endodormancy phase. During the ecodormancy phase, bud cell elongation can take place whenever temperatures are appropriate, and the higher the temperature is, the higher is the rate of cell elongation during this phase. This category of models has been shown to be efficient in predicting accurately budburst date under historical climate [START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF][START_REF] Basler | Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe[END_REF]. Another category of models, called 2-phase models, describes additionally the endodormancy phase, and take into account the possible negative effect of winter warming on endodormancy release. This category of models is thus considered to provide more accurate projections in future climatic conditions [START_REF] Chuine | Why does phenology drive species distribution?[END_REF][START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF]. However, it has been shown recently that this second type of models might suffer from flawed parameter estimation when dates of endodormancy release have not been used for their calibration [START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF]. Unfortunately, observations of endodormancy release date are very rare because they are very difficult to determine [START_REF] Jones | An approach to the determination of winter chill requirements for different Ribes cultivars[END_REF][START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF]. Models are thus usually calibrated using solely bud break or flowering dates [START_REF] Chuine | A Unified Model for Budburst of Trees[END_REF]Caffarra et al., 2011;Luedeling et al., 2009; but see [START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF]. Some other models go further in the description of the processes by integrating a photoperiod cue [START_REF] Schaber | Physiology-based phenology models for forest tree species in Germany[END_REF]Gaüzere et al., 2017). Some studies indeed support the hypothesis that in photosensitive species, which might represent about 30% of temperate tree species [START_REF] Zohner | Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants[END_REF], long photoperiod might compensate for insufficient chilling (Caffarra et al., 2011a;Gaüzere et al. 2017).

There is now a large number of phenology models that differ in their level of complexity and in the types of response function to environmental cues they use (see for review [START_REF] Chuine | Plant development models[END_REF][START_REF] Basler | Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe[END_REF][START_REF] Chuine | Process-Based Models of Phenology for Plants and Animals[END_REF]. However, very few studies aimed at comparing their efficiency and robustness so far [START_REF] Basler | Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe[END_REF], especially in future climatic conditions (but see [START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF][START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF]Gaüzere et al., 2017), while this has been done multiple times for species distribution models (e.g. [START_REF] Cheaib | Climate change impacts on tree ranges: Model intercomparison facilitates understanding and quantification of uncertainty[END_REF]Higgins et al., 2012;[START_REF] Morin | Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change[END_REF][START_REF] Kearney | Correlative and mechanistic models of species distribution provide congruent forecasts under climate change[END_REF] and crop models [START_REF] Lobell | On the use of statistical models to predict crop yield responses to climate change[END_REF] for example. By efficiency, we mean here the ability of the model to provide accurate predictions in conditions that have been used to calibrate the model [START_REF] Janssen | Calibration of process-oriented models[END_REF]; and by robustness, we mean here the ability of the model to provide accurate predictions in external conditions [START_REF] Janssen | Calibration of process-oriented models[END_REF], i.e. other conditions than those used to calibrate the model. Model robustness determines its transferability in time and space.

Process-based models are usually expected to provide more accurate projections for the future than correlative models because they describe causal relationships. The effect of each driver identified as affecting a particular trait value can be described by a causal relationship, sometimes involving other drivers as well (interaction between drivers). For this reason, process-based models have also an expected greater potential to deal with non-analog situations. However, the putative higher robustness of process-based models could also come from the fact that parameter values describing the causal relationships, or at least some of them, can be measured directly (forward estimation of parameter values) instead of being inferred statistically through inverse modelling techniques and data assimilation (backward estimation of parameter values). Yet, there has been no attempt so far to validate this widely accepted expectation.

Here, we aimed at comparing the efficiency and robustness of correlative vs processbased phenology models with contrasting levels of complexity, both in space and time. More precisely, we aimed at answering the following questions: (1) Are process-based phenology models more robust than correlative models? (2) If so, is it because they describe causal relationships or because they can be less dependent on statistical inference (i.e. back estimation of parameter values) and rely more on experimental measurements (i.e. forward estimation of parameter values)? (3) How do projections of both types of model differ in future climatic conditions?

Using observations of budburst dates collected over the Western Alps by a citizen science program during 8 years, and experimental data, we calibrated correlative and processbased phenology models with three levels of complexity for five major tree species: Corylus avellana (L.), Fraxinus excelsior (L.), Betula pendula (Roth), Larix decidua (Mill.) and Picea abies (L.). We then compared their predictions and projections over the Western Alps in historical climate and in future climate respectively.

The Western Alps are particularly interesting to evaluate phenology models because the elevation gradient provides a wide temperature range on a very short distance. In addition, the southern part of the Western Alps is nearly located at the warmest edge of the geographic range of the five studied species, where it has been shown that winter warming is already affecting endodormancy release and budburst [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF]. Finally, temperature has already increased in the Western Alps twice as fast as in the northern hemisphere during the 20 th century [START_REF] Rebetez | Monthly air temperature trends in Switzerland 1901-2000 and 1975-2004[END_REF] and recent evidence indicates that the current warming rate increases with increasing elevation (Mountain Research Initiative EDW Working Group, 2015). Consequently, mountain summits might warm faster than lower elevation sites, so that the response of mountain ecosystems to climate change might be non-linear along elevation gradients. Therefore, ultimately, we aimed at answering a fourth question: (4) How will climate change alter the budburst date of alpine species?

Methods

Phenological and meteorological data

We used observations of the budburst date, defined as the first day when 10% of vegetative buds of a given individual tree are opened (BBCH 07), of five common tree species: ash (Fraxinus excelsior L.), birch (Betula pendula Roth), hazel (Corylus avellana L.), larch (Larix decidua Mill.), and spruce (Picea abies L.). These species show different elevation ranges (from 150 -1300 m a.s.l. for Corylus to 700 2100 m a.s.l for Larix), which allowed us to compare the two types of model over a large climatic gradient. The data were extracted from the Phenoclim database of CREA (Centre de Recherches sur les Ecosystèmes Chamonix, France) (www.phenoclim.org) which covers the entire French Alps (for further details of the Phenoclim protocol see Appendix A) (Fig. 1). In total, and irrespective of species, 242 sites were surveyed for budburst between 2007 and 2014.

Sixty of the observation sites (ranging from 372 to 1919 m a.s.l,) were equipped with meteorological stations that recorded air temperature at 2-m height every 15 min with a DA8B20 digital thermometer placed in a white ventilated plastic shelter (Dallas Semiconductor MAXIM, "http://www.maxime-ic.com", operatin and an accuracy of ) (Fig. 1). These data were used to calculate the daily mean air temperature at the sixty sites and were also interpolated at observation sites without meteorological stations using a 25-m digital elevation model (DEM) as follows. We first constructed a linear model of daily temperature at 2-m height as a function of elevation. Residuals of this linear model were then interpolated using the calibrations points over the entire French Alps according to the inverse distance weighted algorithm (IDW; see also: [START_REF] Kollas | Agricultural and Forest Meteorology How accurately can minimum temperatures at the cold limits of tree species be 266[END_REF]Cianfrani et al., 2015, for further details).

In addition to Phenoclim data, we used data from an experiment on Larix decidua 

Correlative phenology model

We used mixed-effects models for each of the five species with budburst dates as response variables and with growing degree-days and chilling as predicting variables [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF]. We defined chilling for each species and each observation site as the frequency of days with a daily temperature < 5°C from September 1 st to December 31 st of the calendar year preceding budburst [START_REF] Dantec | Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range[END_REF]. We then calculated for each species and each observation site growing degree-days (GDD) defined as the sum of positive daily mean temperature from January 1 st to the median date of budburst observed over the 2007-2014 observation period. GDD was calculated with two different temperature thresholds: the more commonly-used 5°C (hereafter designated as GDD5) and 0°C (hereafter designated as GDD0) because daily mean temperatures between 0 and 5°C may contribute to trigger budburst events in plants growing in mountainous environments [START_REF] Körner | Alpine plant life: functional plant ecology of high mountain ecosystems, Alpine plant life functional plant ecology of high mountain ecosystems[END_REF]Vitasse et al. 2016). We chose Jan 1 st as the starting date of accumulation because the ecodormancy phase can begin as early as January for some species and because the climatic conditions at the beginning of this phase vary a lot between species, years, and sites along elevation and latitudinal gradient [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF].

Process-based phenology models

We used several process-based phenology models to simulate the budburst dates of each species.

First, we used 1-phase models, that describe the ecodormancy phase only and assume that endodormancy-release always occurs before temperature can trigger cell elongation and that there is no effect of chilling on forcing requirement [START_REF] Chuine | Plant development models[END_REF]. Budburst occurs at t f when the sum of the daily rates of development (R f ) reaches the critical value F * :

(1) with t 0 the starting date of forcing and T d the daily mean temperature.

We used several versions of the model that differed by the response function to temperature (R f ), which determines the daily rate of bud development:

the Growing Degree Day function, similarly to the correlative models, with the lower threshold temperature;

and two more complex functions: the sigmoid function, with the steepness of the response and the mid-response temperature;

and the Wang function [START_REF] Wang | Simulation of phenological development of wheat crops[END_REF] with , and T min , T max and T opt the cardinal temperatures.

These models have from 3 to 5 parameters that were either calibrated using inverse modelling techniques or prescribed using experimental data (see 2.4).

Second, we used sequential 2-phase models [START_REF] Hanninen | Effects of temperature on dormancy release in woody plants: implications of prevailing models[END_REF]) that take into account chilling requirements during the endodormancy phase (first phase) and forcing requirements during the ecodormancy phase (second phase; [START_REF] Chuine | Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling[END_REF]. The endodormancy phase ends at when the accumulation of the daily rates of dormancy release ) reaches the critical sum of chilling units

(3) (2) (4) 
From to (date of budburst), forcing units are then accumulated as:

.

We used several versions of the model that differed by the response function to temperature during the endodormancy phase (R c ) that determines the daily rate of endodormancy release:

the Wang function (Eq. 4) and a simple lower threshold function,

For the ecodormancy phase we used the best R f function found with the 1-phase model for each species. These 2-phase models have 6 to 8 parameters that were either calibrated using inverse modelling techniques or prescribed using experimental data.

Parameter value estimation

The data set was divided into several data subsets: data subset 1 corresponded to data collected on sites equipped with a meteorological station; data subset 2 corresponded to data collected on sites not equipped with a meteorological station; data subset 3 corresponded to data from observation sites East of a species-specific longitudinal threshold; data subset 4 corresponded to data from observation sites West of this threshold. The species-specific longitude corresponded to the longitude on both sides of which the species was equally present (i.e. 50% of the observation sites West of the longitude and 50% East of the longitude). The data subsets contained a similar number of data ( =12).

(

) (6) 5 
First, all models were calibrated using the phenological data and corresponding meteorological data of data subset 1. The best models obtained were then additionally calibrated twice using data subset 3 and data subset 4 (Fig. 1). The three different calibrations aimed at evaluating the transferability of the models to conditions that differ from those used to calibrate the models (see section 2.6.1).

Correlative phenology models which corresponded to mixed effects models were generated in R (version 3.3.2; R Core Team, 2016) using the library nlme [START_REF] Lindstrom | Nonlinear mixed effects models for repeated measures data[END_REF][START_REF] Pinheiro | Unconstrained parametrizations for variance-covariance matrices[END_REF] with observation sites as random effect. Indeed, there may be some site-specific adaptations, which would blur an overall relationship between the temperature-based predicting variables (i.e chilling, GDD) and budburst. We considered models with all combinations of the two predicting variables (i.e. chilling and GDD), including also univariate models. GDD with two different thresholds were tested separately but in combination with chilling in multivariate models.

Process-based models were adjusted by minimizing the residual sum of squares using the simulated annealing algorithm of Metropolis [START_REF] Chuine | Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing[END_REF] using the Phenology Modelling Platform software (PMP5; http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform) [START_REF] Chuine | Plant development models[END_REF]. Adjustment was repeated 20 times to assure that the global optimum had been reached.

Finally, we also used the experimental observations on Larix to constrain the calibration of the best 2-phase model. Using the results of the two experiments, we were able to estimate the critical sum of chilling during the endodormancy phase ( the response function to temperature (R f ) and the critical value F * of the ecodormancy phase. We thus fixed , the parameter values of the R f function and F * to those estimates. This model is called hereafter forward calibrated

Model comparison

Models were compared using four performance indices: adjusted R-square, s

Information Criterion corrected for small sample size (AIC C ) [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]; the efficiency (EFF) [START_REF] Nash | River flow forecasting through conceptual models part I -A discussion of principles[END_REF] ; the root mean square error for the calibration (RMSE) and validation (RMSE P ) data sets respectively, the systematic root mean square error (RMSEs) that estimates the model linear error (or bias).

RMSE P or

where represents observed dates, represents projected dates, represents regressed prediction dates and N or n is the number of observations and k is the number of parameters.

We also used the ratio of performance to interquartile distance (RPIQ) that takes both the prediction error and the variation in observed values into account (Bellon-Maurel et al.,

(11) 2010) . .

where Q1 represents the value below which we can find 25% of the sample and Q3 represents the value below which we find 75% of the sample.

Based on the AICc, EFF, RMSE, RMSEs, RPIQ and R 2 (adjusted R-squared), we first selected the best correlative model with GDD as variable, the best correlative model with GDD and chilling as variables, and the best 1-phase and 2-phase models. We additionally bootstrapped the best models (with 999 repetitions) to assess the effect of sampling bias on RMSE indices, a good overall measure of model performance. We then calibrated linear regressions of the model residuals (observed dates predicted dates) as a function of elevation.

We additionally tested the performance of the two types of process-based model in usual vs unusual climatic conditions. We identified two climatically contrasted years over the observation period. First, a typical year with cold temperature during the fall and the early winter (called hereafter for the sake of simplicity winter period) followed by warm temperature during the late winter and the early spring (called hereafter for the sake of simplicity . Second, an unusually warm year with a warm winter period followed by a warm preseason period. Winter period corresponds to the development phase of endodormancy and preseason period corresponds to the development phase of ecodormancy. To identify the three climatically contrasted years, we compared quantile values of chilling and GDD between years for each species calculated as defined above.

Model projections (12)

Following Bray & Storch (2009), we use the term to refer to outputs of models corresponding to the conditions used for the calibration; and the term to refer to outputs of models corresponding to conditions not used for the calibration. The term conveys a sense of certainty, while the term conveys a sense of possibility.

Projections across space

We performed three spatial cross-validations to assess the transferability of the best models to a wider geographic area. First, we used models calibrated on observation sites with meteorological stations (data subset 1) to project the budburst date at observation sites without meteorological stations (data subset2) using interpolated 2-m temperature for the 2007-2014 time period (see section 2.1). Second, we used models calibrated on observation sites West of the species-specific longitude (data subset 3) to project the budburst date on observation sites East of this longitude (data subset 4), and vice versa. The evaluation of the model performance with data subsets 3 and 4 provides a more robust estimation of their transferability compared to data subsets 1 and 2 because of the lower auto-correlation of the meteorological conditions between them.

The accuracy of the projections was estimated using RMSE P , RMSE S , RPIQ and R 2 .

We additionally bootstrapped models (with 999 repetitions) to assess the effect of sampling bias on RMSE indices. We finally calibrated linear regressions of the model residuals (observed dates projected dates) as a function of elevation.

Projections across time using climate scenarios

We compared the projections of the best models calibrated on observation sites with meteorological stations, in historical and future climatic conditions (2006 to 2100). We used the climatic data generated by the ALADIN-Climat v5 RCM model (CNRM)

for the CMIP5 experiment at a 12-km resolution and downscaled at 8-km resolution using quantile-quantile method (http://drias-climat.fr/). For the future period (2006-2100), we used the scenario RCP8.5. We chose a single scenario because our objective here was to realize a sensitivity analysis of the different model types to climate change and not to provide impact projections. However, we chose the RCP 8.5 scenario because it is close to the current trajectory. Daily minimum and maximum temperatures were extracted for the grid covering the French Alps ( to to ). We compared the budburst dates projected by the best models for two different elevation ranges whose limits depended on the species distribution according to the CBNA (Conservatoire Botanique National Alpin)

database.

The annual shift of projected budburst dates was calculated as the S estimator of the slope of regressions (Sen, 1968) between projected budburst dates and years over the period 1950 to 2100. The shift in the budburst date over this period was also calculated.

Budburst dates projected by each model over the 1950-2100 time period were plotted with the associated confidence interval derived from the external validation (see section 2.5.1.). The annual / decadal shift of projected budburst dates from estimator of slope was additionally provided for each model type and each of the 8-km cells in the French Alps for the same 1950-2100 period.

The different models that were compared and the different calibrations, validations and projections that were realized are summarized in Table 1. Table 1: Summary of the different models that were compared and the different calibrations, validations and projections that were realized. GDD is the abbreviation of growing degree day function and TL of the threshold lower function. Meteo sites correspond to sites equipped with a meteorological station, no meteo sites corresponds to sites not equipped with a meteorological station, east sites correspond to observation sites East of a species-specific longitudinal threshold, west sites correspond to observation sites West of this threshold.

Results

Selection of the best models

Mixed effects models which best explained budburst dates were generally models including GDD5, and chilling as predicting variables (Appendix B). However, budburst dates of Corylus and Fraxinus were best explained by GDD0 together with chilling. Variance partitioning also indicated an important joint contribution of GDD0 or GDD5 and chilling for all species (Appendix B). However, over all 8 years and all locations, chilling did not explain a significant part of the variance in spring phenology once forcing temperatures were taken into account except in Picea (Appendix B). For further analysis we only present the results of the correlative model with GDD0 or GDD5 (depending of the species) and chilling as variables.

The response function to temperature in process-based models that best explained the budburst date was the lower threshold function for Fraxinus and Picea and the Wang function for the three other species for the endodormancy phase; and the sigmoid function for all species for the ecodormancy phase (Appendix C). However, because the differences in efficiency and AICc were very small between models using the Wang function and the threshold function, we selected the lower threshold function for all species for the rest of the analyses, for the sake of parsimony.

Process-based models performed the best for Picea and Betula (Fig. 2, Appendix D, Appendix F and Appendix G). However, model error increased with the distance to the mean budburst date, irrespective of the model and the species, with a tendency towards exaggerating early and late budburst dates (predicted dates too early or too late, respectively)

(Appendix F and Appendix G). We found no trend in model residuals (observed predicted dates) along elevation, except for Larix for which observed budburst dates tended to occur earlier than predicted by the models at low elevation and reversely at high elevation (Appendix H and Appendix I).

All performance indices indicated that correlative models predicted the budburst date more accurately than process-based models whatever the calibration dataset for all species (Appendix D). This result was confirmed by bootstrapped values of RMSE that were significantly lower for correlative models than process-based models for all species (Fig. 2).

Performance indices were only slightly better for 2-phase models than 1-phase models (Fig. 2, Appendix D). However, comparing the performances for an unusually warm year, i.e. with warm winter and warm preseason, we found that 2-phase process-based models performed better for Corylus and Picea (Fig. 3). For the other species, model performance was similar between the one-and 2-phase process-based models. For a typical year with a cold winter and a warm preseason, performance indices were similar between the two types of process-based model for all species (Fig. 3).

Model transferability in space

Whatever the validation data subset, process-based models provided more accurate projections of the budburst date than correlative models, except for Picea abies for which performed similarly (Fig. 2, Appendix E). Performances were similar between 2phase models and 1-phase models. Process-based models were thus more robust than correlative models. Indeed, while RMSE increased from predictions to projections in correlative models, they remained similar in process-based models (Fig. 2, Appendix E).

Therefore, model performance of process-based models was more stable (3.45 and 0.87 mean difference in RMSE between calibration and validation for the correlative and process-based models respectively).

Similarly to the predicted dates, error in projected dates increased with the distance to the mean budburst date, irrespective of the model and the species (Appendix F and Appendix G) with exaggerating early and late dates.

Model residuals were linearly related to elevation for Corylus and Fraxinus (correlative models only), and Larix (all models), with dates projected slightly too late at low elevation and too early at high elevation (Appendix H and I).

Projections of the budburst date in future climatic conditions

Evolution across time

We compared the projections of the budburst date of the five species by the best correlative model and the best process-based 1-phase and 2-phase models over the historical period and the 21 st century in the French Alps using climatic data simulated by the ALADIN-Climat RCM. Uncertainties in the climatic data (minimum temperatures, maximum temperatures) were similar along the period and should not therefore add a bias across time in the model projections (Appendix J).

Model projections differed substantially according to elevation and time period. At low elevation, up to 2050, correlative models and 1-phase models projected a continuous trend for earlier budburst dates -0.08 to -0.16 days/year and -0.09 to -0.12 days/year respectively; Fig. 4 & 5, Appendix K) while 2-phase models showed a much weaker trend for earlier budburst dates (-0.05 to -0.07 days/year; Fig. 4, Appendix K). Models projection diverged substantially after 2050. While correlative models projected still earlier budburst dates (-0.27 to -0.48 days/year; Fig. 4, Appendix K), trend weakened in 1-phase models projection (-0.03 to -0.20 days/year; Fig. 4, Appendix K); and vanished or even reverted in 2phase models projection (-0.01 to +0.16 days/year; Fig. 4, Appendix K).

At high elevation, correlative models provided astonishing projections with very low interannual variability of budburst dates, a slight trend towards earlier date from 1950 to 2050 (-0.005 to -0.07 days/year; Fig. 4, Appendix K) that steepened after 2050 (-0.13 to -0.28 days/year; Fig. 4, Appendix K). Process-based models showed a trend for earlier budburst dates (-32 to -46 days) all along the 1950-2100 period. 1-phase models and 2-phase models both projected a remarkably similar trend towards earlier budburst dates all along the historical period and until 2050 (-0.16 to -0.21 days/year; Fig. 4, Appendix K). However, while after 2050, the trend towards earlier budburst dates remained similar between the two process-based models for Larix (-0.42 days/year) and Picea (-0.32 days/year), it weakened in the 2-phase model for the other species (Fig. 4, Appendix K).

For Fraxinus, Betula and Picea, 2-phase models episodically projected budburst failure due to endodormancy release failure because of a lack of chilling. This situation occurred especially at low elevation and with an increasing frequency along the 21th century (Fig. 5).

Variation across space

Correlative models projected earlier budburst dates over the French Alps at an 8-km resolution with a trend more pronounced in the outer and southern Alps than in the central Alps where the elevation is higher on average. The contrast between outer and central Alps was the most pronounced for Betula, Larix and Picea (Fig. 6). Reversely, 1-phase and 2-phase models projected a steeper trend towards earlier budburst dates in the central Alps than the outer Alps. However, contrary to 1-phase models, 2-phase models projected later dates in the southern Alps for all species, and also in the north of the outer Alps for Larix and Picea (Fig. 6). The contrasted projections between the outer and central Alps were more pronounced for Larix (Fig. 6).

Performance of the forward calibrated model

The forward calibrated 2-phase model for Larix performed the worst on average compared to other models in predicting the budburst date whatever the calibration data subset (Fig. 2, Appendix D), but nevertheless provided more accurate predictions of early dates than the 2-phase model calibrated with inverse modelling (Appendix L). The model also provided the most accurate projections for the sites without meteorological stations, but not for the other data subsets (Fig. 2, Appendix E). More interestingly, this model was the only one to provide a lower error on average with the validation data subsets than with the calibration data subsets (-0.39 vs +0.65 for 2-phase model and +0.84 for 1-phase model), and thus

showed the reverse behavior we usually observe with models of an increased error in external (validation) conditions. Like other models (either correlative or process-based) for Larix decidua, residuals were linearly related to elevation, with projected dates tending to be overestimated at low elevation and underestimated at high elevation (Appendix M).

Over the historical period and the 21 st century, budburst dates projected by the forward calibrated 2-phase model were very similar to those projected by the 2-phase model either at low or high elevation (Fig. 7). However, the forward calibrated model showed much more frequent endodormancy release failures than the 2-phase model which projected none for Larix (Fig. 5 g,h). For this reason, we could not represent the shift of the budburst date projected by the forward calibrated model for Larix over the French Alps for each grid cell 537 for the period 1950-2100 (Fig. 6). 538 Fig. 2: Boxplots of bootstrapped values of RMSE (days). Performance of the best models in predicting (a, c, e, g, i) and projecting the budburst date (b, d, f, h, j). Predictions correspond to the budburst dates predicted by the models for their respective calibration dataset: sites with meteorological stations (clear grey); sites West of the species-specific longitudinal threshold (grey); sites East of the species-specific longitudinal threshold (dark grey).

Projections correspond to budburst dates predicted by the three different versions of calibrated models for respectively observation sites without meteorological stations (clear grey); observations sites East of the species-specific longitudinal threshold (grey); observation sites West of the species-specific longitudinal threshold (dark grey). Models on the X axis are the same calibrated models on right and left panels which differ only by the datasets used to evaluate the model performance distinguished by the different shades of Linear mixed models using chilling days and growing degree days (GDD) were more efficient than process-based models in predicting the budburst date in calibration conditions (i.e. sensu [START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF]. However, process-based models were more efficient than correlative models to project budburst date in external conditions (except for Picea for which the three model types revealed similar performance). Error in predicted dates and projected dates increased with the distance to the mean budburst date of the calibration datasets, irrespective of the model and the species. This error inflation at the edge of the calibration range leads to exaggerating early and late dates. However, errors were lower for processbased models compared to correlative models probably because the former formalize causal relationships between the dependent variable and the independent variables across the range of projection contrary to the latter. Although, these conclusions are dependent on the models we have used for this study the way we chose the models asserts a certain degree of generality to these conclusions because models differed essentially by their structure and not by their predicting variables.

Projections of the forward calibrated 2-phase model were not more accurate than those of the other 2-phase models except for sites without meteorological stations. However, it was the only model that did not show an increased error in external conditions. Increased accuracy in this model was mainly achieved through a more accurate prediction of early dates. Our results robustness of process-based models can come additionally from forward parameter estimation, but also that forward parameter estimation is not necessarily the Holy Grail that we should seek. Another study conducted on rice [START_REF] Nagano | Deciphering and prediction of transcriptome dynamics under fluctuating field conditions[END_REF] but see [START_REF] Satake | Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes[END_REF] showed that phenology models calibrated by forward estimation actually might perform worse in situ conditions than in controlled conditions and vice versa.

This study suggests that either the effect of some abiotic factors and their interactions or the daily variation of these factors in nature might be poorly represented under controlled conditions, and that epigenetic or acclimation effects might interfere. Besides this, results

from experiments can sometimes be biased by ontogenetic effects when young cohorts of individuals are used [START_REF] Vitasse | Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier[END_REF]. Thus, it seems that backward and forward parameter estimations have both biases that come from the same reason, i.e. incomplete sampling of the environmental conditions that affect the phenology, wherever natural or artificial.

Therefore, obtaining r a combination of both the experimental approach (forward estimation) and the statistical approach (backward estimation)

Divergence between projections of correlative and 2-phase models in future climatic conditions across the Alps are striking. For all species at high elevation over the 1950-2050 period, correlative models projected earlier dates than 2-phase models, while after 2050, projections were similar. Standard deviations of the projected dates before 2050 for correlative models were also surprisingly small, particularly for Larix. This might be due to the fact that the GDD variable was calculated over the same period of the year along the elevation gradient. At high elevation, GDD remains low every year, yielding a low variation in the projected budburst dates, which was particularly marked during the historical period.

Because Larix is the species that reaches the tree line, variations of GDD are even lower for this species compared to the four other species. These results highlight the limitations of correlative models to simulate budburst dates when transferred to another spatial or temporal domain.

Performance indices were similar between 1-phase models and 2-phase models for predictions and projections in historical conditions, suggesting that so far chilling had no major effect on the budburst date because it was sufficient to fully release endodormancy.

Consequently, this means that 1-phase models are complex enough to predict and project budburst dates accurately in historical climatic conditions [START_REF] Chuine | Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling[END_REF][START_REF] Linkosalo | A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations[END_REF][START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF]. However, 2-phase models provided more accurate predictions of the budburst date for particular recent years with warm winter. This was especially marked for Corylus and Picea. Thus, a certain level of winter warming might have been reached in the Alps, sometimes leading to non-optimal chilling conditions and later dormancy release date compared to colder years. In such situation, the integration of an endodormancy phase in the phenology model clearly increases the projections accuracy. The negative effect of winter warming on endodormancy release in tree species has been shown in a previous study [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF] and has also been proposed as an explanation of the dampening of the response of budburst to warming temperature over the past 25 years in Europe [START_REF] Fu | Declining global warming effects on the phenology of spring leaf unfolding[END_REF]. Although

Although chilling was taken into account in the correlative models, they did not project a negative effect of a lack of chilling on the budburst date like the 2-phase processbased model. Although the two types of models were calibrated with the same dataset which contained only one exceptionally warm winter (2006)(2007) which had a delaying effect on the budburst date [START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF], it seems that only the process-based model was able to capture this important information.

Evolution of the budburst date in the Alps over the 21 st century

At low elevation, projected budburst dates were similar until ca. 2050 for all models and for all species, with a weak linear trend towards earlier dates (Fig 5 & 6). This linear trend is due to the warming of spring which accelerates cell elongation while the warming of winter does not affect chilling accumulation until 2050 according to climate projections as previously highlighted by [START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF] ; [START_REF] Chuine | Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break[END_REF] and Fig. 1 in [START_REF] Guo | Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China[END_REF]. However, after 2050, while the linear trend towards earlier dates continues and accelerates in correlative and 1-phase models (although less in the latter and especially for Larix), this trend progressively vanished in 2-phase models.

At high elevation, projected budburst dates were similar for all species over the 21 st century between 1-phase and 2-phase models, suggesting that at high elevation, chilling requirements could be fulfilled until the end of the 21 st century.

Thus, our results suggest that warmer winters might have opposite effects on spring phenology at high compared to low elevation, by advancing vs delaying dormancy release respectively, and consequently reducing the phenological cline across the elevation gradient.

As a consequence, trees might become at increasing risk of late spring frost damage at high elevation compared to low elevation in the upcoming decades. A preview of such situations have already been reported in the Swiss Alps over the last decades [START_REF] Vitasse | Global warming leads to more uniform spring phenology across elevations[END_REF][START_REF] Asse | Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps[END_REF]. Considering that phenological traits have been shown to be primary determinants of species range [START_REF] Chuine | Phenology is a major determinant of tree species range[END_REF][START_REF] Chuine | Plant development models[END_REF], a reduced phenological shift across the elevation gradient might in the medium term alter the altitudinal zonation of the vegetation.

Our results also support the hypothesis of [START_REF] Vitasse | Global warming leads to more uniform spring phenology across elevations[END_REF] that winter temperatures are currently actually colder than the optimal chilling temperature at high elevation so that a warming of winter actually increases the number of chilling days and advance endodormancy release, and consequently budburst. Bud endodormancy indeed requires from a few weeks to several months of cold temperature, that can vary from 0°C to 12°C depending on the species, to be fully released [START_REF] Lang | Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research[END_REF]Caffarra et al., 2011a;[START_REF] Malagi | The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches[END_REF].

From 1950 to 2100, 2-phase models projected a trend for earlier budburst date in the inner Alps (higher elevations), while they projected either very weak trend toward earlier dates or a trend toward later dates in the outer Alps (lower elevations) (particularly for Larix and Picea), and a trend toward later dates whatever the species in the Southern Alps, which match or approach their southern range limit. In the short term, delaying effect of winter warming on budburst date might be beneficial to trees by reducing the risk of exposure to late spring frost. But in the longer term, it is expected to and at species southern range limit photoperiod compensating for a lack of chilling. Integration of this compensatory effect in the models might change substantially the projections of budburst dates for the end of the 21 st century for photosensitive species which might be the case for Picea abies [START_REF] Blümel | Shortcomings of classical phenological forcing models and a way to overcome them[END_REF][START_REF] Gauzere | Integrating interactive effects of chilling and photoperiod in phenological process-48 based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea[END_REF].

Conclusion

Our results showed that (1) process-based phenology models are more robust than correlative model even when they rely entirely on backward estimation (inverse modelling)

of their parameter values. ( 2) They also demonstrated that the robustness of process-based models could be increased, though not substantially, when their calibration could rely on forward estimation. Therefore, the robustness of process-based models seems to come primarily from the explicit description of causal relationships rather than from forward estimation of model parameters, and we advise using, whenever possible, both backward and forward estimation of model parameters.

(3) In opposite to correlative models, process-based models projected a reduction in the phenological cline along the elevation gradient for all species by the end of the 21 st century. This later result suggests that using linear relationships to provide projections for the second part of the 21 st century will be vain, especially at low elevation and at species southern range limits. 
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 1 Fig. 1: Locations of the data used for the study. Map showing the location of the study area (western part of the Alps) at the scale of Europe (a). Maps showing the location of sites with phenological records for the five species in the Western Alps (b-f): Betula pendula (birch) (b), Corylus avellana (hazel) (c), Fraxinus excelsior (ash) (d), Larix decidua (larch) (e), Picea abies (spruce) (f). Sites without meteorological station are shown with filled white circles and sites with meteorological station are shown with filled black triangles. The dotted lines correspond to the species-specific longitudes separating West and East sites that defined the sub-datasets for each species (see section 2.4).

  grey. Correlative 1 refers to the linear mixed model with GDD only. Correlative 2 refers to the linear model with GDD and chilling as variables. PB 1-phase refers to the process-based 1-phase model. PB 2-phase refers to the process-based 2-phase model. Forward calibrated PB refers to the forward calibrated process-based 2-phase model.
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 34 Fig. 3: Performance (Efficiency a, b; RMSE c, d) of the process-based models in predicting
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 5 Fig. 5: Percentage of sites showing dormancy breaking failure under climate scenario
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 6 Fig.6: Shift in budburst date projected by the correlative(with GDD and chilling as variables) 
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 7 Fig. 7: Budburst date of Larix decidua projected by the 2-phase model (red) and the forward
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  Model performance in predicting the budburst date in the calibration conditions. Meteo sites refers to observation sites with meteorological stations; West sites refers to observations sites West of the species-specific longitudinal threshold; East sites refers to observation sites East of the species-specific longitudinal threshold.Correlative 1 refers to the linear mixed model with GDD only. Correlative 2 refers to the linear model with GDD and chilling as variables. PB 1-phase uses a sigmoid function of temperature for the ecodormancy phase. PB 2-phase uses a lower threshold function of temperature for the endodormancy phase and a sigmoid function of temperature for the ecodormancy phase. PB calibrated refers to the 2-phase model which parameter estimates have been derived from experimental results. AICc, corrected Akaike criterion; EFF, model efficiency; RMSE, roots-mean-squared error (days); RMSEs, systematic root mean square error (days); RPIQ, ratio of performance to interquartile distance; N, number of data used to fit the model.
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Appendix A Phenoclim protocol

Phenoclim is a citizen science program initiated in 2004 (www.phenoclim.org) by CREA , which aims at assessing the long-term effects of climate change on plant phenology over the French Alps. The specificity of this program, compared to other existing citizen science initiatives, lies not only in its large geographic coverage in mountain environments, but also in its simultaneous acquisition of accurate temperature records in addition to phenological observations. In the Phenoclim protocol, budburst is defined as the first day at which 10% of vegetative buds of the crown on a given individual are opened (BBCH 07). At each site, observers survey at least two individuals per species. These individuals are chosen to be adult and dominant trees taller than 7 m, sharing similar environmental conditions (i.e. soil, slope and aspect) and at a maximum horizontal distance of 100 m from each other. Phenological observations were recorded weekly. For each species, yearly budburst dates were calculated as the mean date of individuals observed at a given site. The five surveyed species do not occur simultaneously at all sites, therefore, the number of years surveyed varies for a given site (Fig. 1). In total, and irrespective of species, 242 sites for budburst were surveyed between 2007 and 2014.

Appendix B

Linear mixed models of budburst dates as response variables and temperature-based factors as competing predicting variables. Models are calibrated both on observation sites equipped with temperature stations and on all observation sites. Adjusted R-squared 

Appendix G

Comparison of predicted (a, c, e, g, i) and projected (b, d, f, h, j) budburst dates either by the process 1-phase model (grey dots) or the process 2-phase model (red dots) with observed budburst dates for each species. Linear regression of predicted/projected budburst dates on observed dates (superimposed lines) are shown for process 1-phase model (grey) and process 2-phase model (red).

Light grey area= ± .95 confidence interval of dates predicted/projected by the 1-phase model. Dark grey area= ± .95 confidence interval of dates predicted/projected by the 2-phase model. 

Appendix H

Variation of the residuals of correlative models (with GDD and chilling as variables) (blue dots) and process-based 2-phase models (red dots) calculated either with the calibration data subset1 (a, c, e, g, i) or the validation data subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are linear regression of residuals on elevation (same color as symbols).

Appendix I

Variation of the residuals of process-based 1-phase models (grey dots) and process-based 2-phase models (red dots) calculated either with the calibration data subset1 (a, c, e, g, i) or the validation data subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are linear regression of residuals on elevation (same color as symbols).

Appendix J

Evolution and uncertainties of the climatic data generated by the ALADIN-Climat v5 RCM model (CNRM) for the CMIP5 experiment at a 12-km resolution, downscaled at 8-km resolution using quantile-quantile method (http://drias-climat.fr/). Daily minimum and maximum temperatures of RPC8.5 scenarios were extracted on the grid points of a rectangle area covering French Alps Black curve indicate the mean of annual mean temperature over the region (a), the mean of the annual average minimum temperature over the region (b), the mean of annual average maximum temperature over the region (d), and dark grey areas indicate the standard deviation. 

Appendix M

Variation of the residuals of process-based 2-phase models (red dots) and forward calibrated processbased 2-phase models (brown dots) calculated either with the calibration data subset1 (a, c, e, g, i) or the validation data subset 2 (b, d, f, h, j) along the elevation gradient. Superimposed lines are linear regression of residuals on elevation (same color as symbols).
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