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New method for detecting singularities in experimental incompressible flows
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We introduce two new criteria based on the work of Duchon and Robert [J. Duchon and R.
Robert, Nonlinearity, 13, 249 (2000)|, and Eyink |G.L. Eyink, Phys. Rev. E, 74 (2006)| which allow
for the local detection of Navier-Stokes singularities in experimental flows. These criteria allow to
detect areas in a flow where the velocity field is no more regular than Holder continuous with some
Holder exponent h < 1/2. We illustrate our discussion using classical tomographic particle image
velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the
boundary layer of a wind tunnel. Our study shows that in order to detect singularities, one does
not need to have access to the whole velocity field inside a volume, but can instead look for them
from stereoscopic PIV data on a plane. We also provide a discussion making the link with the
Beale-Kato-Majda criterion [J.T. Beale, T. Kato, A. Majda, Commun. Math. Phys., 94, 61 (1984)]
based on the blow-up of vorticity. We show that all the criteria we study are well correlated with
each other.

I. INTRODUCTION

Viscous incompressible fluids are described by the incompressible Navier-Stokes equations (INSE) in spacetime

1
Deui +u;0ju; = o + v0;0;ui + fi 1)
8juj = 0, (2)

where Einstein summation convention over repeated indices is used. w; (z,¥, z,t) is the velocity field, p (z,y, z,t) the
pressure field, p (z,y, z,t) the mass density, f; (z,y, z,t) some forcing and v the molecular viscosity. A natural control
parameter for the INSE is the Reynolds number Re = LU /v, which measures the relative importance of nonlinear
effects compared to the viscous ones, and is built using a characteristic length L and velocity U. The INSE are the
corner stone of many physical or engineering sciences, such as astrophysics, geophysics, aeronautics and are routinely
used in numerical simulations.

However, from a mathematical point of view, it is not known whether the mechanism which tends to smooth out
possible irregularities in the velocity field, i.e. viscous forces, is efficient enough to constrain u; to remain smooth at
all times. In two dimensions, the existence, unicity and smoothness theorems have been known for a long time [1-4].
In three dimensions however, it is still unclear whether the INSE are a well-posed problem, i.e. whether their solutions
remain regular or develop finite time, small scale singularities. This motivated their inclusion in the AMS Millennium
Clay Prize list [5]. Historically, the search for singularities in the INSE was initiated by Leray [6-8] who introduced the
notion of weak solutions (i.e. in the sense of distribution). This notion has since remained a framework of choice for
those wishing to study their regularity. However, only partial regularity theorems have been obtained up to now. For
instance, we know that contrary to Euler equations, regularity of the solutions to the INSE is ensured if the velocity
field remains bounded [9-11]|. Therefore, the problem of Navier-Stokes regularity is a velocity blow-up problem, and
may experimentally result in a break-down of the incompressibility condition (2) [12-14]. Another well-known result
about these potential singularities, is that they are very rare events: according to the Caffarelli-Kohn-Nirenberg
theorem [15] the singular set has zero one-dimensional Hausdorff measure in spacetime. This means that if they exist,
singularities manifest themselves by a velocity which becomes arbitrarily large at one point in space, reaches infinity
and immediately after becomes finite again.
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In 1949, Onsager published his only paper [16, 17] in the field of turbulence. In this work, he realized that far from
simply being a mathematical curiosity, the possible loss of smoothness in the velocity field could have important
practical consequences. More precisely, he argued that if, at point «, the velocity field cannot satisfy any regularity
condition stronger than a Hoélder condition

lu(x+7r)—u(z)| <Crl, (3)

with h < 1/3, then energy conservation is not ensured in the limit ¥ — 0 because there might exist an additional
energy dissipation due to this lack of smoothness, and which has nothing to do with viscosity. Let us note that Holder
continuity (3) is a weaker regularity condition than differentiability. Therefore, at first sight, it seems that Onsager’s
assertion concerns the blow-up of the gradient of u. However, since Navier-Stokes singularities are velocity blow-ups
Onsager’s statement truly is about the blow-up of w itself.

Onsager’s arguments are important for turbulence because they provide an alternative mechanism to Taylor’s [18, 19]
in order to explain the fact that turbulent flows dissipate energy at a rate which is independent of Re, for sufficiently
large Re. In the following years, Onsager’s conjecture attracted a lot of attention from mathematicians, who tried to
prove that h > 1/3 indeed imply that energy dissipation is zero when viscosity vanishes. In 2000, Duchon and Robert
derived the corresponding local energy balance in Leray’s weak formalism, and were in addition able to express
Onsager’s dissipation in terms of velocity increments [20]. Later, Eyink used the same formalism to prove that
singularities may also produce a non-zero rate of velocity circulation decay, providing another interesting signature
of singularities in terms of cascade of circulation [21-23].

These physical consequences illustrate the interest of detecting potential singularities of the INSE in order to advance
our understanding of turbulence. This task is, however, complicated by the scarcity of the putative singularities.
For example, numerical detection of singularities requires solving of the full INSE at large Reynolds numbers, for
a time long enough so that singularities might develop. These two constraints actually severely limit the quest for
singularities and explain why there still is no final answer about numerical detection of singularities in INSE. Part of
the numerical limitations are relaxed when performing experiments with turbulent flows. Indeed, in a well-designed
experiment, one can reach fairly easily large Reynolds numbers and monitor the results for a time long enough
(minutes to hours) to accumulate enough statistics for reliable data analysis. In the past, experimental detection of
singularities of INSE has been limited by the instrumentation, since only global (torque), or localized in space (Pitot,
hot wire) or in time (slow imaging) velocimetry measurements were available. With the advent of modern particle
image velocimetry (PIV), measurements of the velocity field at several points at the same time over the decimetric
to sub-millimetric size range is now available, at frequencies from 1Hz to 1kHz, reviving the interest in experimental
detection of singularities of INSE. The main challenge remains to find an appropriate detection method.

Clearly, the naive method consisting in tracking the velocity field and locate areas where the velocity becomes
very large is unlikely to prove successful: it would require time and space resolved measurements, localized at the
place where the singularity appears. With the present technology, this means zooming over a small area of the
flow (typically a few mm?) and wait until a singularity appears. Since singularities are potentially very scarce,
there is little chance that one will be able to detect one. Moreover, if the velocity is indeed very high at this
location, any neutral particle in the area will move very fast and leave the observation window in an arbitrarily
small time. This is a problem for PIV or particle tracking velocimetry (PTV) measurements, which are based on
particle tracking. An interesting alternative is provided by multifractal analysis, which is a classical but powerful
method to detect singularities based on statistical multiscale analysis. Classical reviews on the method are provided
in [24, 25]. With velocity fields as input, the so-called multifractal spectrum can be obtained, quantifying the
probability of observation of a singularity of scaling exponent h through the fractal dimension of its supporting
set D(h). This method has been applied to experimental measurements of one velocity component at a single
point at high Reynolds numbers in [24], where it was shown that the data are compatible with the multifractal
picture, with a most probable h close to 1/3. Later Kestener and Arneodo [25] extended the method to 3D
signals (3 components of the velocity field), and showed on a numerical simulation that the picture provided
by the 1D measurements was still valid, with the most probable h shifting closer to 1/3. To our knowledge,
this method has never been applied to 3D experimental data. Moreover, due to the statistical nature of the anal-
ysis, it appears difficult to obtain information regarding the possible instantaneous spatial distribution of singularities.

In the present paper, we suggest a new method to detect singularities inside experimental turbulent incompressible
flows. This method is inspired from Onsager’s conjecture and based directly on the energy balance derived by Duchon-
Robert (DR) [20] (Sec. ITA). The idea is to track singularities through scales by detecting the energy transfers that
they produce. We will use DR’s results [20] as a criterion (hereafter referred to as DR criterion) which will tell us where



to look (Sec. I1I). This criterion is easily implementable [rom now classical velocity measurements such as tomographic
PIV (TPIV) or stereoscopic PIV (SPIV). Furthermore, we show that our approach provides a natural connection with
the traditional cascade picture of turbulence, facilitating the interpretation of the detected singularities. We further
discuss how the DR criterion compares with areas of intense vorticity (Sec IIID). Finally, a result obtained by Eyink,
[21-23], and which resembles Duchon and Robert’s, will be investigated. This result concerns Kelvin’s theorem (Sec.
IV), and will give us indications on singularities with h < 1/2. Our discussion is illustrated using TPIV data obtained
inside the boundary layer of flow generated in a wind tunnel [26].

II. MATHEMATICAL TOOLS

Lars Onsager was the first to make the connection between the regularity properties of the velocity field and kinetic
energy conservation in Euler equations [16, 17, 23]. He conjectured that weak solutions of the Euler equations which
are Holder continuous with an exponent h > 1/3 conserve kinetic energy while those with h < 1/3 might not. Since
then, efforts were made in order to prove this assertion [27, 28]. A milestone was reached with the work of Duchon and
Robert [20], who derived the exact local form of the energy dissipation created by a loss of regularity in the velocity
field, along with the corresponding energy balance. In this section, we provide the basic mathematical tools in order
to understand these ideas.

A. Background on Onsager’s conjecture

A physical way of discussing Onsager’s conjecture is to consider a local space averaged (low-pass filtered) velocity
field. In the INSE, the unknown velocity and pressure fields contain informations about the flow at all possible scales.
Let us define a coarse-grained velocity field by taking the convolution of u with some kernel G

ol (1) = /dr G (P)us (@471, )

where G is a smooth filtering function with compact support on R3, even, non-negative, spatially localized and such
that [dr G (r) = 1. The function Gy is rescaled with £ as G¢ (r) = £73G (r/{). This process of coarse-graining thus
averages out fine details about the fields while keeping informations about large scales. Formally, the coarse-grained
velocity can be seen as a continuous wavelet transform of the velocity u with respect to the wavelet G. Note, however,
that since we have chosen G to be of unit integral, it is not admissible, meaning that the wavelet transform is not
invertible. Let us now derive the equations satisfied by uf. Starting from the INSE and applying the coarse-graining
procedure we get

atuf + uﬁajuf = ff — @-pe + Vajj’u,f, (5)
5 .0 .
dju,j =0, (6)
where f{ = —Bijj is called the turbulent force, and Tfj = (uiuj)Z - ufuf is the subscale stress tensor. We thus obtain

a sequence of equations describing the dynamics of large scales. From these equations, together with the INSE (1)
and (2), we can derive a local energy balance at scale £

WE" +0,Jf = -1 — 73, (7)
where each term in Eq. (7) take the form |20, 29]

¢
0 Wil
B ==, (8)
1 1
Ji =u;E* + > (puf + pluy) + 1 [(uiuiuj)e — (uuy)* uj} —v9; B + 1/./ ViGo(&)uj(x)u;(z + €)dE, (9)
1
I, , = Z/dr ViGo(r) - dus(, 1) du(z, ), (10)

9)5 = —u/dr Vi Go(r)u; () us (€ + 1), (11)
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where V is the derivative with respect to r and du(x,r) = u (£ + ) —u (z). In Eq. (7), E¢ represents the large-scale
kinetic energy, Jf is the large-scale energy current in space, 119, describes the local amount of energy scattered

through scale £ (see [30] for an application to experimental measurements), and @f is the viscous energy dissipation
at scale /.
Taking the limit of infinitely small scales ¢ — 0, we obtain the local energy balance

WE+ 0,0, = ~Fr — Dy, (12)

where all the derivatives should be understood in the weak sense, i.e. in the sense of distributions. Moreover, the
various terms of Eq. (12) take the form

Uj Uy

B=—, (13)
Jj = Uj (E +p) — l/ajE, (14)
1
I = lim —/dr V,iGe(r) - Sus(w, v [u(w, v) 2, (15)
—0 4
D, = voju;0;u;, (16)
and 77 is called the local inertial energy dissipation. In the classical picture of turbulence, u remains smooth (u € C*)

for all scales so that du ~ £ as £ — 0. In this case, Z; = 0 and Eq. (12) is the usual local balance of energy. However,
mathematically, it is not known whether a solution of the INSE which is smooth at some initial time remains smooth
at all later times, and Onsager’s key idea was to consider weaker regularity conditions on w. In particular, let us
consider a velocity field which is Holder continuous with some exponent h < 1 (i.e. not necessarily differentiable) at
small scales. We have

lu(z+7)—u(z)| <Crh, (17)

or equivalently
_ h
[ou (@,7)| = O (r"). (18)

Let us now define du (x, ¢) S sup |ow (2, 7) | [23]. We directly get that
r<t

3
U5y = o (M) : (19)

l—

Therefore, if u is Hélder continuous in space with exponent h, i.e. du (£) ~ £*, then

4 _ 3h—1
Mhr= 0 (€7). (20)

As a consequence, we see that if h > 1/3, H% r Vvanishes as £ — 0 and Euler equations are seen to conserve energy
(2, = 0). On the other hand, it may well be that this condition does not hold, in which case turbulent flows might
keep on dissipating energy even if v = 0.

All the steps we have described here have been formalized for the first time in a rigorous mathematical framework
by Duchon and Robert [20]. They found the expression given in Eq. (15) for the inertial dissipation, and showed
that it does not depend on the choice of the test function G. The key point of their work is that &; appears in Eq.
(12) as the fraction of energy dissipated due to a lack of smoothness in the velocity field, and has nothing to do with
viscosity.



B. Connection with traditional turbulence notions
1. The zeroth law of turbulence

It is a well-known experimental fact that for high enough Reynolds numbers, the global dimensionless energy dissipa-
tion rate per unit mass € is a nonzero constant independent of Re. This observation was first reported by Taylor [31],
in a paper discussing turbulent pipe flows, and is known as the zeroth law of turbulence. Since Taylor, the zeroth
law of turbulence has found many confirmations in several other experiments [32-35] and DNS [36-41] in various
geometries, but a derivation from the INSE has yet to be found. The zeroth law therefore suggests that the mean
energy dissipation rate of turbulent flows remains finite even after the limit Re — oo has been taken, which constitutes
one of the fundamental assumptions at the heart of Kolmogorov’s theory of 1941 (K41) [42].

After his discovery of the zeroth law, Taylor proposed a physical mechanism for energy dissipation based on viscosity
and Richardson’s cascade picture [18, 19]. Taylor used vortex stretching to argue that by incompressibility, the
stretching of vortex lines will be accompanied by a reduction of the cross section of any vortex tube in which they
are contained, leading to an increase of w? through Kelvin’s theorem. Now, noting that the mean viscous energy
dissipation can be expressed as %, = vw? (where the overline denotes space averaging), it is easy to understand that
if w? ~ v~ at small scales, the mean dissipated power € = vw? becomes independent of the viscosity.

Onsager’s key remark was that energy dissipation may take place just as well without the final assistance by viscosity,
because Euler equations do not necessarily conserve energy if the velocity field is not regular enough. Indeed, as we
argued in Sec. ITA, solutions to the INSE which cannot satisfy any Hoélder condition with an exponent h > 1/3
may produce an inertial dissipation independently of viscosity. Therefore, Onsager’s scenario can be viewed as an
alternative to Taylor’s. An interesting point is that A = 1/3 in K41, which is also the maximum regularity condition
compatible with a nonzero inertial dissipation.

2.  Kdrmdn-Howarth-Monin relation

A corner stone of turbulence theory is provided by the Karman-Howarth-Monin (KHM) relation [12, 43-45], valid for
homogeneous turbulence, linking the energy injection per unit mass €; and velocity increments via

%@(ui (x)u; (x4 £)) = ivi(dui (€) 0w (£) |2> + vV (u; (&) u; (& + €)) + €1, (21)

where () denotes statistical average, and we have dropped the dependence of Ju on & by homogeneity. In Eq. (21),
E(0) = (u; (x) u; (x 4+ £)) is a measure of the kinetic energy at scale ¢. It is interesting to note that taking the
statistical average of Eq. (7) and integrating over space, we get the following equation

1

50 [ A€ GO B© e =1 [ dEViGe(&) G (O ule)?) +v [de ViGe @ E(©). (22

In order to obtain Eq. (22), we have assumed that the energy input is provided by boundary conditions. Since
the global contribution of the divergence of the energy current in Eq. (7) can be reduced to the flux of J at the
boundaries, we therefore get that [(d;.J;) = —e;. As a consequence, one recognizes in Eq. (22) a weak formulation
of the homogeneous KHM relation, which can also be considered as the average over a sphere of radius ¢ of the KHM
relation. Now if we relax the conditions on the test function G that we imposed in Sec. IT A, we see that taking
Gy = exp (ik- ) with k = £/¢? in Eq. (22) leads to the classical energy budget in Fourier space, where [(E¢) = E(k)
is the energy density at wavenumber k, [(Z)) = vk®>E (k) is the viscous energy dissipation, and [(I1},,) = IL (k) is
the scale-to-scale energy transfer rate.

H% g therefore appears in Eq. (7) as a local expression of the scale-to-scale energy transfer of the KHM relation which
is valid even when the flow is anisotropic, inhomogeneous, and when w is not differentiable. This constitutes the main
difference with its counterpart in Eq. (21). However, it was shown in [20] that assuming homogeneity, both terms
have the same small-scale limit. Eq. (7) can then be viewed as a generalization of Eq. (21) to inhomogeneous flows,
therefore making the link with Onsager’s conjecture.



8. Practical implementation and Noise issues

The practical applicability of the KHM relation to turbulence relies on the fact that the statistical average of the
third order structure function (du|du|?) is smooth enough to be differentiable. This is often the case if the turbulence
is locally homogeneous, and if the experimental noise is isotropic, Gaussian and not correlated to the velocity mea-
surements, as is often the case in absence of systematic errors. In such a case, the measured velocity increments can
be simply written as dUmeqs = 0u + a, where du is the true velocity increment and « is the noise, such that for any
(1,4, k) (0q) = (o) = 0 and (o;a5) = No;;, where A is the noise amplitude. Since we further have

SUmeas|OUmeas|? = duldul? + aldul? + 20u (o - du) + 2a (o - 6u) + du|a|? + daldal?, (23)

we get by statistical averaging

<5umea5|5umeas|2> = <5u|5u|2> + 3N<5U/> (24)

If the velocity field is locally homogeneous then (du) = 0, so that all the noise contribution has been averaged out
and there is no noise amplification introduced by taking the divergence. In the same way, if the noise has no spatial
correlation, the statistical average guarantees that the noise contribution is averaged out in (£ (£)), so that it can be
differentiated twice without noise amplification. This means that both the energy transfer and the dissipation term
in the KHM relation can be computed with minimal noise from homogeneous, experimental fields.

The weak formulation ensures that this property is transferred in the computation of local instantaneous energy
transfers via I1% 5 and of the dissipation term %, in areas where the turbulence is homogenous. Indeed, the gradient
is not applied directly to the velocity increments, but rather on the smooth test function, preceded by a local angle
averaging. The latter plays a role similar to statistical averaging for isotropic noise. The convolution with the
derivative of the smoothing function further guarantees no experimental noise amplification. There is no additional
noise induced by this procedure if one recognizes that the volume integrals performed in 1% and 27 can be simply
done via either continuous wavelet transform, or direct and reverse Fast Fourier Transforms and multiplication in
Fourier space by the derivative of the smoothing function, which can be computed analytically to avoid discretization
effects. This robustness with respect to noise makes the quantity 1%, a very interesting tool to localize potential
singularities in both space and time, as we discuss in Sec. IIIA. Note finally that the expression of 114, is very
suitable for its implementation from experimental particle image velocimetry (PIV) measurements: it involves only
velocity increments, which are easily computed from the velocity field data obtained by such technique.

4. Buler singularities vs Navier-Stokes singularities and the multifractal model

There are evidences coming from direct numerical simulations that turbulent velocity fields admit a local scaling
symmetry through the existence of a continuous set of scaling (Ho6lder) exponents h (z), with the most probable
exponent close to 1/3 [24, 25]. These exponents can be defined as

Infou(x.0))| ‘
) = I = (25)
where L is a characteristic integral length of scale. These points correspond to location where the scaling symmetry
of the Euler equations (¢, z,u) — (\'~"t, Az, \'u) is locally satisfied [12], which means that the definition in Eq. (25)
is valid under the assumption that v — 0.

It can be seen that the above definition of h has a mathematical interest only for 0 < h < 1. However, it might be
that this condition becomes too restrictive for practical purposes, in which case another definition should be come up
with. As a matter of fact, there are several ways of doing so, and a discussion is provided in [46]. In particular, using
wavelet coefficients, the definition of i can be extended to h < 0, which takes power-law blow-ups of the velocity field
into account. Such blow-ups would then be identified as possible singularities of the Euler equation.

In the multifractal model of turbulence [47], it can be shown that the Holder exponent at scale r, defined as

In |du(z, r)|
@ m) ==y



follows a large deviation property [46]

C(h)
Prob (h(x,r) =h) ~ (%)

where C(h) formally corresponds to the codimension of the set where the local Holder exponent at scale 7 is equal
to h. Multifractal analysis of DNS or experimental data proved that the most probable exponent is h = 1/3 with
C(1/3) = 0 [24, 25].

If we now consider a flow with finite viscosity, we have seen that the local energy balance at scale ¢ is provided by Eq.
(7). For a flow following locally du (z, £) ~ £", we have [1%, ~ ¢3"~1 and 2. ~ v£?"~2. These two terms balance at
a scale i, ~ vY/+M) . thus appears as a fluctuating cut-off which depends on the scaling exponent and thercfore
on x. This is the generalization of the Kolmogorov scale 1, /3 = (3/€)'/*, and was first proposed in [48]. As a conse-
quence, 1y corresponds to the scale at which any possible Euler singularity of exponent h is regularized by viscosity.
Above 1y, du (z,£) ~ £ and energy is transferred towards small scales via I1,, until £ = 7, is reached and where
55 ~ €(nn/ L)gh_l. Below 7y, the flow is regularized by viscous forces and du (z,£) ~ £ so that II%  decreases to 0
like £2, kinetic energy being dissipated into heat by viscosity. As a consequence, if —1 < h < 1/3, Onsager’s scenario
can only occur in the absence of viscosity. For this reason, we call such solutions dissipative Euler quasi-singularities.
A noticeable exception comes from the case h = —1, for which n_; = limj,_,_; Re~Y/ (4% = 0 at sufficiently large
Re. For this exponent, there is no possibility of regularization by viscosity (1/r is a zero mode of the Laplacian),
so that h = —1 might correspond to a Navier-Stokes singularity which would dissipate energy at infinitely small
scales, following Onsager’s scenario. This is in agreement with the work of Cafarelli et al. [15] who showed that if a
singularity appears at some point in spacetime which we denote (X, 7% ), then at ¢ = T}, |u| — oo at least like |z — X |.

The question now is: provided that such singularities actually occur, do they have a nonzero contribution to the total
energy dissipation 7 The answer to this question depends on the value of the codimension C(—1). Indeed, the total
contribution to the energy transfers for a given h scales like (HZD R~ (3h=14C(h) - We see that for h = —1, it is
necessary to have C(—1) = 4 for (Il ) to be finite as £ — 0. This is in agreement with the well-known result of
Cafarelli et al. [15], who showed that the singular set of the INSE, if it exists, has zero one-dimensional Hausdorff
measure. More discussions on this matter are provided in [46].

5. Energy transfers

In the multifractal picture, the maximum amount of energy transfers depends on the local Holder exponent: for
1/3 < h < 1, the energy transfers generally decrease as £ — 0, so that it typically never exceeds e. This corresponds
to non-dissipative Euler quasi-singularities. For h < 1/3, the energy transfers increase with scale until ¢ = 7, so
that they can reach large values € (1, / L)3h_1 > ¢, even below the Kolmogorov scale 1 = 1,,3. Therefore, it appears
possible to track possible Euler quasi-singularities or even Navier-Stokes singularities (h = —1), by monitoring the
energy transfers at or below the Kolmogorov scale, and looking for locations where it exceeds the global energy
dissipation by a large fraction. The method of detection of singularities we present in Sec. III relies on this remark.
Moreover, using a steepest descent argument, it is possible to estimate at each scale the mean energy transfer due to
all quasi-singularities as

HTM o éminh,[ShflJrC(h)] ~ €§(3)717 (28)

where ((p) = miny, [ph — 1 + C(h)] is the exponent of the p" order structure function, depending on the singularity

distribution through the shape of C(h). In the K41 theory ((3) = 1, so that II%,, is constant over the inertial
range.

III. SINGULARITY DETECTION THROUGH DUCHON-ROBERT FORMULA
A. Detection method

We saw in Sec. IT A that if the velocity is locally characterized by a scaling exponent A > —1, then the energy transfer
H% 1 locally vanishes for scales much smaller than 7;,. In this section, we will make use of the converse statement
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of this result, i.e. if locally at a certain scale H£D r takes very large values, then the flow in the region where this
is observed is a Navier-Stokes singularity (possibly with A = —1) or a dissipative Euler-quasi singularity which has
not been regularized yet. In the former case, the velocity field is not differentiable, which necessarily comes from a
blow-up of the velocity field itself [9-11, 15]. However, there are several reasons why such singularities cannot be
directly detected from experimental measurements. First of all, measurement systems inevitably have a coarse space
and time resolution while blow-ups occur instantaneously at one point [15]. Furthermore, post-processing techniques
which provide the output velocity field smooth the data by performing local averages, and by considering very large
velocities as spurious vectors which, in the end, are discarded. The key idea is therefore to track possible singularities
through the behaviour of IT%, r as one comes across the dissipative scale n = /3. If H‘b 1 vanishes as one approaches
or goes to smaller scales than 7, then we have only seen local energy transfers through scales [30], which is ultimately
converted into heat by viscous frictions, as in the traditional Taylor view of turbulence. If on the other hand, we
see that HZD r keeps a nonzero value larger than some threshold Q for 0 < ¢ < n, then we have detected a structure
connected to a dissipative Euler quasi-singularity or Navier-Stokes singularity. In general, we can expect that the
larger the threshold 9, the smaller the exponent h we probe. For fixed viscosity and decreasing ¢, we may even expect
that arbitrary large values of Q only correspond to genuine Navier-Stokes singularities.

The only adjustable parameter in our detection method is the threshold Q. A natural choice for Q is to take

Q(0)=Qopr((), (29)

where the opr denotes the standard deviation of HKD r- @ therefore characterizes the quantile of the distribution of
quasi-singularities [49]. For example, if @ = 10, we select events with an amplitude 10 times larger than the expected
deviation from the spacetime average of H‘b r- With @ = 100, we select more extreme quasi-singularities, which
represent in general very rare events, presumably closer to the case h = —1 (Navier-Stokes singularities). In extreme
value theory, there is no general rule as to what quantile should be used in order to consider an event as extreme.
The most common choice when the events are normally distributed is to take Q@ = 3 — 5. In the rest of the paper we
use Q = 3.

In all our computations, we have used a spherically symmetric function of = given by

1 . -
Gr) = %exp(—m) for 0 <r <1, (30)
0 otherwise,

where N is a normalization constant such that f dr G(r) = 1. G has a compact support and satisfies the properties
given in Sec. ITA.

B. Implementation

We illustrate our detection method using experimental velocimetry measurements. The data are tomographic par-
ticle image velocimetry (TPIV) measurements performed inside a boundary layer of a wind tunnel located at the
Laboratoire de Mécanique de Lille, France. A sketch of the experimental set-up is displayed in Fig. 1 along with a
typical instantaneous frame in a plane orthogonal to the mean flow. The test section of the wind tunnel is 1m high,
2m wide and 20m long. The boundary layer thickness can reach up to 300mm and the Reynolds number Ry based
on the momentum thickness is Ry = 8000, with a wall region of around 40mm. The TPIV system is composed of
six high-speed cameras recording the flow into a volume normal to the wall (see Fig . 1). The investigation volume
is 5 x 45 x 45 mm? and, in the end, we get the three components of the velocity field on a grid of size 5 x 67 x 67.
Note that for these data, the resolution (grid spacing) is Az = 0.7mm while the Kolmogorov scale is of the order of
1 =~ 0.35mm. Therefore, we will be able to test the DR criterion at scales close to the dissipative scale. Let us finally
make a small remark about the inertia of the particles. The wind tunnel was operated in a close-loop configuration
with a free stream velocity of 3 m/s + 0.5% and a temperature of 15 £ 0.2 °C. The whole flow was seeded with
polyethylene glycol smoke, which generates particles with a size of the order of 1lum. We can therefore compute their
Stokes number which is S; =~ 4 x 10~%. As a consequence, we have between two and three orders of magnitudes before
the inertia of the particles become appreciable. Since we have also S; & /€, this will happen in regions where ¢ is at
least 104 times larger than its average.

An example of variation of HZD r(w)/opr as a function of scale £ and position « in a plane orthogonal to the mean
flow is provided in Fig. 2. In this figure, the scale is expressed in units of the Kolmogorov scale 7. For scales ¢ > 8n,
the topology of the ratio 115, ;(u)/opr does not vary much. This range of scales represent the end of the inertial
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FIG. 1: (a) sketch of the experimental set-up and (b) typical instantaneous velocity field, obtained from TPIV measurements
in a plane orthogonal to the mean flow. The arrows represent the in-plane component of the velocity field while the colors code
the normal component.

inertial range where the HZD g captures the cascade of energy [30]. On the other hand, as we reach the dissipative
range, i.e. £ < 8Ax, H% r(u)/opr changes topology. We see that H‘D 1, does not vanish, but instead remains larger
than some threshold @, which in several frames is found to be @) = 10, at localized areas which we identify as possible
quasi-singularities with h < 1/3.

As explicitly written in Eq. (29), 0pr depends on the scale £. This can be seen on Fig. 3 which displays the spacetime
probability distribution of 115, in the X Z-plane studied in Fig. 2(a), in the stationary regime at three different scales
(the same as in Fig. 2(a)). We observe that the statistics of HéD r 1s strongly non-Gaussian with very large tails
[50]. It can be checked from these distributions that as ¢ is decreased, the spacetime average as well as the standard
deviation of H[’D p increases. As a consequence, we obtain distributions with wider tails at smaller scales, and we
detect more extreme events corresponding to possible quasi-singularities. In the three cases displayed on Fig. 3, it
can be seen that the distributions are slightly skewed towards positive values, which allows the spacetime average of
115, to remain positive, in agreement with [30].

C. 2D vs 3D detection

In principle, our method of detection requires the input of the three components of the velocity field in a volume, i.e.
requires data from TPIV. In practice, some PIV systems are only stereoscopic, giving access to the three components of
the velocity field on a plane only, but allowing for very long statistics. Since velocity increments along one direction of
space cannot be computed, this raises the question of whether the DR criterion is still able to detect quasi-singularities
from SPIV data, or does the absence of the third direction lead to the detection of spurious structures which would
disappear if the full 3D computation were to be performed ? To answer this question, let us define a new quantity
based on the inertial dissipation Z;, which is built from the three components of the velocity increments on a two
dimensional plane

ef .. 1
77 () < im0 () = lim 4 /S dr 0,Gy(r) - 62 uy(r) |8 u(r)|?, (31)

where §2Pu(r) = w(z?? + r2P) — u(2?P), 2P and r2P being the projection onto the plane of measurements of the
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FIG. 2: Maps of the Duchon-Robert (DR) energy transfers as a function of scale £. (a) map of 1% at three different scales
and (b) map of 1% at different scales along a line going through possible quasi-singularities. In both maps, I1% 5 has been
normalized by its standard deviation. The results are displayed in the plane y = 0 orthogonal to the streamwise direction, and
the colors code Iz (u)/opr. The scale is expressed in units of the Kolmogorov scale (0.35mm).

3D coordinates. We now argue that arcas where the full field Z;(u) is zero are also areas where 227 (u) is zero, thus
proving that no spurious singularities are detected in SPIV data.

To prove this, we note By () the ensemble of all the velocity increments of maximum size ¢ around a point & (which
is located in the plane of measurement), and S, (x) the subset of By (x) of velocity increments with zero component

in the direction perpendicular to the plane of measurement. Let us further denote S the area of S, and V' the volume
of V, and we define

C
/dr IVGo(r) = <€,
s ;
D
[ dr veum) = 2E, (32)
. ]
we have from Cauchy-Schwarz inequality
gl < [ Ve [ P
3
< Y (sup|62Du(r)|) s,
l Sy
Cg 3
< =7 (Gu(,0)" S, (33)
with du(zx, £) = supg, |du(r)| (see Sec. ITA). On the other hand, we have also
gl < [ dr (VGuw)| [ dr lsulr)
% %
D¢ .
< TG(ou(m,z))3v. (34)

Now, if du(x,£) ~ " as £ — 0, then (supy, |6u,('r)|)3 = O (£3"), so that both SPIV and TPIV estimates decay to zero
for h > 1/3. Therefore, the detection of dissipative Euler quasi-singularities via extreme events of |H%2RD(u)| does
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FIG. 3: Spacetime probability density distribution of the Duchon-Robert (DR) transfers 1%, at the three different scales
studied on Fig. 2(a). The blue curve represents the smallest scale, and the red one the largest.

not introduce any spurious structures which would disappear when performing the full 3D computation. However, we
cannot detect maxima corresponding to increments lying only on the y-direction from SPIV data. It is then sufficient
to use the criterion based on HZD‘QRD, but it is not a necessary condition.

An illustration of this result can be provided by an application to our experimental data. In such a case, there is
a strong streamwise mean flow and singularities are more likely to occur in the direction orthogonal to this plane.
We thus choose y as the streamwise direction and compare the DR criterion applied on SPIV and TPIV data via
instantaneous maps of HZD’QRD(U) (Fig. 4(a)) and 1144 (u) (Fig. 4(b)) obtained from the same data as in Fig. 6. Even
though there are some differences between the two maps, it can be seen that both fields are qualitatively the same.
This confirms that all areas where H%QRD(U) # 0 are also areas where 115 p(u) # 0. In order to quantify the correlation
between both maps, we have performed the computation of the Pearson’s coeflicient R of linear correlation between
areas of high energy transfer in H%%D(u) and in 1% z(u). We find R = 0.96, where the threshold of @ = 3 has been
used to define extreme events. The two fields are very well correlated, as expected.

Fig. 5 displays two planar cuts at z constant (a) and « constant (b), as represented on Fig. 4b). As described in [26],
the velocity field is only available in a few planes along the streamwise direction. Here, we have only access to five of
them. Therefore, the resolution of the flow is not as good along the y direction as it is for z and z. However, we can
see that at the resolution of our PIV system, the structures we observe appear to be three-dimensional.

D. Complementary study : Comparison with vorticity

For vanishing viscosity, the Euler equations govern the dynamics of a fluid. In this case, it has been shown [51] that
if u is a regular solution up to some blowup time 7%, then the vorticity w(x,) satisfies

| ottt = . (35)
0

Therefore, a necessary and sufficient condition for the existence of a finite-time singularity is the blow-up of vorticity at
T.. This criterion (hereafter referred to as Beale-Kato-Majda (BKM) criterion) is usually used in numerical detection
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FIG. 5: Instantaneous maps of the Duchon-Robert (DR) energy transfers, in the two planes represented by black lines on Fig.
4, normalized by their space-time averages. (a) shows a planar cut in an (XY) plane and (b) shows a planar cut in a (ZY) plane
for the same data as in Fig. 2. These maps allow us to see that the structures we detect appear to have a three dimensional
structure.

of singularities in Fuler equations. For finite viscosity, the regularity of the solutions to the INSE is controlled by
putting an upper bound on the norm of the velocity field [9-11]. Therefore, Navier-Stokes singularities require the
blow-up of the velocity field, and thus of the vorticity.

In order to make the discussion a little more precise, let us introduce the Sobolev spaces H* (R‘”), which consist of
square-integrable functions whose distributional derivatives up to order s are also square-integrable, s being a positive
integer. The associated norm on these spaces is denoted || - ||=. Let us now assume that the hypothesis of the BKM
theorem are true, i.e. for all ¢t € [0,T.[,u (t) € H* (R?) for some s > 3. It can be shown from the Sobolev embedding
theorem (see [52]) that before the blow-up occurs, u (t) is necessarily Holder continuous for 0 < h < 1/2. This rules
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FIG. 6: Comparison between the Duchon-Robert (DR) criterion and the vorticity field using TPIV data. (a) map of the DR
energy transfers 1% and (b) map of the norm of the vorticity |w(z, z)| (normalized by their standard deviation). The results
are displayed in the plane y = 0 orthogonal to the streamwise direction for the same data as in Fig. 2.

out Onsager’s scenario up to 7T,. In other words, a necessary condition for dissipative singularities to occur is the
blow-up of ||u||ys, which is just what happens as T is approached since the vorticity becomes unbounded. As a
consequence, it makes sense to compare the results obtained from the DR criterion with the vorticity field. Let us look
at Fig. 6, where maps of I1% (u) and |w(z, z)| (both normalized by their standard deviation) are displayed.

First of all, we observe on Fig. 6(b) that the vorticity is almost zero everywhere, except for some areas where it is
concentrated into thin filaments of high intensity. Moreover, comparing Fig. 6(a) with Fig. 6(b), it can be seen that
areas where the structures of dissipation detected by the DR criterion are localized are also areas where the norm of
the vorticity is high. In order to quantify how much both maps are related, we compute the Pearson’s coefficient Ry
of linear correlation between arecas where both criteria show intense events. We find Ry = 0.84, where the threshold
of @ = 3 has been used to define extreme events. Therefore, we observe that areas of strong energy transfers in
114, (u) are well correlated with areas of strong vorticity.

Let us now investigate whether there still is a high correlation between the DR criterion and the vorticity field when
using SPIV data. The maps are displayed on Fig. 7. In the case of SPIV data, the only component of the vorticity
that we are able to reconstruct is the one orthogonal to the plane of measurement (here wy). Therefore, the question
we ask is: does the link between the BKM and DR criteria still exist when using SPIV data? Or put another way, are
areas of strong DR energy transfer also areas where w, is high? Comparing both maps on Fig. 7, there indeed seems
to be a correlation between both maps. We can quantify this correlation by once again computing the correlation
coefficient R, = 0.75. As a consequence, the relation between the DR and BKM criteria seems to hold well for this
geometry, whether for TPIV or for SPIV data. However, there is no guarantee that it is still the same in other
geometries.

IV. SINGULARITY DETECTION THROUGH EYINK FORMULA

A few years after the publication of [20], Eyink noticed that singularities may also cause a breakdown of Kelvin’s
theorem [21-23], in the sense that in addition to a nonzero energy dissipation rate, they might also produce a nonzero
rate of velocity circulation decay I'y(u) given by

L) = ]gg ds - Fo(u), (36)

where
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FIG. 7: Comparison between the Duchon-Robert (DR) criterion and the vorticity field using SPIV data. (a) map of the 2D
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standard deviation) at the smallest resolved scale. The results are displayed in the plane y = 0 orthogonal to the streamwise
direction for the same data as in Fig. 6.

Fo(u) = % /v dr Ko‘u(r)— /v dr’Gg(r’)du(r’)) -vag(r)] Su(r). (37)

and € is a contour advected by the fluid. .Z,(u) is called the turbulent vortex-force. This is an important remark
since Kelvin’s theorem plays an important role in Taylor’s vortex stretching mechanism for energy dissipation [18, 19,
23].

A. Detection method

We have seen in Sec. II and IIT that the velocity field u of a flow might develop singularities due to some internal
mechanisms in the INSE, which are not fully understood. At the points in spacetime where this happens, u might
however satisfy some Holder continuity property with exponent h. At points where h > 1/3, no additional dissipation
to viscosity occurs according to Onsager’s arguments. However, if h < 1/3 an additional energy dissipation (or
production) might appear [20, 23| causing kinetic energy to cascade through scales. Our detection method introduced
in Sec. III is based on the computation of this additional term to the energy balance at scale ¢ and then track arcas
where it does not vanish with decreasing scale.

We introduce now a very similar detection method which is based on the observation that the turbulent vortex-force
in (37) satisfies Fy(u) = O(6u(£)?/t) = O(*"~1) if 6u(f) ~ " in the small scale limit, as discussed in [21-23].
Therefore, the computation of the turbulent vortex-force allows us to track dissipative Euler-quasi singularities or
Navier-Stokes singularities with h < 1/2, whereas the DR criterion only allows us to track the ones with h < 1/3.
Moreover, just as for the DR term, this computation only involves velocity increments, which are easily accessible via
PIV measurements. For the same reason mentioned in Sec. IIT A, a detection criterion based on circulation production
is only a necessary but not sufficient one (since our PIV set-up is not space resolved). Keeping the same test function
G as in Eq. (30), we can implement a detection method very similar to the one described in Sec. III, but based
on another cascading quantity. Therefore, two questions arise. Starting from our TPIV data and computing maps
of P(u) and %I‘g(u), are intense events in both cases well correlated? Are we able to detect arcas where a strong
circulation production is observed while the DR term is weak? This could mean the detection of non-dissipative Euler
quasi singularities with 1/3 < h < 1/2.
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FIG. 8 Comparison between energy transfers and rate of circulation decay using SPIV data. (a) map of the DR energy
transfers I1% and (b) map of the rate of circulation decay %Fg(u) (normalized by their standard deviation). The results are
displayed in the plane y = 0 orthogonal to the streamwise direction, and for the same data as in I'ig. 2. For easier comparison,
we have reported on the circulation map the contours of the areas where the DR dissipation is larger than three times its
standard deviation. We observe intense events in both maps.

B. Implementation of the method

The arguments which have been made in Sec. III C to show that it is enough to look for quasi-singularities from SPIV
via energy transfers can be once again made here. Therefore, in the following, we will focus on SPIV data.

Let us first compare maps of I1% 5 (u) (we drop the superscript "2D") and %Pg(u) in order to answer the first question.
On TFig. 8 are displayed maps of these two quantities (normalized by their standard deviation) for the same data set
as in Fig. 4(a).

First of all, it can be observed that areas where %F@(u) is nonzero are organized as very thin filaments. In addition,
Fig. 8(b) is more noisy than Fig. 8(a) even though the same procedure is applied in both cases, i.e. a derivative in
scale is applied on the smoothing function, followed by a local angle averaging. There appears to be some correlation
between the maps: in areas where HZD g is strong, there always is some nonzero circulation decay. However, we observe
that regions of largest rate of circulation decay are either shifted with respect to areas of strong dissipation, or exist
in some areas where there is little energy transfers (see contours on Fig. 8(b)). Overall, the Pearson’s coefficient of
linear correlation Ry between regions of strong events (@ = 3) in both fields is Rr = 0.85. We therefore obtain a
good correlation between areas where both %F ¢(u) and 114, are strong, which is consistent with the possibility that
Euler singularities may cause a break-down of Kelvin’s theorem.

Fig. 9 displays the spacetime probability distribution of dI';/d¢ in the same X Z-plane studied up to now, in the
stationary regime. Here again, we observe a strongly non-Gaussian statistics with very wide tails, which confirms
that dI'y/dt can be used a criterion to detect possible singularities through scales. However, the fact that the maps
of circulation are more noisy than the maps of dissipation renders their use less straightforward to detect quasi-
singularities.

V. DISCUSSION

In this paper, we have introduced two new methods based on the work of Duchon, Robert and Eyink [20-23|, which
allow for the local detection of dissipative Euler quasi-singularities or Navier-Stokes singularities in experimental
flows. Both criteria assume the knowledge of spatial velocity increments only and are therefore easy to implement
experimentally as well as numerically. The key idea behind their implementation is that velocity field in turbulent
flows might lose some regularity while satisfying Holder continuity conditions with an exponent A < 1 in the limit of
small scales. If h < 1/2, a cascade of circulation might occur and Kelvin theorem breaks down. This cascade can
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be detected at larger scales provided that we are in the inertial range. In the same way, if h < 1/3, then a cascade
of energy might occur which can also be detected in the inertial range. The first criterion that we introduced (DR
criterion) focuses on these energy transfers, which are described by I, 5 (see Eq. 7).

From its probability distribution, we observed in Sec. IIIB that H£D r has a strongly non-Gaussian statistics, with
very wide tails, in agreement with [50]. This indicates the existence of extreme events which might correspond to
FEuler quasi-singularity or genuine Navier-Stokes singularities. In addition, we saw that as the scale is decreased, the
standard deviation of I1%  increases, which results in the tails of the distribution getting wider.

Furthermore, since Navier-Stokes singularities concern the blow-up of the velocity field, we expect to observe a very
strong vorticity at the location of possible singularities. As a consequence, we compared the DR criterion with the
vorticity field, and found a good agreement between them, whether SPIV or TPIV data sets are considered.

We also showed analytically that to detect singularities, one does not need to have access to the whole velocity field
inside a volume, but can instead look for them from stereoscopic particle image velocimetry (SPIV) data on a plane.
This is confirmed by performing both 2D and 3D computations and comparing maps of the DR term I1% (u) from
TPIV measurements obtained inside the boundary layer of a wind tunnel [26]. Clearly, being limited to SPIV data
means the informations along a third direction are lacking meaning that quasi-singularities with structure in the third
direction cannot be detected. In this flow, we observe that the computation of the DR term actually shows areas
where it is nonzero, some of them being characterized by very strong (extreme) energy transfers through scales.
Finally, we investigated a second new method for the detection of singularities based on the possibility of a breakdown
of Kelvin theorem at very large Reynolds numbers [21-23]. We showed that this method is well correlated with the
DR criterion even though areas of intense energy transfers are sometimes shifted compared to areas of high rate of
circulation. However, due to higher noise, this method is less reliable than the DR method, but it may allow for the
detection of a wider range of singularities.

In the present paper, our detection methods were applied inside a boundary layer geometry, the resolution of our
data being close to, but not exactly reaching, the dissipative scale. The fact that we detect areas with negative I1%
suggests that we observe energy transfers through scales [30], but not dissipation due to singularities. This is a strong
indication that the Kolmogorov scale 7 is not the smallest relevant scale for energy dissipation and that there might
actually exist smaller scales at which dissipation takes place, as suggested in the multifractal picture of turbulence.
To get stronger conclusions about the existence and topology of dissipative Fuler quasi singularities or Navier-Stokes
singularities in experimental flows, we need measurements with a resolution smaller than the Kolmogorov scale. An
attempt in that direction is made in [50] . We hope our work will help providing experimental constraints on the



17

properties of Navier-Stokes singularities as well as on corresponding suitable weak solutions.
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