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ABSTRACT
This paper revisits the Bayesian CMA-ES and provides updates for
normal Wishart. It emphasizes the difference between a normal
and normal inverse Wishart prior. After some computation, we
prove that the only difference relies surprisingly in the expected
covariance. We prove that the expected covariance should be lower
in the normal Wishart prior model because of the convexity of the
inverse. We present a mixture model that generalizes both normal
Wishart and normal inverse Wishart model. We finally present
various numerical experiments to compare both methods as well
as the generalized method.
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• Mathematics of computing→ Probability and statistics;

KEYWORDS
CMAES, Bayesian, conjugate prior, normalWishart, normal inverse
Wishart, mixture models

1 INTRODUCTION
Bayesian statistics have revolutionized statistics like quantum me-
chanics have done for Newtonian mechanism. Like the latter, the
usual frequentist statistics can be seen as a particular asymptotic
case of the former. Indeed, the Cox Jaynes theorem ([8]) proves that
under the four axiomatic assumptions given by:

• plausibility degrees are represented by real numbers (conti-
nuity of method),

• none of the possible data should be ignored (no retention)
• these values follow usual common sense rule as stated by the
well known Laplace formula: the probability theory is truly
the common sense represented in calculus (common sense),

• and states of equivalent knowledge should have equivalent
degree of plausibility (consistency),

then, there exists a probability measure defined up to a monotonous
function such that it follows the usual probability calculus and the
fundamental rule of Bayes, that is:

P(H ,D) = P(H |D)P(D) = P(D |H )P(H ) (1)
where H and D are two members of the implied σ−algebra. The
letters are not by chance. H stands for the hypothesis, which can
be interpreted as an hypothesis on the parameters, while D stands
for data.

The usual frequentist probabilities states that the probability of
an observation P(D) is given certain hypothesis H on the state of
the world. However, as the equation (1) is completely symmetric,
nothing hinders us to change our point of view and state the inverse
question. Given an observation of a data D, what is the plausibility
of the hypothesisH . The Bayes rules trivially answers this question:

P(H |D) = P(D |H )
P(H )

P(D)
= P(D |H )P(H ) (2)

or equivalently,
P(H |D) ∝ P(D |H )P(H ) (3)

In the above equation, P(H ) is called the prior probability or
simply the prior while the conditional probability P(H |D) is called
the posterior probability or simply the posterior. There are a few
remarks to be made. First of all, the prior is not necessarily indepen-
dent of the knowledge of the experience, on the contrary, a prior
is often determined with some knowledge of previous experience
in order to make a meaningful choice. Second, prior and posterior
are not necessarily related to a chronological order but rather to a
logical order.

After observing some data D, we revise the plausibility ofH . it is
interesting to see that the conditional probability P(D |H ) considered
as a function of H is indeed a likelihood for H . The Cox Jaynes
theorem as presented in [18] gives the foundation for Bayesian
calculus. Another important result is the De Finetti’s theorem. Let
us recall the definition of Infinite exchangeability.

Definition 1.1. (Infinite exchangeability). We say that (x1, x2, ...)
is an infinitely exchangeable sequence of random variables if, for any
n, the joint probability p(x1, x2, ..., xn ) is invariant to permutation of
the indices. That is, for any permutation π ,

p(x1, x2, ..., xn ) = p(xπ 1, xπ 2, ..., xπn )

Equipped with this definition, the De Finetti’s theorem as pro-
vided below states that exchangeable observations are conditionally
independent relative to some latent variable.

Theorem 1.1. (De Finetti, 1930s). A sequence of random variables
(x1, x2, ...) is infinitely exchangeable iff, for all n,

p(x1, x2, ..., xn ) =

∫ n∏
i=1

p(xi |θ )P(dθ ),

for some measure P on θ .

This representation theorem 1.1 justifies the use of priors on
parameters since for exchangeable data, there must exist a param-
eter θ , a likelihood p(x |θ ) and a distribution π on θ . A proof of
De Finetti theorem is for instance given in [23] (section 1.5). We
will see that this Bayesian setting gives a powerful framework for
revisiting black box optimization that is introduced below.

2 BLACK BOX OPTIMIZATION
We assume that we have a real value p-dimensional function f :
Rp → R. We examine the following optimization program:

min
x ∈Rp

f (x) (4)

In contrast to traditional convex optimization theory, we do not
assume that f is convex, neither continuous nor admits a global
minimum. We are interested in the so called Black box optimization
(BBO) settings where we only have access to the function f and
nothing else. By nothing else, we mean we can not for instance
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compute gradient. A practical way to do optimization in this very
general and minimal setting is to do evolutionary optimization
and in particular use the covariance matrix adaptation evolution
strategy (CMA-ES) methodology. The CMA-ES [? ] is arguably
one of the most powerful real-valued derivative-free optimization
algorithms, finding many applications in machine learning. It is
a state-of-the-art optimizer for continuous black-box functions
as shown by the various benchmarks of the COCO (COmparing
Continuous Optimisers) INRIA platform for ill-posed functions. It
has led to a large number of papers and articles and we refer the
interested reader to [1, 2, 4–6, 11, 12, 16, 21? ] and [24] to cite a few.

It has has been successfully applied in many unbiased perfor-
mance comparisons and numerous real-world applications. In par-
ticular, in machine learning, it has been used for direct policy search
in reinforcement learning and hyper-parameter tuning in super-
vised learning ( [10], [14, 15, 17]), and references therein, as well as
hyperparameter optimization of deep neural networks [19].

In a nutshell, the (µ / λ) CMA-ES is an iterative black box opti-
mization algorithm, that, in each of its iterations, samples λ candi-
date solutions from a multivariate normal distribution, evaluates
these solutions (sequentially or in parallel) retains µ candidates
and adjusts the sampling distribution used for the next iteration
to give higher probability to good samples. Each iteration can be
individually seen as taking an initial guess or prior for the multi
variate parameters, namely the mean and the covariance, and after
making an experiment by evaluating these sample points with the
fit function updating the initial parameters accordingly. Although
rethinking the CMA-ES in terms of a prior and posterior seems nat-
ural when coming over from Bayesian statistics, it is only recently
that it has been explored [7].

Historically, the CMA-ES has been developed heuristically. It was
done mainly by conducting experimental research and validating
intuitions empirically.

Research was done without much focus on theoretical foun-
dations because of the apparent complexity of this algorithm. It
was only recently that [3], [9] and [21] made a breakthrough and
provided a theoretical justification of CMA-ES updates thanks to
information geometry. They proved that CMA-ES was performing
a natural gradient descent in the Fisher information metric. The
Bayesian formulation of the CMA-ES came effectively much later
and has only been done sofar with the normal inverse Wishart
prior.

In this paper, we revisit the Bayesian CMA-ES formulation and
show that there exists indeed an infinity of conjugate prior given
by the convex combination of a normal Wishart and normal inverse
Wishart Gaussian prior. We first prove that normal Wishart and
normal inverse Wishart Gaussian priors have the same update
equations except for the mean of the covariance matrix. We provide
a theoretical argument to show that the inverse of a matrix should
be lower than in the normal inverse Wishart Gaussian prior. We
then introduce a new prior given by a mixture of normal Wishart
and normal inverse Wishart Gaussian prior. Likewise, we derive
the update equations. In section 5, we finally give numerical results
to compare all these methods.

3 CONJUGATE PRIORS
A key concept in Bayesian statistics is conjugate priors that makes
the computation really easy and is described below.

Definition 3.1. A prior distribution π (θ ) is said to be a conjugate
prior if the posterior distribution

π (θ |x) ∝ p(x |θ )π (θ ) (5)

remains in the same distribution family as the prior.

At this stage, it is relevant to introduce exponential family dis-
tributions as this higher level of abstraction that encompasses the
multi variate normal trivially solves the issue of founding conjugate
priors. This will be very helpful for inferring conjugate priors for
the multi variate Gaussian used in CMA-ES.

Definition 3.2. A distribution is said to belong to the exponential
family if it can be written (in its canonical form) as:

p(x|η) = h(x) exp(η ·T (x) −A(η)), (6)
where η is the natural parameter, T (x) is the sufficient statistic, A(η)
is log-partition function and h(x) is the base measure. η andT (x)may
be vector-valued. Here a · b denotes the inner product of a and b.
The log-partition function is defined by the integral:

A(η) , log
∫
X

h(x) exp(η ·T (x)) dx . (7)

Also, η ∈ Ω = {η ∈ Rm |A(θ ) < +∞} where Ω is the natural
parameter space. Moreover, Ω is a convex set and A(·) is a convex
function on Ω.

Remark 3.1. Not surprisingly, the normal distribution N(x; µ, Σ)
with mean µ ∈ Rd and covariance matrix Σ belongs to the exponential
family but with a different parameterization. Its exponential family
form is given by:

η(µ, Σ) =

[
Σ−1µ

vec(Σ−1)

]
, T (x) =

[
x

vec(− 1
2xx

T)

]
, (8a)

h(x) = (2π )−
d
2 , A(η(µ, Σ)) =

1
2
µTΣ−1µ +

1
2
log |Σ|. (8b)

where in equations (8a), the notation vec(·)means we have vectorized
the matrix, stacking each column on top of each other and hence
can equivalently write for a and b, two matrices, the trace result
Tr(aTb) as the scalar product of their vectorization vec(a) · vec(b)
(see 7.2). We can remark the canonical parameters are very different
from traditional (also called moment) parameters. We can notice
that changing slightly the sufficient statistic T (x) leads to change the
corresponding canonical parameters η. In equation (8b), the notation
|Σ| means the determinant of the matrix: det(Σ).

For an exponential family distribution, it is particularly easy to
characterize conjugate prior that belongs to the exponential family.

Proposition 3.1. Characterization of exponential family
conjugate prior. If the observations have a density of the exponen-

tial family form p(x |θ ,κ) = h(x) exp
(
η(θ,κ)TT (x) − nA(η(θ ,κ))

)
,

with κ a set of hyper-parameters, then the conjugate priors that be-
long to the exponential family are necessarily of the form π (θ ) ∝

exp (λ1 · η(θ,κ) − λ0A(η(θ ,κ))) with λ , (λ0, λ1).

The proof is given in appendix subsection 7.1. As we can vary
the parameterization of the likelihood, we can obtain multiple con-
jugate priors. Because of the conjugacy, if the initial parameters of
the multi variate Gaussian follows the prior, the posterior is the true
distribution given the information X and stay in the same family
making the update of the parameters really easy. Said differently,
with conjugate prior, we make the optimal update.

A consequence of proposition 3.1 is that the various conjugate
priors of the multi variate normal that belong to the exponential
family can be determined. This is the subject of the corollary below.

Corollary 3.2. The conjugate priors of the multi variate normal
that belong to the exponential family are necessarily of the form :

http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/
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• normal inverse Wishart distribution NIW (µ0, λ0,ν0,Ψ0) if the
multivariate normal is described in terms of its mean vector µ
and covariance matrix Σ.

• normal Wishart distribution NW (µ0, λ0,ν0,W0) if the multi-
variate normal is described in terms of its mean vector µ and
precision matrix Λ.

The proof is given in appendix subsection 7.3. As conjugate pri-
ors, the posterior of the two identified distributions of the corollary
3.2 are easy to derive and are given by the following proposition.

Proposition 3.3. For a likelihood of n points (x)i=1..n distributed
according to a multi variate normal distribution whose parameters
are given by the priors below:

(1) the normal inverse Wishart distribution:
NIW0 = NIW (µ0, λ0,ν0,Ψ0)

(2) the normal Wishart distribution: NW0 = NW (µ0, λ0,ν0,W0)
(3) the mixture of a normal inverse and normal Wishart with same

parameters:wNIW0 + (1 −w)NW0 with 0 ≤ w ≤ 1
The posterior is given by:

(1) the normal inverse Wishart distribution

NIW1 = NIW

(
λ0 µ0 + nx

λ0 + n
, λ0 + n,ν0 + n,Ψ0 + nC + nD

)
(9)

(2) the normal Wishart distribution

NW1 = NW

(
λ0 µ0 + nx

λ0 + n
, λ0 + n,ν0 + n, (W0 + nC + nD)

−1
)

(10)

(3) the mixture of a normal inverse and normal Wishart with same
parameters:wNIW1 + (1 −w)NW1

where x = 1/n
∑n
i=1 xi is the sample mean, C = 1/n

∑n
i=1(xi −

x)(xi −x)
T the sample covariance and D = λ0 n

n(λ0+n)
(x − µ0)(x − µ0)T .

The proof is given in appendix subsection 7.4.

4 ALGORITHM
The idea behind the algorithm is at each step to make use the
previous iteration posterior as a prior, draw the likelihood and then
update according to proposition (3.3) the posterior. In full generality,
the prior is a distribution, so we would need to do a Monte Carlo
of Monte Carlo. But in order to reduce the variance by this Monte
Carlo of Monte Carlo, we make the simplification to use the mean
value of the prior distribution. These values are given as follows:

(1) for the normal inverse Wishart distribution, µ̂ = E[µ] = µn
and Σ̂ = E[Σ] = Ψn/(vn − p − 1)

(2) for the normal Wishart distribution, µ̂ = E[µ] = µn and
Σ̂ = E[Λ−1] = Ψn/vn for Ψn =W −1

n .
(3) for thew mixture of the normal inverse and normal Wishart

with same parameters, µ̂ = E[µ] = µn and Σ̂ = E[Σ] =
vn−p−1+wp+w
vn (vn−p−1) Ψn

It is obvious that the expected value of the covariance matrix
of the normal inverse Wishart Σ̂ = E[Σ] should be above the one
of the normal Wishart distribution as the inverse of a matrix Inv :
S → S−1 is a convex function in the domain S

p
++ of symmetric

definite positive matrices. A proof is given in 7.5. To recover the
true minimum, we design two strategies.

• we design a strategy where we rebuild our normal distribu-
tion but using sorted information of our X ’s weighted by
their normal density to ensure this is a true normal corrected
from theMonte Carlo bias.We need to explicitly compute the

weights. For each simulated pointXi , we compute it assumed
density denoted by di = N(µ̂, Σ̂)(Xi ) where N(µ̂, Σ̂)(.) de-
notes the p.d.f. of the multi-variate Gaussian. We divide
these density by their sum to get weights (wi )i=1..k that
are positive and sum to one as follows. w j = dj/

∑k
i=1 di .

Hence for k simulated points, we get {Xi ,wi }i=1..k . We re-
order jointly the uplets (points and density) in terms of their
weights in decreasing order. To insist we take sorted value in
decreasing order with respect to the weights (wi )i=1..k , we
denote the order statistics (i),w ↓. This first sorting leads to k
new uplets {X(i),w↓,w(i),w↓}i=1..k . Using a stable sort (that
keeps the order of the density), we sort jointly the uplets
(points and weights) according to their objective function
value (in increasing order this time) and get a k new uplets
{X(i),f ↑,w(i),w↓}i=1..k . We can now compute a new mean
as follows:

µ̂ =
k∑
i=1

w(i),w↓ · X(i),f ↑︸                   ︷︷                   ︸
MCmean forXf ↑

−

( k∑
i=1

wiXi − µ̂

)
︸             ︷︷             ︸
MCbias forX

(11)

The intuition of equation (11) is to compute in the left term
the Monte Carlo mean using reordered points according to
their objective value and correct our initial computation by
the Monte Carlo bias computed as the right term, equal to
the initial Monte Carlo mean minus the real mean. We call
this strategy one.

• If we think for a minute about the strategy one, we get
the intuition that when starting the minimization, it may
not be optimal. This is because weights are proportional to
exp( 12 (X − µ̂)T Σ̂−1(X − µ̂)). When we start the algorithm,
we use a large search space, hence a large covariance ma-
trix Σ̂ which leads to have weights which are quite similar.
Hence even if we sort candidates by their fit, ranking them
according to the value of f in increasing order, we will move
our theoretical multi variate Gaussian little by little. A better
solution is more to brutally move the center of our multi
variate Gaussian to the best candidate seen so far, as follows:

µ̂ = argmin
X ∈X

f (X ) (12)

We call this strategy two. Intuitively, strategy two should be
best when starting the algorithm while strategy one would
be better once we are close to the solution.

To recover the true variance, we can adapt what we did in strat-
egy one as follows:

•

Σ̂ =
k∑
i=1

w(i),w↓ ·

(
X(i),f ↑ − X (.),f ↑

) (
X(i),f ↑ − X (.),f ↑

)T
︸                                                                ︷︷                                                                ︸

MCcovariance forXf ↑

−

( k∑
i=1

wi ·
(
Xi − X

) (
Xi − X

)T
−Σ̂

)
︸                                      ︷︷                                      ︸

MCcovariance for simulatedX

(13)

whereX (.),f ↑ =
∑k
i=1w(i),w↓X(i),f ↑ andX =

∑k
i=1wiXi are

respectively the mean of the sorted and non sorted points.
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Algorithm 1 Predict and Correct parameters at step k

1: Simulate candidate
2: Use mean values µ̂ = E[µ] and Σ̂ = E[Σ]
3: Simulate k points X = {Xi } = 1..n ∼ N(µ̂, Σ̂)
4: Compute densities (di )i ..n = (N(µ̂, Σ̂)(Xi ))i ..n =
5: Sort in decreasing order with respect to d to get

{X(i),d↓,d(i),d↓}i=1..n
6: Stable Sort in increasing order order with respect to f (Xi ) to

get {X(i),f ↑,d(i),d↓}i=1..n
7:
8: Correct µ̂ and Σ̂
9: Either Update µ̂ and Σ̂ using (12) and (13) (strategy two)
10: Or Update µ̂ and Σ̂ using (11) and (13) (strategy one)
11: Update µk+1, λk+1,vk+1,ψk+1 using proposition 3.3

5 NUMERICAL RESULTS
5.1 Functions examined
We have examined five functions to stress test our algorithm. They
are listed in increasing order of complexity for our algorithm and
correspond to different type of functions. They are all generalized
function that can defined for any dimension n. For all, we present
the corresponding equation for a variable x = (x1, x2, .., xn ) of n
dimension. Code is provided in supplementary materials. We have
frozen seeds to have reproducible of results.

5.1.1 Cone. The most simple function to optimize is the qua-
dratic cone whose equation is given by (14) and represented in
figure 1. It is also the standard Euclidean norm. It is obviously
convex and is a good test of the performance of an optimization
method.

f (x) =

( n∑
i=1

x2i

)1/2
= ∥x ∥2 (14)

Figure 1: A simple convex function: the quadratic norm.
Minimum in 0

5.1.2 Schwefel 2 function. A slightly more complicated function
is the Schwefel 2 function whose equation is given by (15) and rep-
resented in figure 2. It is a piece wise linear function and validates
the algorithm can cope with non convex function.

f (x) =
n∑
i=1

| xi | +
n∏
i=1

| xi | (15)

Figure 2: Schwefel 2 function: a simple piecewise linear func-
tion

5.1.3 Rastrigin. The Rastrigin function, first proposed by [22]
and generalized by [20], is more difficult compared to the Cone and
the Schwefel 2 function. Its equation is given by (16) and represented
in figure 3. It is a non-convex function often used as a performance
test problem for optimization algorithms. It is a typical example of
non-linear multi modal function. Finding its minimum is considered
a good stress test for an optimization algorithm, due to its large
search space and its large number of local minima.

Figure 3: Rastrigin function: a non convex function multi-
modal and with a large number of local minima

f (x) = 10 × n +
n∑
i=1

[
x2i − 10 cos(2πxi )

]
(16)

5.1.4 Schwefel 1 function. The Schwefel 1 function whose equa-
tion is given by (17) is a tricky function to optimize. It is represented
in figure 4. It is sometimes only defined on [−500, 500]n . The Schwe-
fel 1 function shares similarities with the Rastrigin function. It is
continuous, not convex, multi-modal and with a large number of
local minima. The extra difficulty compared to the Rastrigin func-
tion, the local minima are more pronounced local bowl making the
optimization even harder.
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f (x) = 418.9829 × n (17)

−

n∑
i=1

[
xi sin(

√
| xi |)1 |xi |<500 + 500 sin(

√
500)1 |xi | ≥500

]

Figure 4: Schwefel 1 function: a non convex function multi-
modal and with a large number of local pronounced bowls

5.1.5 Eggholder function. The Eggholder function whose equa-
tion is given by (18) is a difficult function to optimize, because of
the large number of local minima. It is sometimes only defined on
[−512, 512]n . It shares similarities with the Schwefel1 function. It
is continuous, not convex, multi-modal and with a large number of
local minima.

f (x,y) = − (y + 47) sin
√���x2 + (y + 47)��� − x sin

√
|x − (y + 47)| (18)

Figure 5: Eggholder function: a non convex function multi-
modal and with a large number of local pronounced bowls

5.2 Convergence
For each of the functions, we compared our method using strategy
one entitled B-CMA-ES S1: update µ̂ and Σ̂ using (11) and (13) in
orange with strategy two B-CMA-ES S2: same update but using
(12) and (13), in blue and standard CMA-ES as provided by the

opensource python package pycma in green. We clearly see that
strategy two outperforms standard CMA-ES and Bayesian CMA-ES
S1. The convergence graphics that shows the error compared to
the minimum are represented

• for the cone function by figure 6 (case of a convex function),
with initial point (10, 10)

• for the Schwefel 2 function in figure 7 (case of piecewise
linear function), with initial point (10, 10)

• for the Rastrigin function in figure 8 (case of a non con-
vex function with multiple local minima), with initial point
(10, 10)

• and for the Schwefel 1 function in figure 9 (case of a non
convex functionwithmultiple large bowl local minima), with
initial point (10, 10)

Figure 6: Convergence for the Cone function. B-CMA-ES S2
outperforms standard CMA-ES and B-CMA-ES S1.

For functions that are convex, our method performs similarly
as standard CMA-ES. For function with harder local minima, the
Bayesian CMA-ES is able to perform better. We conjecture that this
is due to contraction dilatation mechanism that enables to avoid
being trapped in a local minimum.

6 CONCLUSION
In this paper, we have revisited the CMA-ES algorithm and pro-
vided a Bayesian version of it. Taking conjugate priors, we can
find optimal update for the mean and covariance of the multi vari-
ate Normal. We have provided the corresponding algorithm that
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Figure 7: Convergence for the Schwefel 2 function. B-CMA-
ES S2 outperforms standard CMA-ES and B-CMA-ES S1.

is a new version of CMA-ES. First numerical experiments show
this new version is comparable to standard CMA-ES on traditional
functions such as cone, Schwefel 1, Rastrigin and Schwefel 2. The
similar convergence can be explained on a theoretical side from
the optimal update of the prior (thanks to Bayesian update) and
the use of the best candidate seen at each simulation to shift the
mean of the multi-variate Gaussian likelihood. We envisage further
works to benchmark our algorithm to traditional CMA-ES and other
evolutionary algorithms, in particular to use the COCO platform to
provide more meaningful tests and confirm the theoretical intuition
of good performance of this new version of CMA-ES, and to test
the importance of the prior choice.

7 APPENDIX
7.1 Conjugate priors

Proof. Consider n independent and identically distributed (IID)
measurements X , {xj ∈ Rd |1 ≤ j ≤ n} and assume that
these variables have an exponential family density. The likelihood
p(X|θ ,κ), writes simply as the product of each individual likelihood:

p(X|θ ,κ)=
( n∏
j=1

h(xj )
)
exp

(
η(θ ,κ)T

n∑
j=1

T (x j ) − nA(η(θ,κ))
)
. (19)

Figure 8: Convergence for theRastrigin function. B-CMA-ES
S2 outperforms standard CMA-ES and B-CMA-ES S1.

If we start with a prior π (θ ) of the form π (θ ) ∝ exp(F (θ )) for some
function F (·), its posterior writes:

π (θ |X) ∝ p(X|θ ) exp(F (θ ))

∝ exp ©«η(θ ,κ) ·
n∑
j=1

T (x j ) − nA(η(θ,κ)) + F (θ )
ª®¬ . (20)

It is easy to check that the posterior (20) is in the same exponential
family as the prior iff F (·) is in the form

F (θ ) = λ1 · η(θ ,κ) − λ0A(η(θ ,κ)) (21)

for some λ , (λ0, λ1), such that

p(X|θ,κ)∝exp
((
λ1 +

n∑
j=1

T (x j )
)T
η(θ,κ) − (n + λ0)A(η(θ,κ))

)
. (22)

Hence, the conjugate prior for the likelihood (19) is parametrized
by λ and given by

p(X|θ,κ) =
1
Z
exp (λ1 · η(θ ,κ) − λ0A(η(θ ,κ))) , (23)

where Z =
∫
exp (λ1 · η(θ ,κ) − λ0A(η(θ ,κ))) dx . �
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Figure 9: Convergence for the Schwefel 1 function. B-CMA-
ES S2 outperforms standard CMA-ES and B-CMA-ES S1.

7.2 Multivariate Canonical form
In the case of the multi variate normal, the canonical form for this
distribution writes as

1√
(2π )d det(Σ)

exp
(
−
(X − µ)T Σ−1(X − µ)

2

)
= exp

(
(Σ−1µ, Σ−1)T · (X ,−

1
2
vec(XXT )

)
1

(2π )d/2
exp

(
−
1
2
µT Σ−1µ −

1
2
log (det(Σ))

)
(24)

which gives the following moment and canonical parameters:

θ = (µ, Σ)

T (X ) =

(
X ,−

1
2
vec(XXT )

)
η(θ ) =

(
Σ−1µ, Σ−1

)
A(η(θ )) =

1
2
µT Σ−1µ +

1
2
log(det(Σ))

h(x) =
1

(2π )d/2
(25)

Figure 10: Convergence for the Eggholder function

7.3 Conjugate priors determination
Using proposition 3.1 and the exponential family formulation of the
multi variate normal (equations (25)), we have that any conjugate
prior for the multi variate normal that belongs to the exponential
family is given by

π (θ ) ∝ exp (λ1 · η(θ ) − λ0A(η(θ )))

∝ exp
(
λ1 ·

(
Σ−1µ, Σ−1

))
exp

(
−
1
2
µT (

Σ

λ0
)−1µ −

1
2
log(det(

Σ

λ0
))

)
(26)

If we write λ1 = (λ0 µ0, λ2) and Ψ0 = −2(λ2 + λ0
2 µ0µ

T
0 ), we get

π (θ ) ∝ exp
(
−
1
2
(µ − µ0)

T (
Σ

λ0
)−1(µ − µ0) −

1
2
log(det(

Σ

λ0
))

)
exp

(
−
1
2
Ψ0 · Σ

−1
)

(27)

The first term is a normal multi variate distribution. Its parame-
ters are µ0 and Σ

λ0
.

In the second term, we can recognize the proportional term of
an inverse Wishart exp

(
− 1
2 Tr(Ψ0Σ

−1)
)
, with parameters ν0,Ψ.

This shows the conjugate prior of the multi variate normal given
by its mean vector µ and covariance matrix Σ is a normal inverse
Wishart. Its parameters are NIW (µ0, λ0,ν0,Ψ0) �
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If the multi variate normal is parametrized by its mean vector µ
and its precision matrix Λ, the same reasoning gives

π (θ ) ∝ exp (λ1 · (Λµ,Λ))

exp
(
−
1
2
µT (λ0Λ)µ +

1
2
log(det(

Λ

λ0
))

)
(28)

The second term is a multi variate normal distribution given by
N (µ0, (λ0Λ)−1) while the first one is the term of a Wishart distri-
bution that is proportional to exp( 12 Tr(W

−1Λ) whose parameters
are W(W0,ν0). This shows that the conjugate prior of the multi
variate normal described by its mean vector µ and precision matrix
Λ is a normal Wishart distribution NW (µ0, λ0,ν0,W0) �

7.4 Posterior update
The posterior update is quite straightforward and very similar for
the two cases: NIW and NW. We will detail only the calculation
for the NIW case as it is very similar for the NW. Recall that the
probability density function of a Normal inverse Wishart random
variable is expressed as the product of a Normal and an Inverse
Wishart probability density functions. Denoting by p × p the di-
mension of the covariance matrix Σ and using the Bayes rules, the
posterior is proportional to the product of the prior and likelihood:

posterior
∝ prior × likelihood

∝

√
λ0
|Σ|

exp(−
1
2
(µ − µ0)

T (
Σ

λ0
)−1(µ − µ0))

×|Ψ|ν0/2 |Σ|−
ν0+p+1

2 exp(−
1
2
Tr(Σ−1Ψ0))

× |Σ|−n/2
n∏
i=1

exp(−
1
2
(xi − µ)T Σ−1(xi − µ)) (29)

First of all, we can regroup all terms in xi as follows∏n
i=1 exp(−

1
2 (xi − µ)T Σ−1(xi − µ))

= exp(− 1
2
∑n
i=1(xi − µ)T Σ−1(xi − µ)) (30)

and use the following remarkable identity:

n∑
i=1

(xi − µ)T Σ−1 (xi − µ)

= n

[
1
n

n∑
i=1

(xi − x)T Σ−1 (xi − x) + (x − µ)T Σ−1 (x − µ)

]
= Tr(Σ−1 nC) + n (x − µ)T Σ−1 (x − µ) (31)

where we have used the commutativity property of the trace op-
erator Tr(AB) = Tr(BA) and that for a real number, the number
is equal to its trace and written C = 1

n
∑n
i=1 (xi − x)T Σ−1 (xi − x)

the sample covariance. Going further, we have

(µ − µ0)
T (

Σ

λ0
)−1(µ − µ0) + n (x − µ)T Σ−1 (x − µ)

= (λ0 + n)µ
T Σ−1µ − 2(λ0 µ0 + nx)T Σ−1µ + λ0µT0 Σ

−1µ0

+nxT Σ−1x (32)

= (λ0 + n)

(
µ −

λ0µ0 + nx

λ0 + n

)T
Σ−1

(
µ −

λ0µ0 + nx

λ0 + n

)
−

1
λ0 + n

(λ0µ0 + nx)
T Σ−1 (λ0µ0 + nx)

+ λ0 µ
T
0 Σ−1 µ0 + n x

T Σ−1 x (33)

= (λ0 + n)

(
µ −

λ0µ0 + nx

λ0 + n

)T
Σ−1

(
µ −

λ0µ0 + nx

λ0 + n

)
+Tr(Σ−1nD) (34)

where D = λ0 n
n(λ0+n)

(x − µ0)(x − µ0)T (35)

Hence, we can compute explicitly the posterior as follows:
posterior

∝

√
λ1
|Σ|

exp
{
−
1
2
(
µ − µ1

)T
(
Σ

λ1
)−1

(
µ − µ1

)}
×|Ψ1 |

ν1/2 |Σ|−
ν1+p+1

2 exp
{
−
1
2
Tr

(
Σ−1Ψ1

)}
(36)

with µ1 =
λ0 µ0 + nx

λ0 + n
λ1 = λ0 + n

ν1 = ν0 + n

Ψ1 = Ψ0 + nC + nD (37)
which are exactly the equations provided in (9) �

7.5 Convexity of the inverse of a matrix
We give here six different proofs of the convexity of the inverse
of a matrix in the domain of symmetric definite positive matrices
S
p
++. The first and second proofs relies on the fact that the result

is a consequence of proving that the matrix fractional function
f (X ,y) = yTX−1y is convex on the domain domf = S

p
++ × Rp .

The implication comes from the fact that
f is convex

=⇒ (1 − λ)f (M,y) + λ f (N ,v) ≥ f ((1 − λ)M + λN ,y)

=⇒ yT
[
(1 − λ)M−1 + λN−1 − ((1 − λ)M + λN )−1

]
y ≥ 0 (38)

Sincey is arbitrary, this implies thematrix within the square bracket
in equation (38) is positive semi-definite. It is interesting to notice
that matrix fractional function is in a sense an extension of the fact
that the quadratic over linear function defined as f (x,y) = x2/y is
convex on R2+.

Proof. The first proof uses the property that the minimum of
a convex function over a convex set is convex. For Σ ∈ Sn++, and for
u,y ∈ Rn we can consider the quadratic function f (u) defined by

f (u) =
1
2
uT Σu − uTy

As Σ ∈ Sn++, this function is a obviously convex (quadratic function
with its quadratic coefficient given by a definite positive matrix).
Hence its minimum infu ∈Rn f (u) over a convex set is convex. Its
easy to minimize a quadratic function and find its minimum given
by the stationary point of its gradient 1

2y
T Σ−1y, which concludes

the proof. �
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Proof. A second proof is to show that the epigraph of f , de-
noted by epi(f ) is convex thanks to the link between positive semi
definite cones and Schur complements. We have that

x ∈ epi(f ) ⇔ yT Σ−1y ≤ t ⇔

[
Σ y
yT t

]
≽ 0 (39)

This concludes the proof as the epigraph of f is convex as the
inverse image of the positive semi definite cone Sn+1++ by the Schur
complement that is an affine mapping. �

Proof. A third proof relies on the fundamental identity of
the inverse of a matrix X : XX−1 = Ip , where Ip is the identity
matrix with p rows (or columns). TakeM,N two positive definite
symmetric matrices and λ ∈ [0, 1]. Take Pλ = (1− λ)M + λN . P and
P−1 are obviously symmetric positive definite. Denote by (.)′ the
derivative with respect to λ. We have:

PP−1 = Ip =⇒ P ′P−1 + P(P−1)′ = 0p =⇒ (P−1)′ = −P−1P ′P−1

Notice that P ′′ = 0p , since P is linear in λ. Differentiate one more
time to get:

(P−1)′′ = −(P−1)′P ′P−1 − P−1P ′(P−1)′ = 2P−1P ′P−1P ′P−1 (40)

For any non-zero random vector y, define vλ = P ′λP
−1
λ y and

φλ = y
T P−1λ y. Equations (40) says that

φ ′′λ = y
T (P−1λ )′′y = 2vT λP

−1
λ vλ ≥ 0 (41)

since P−1λ is positive definite. As the second order derivative is
positive, we conclude that φλ is a convex function for λ over [0, 1].
As a result, for any λ ∈ (0, 1), we have:

(1 − λ)φ(0) + λφ(1) − φλ ≥ 0

⇐⇒ yT
[
(1 − λ)M−1 + λN−1 − ((1 − λ)M + λN )−1

]
y ≥ 0 (42)

Since y is arbitrary, this implies the matrix within the square
bracket in (42) is positive semi-definite and hence:

(1 − λ)M−1 + λN−1 ≽ ((1 − λ)M + λN )−1

Please note that when P ′ = N −M is invertible, vλ is non-zero
for non-zero y. The inequalities in (41) and (42) become strict and
the matrix within the square bracket in (42) is positive definite
instead of positive semi-definite. �

Proof. A fourth proof is to derive the convexity of the inverse
of a matrix from the convexity of the function f (t) = 1

t for t ≥ 0.
Let P = X−1/2YX−1/2. We want to prove that

(1 − λ)X−1 + λY−1 − ((1 − λ)X + λY )−1 ≽ 0 (43)
⇐⇒ X 1/2 [

(1 − λ)X−1+λY−1−((1 − λ)X+λY )−1
]
X 1/2 ≽ 0 (44)

⇐⇒ (1 − λ)I + λP−1 − ((1 − λ)I + λP)−1 ≽ 0 (45)
where in inequality (43), we have left- and right- multiplied both
sides byX 1/2. As P is positive definite, it can be unitary diagonalised
and hence without loss of generality, we can assume that it is a
diagonal matrix. So, the inequality reduces down to the scalar case
(1− λ)+ λp−1ii ≥ ((1− λ)+ λpii )−1, which is true using the fact that
the function f (t) = 1

t is convex for t ≥ 0 �

The last two proofs relies on the fact that the result is also implied
by the fact that the function f (X ) = Tr(X−1yyt ) = Tr(ytX−1y) is
convex for X ∈ S

p
++ for any y ∈ Rp . This comes from the nice

property that the Trace operator can commute and that the trace
of a real number is itself.

Proof. Thefifth proof uses the fact that a positive second order
derivative along any line is enough to prove convexity. Consider
S(t) = U + tV whereU and V are symmetric positive definite. It is

enough to show that
d2

dt2
Tr(ytS(t)−1y)

����
t=0

≥ 0 We have

S(t)−1 = (U (I + tU −1V ))−1

= U −1 − tU −1VU −1 + t2U −1VU −1VU −1 + . . . (46)
So

d2

∂t2
Tr(S(t)−1)

����
t=0
= 2Tr(U −1VU −1VU −1)

But U −1VU −1VU −1 = WU −1WT whereW = U −1V and U −1 is
positive definite, soWU −1WT is positive semi definite, which im-
plies Tr(WU −1WT ) ≥ 0, which concludes the proof �

Proof. A final sixth proof is to relate this to eigen values. We
can notive that the function f (X ) = Tr(X−1yyt ) is indeed the sum
of the inverse of eigen values denoted by λi .

Tr ((yTX−1y) =
∑

i=1..n

1
λi

We know that the function that associates to a diagonal matrix
with strictly positive terms its kth element (which turns out to be
one of its eigen values but not necessarily its kth one) is linear,
hence convex and concave. By the composition rules for convex
function, with д(x) = 1/x , we can conclude that the inverse of the
kth elements is convex for diagonal matrices with strictly positive
term. Thus, the sum of the inverse of eigen values (defined as a
sum of convex functions) is convex on the set of diagonal matrix
with strictly positive term. We can conclude using the diagonal-
isation result of definite positive matrix (with S = UDUT , U an
orthonormal matrix, D a diagonal matrix with strictly positive term
and S ∈ Sn++) to extend the convexity property to the set of Sn++
and use also that Tr (AB) = Tra(BA) �
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