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INTRODUCTION

The covariance matrix adaptation evolution strategy (CMA-ES) [START_REF] Hansen | Completely Derandomized Self-Adaptation in Evolution Strategies[END_REF] is arguably one of the most powerful real-valued derivative-free optimization algorithms, finding many applications in machine learning. It is a state-of-the-art optimizer for continuous black-box functions as shown by the various benchmarks of the COmparing Continuous Optimisers (http://coco.gforge.inria.fr) INRIA platform for ill-posed functions. It has led to a large number of papers and articles and we refer the interested reader to [1, 2, 4-6, 10-12, 15, 21] and [START_REF] Varelas | A Comparative Study of Large-Scale Variants of CMA-ES[END_REF] to cite a few.

It has has been successfully applied in many unbiased performance comparisons and numerous real-world applications. In particular, in machine learning, it has been used for direct policy search in reinforcement learning and hyper-parameter tuning in supervised learning [START_REF] Heidrich | Neuroevolution strategies for episodic reinforcement learning[END_REF][START_REF] Igel | Evolutionary Kernel Learning[END_REF][START_REF] Igel | Shark[END_REF], and references therein, as well as hyperparameter optimization of deep neural networks [START_REF] Loshchilov | CMA-ES for Hyperparameter Optimization of Deep Neural Networks[END_REF] In a nutshell, the (𝜇 / 𝜆) CMA-ES is an iterative black box optimization algorithm, that, in each of its iterations, samples 𝜆 candidate solutions from a multivariate normal distribution, evaluates these solutions (sequentially or in parallel) retains 𝜇 candidates and adjusts the sampling distribution used for the next iteration to give higher probability to good samples. Each iteration can be individually seen as taking an initial guess or prior for the multi variate parameters, namely the mean and the covariance, and after making an experiment by evaluating these sample points with the fit function updating the initial parameters accordingly.

Historically, the CMA-ES has been developed heuristically, mainly by conducting experimental research and validating intuitions empirically. Research was done without much focus on theoretical foundations because of the apparent complexity of this algorithm.

It was only recently that [START_REF] Akimoto | Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies[END_REF][START_REF] Glasmachers | Exponential natural evolution strategies[END_REF] and [START_REF] Ollivier | Information-geometric Optimization Algorithms: A Unifying Picture via Invariance Principles[END_REF] made a breakthrough and provided a theoretical justification of CMA-ES updates thanks to information geometry. They proved that CMA-ES was performing a natural gradient descent in the Fisher information metric. These works provided nice explanation for the reasons of the performance of the CMA-ES because of strong invariance properties and good search directions.

There is however another way of explanation that has been so far ignored and could also bring nice insights about CMA-ES. It is Bayesian statistics theory. At the light of Bayesian statistics, CMA-ES can be seen as an iterative prior posterior update. But there is some real complexity due to tricky updates that may explain why this has always been passed by. First of all, in a regular Bayesian approach, all sample points should be taken. This is not the case in the (𝜇/𝜆) CMA-ES, as out of 𝜆 generated paths, only the 𝜇 best are kept. Updating weights are also constant which is not consistent with Bayesian updates. But more importantly, the covariance matrix update does not read easily as a Bayesian prior posterior update. The update is split between a weighted combination of a rank one matrix referred to 𝑝 𝐶 𝑝 𝑇 𝐶 with parameter 𝑐 1 and a rank 𝑚𝑖𝑛(𝜇, 𝑛) matrix with parameter 𝑐 𝜇 , whose details are given for instance in [START_REF] Hansen | The CMA Evolution Strategy: A Tutorial[END_REF]. These two updates of the covariance matrix makes the Bayesian rendering challenging as these updates are done according to two paths: the isotropic and anisotropic evolution ones. All this may explain why interpreting the CMA-ES algorithm as a Bayesian algorithm seemed a daunting task and was not tackled before. This is precisely the objective of this paper. Section 2 recalls various Bayesian concepts for prior and posterior to highlight the analogy of an iterative Bayesian update. Section 3 presents in greater details the Bayesian approach of CMA-ES, with the corresponding family of derived algorithms, emphasizing the various design choices that can conduct to multiple algorithms. Section 4 provides numerical experiments and shows that Bayesian adapted CMA-ES algorithms perform well on convex and non convex functions and are comparable to the classical CMA-ES. We finally conclude about some possible extensions and further experiments.

FRAMEWORK

CMA-ES computes at each step an update for the mean and covariance of the distribution of the minimum. From a very general point of view this can be interpreted as a prior posterior update in Bayesian statistics.

Bayesian vs Frequentist probability theory

Let us recall some basic results from Bayesian statistics. The justification of the Bayesian approach is discussed in [START_REF] Robert | The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation[END_REF]. In Bayesian probability theory, we assume a distribution on unknown parameters of a statistical model. This leads to an axiomatic reduction from the notion of unknown to the notion of randomness but with probability. We do not know the value of the parameters for sure but we know specific values that these parameters can take with high probabilities. This creates a prior distribution that is updated as we make some experiments as shown in [START_REF] Gelman | Bayesian Data Analysis[END_REF][START_REF] Marin | Bayesian Core: A Practical Approach to Computational Bayesian Statistics[END_REF][START_REF] Robert | The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation[END_REF]. Following [START_REF] Jordan | Lecture notes: Justification for Bayes[END_REF], we can mention the DeFinetti theorem that provides a real justification of the existence of a prior. This relies on infinite exchangeability, which is a weaker concept of i.i.d. Definition 2.1. (Infinite exchangeability). We say that (𝑥 1 , 𝑥 2 , ...) is an infinitely exchangeable sequence of random variables if, for any n, the joint probability 𝑝 (𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 ) is invariant to permutation of the indices. That is, for any permutation 𝜋,

𝑝 (𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 ) = 𝑝 (𝑥 𝜋 1 , 𝑥 𝜋 2 , ..., 𝑥 𝜋𝑛 )
Equipped with this definition, the De Finetti's theorem as provided below states that exchangeable observations are conditionally independent relative to some latent variable. Theorem 2.1. (De Finetti, 1930s). A sequence of random variables (𝑥 1 , 𝑥 2 , ...) is infinitely exchangeable iff, for all n,

𝑝 (𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 ) = ∫ 𝑛 𝑖=1 𝑝 (𝑥 𝑖 |𝜃 )𝑃 (𝑑𝜃 ),
for some measure P on 𝜃 . This representation theorem 2.1 justifies the use of priors on parameters since for exchangeable data, there must exist a parameter 𝜃 , a likelihood 𝑝 (𝑥 |𝜃 ) and a distribution 𝜋 on 𝜃 . A proof of De Finetti theorem is for instance given in [START_REF] Schervish | Theory of Statistics[END_REF] (section 1.5).

Conjugate priors

In Bayesian statistical inference, the probability distribution that expresses one's (subjective) beliefs about the distribution parameters before any evidence is taken into account, is called the prior probability distribution, often simply called the prior. In CMA-ES, it is the distribution of the mean and covariance. We can then update our prior distribution with the data using Bayes' theorem to obtain a posterior distribution. The posterior distribution is a probability distribution that represents the updated beliefs about the parameters after having seen the data. The Bayes' theorem tells us the fundamental rule of Bayesian statistics, that is Posterior ∝ Prior × Likelihood The proportional sign (∝) indicates that one should compute the distribution up to a renormalization constant that enforces the distribution sums to one. This rule is simply a direct consequence of Bayes' theorem. Mathematically, let us say that for a random variable 𝑋 , its distribution 𝑝 depends on a parameter 𝜃 that can be multi-dimensional. To emphasize the dependency of the distribution on the parameters, let us write this distribution as 𝑝 (𝑥 |𝜃 ) and let us assume we have access to a prior distribution 𝜋 (𝜃 ). Then the joint distribution of (𝜃, 𝑥) writes simply as

𝜙 (𝜃, 𝑥) = 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )
The marginal distribution of 𝑥 is trivially given by marginalizing (or summing) the joint distribution over 𝜃 as follows:

𝑚(𝑥) = ∫ 𝜙 (𝜃, 𝑥)𝑑𝜃 = ∫ 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )𝑑𝜃
The posterior of 𝜃 is obtained by Bayes' formula as

𝜋 (𝜃 |𝑥) = 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 ) ∫ 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )𝑑𝜃 ∝ 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 ) (1) 
Computing a posterior is tricky and does not bring much value in general. A key concept in Bayesian statistics is conjugate priors that makes the computation really easy and is described at length below. Definition 2.2. A prior distribution 𝜋 (𝜃 ) is said to be a conjugate prior if the posterior distribution 𝜋 (𝜃 |𝑥) remains in the same distribution family as the prior.

At this stage, it is relevant to introduce exponential family distributions as this higher level of abstraction that encompasses the multi variate normal trivially solves the issue of founding conjugate priors. This will be very helpful for inferring conjugate priors for the multi variate Gaussian used in CMA-ES. Definition 2.3. A distribution is said to belong to the exponential family if it can be written (in its canonical form) as:

𝑝 (x|𝜂) = ℎ(x) exp{𝜂 • 𝑇 (x) -𝐴(𝜂)}, ( 2 
)
where 𝜂 is the natural parameter, 𝑇 (x) is the sufficient statistic, 𝐴(𝜂) is log-partition function and ℎ(x) is the base measure. 𝜂 and 𝑇 (x) may be vector-valued. Here 𝑎 • 𝑏 denotes the inner product of 𝑎 and 𝑏.

Using the fact that the probability sums to one, the log-partition function can be recovered by the integral

𝐴(𝜂) = log ∫ X ℎ(x) exp(𝜂 • 𝑇 (x)) d𝑥 . (3) 
One defines the natural parameter space as Ω = {𝜂 ∈ R 𝑚 |𝐴(𝜃 ) < +∞}. Obviously, 𝜂 ∈ Ω. In addition, it can be shown that Ω is a convex set and that 𝐴(•) is a convex function on Ω.

Remark 2.1. Not surprisingly, the normal distribution N (x; 𝜇, Σ) with mean 𝜇 ∈ R 𝑑 and covariance matrix Σ belongs to the exponential family but with a different parametrisation. Its exponential family form is given by:

𝜂 (𝜇, Σ) = Σ -1 𝜇 vec(Σ -1 ) , 𝑇 (x) = x vec(-1 2 xx T ) , (4a) 
ℎ(x) = (2𝜋) -𝑑 2 , 𝐴(𝜂 (𝜇, Σ)) = 1 2 𝜇 T Σ -1 𝜇 + 1 2 log |Σ|. (4b)
where in equations (4a), the notation vec(•) means we have vectorized the matrix, stacking each column on top of each other. Canonical parameters are different from traditional (also called moment) parameters.

For an exponential family distribution, it is particularly easy to form conjugate prior as explained by the proposition below: Proposition 2.2. If the observations have a density of the exponential family form 𝑝 (𝑥 |𝜃, 𝜆) = ℎ(𝑥) exp 𝜂 (𝜃, 𝜆) 𝑇 𝑇 (𝑥) -𝑛𝐴(𝜂 (𝜃, 𝜆)) , with 𝜆 a set of hyper-parameters, then the prior with likelihood defined by

𝜋 (𝜃 ) ∝ exp (𝜇 1 • 𝜂 (𝜃, 𝜆) -𝜇 0 𝐴(𝜂 (𝜃, 𝜆))) with 𝜇 ≜ (𝜇 0 , 𝜇 1 ) is a conjugate prior.
The proof is given in appendix subsection 6.1. As we can vary the parameterisation of the likelihood, we can obtain multiple conjugate priors. Because of conjugacy, if the initial parameters of the multi variate Gaussian follow the prior, the posterior stays in the same family making the update of the parameters really easy. Said differently, with conjugate prior, we can easily compute the posterior accurately. As we get more information about the likelihood, our posterior distribution becomes peaked towards the true distribution as shown in figure1. 

Optimal updates for NIW

The two natural conjugate priors for the Multi variate normal that updates both the mean and the covariance are the normal-inverse-Wishart (if we want to update the mean and covariance parameters) or the normal-Wishart (if we are interested in updating the mean and the precision matrix, which is the inverse of the covariance matrix). In this paper, we will stick to the normal-inverse-Wishart to keep things simple. The Normal-inverse-Wishart distribution is parametrized by 𝝁 0 , 𝜆, 𝚿, 𝜈 and its distribution is given by

𝑓 (𝝁, 𝚺|𝝁 0 , 𝜆, 𝚿, 𝜈) = N 𝝁 𝝁 0 , 1 𝜆 𝚺 W -1 (𝚺|𝚿, 𝜈)
where W -1 denotes the inverse Wishart distribution. The key theoretical guarantee of the BCMA-ES is to update the mean and covariance of our CMA-ES optimally as follows.

Proposition 2.3. If our sampling density follows a 𝑑 dimensional multivariate normal distribution ∼ N 𝑑 (𝝁, 𝚺) with unknown mean 𝜇 and covariance Σ and if its parameters are distributed according to a Normal-Inverse-Wishart (𝜇, Σ) ∼ NIW(𝜇, 𝜅, 𝑣,𝜓 ) and if we observe X = (𝑥 1 , .., 𝑥 𝑛 ) samples, then the posterior is also a Normal-Inverse-Wishart with different parameters NIW(𝜇 ★ , 𝜅 ★ , 𝑣 ★ ,𝜓 ★ ) given by

𝜇 ★ = 𝜅𝜇 + 𝑛𝑥 𝜅 + 𝑛 , 𝜅 ★ = 𝜅 + 𝑛, 𝑣 ★ = 𝑣 + 𝑛 𝜓 ★ = 𝜓 + 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) (𝑥 𝑖 -𝑥) 𝑇 + 𝜅𝑛 𝜅 + 𝑛 (𝑥 -𝜇) (𝑥 -𝜇) 𝑇 (5)
with 𝑥 the sample mean.

Remark 2.2. This proposition is the cornerstone of the BCMA-ES. It provides the theoretical guarantee that the updates of the parameters in the algorithm are accurate and optimal under the assumption of the prior. In particular, this implies that any other formula for the update of the mean and variance and in particular the ones used in the mainstream CMA-ES assumes a different prior.

Proof. A proof is given in the appendix section 6.2. □

BAYESIAN CMA-ES 3.1 Main assumptions

Our main assumptions are the followings :

• the parameters of the multi-variate Gaussian follow a conjugate prior distribution, namely a Normal Inverse Wishart.

• the minimum of our objective function 𝑓 follows a multivariate normal law.

Simulating the minimum

One of the main challenge is to simulate the likelihood to infer the posterior. The key question is really to use the additional information of the function value 𝑓 for candidate points. At step 𝑡 in our algorithm, we suppose multi variate Gaussian parameters 𝜇 and Σ follow a Normal Inverse Wishart denoted by 𝑁 𝐼𝑊 (𝜇 𝑡 , 𝜅 𝑡 , 𝑣 𝑡 ,𝜓 𝑡 ).

In full generality, we need to do a Monte Carlo of Monte Carlo as the parameters of our multi variate normal are themselves stochastic. However, we can simplify the problem and take their mean values. It is very effective in terms of computation and reduces Monte Carlo noise. For the Normal Inverse Wishart distribution, there exist closed form expressions for these mean values given by:

E 𝑡 [𝜇] = 𝜇 𝑡 (6) 
and

E 𝑡 [Σ] = 𝜓 𝑡 𝑣 𝑡 -𝑛 -1 (7) We simulate potential candidates X = {𝑋 𝑖 } ∼ N E 𝑡 [𝜇], E 𝑡 [Σ]
and evaluate them 𝑓 (𝑋 𝑖 ). If the distribution of the minimum was correct, the minimum would concentrate around E 𝑡 [𝜇] and be spread with a variance of E 𝑡 [Σ]. When evaluating potential candidates, as our guess is not right, we do not get values centered around E 𝑡 [𝜇] and spread with a variance of E 𝑡 [Σ]. This comes from three things:

• Our assumed minimum is not right. We need to shift our normal to the right minimum! • Our assumed variance is not right. We need to compute it on real data taken into additional information given by 𝑓 . • Last but not least, our Monte Carlo simulation adds some random noise.

For the last issue, we can correct any of our estimator by the Monte Carlo bias. This can be done using standard control variate as the simulated mean and variance are given: E 𝑡 [𝜇] and E 𝑡 [Σ] respectively and we can compute for each of them the bias explicitly.

The first two issues are more complex. Let us tackle each issue one by one.

To recover the true minimum, we design two strategies.

• We design a strategy where we rebuild our normal distribution but using sorted information of our 𝑋 's weighted by their normal density to ensure this is a true normal corrected from the Monte Carlo bias. We need to explicitly compute the weights. For each simulated point 𝑋 𝑖 , we compute it assumed density denoted by

𝑑 𝑖 = N (E 𝑡 [𝜇], E 𝑡 [Σ]) (𝑋 𝑖 ) where N (E 𝑡 [𝜇], E 𝑡 [Σ])(.
) denotes the p.d.f. of the multi-variate Gaussian.

We divide these density by their sum to get weights (𝑤 𝑖 ) 𝑖=1..𝑘 that are positive and sum to one as follows. 𝑤 𝑗 = 𝑑 𝑗 / 𝑘 𝑖=1 𝑑 𝑖 . Hence for 𝑘 simulated points, we get {𝑋 𝑖 , 𝑤 𝑖 } 𝑖=1..𝑘 . We reorder jointly the uplets (points and density) in terms of their weights in decreasing order. To insist we take sorted value in decreasing order with respect to the weights (𝑤 𝑖 ) 𝑖=1..𝑘 , we denote the order statistics (𝑖), 𝑤 ↓. This first sorting leads to k new uplets {𝑋 (𝑖),𝑤↓ , 𝑤 (𝑖),𝑤↓ } 𝑖=1..𝑘 . Using a stable sort (that keeps the order of the density), we sort jointly the uplets (points and weights) according to their objective function value (in increasing order this time) and get k new uplets {𝑋 (𝑖),𝑓 ↑ , 𝑤 (𝑖),𝑤↓ } 𝑖=1..𝑘 . We can now compute the empirical mean 𝜇 𝑡 as follows:

𝜇 𝑡 = 𝑘 𝑖=1 𝑤 (𝑖),𝑤↓ • 𝑋 (𝑖),𝑓 ↑ MC mean for 𝑋 𝑓 ↑ - 𝑘 𝑖=1 𝑤 𝑖 𝑋 𝑖 -𝜇 𝑡 MC bias for 𝑋 (8)
The intuition of equation ( 8) is to compute in the left term the Monte Carlo mean using reordered points according to their objective value and correct our initial computation by the Monte Carlo bias computed as the right term, equal to the initial Monte Carlo mean minus the real mean. We call this strategy one.

• If we think for a minute about the strategy one, we get the intuition that when starting the minimization, it may not be optimal. This is because weights are proportional to exp 1 2 (𝑋 -

E 𝑡 [𝜇]) 𝑇 (E 𝑡 [Σ]) -1 (𝑋 -E 𝑡 [𝜇]
) . When we start the algorithm, we use a large search space, hence a large covariance matrix Σ 𝑡 which leads to have weights which are quite similar. Hence even if we sort candidates by their fit, ranking them according to the value of 𝑓 in increasing order, we will move our theoretical multi variate Gaussian little by little. A better solution is to brutally move the center of our multi variate Gaussian to the best candidate seen so far, as follows:

𝜇 𝑡 = arg min 𝑋 ∈X 𝑓 (𝑋 ) (9) 
We call this strategy two. Intuitively, strategy two should work better when starting the algorithm while strategy one should work better once we are close to the solution. To recover the true variance, we can adapt what we did in strategy one as follows:

• 

Σ 𝑡 = 𝑘 𝑖=1 𝑤 ( 
where 𝑋 (.),𝑓 ↑ = 𝑘 𝑖=1 𝑤 (𝑖),𝑤↓ 𝑋 (𝑖),𝑓 ↑ and 𝑋 = 𝑘 𝑖=1 𝑤 𝑖 𝑋 𝑖 are respectively the mean of the sorted and non sorted points.

• Again, we could design another strategy that takes part of the points but we leave this to further research. Once we have the likelihood mean and variance using ( 9) and [START_REF] Hansen | CMA-ES: evolution strategies and covariance matrix adaptation[END_REF] or ( 8) and [START_REF] Hansen | CMA-ES: evolution strategies and covariance matrix adaptation[END_REF], we update the posterior law according to equation [START_REF] Auger | Tutorial CMA-ES: evolution strategies and covariance matrix adaptation[END_REF]. This gives us the iterative conjugate prior parameters updates:

𝜇 𝑡 +1 = 𝜅 𝑡 𝜇 𝑡 + 𝑛𝜇 𝑡 𝜅 𝑡 + 𝑛 , 𝜅 𝑡 +1 = 𝜅 𝑡 + 𝑛, 𝑣 𝑡 +1 = 𝑣 𝑡 + 𝑛, 𝜓 𝑡 +1 = 𝜓 𝑡 +Σ 𝑡 + 𝜅 𝑡 𝑛 𝜅 𝑡 + 𝑛 𝜇 𝑡 -𝜇 𝑡 𝜇 𝑡 -𝜇 𝑡 𝑇 (11) 
The resulting algorithm is summarized in Algo 1.

Proposition 3.1. Under the assumption of a NIW prior, the updates of the BCMA-ES parameters for the expected mean and variance write as a weighted combination of the prior expected mean and variance and the empirical mean and variance as follows

E 𝑡 +1 [𝜇] = E 𝑡 [𝜇] + 𝑤 𝜇 𝑡 𝜇 𝑡 -E 𝑡 [𝜇] , E 𝑡 +1 [Σ] = 𝑤 Σ,1 𝑡 discount factor E 𝑡 [Σ] + 𝑤 Σ,2 𝑡 𝜇 𝑡 -E 𝑡 [𝜇] 𝜇 𝑡 -E 𝑡 [𝜇] 𝑇 rank one matrix + 𝑤 Σ,3 𝑡 Σ 𝑡 rank (n-1) matrix
where

𝑤 𝜇 𝑡 = 𝑛 𝜅 𝑡 + 𝑛 , 𝑤 Σ,1 𝑡 = 𝑣 𝑡 -𝑛 -1 𝑣 𝑡 -1 , 𝑤 Σ,2 𝑡 = 𝜅 𝑡 𝑛 (𝜅 𝑡 + 𝑛)(𝑣 𝑡 -1) , 𝑤 Σ,3 𝑡 = 1 𝑣 𝑡 -1 (12) 
Remark 3.1. The proposition above is quite fundamental. It justifies that under the assumption of NIW prior, the update is a weighted sum of previous expected mean and covariance. It is striking that it provides very similar formulae to the standard CMA-ES update. Recall that these updates given for the mean 𝑚 𝑡 and covariance 𝐶 𝑡 can be written as follows: 

𝑚 𝑡 +1 = 𝑚 𝑡 + 𝜇 𝑖=1 𝑤 𝑖 (𝑥 𝑖:𝜆 -𝑚 𝑡 ) 𝐶 𝑡 +1 = (1 -𝑐 1 -𝑐 𝜇 + 𝑐 𝑠 ) discount factor 𝐶 𝑡 +

Particularities of Bayesian CMA-ES

There are some subtleties that need to be emphasized.

• Although we assume a prior, we do not need to simulate the prior but can at each step use the expected value of the prior which means that we do not consume additional simulations compared to the standard CMA-ES. • We need to tackle local minimum (we will give example of this in the numerical section) to avoid being trapped in a bowl! If we are in a local minimum, we need to inflate the variance to increase our search space. We do this whenever our algorithm does not manage to decrease. However, if after a while we do not get better result, we assume that this is indeed not a local minimum but rather a global minimum and start deflating the variance. This mechanism of inflation deflation ensures we can handle noisy functions like Rastrigin or Schwefel 1 or Schwefel 2 functions as defined in the section 4 and is similar in the spirit to the combination of local and global (isotropic and anisotropic) search path of traditional CMA-ES

Differences with standard CMA-ES

Since we use a rigorous derivation of the posterior, we have the following features:

• the update of the covariance takes all points. This is different from 𝜆/𝜇 CMA-ES that uses only a subset of the points. • by design, the update is accurate according to our assumptions as we compute at each step rigorously the posterior. • the contraction dilatation mechanism is an alternative to global local search path in standard CMA-ES. • weights vary across iterations which is also a difference with main CMA-ES (tahgt and Bayesian CMA-ES. Weights are proportional to exp( 1 2 𝑋 𝑇 Σ -1 𝑋 ) sorted in decreasing order. Initially, when the variance is large, weights are small. As the variance reduces to zero, weights increases to make the final distribution peak at the obtained minimum.

Full algorithm

The complete Bayesian CMA-ES algorithm is summarized in 2. It iterates until a stopping condition is met. We use multiple stopping conditions. We stop if we have not increase our best result for a given number of iterations. We stop if we have reached the maximum of our iterations. We stop if our variance norm is small. Additional stopping condition can be incorporated easily. end if 12: end while 13: return best solution Last but not least, we have a dilatation contraction mechanism for the variance to handle local minima with multiple level of contractions and dilatation that is given in function 3. The overall idea is first to dilate variance if we do not make any progress to increase the search space so that we are not trapped in a local minimum. Should this not succeed, it means that we are reaching something that looks like the global minimum and we progressively contract the variance. In our implemented algorithm, we take 𝐿 1 = 5, 𝐿 2 = 20, 𝐿 3 = 30, 𝐿 4 = 40, 𝐿 5 = 50 and the dilatation, contraction parameters given by 𝑘 1 = 1.5, 𝑘 2 = 0.9, 𝑘 3 = 0.7, 𝑘 5 = 0.5 We have also a restart at previous minimum level 𝐿 * = 𝐿 2 .

Algorithm 3 Dilatation contraction variance for local minima:

1: Function DilateContractFunc(𝑋, Σ 𝑡 , 𝑋 𝑚𝑖𝑛 , 𝑓 𝑚𝑖𝑛 , Σ 𝑡,𝑚𝑖𝑛 ) 2: if 𝑓 (𝑋 ) ≤ 𝑓 𝑚𝑖𝑛 then 3: Set 𝑓 𝑚𝑖𝑛 = 𝑓 (𝑋 ) 4:
Memorize current point and its variance: 5:

• 𝑋 𝑚𝑖𝑛 = 𝑋 6: • Σ 𝑡,𝑚𝑖𝑛 = Σ 𝑡 7:
Set retrial = 0 8: else Restart at previous best solution:

12:

• 𝑋 = 𝑋 𝑚𝑖𝑛 13:

• Σ 𝑡 = Σ 𝑡,𝑚𝑖𝑛 

NUMERICAL RESULTS

Functions examined

We have examined four functions to stress test our algorithm. They are listed in increasing order of complexity for our algorithm and correspond to different type of functions. They are all generalized function that can defined for any dimension 𝑛. For all, we present the corresponding equation for a variable 𝑥 = (𝑥 1 , 𝑥 2 , .., 𝑥 𝑛 ) of 𝑛 dimension. Code is provided in supplementary materials. We have frozen seeds to have reproducible results.

4.1.1 Sphere. The most simple function to optimize is the quadratic sphere whose equation is given by ( 14) and represented in figure 2. It is also the standard Euclidean norm. It is obviously convex and is a good test of the performance of an optimization method. [START_REF] Rastrigin | Systems of extremal control[END_REF] and generalized by [START_REF] Mühlenbein | The parallel genetic algorithm as function optimizer[END_REF], is more difficult compared to the Sphere and the Schwefel 2 function. Its equation is given by ( 16) and represented in figure 4. It is a nonconvex function often used as a performance test problem for optimization algorithms. It is a typical example of non-linear multi modal function. Finding its minimum is considered a good stress test for an optimization algorithm, due to its large search space and its large number of local minima.

𝑓 (𝑥) = 𝑛 𝑖=1 𝑥 2 𝑖 = ∥𝑥 ∥ 2 2 (14)
𝑓 (𝑥) = 𝑛 𝑖=1 | 𝑥 𝑖 | + 𝑛 𝑖=1 | 𝑥 𝑖 | (15) 
𝑓 (𝑥) = 10 × 𝑛 + 𝑛 𝑖=1 𝑥 2 𝑖 -10 cos(2𝜋𝑥 𝑖 ) (16) 
4.1.4 Schwefel 1 function. The last function we tested is the Schwefel 1 function whose equation is given by ( 17) and represented in figure 5. It is sometimes only defined on [-500, 500] 𝑛 . The Schwefel 1 function shares similarities with the Rastrigin function. It is continuous, not convex, multi-modal and with a large 

Convergence

For each of the functions, we compared our method using strategy one entitled B-CMA-ES S1: update 𝜇 𝑡 and Σ 𝑡 using ( 8) and ( 10) plotted in orange, or strategy two B-CMA-ES S2: same update but using ( 9) and ( 10 The results are for one test run. In a forthcoming paper, we will benchmark them with more runs to validate the interest of this new method. 

CONCLUSION

In this paper, we have revisited the CMA-ES algorithm and provided a Bayesian version of it. Taking conjugate priors, we can find optimal update for the mean and covariance of the multi variate Normal. We have provided the corresponding algorithm that is a new version of CMA-ES. First numerical experiments show this new version is competitive to standard CMA-ES on traditional functions such as Sphere, Schwefel 1, Rastrigin and Schwefel 2. This faster convergence can be explained on a theoretical side from an optimal update of the prior (thanks to Bayesian update) and the use of the best candidate seen at each simulation to shift the mean of the multi-variate Gaussian likelihood. We envisage further works to benchmark our algorithm to other standard evolutionary algorithms, in particular to use the COCO platform to provide more meaningful tests and confirm the theoretical intuition of good performance of this new version of CMA-ES, and to test the importance of the prior choice. It is easy to check that the posterior [START_REF] Marin | Bayesian Core: A Practical Approach to Computational Bayesian Statistics[END_REF] is in the same exponential family as the prior iff F (•) is in the form:

F (𝜃 ) = 𝜇 1 • 𝜂 (𝜃, 𝜆) -𝜇 0 𝐴(𝜂 (𝜃, 𝜆)) (20) 
for some 𝜇 ≜ (𝜇 0 , 𝜇 1 ), such that:

𝑝 (X|𝜃, 𝜆) ∝ exp 𝜇 1 + 𝑛 𝑗=1 𝑇 (𝑥 𝑗 ) 𝑇 𝜂 (𝜃, 𝜆) -(𝑛 + 𝜇 0 )𝐴(𝜂 (𝜃, 𝜆)) . (21) 
Hence, the conjugate prior for the likelihood ( 18) is parametrized by 𝜇 and given by:

𝑝 (X|𝜃, 𝜆) = 1 𝑍 exp (𝜇 1 • 𝜂 (𝜃, 𝜆) -𝜇 0 𝐴(𝜂 (𝜃, 𝜆))) , (22) 
where 𝑍 = ∫ exp (𝜇 1 • 𝜂 (𝜃, 𝜆) -𝜇 0 𝐴(𝜂 (𝜃, 𝜆))) d𝑥. □

Exact computation of the posterior update for the Normal Inverse Wishart

To make our proof simple, we first start by the one dimensional case and show that in one dimension it is a normal inverse gamma.

We then generalize to the multi dimensional case.

Lemma 6.1. The probability density function of a Normal inverse gamma (denoted by NIG) random variable can be expressed as the product of a Normal and an Inverse gamma probability density functions.

Proof. we suppose that 𝑥 |𝜇, 𝜎 2 ∼ N (𝜇 0 , 𝜎 2 /𝑣). We recall the following definition of conditional probability: Definition 6.1. Suppose that events A,B and C are defined on the same probability space, and the event B is such that P(𝐵) > 0. We have the following expression: P(𝐴 ∩ 𝐵|𝐶) = P(𝐴|𝐵, 𝐶)P(𝐵|𝐶). 

Using the definition of the Normal inverse gamma law, we end the proof. □ Remark 6.1. If 𝑥, 𝜎 2 ∼ 𝑁 𝐼𝐺 (𝜇, 𝜆, 𝛼, 𝛽), the probability density function is the following:

𝑓 (𝑥, 𝜎 2 |𝜇, 𝜆, 𝛼, 𝛽) = √ 𝜆 𝜎 √ 2𝜋 𝛽 𝛼 Γ(𝛼) 1 𝜎 2 𝛼+1 exp - 2𝛽 + 𝜆(𝑥 -𝜇) 2 2𝜎 2 . ( 24 
)
Proposition 6.2. The Normal Inverse Gamma NIG (𝜇 0 , 𝑣, 𝛼, 𝛽) distribution is a conjugate prior of a normal distribution with unknown mean and variance.

Proof. the posterior is proportional to the product of the prior and likelihood, then:

𝑝 𝜇, 𝜎 2 |𝑋 ∝ √ 𝑣 √ 2𝜋 1 𝜎 2 1/2 exp -𝑣 (𝜇 -𝜇 0 ) 2 2𝜎 2 × 𝛽 𝛼 Γ(𝛼) 1 𝜎 2 𝛼+1 exp -𝛽 𝜎 2 × 1 2𝜋𝜎 2 𝑛/2 exp - 𝑛 𝑖=1 (𝑥 𝑖 -𝜇) 2 2𝜎 2 . ( 25 
)
Defining the empirical mean and variance as 𝑥 = 1 𝑛 𝑛 𝑖=1 𝑥 𝑖 and 𝑠 = 1 𝑛 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) 2 , we obtain that 𝑛 𝑖=1 (𝑥 𝑖 -𝜇) 2 = 𝑛(𝑠 + (𝑥 -𝜇) 2 ).

So, the conditional density writes:

𝑝 𝜇, 𝜎 2 |𝑋 ∝ √ 𝑣 1 𝜎 2 𝛼+𝑛/2+3/2 × exp - 1 𝜎 2 𝛽 + 1 2 𝑣 (𝜇 -𝜇 0 ) 2 + 𝑛 𝑠 + (𝑥 -𝜇) 2 . (26) 
Besides,

𝑣 (𝜇 -𝜇 0 ) 2 + 𝑛 𝑠 + (𝑥 -𝜇) 2 = 𝑣 𝜇 2 -2𝜇𝜇 0 + 𝜇 2 𝑜 + 𝑛𝑠 + 𝑛 𝑥 2 -2𝑥 𝜇 + 𝜇 2 = 𝜇 2 (𝑣 + 𝑛) -2𝜇 (𝑣𝜇 0 + 𝑛𝑥) + 𝑣𝜇 2 𝑜 + 𝑛𝑠 + 𝑛𝑥 2 . ( 27 
)
Denoting 𝑎 = 𝑣 + 𝑛 and 𝑏 = 𝑣𝜇 0 + 𝑛𝑥, we have :

𝛽 + 1 2 𝑣 (𝜇 -𝜇 0 ) 2 + 𝑛 𝑠 + (𝑥 -𝜇) 2 = 𝛽 + 1 2 𝑎𝜇 2 -2𝑏𝜇 + 𝑣𝜇 2 𝑜 + 𝑛𝑠 + 𝑛𝑥 2 = 𝛽 + 1 2 𝑎 𝜇 2 - 2𝑏 𝑎 𝜇 + 𝑣𝜇 2 𝑜 + 𝑛𝑠 + 𝑛𝑥 2 = 𝛽 + 1 2 𝑎 𝜇 - 𝑏 𝑎 2 - 𝑏 2 𝑎 + 𝑣𝜇 2 𝑜 + 𝑛𝑠 + 𝑛𝑥 2 . (28) 
So we can express the proportional expression of the posterior :

𝑝 𝜇, 𝜎 2 |𝑋 ∝ 1 𝜎 2 𝛼 ★ +3/2 × exp - 2𝛽 ★ + 𝜆 ★ 𝜇 -𝜇 ★ 2 2𝜎 2 , with • 𝛼 ★ = 𝛼 + 𝑛 2 • 𝛽 ★ = 𝛽 + 1 2 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) 2 + 𝑛𝑣 𝑛+𝑣 (𝑥-𝜇 0 ) 2 2 • 𝜇 ★ = 𝑣𝜇 0 +𝑛𝑥 𝑣+𝑛 • 𝜆 ★ = 𝑣 + 𝑛
We can identify the terms with the expression of the probability density function given in 6.1 to conclude that the posterior follows a NIG(𝜇 ★ , 𝜆 ★ , 𝛼 ★ , 𝛽 ★ ). □

We are now ready to prove the following proposition: Proposition 6.3. The Normal Inverse Wishart (denoted by NIW) (𝜇 0 , 𝜅 0 , 𝑣 0 ,𝜓 ) distribution is a conjugate prior of a multivariate normal distribution with unknown mean and covariance.

Proof. we use the fact that the probability density function of a Normal Inverse Wishart random variable can be expressed as the product of a Normal and an Inverse Wishart probability density functions (we use the same reasoning that in 6.1). Besides, the posterior is proportional to the product of the prior and the likelihood. We first express the probability density function of the multivariate Gaussian random variable in a proper way in order to use it when we write the posterior density function. We organize the terms and find the parameters of our Normal Inverse Wishart random variable NIW(𝜇 ★ 0 , 𝜅 ★ 0 , 𝑣 ★ 0 ,𝜓 ★ 0 ). Σ 𝑡 is a covariance matrix of rank 𝑛 -1 as we subtract the empirical mean (which removes one degree of freedom). The matrix

𝜇

( μ -E 𝑡 [𝜇]) ( μ -E 𝑡 [𝜇]
) 𝑇 is of rank 1 as it is parametrized by the vector μ. □

Figure 1 :

 1 Figure1: As we get more and more information using the likelihood, the posterior becomes more peak.

  𝑖),𝑤↓ • 𝑋 (𝑖),𝑓 ↑ -𝑋 (.),𝑓 ↑ 𝑋 (𝑖),𝑓 ↑ -𝑋 (.),𝑓 ↑ 𝑇 MC covariance for 𝑋 𝑓 ↑ -𝑘 𝑖=1 𝑤 𝑖 • 𝑋 𝑖 -𝑋 𝑋 𝑖 -𝑋 𝑇 -Σ 𝑡 MC covariance for simulated 𝑋

Algorithm 2 6 : 8 : 9 :

 2689 Bayesian update of CMA-ES parameters: 1: Initialization 2: Start with a prior distribution Π on 𝜇 and Σ 3: Set retrial to 0 4: Set 𝑓 𝑚𝑖𝑛 to max float 5: while stop criteria not satisfied do 𝑋 ∼ N (𝜇, Σ) 7: update the parameters of the Gaussian thanks to the posterior law Π(𝜇, Σ|𝑋 ) following details given in algorithm 1 Handle dilatation contraction variance for local minima as explained in algorithm 3 if DilateContractFunc(𝑋, Σ 𝑡 , 𝑋 𝑚𝑖𝑛 , 𝑓 𝑚𝑖𝑛 , Σ 𝑡,𝑚𝑖𝑛 ) == 1 then 10: return best solution 11:

  if retrial == 𝐿 * then 11:

Figure 2 :

 2 Figure 2: A simple convex function: the quadratic norm. Minimum in 0

Figure 3 :

 3 Figure 3: Schwefel 2 function: a simple piecewise linear function

Figure 4 :Figure 5 :

 45 Figure 4: Rastrigin function: a non convex function multimodal and with a large number of local minima

  ), plotted in blue and standard CMA-ES as provided by the opensource python package pycma plotted in green. We clearly see that strategies one and two are quite similar to standard CMA-ES. The convergence graphics that show the error compared to the minimum are represented:• for the Sphere function by figure6(case of a convex function), with initial point (10, 10) • for the Schwefel 2 function in figure 7 (case of piecewise linear function), with initial point (10, 10) • for the Rastrigin function in figure 8 (case of a non convex function with multiple local minima), with initial point (10, 10) • and for the Schwefel 1 function in figure 9 (case of a non convex function with multiple large bowl local minima), with initial point (400, 400)

Figure 6 :Figure 7 :

 67 Figure 6: Convergence for the sphere function

Figure 8 :

 8 Figure 8: Convergence for the Rastrigin function

Figure 9 :

 9 Figure 9: Convergence for the Schwefel 1 function

  priors Proof. Consider 𝑛 independent and identically distributed (IID) measurements X ≜ {x 𝑗 ∈ R 𝑑 |1 ≤ 𝑗 ≤ 𝑛} and assume that these variables have an exponential family density. The likelihood 𝑝 (X|𝜃, 𝜆) writes simply as the product of each individual likelihood: 𝑝 (X|𝜃, 𝜆) = 𝑛 𝑗=1 ℎ(x 𝑗 ) exp 𝜂 (𝜃, 𝜆) 𝑇 𝑛 𝑗=1 𝑇 (𝑥 𝑗 ) -𝑛𝐴(𝜂 (𝜃, 𝜆)) .

( 18 )

 18 If we start with a prior 𝜋 (𝜃 ) of the form 𝜋 (𝜃 ) ∝ exp(F (𝜃 )) for some function F (•), its posterior writes: 𝜋 (𝜃 |X) ∝ 𝑝 (X|𝜃 ) exp(F (𝜃 )) ∝ exp 𝜂 (𝜃, 𝜆) • 𝑛 𝑗=1 𝑇 (𝑥 𝑗 ) -𝑛𝐴(𝜂 (𝜃, 𝜆)) + F (𝜃 ) .

  [START_REF] Marin | Bayesian Core: A Practical Approach to Computational Bayesian Statistics[END_REF] 

Applying 6 . 1 ,

 61 we have: 𝑝 𝜇, 𝜎 2 |𝜇 0 , 𝑣, 𝛼, 𝛽 = 𝑝 𝜇|𝜎 2 , 𝜇 0 , 𝑣, 𝛼, 𝛽 𝑝 𝜎 2 |𝜇 0 , 𝑣, 𝛼, 𝛽 = 𝑝 𝜇|𝜎 2 , 𝜇 0 , 𝑣 𝑝 𝜎 2 |𝛼, 𝛽 .

𝜇× |𝜓 | 𝑣/ 2 2 2 𝑒𝑥𝑝 - 1 2 𝑡𝑟 𝜓 Σ - 1 ×( 2 𝜇 2 ((

 2212122 𝑛𝑖=1 (𝑥 𝑖 -𝜇) 𝑇 Σ -1 (𝑥 𝑖 -𝜇) = 𝑛 (𝑥 -𝜇) 𝑇 Σ -1 (𝑥 -𝜇) + 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) 𝑇 Σ -1 (𝑥 𝑖 -𝑥) . (29) We can inject the previous result and use the properties of the trace function to express the following probability density function of the multivariate Gaussian random variable of parameters 𝜇 and Σ. The density writes as:|Σ | -𝑛/2 √ (2𝜋 ) 𝑝𝑛 exp -𝑛 2 (𝑥 -𝜇) 𝑇 Σ -1 (𝑥 -𝜇) -1 2 𝑡𝑟 Σ -1 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) (𝑥 𝑖 -𝑥) 𝑇 . (30)Hence, we can compute explicitly the posterior as follows:-𝜇 0 𝑇 Σ -1 𝜇 -𝜇 0 𝑣𝑝/2 Γ 𝑝 (𝑣 0 /2) |Σ| -𝑣 0 +𝑝+1 |Σ| -𝑛/2 exp -𝑛 2 (𝑥 -𝜇) 𝑇 Σ -1 (𝑥 -𝜇) 𝑥 𝑖 -𝑥) (𝑥 𝑖 -𝑥) 𝑇 -𝜇 0 𝑇 Σ -1 𝜇 -𝜇 0 -𝑛 𝑥 -𝜇) 𝑇 Σ -1 (𝑥 -𝜇) 𝑥 𝑖 -𝑥) (𝑥 𝑖 -𝑥) 𝑇 .(32)

★ 0 = 6 . 3 1 = 1 𝑣 𝑡 - 1 𝜓 𝑡 + 1 𝑣𝑣 𝑡 -𝑛 - 1 𝑣 𝑡 - 1 ,

 063111111 𝜅 0 𝜇 0 + 𝑛𝑥 𝜅 0 + 𝑛 , 𝜅 ★ 0 = 𝜅 0 + 𝑛, 𝑣 ★ 0 = 𝑣 0 + 𝑛 𝜓 ★ 0 = 𝜓 + 𝑛 𝑖=1 (𝑥 𝑖 -𝑥) (𝑥 𝑖 -𝑥) 𝑇 + 𝜅 0 𝑛 𝜅 0 + 𝑛 (𝑥 -𝜇 0 ) (𝑥 -𝜇 0 ) 𝑇 (33)which are exactly the equations provided in[START_REF] Auger | Tutorial CMA-ES: evolution strategies and covariance matrix adaptation[END_REF].□ Weighted combination for the BCMA-ES updateProof.E 𝑡 +1 [𝜇] = 𝜇 𝑡 +1 = 𝜅 𝑡 𝜇 𝑡 + 𝑛𝜇 𝑡 𝜅 𝑡 + 𝑛 = E 𝑡 [𝜇] + 𝑤 𝜇 𝑡 𝜇 𝑡 -E 𝑡 [𝜇] (34) E 𝑡 +1 [Σ] = 𝜓 𝑡 +1 𝑣 𝑡 +1 -𝑛 -𝑡 -1 Σ 𝑡 + 𝜅 𝑡 𝑛 (𝜅 𝑡 + 𝑛)(𝑣 𝑡 -1) 𝜇 𝑡 -𝜇 𝑡 𝜇 𝑡 -𝜇 𝑡 𝑇 = 𝑤 Σ,1 𝑡 discount factor E 𝑡 [Σ] + 𝑤 Σ,2 𝑡 ( μ -E 𝑡 [𝜇]) ( μ -E 𝑡 [𝜇]) 𝑇 𝑤 Σ,2 𝑡 = 𝜅 𝑡 𝑛 (𝜅 𝑡 + 𝑛)(𝑣 𝑡 -1) , 𝑤 Σ,3 𝑡 = 1 𝑣 𝑡 -1 (35)

  𝑐 1 𝑝 𝑐 𝑝 𝑇

				𝑐
				rank one matrix
	+ 𝑐 𝜇	𝜇	𝑤 𝑖	𝑥 𝑖:𝜆 -𝑚 𝑘
		𝑖=1		𝜎 𝑖=1..𝑘
	5: Sort in decreasing order with respect to 𝑑 to get
	{𝑋 (𝑖),𝑑 ↓ , 𝑑 (𝑖),𝑑 ↓ } 𝑖=1..𝑘			
	6: Stable Sort in increasing order order with respect to 𝑓 (𝑋 𝑖 ) to
	get {𝑋 (𝑖),𝑓 ↑ , 𝑑 (𝑖),𝑑 ↓ } 𝑖=1..𝑘		

𝑘

𝑥 𝑖:𝜆 -𝑚 𝑡 𝜎 𝑡 𝑇 rank min(𝜇,𝑛-1) matrix

[START_REF] Heidrich | Neuroevolution strategies for episodic reinforcement learning[END_REF] 

where the notations 𝑚 𝑡 , 𝑤 𝑖 , 𝑥 𝑖:𝜆 , 𝐶 𝑡 , 𝑐 1 , 𝑐 𝜇 , 𝑐 𝑠 , etc... are given for instance in

[START_REF]CMA-ES[END_REF]

.

Proof. See 6.3 in the appendix section. □ Algorithm 1 Predict and Correct parameters at step t

1: Simulate candidate 2: Use mean values E 𝑡 [𝜇] = 𝜇 𝑡 and Σ 𝑡 = E[Σ] = 𝜓 𝑡 /(𝑣 𝑡 -𝑛 -1) 3: Simulate k points X = {𝑋 𝑖 } 𝑖=1..𝑘 ∼ N (E 𝑡 [𝜇], Σ 𝑡 ) 4: Compute densities (𝑑 𝑖 ) 𝑖=1..𝑘 = (N (E 𝑡 [𝜇], Σ 𝑡 )(𝑋 𝑖 )) 7: Correct E 𝑡 [𝜇] and Σ 𝑡 8:

Either Update E 𝑡 [𝜇] and Σ 𝑡 using (

8

) and (

10

) (strategy one) 9: Or Update E 𝑡 [𝜇] and Σ 𝑡 using (

9

) and (

10

) (strategy two) 10: Update 𝜇 𝑡 +1 , 𝜅 𝑡 +1 , 𝑣 𝑡 +1 ,𝜓 𝑡 +1 using

[START_REF] Hansen | Evolution strategies and CMA-ES (covariance matrix adaptation)[END_REF] 

  else if 𝐿 3 > retrial and retrial ≥ 𝐿 2 then

	14:	end if
	15:	if 𝐿 2 > retrial and retrial > 𝐿 1 then
	16:	Dilate variance by 𝑘 1
	17:	
	18:	Contract variance by 𝑘 2
	19:	else if 𝐿 4 > retrial and retrial ≥ 𝐿 3 then
	20:	Contract variance by 𝑘 3
	21:	else if 𝐿 5 > retrial and retrial ≥ 𝐿 4 then
	22:	Contract variance by 𝑘 4
	23:	else
	24:	return 1
	25:	end if
	26:	return 0
	27: end if
	28: End Function