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Abstract

Omega ratio, defined as the probability-weighted ra-
tio of gains over losses at a given level of expected
return, has been advocated as a better performance
indicator compared to Sharpe and Sortino ratio as it
depends on the full return distribution and hence en-
capsulates all information about risk and return. We
compute Omega ratio for the normal distribution and
show that under some distribution symmetry assump-
tions, the Omega ratio is oversold as it does not pro-
vide any additional information compared to Sharpe
ratio. Indeed, for returns that have elliptic distribu-
tions, we prove that the optimal portfolio according to
Omega ratio is the same as the optimal portfolio ac-
cording to Sharpe ratio. As elliptic distributions are a
weak form of symmetric distributions that generalized
Gaussian distributions and encompass many fat tail
distributions, this reduces tremendously the potential
interest for the Omega ratio.

keywords: Omega ratio, Sharpe ratio, normal distri-
bution, elliptical distribution.

1 Introduction

Omega ratio has been introduced on the pledge that
the Sharpe ratio and many performance measurement
and risk ratios rely on two excessive simplifications.
The first one states that a limited numbers of statisti-
cal characteristics can fully describe returns. Typically
mean and variance, or first and second statistical mo-
ments for Sharpe or information ratio, mean and down-
side standard deviation for Sortino ratio. The second
one states that this performance ratios should have a

∗eric.benhamou@aisquareconnect.com/dauphine.eu.
The authors would like to thank Francois Bertrand and Stephane
Mysona for fruitful conversations about the Omega ratio.

return level. In an enlightening research, Keating and
Shadwick (2002b) and Keating and Shadwick (2002a)
introduce the Omega ω ratio, and claimed that this
universal performance measure, designed to redress
the information impoverishment of traditional mean-
variance analysis would address these concern. They
emphasize that the Omega metric has the great ad-
vantage over traditional measures to encapsulate all
information about risk and return as it depends on
the full return distribution, as well as to avoid looking
at a specific level as this measure is provided for all
level, hence entitling each investor to look at his/her
risk appetite level. Strictly speaking, the omega ra-
tio is defined as the probability-weighted ratio of gains
over losses at a given level of expected return. In fi-
nancial words, this ratio determines the quality of the
investment bet relative to the return threshold. As nice
as it may sound, we argue that this is oversold, as for
a large class of returns distributions, that is distribu-
tions that are elliptic, we prove in this paper that the
optimal portfolio according to the Omega ratio is also
the optimal portfolio according to the Sharpe ratio. In
other words, optimizing weights for a given portfolio
of assets in order to get the optimal Omega ratio is
equivalent to optimizing the portfolio weights to find
the optimal Sharpe ratio. As elliptic distributions are
a weak form of symmetric distributions that general-
ized Gaussian distributions and encompass many fat
tail distributions, this kills the potential interest of the
Omega ratio.

2 Related Work

Omega ratio have been studied in many papers pro-
ducing a vast literature on it. We will review here the
main papers. Winton Research (2003) is an empirical
research work that looked at the historical performance
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of CTAs hedge funds and that put light on Omega ra-
tio. Passow (2004) looked at the analytical property
and tractabilty of the Omega ratio for Johnson distri-
butions. Kaffel and Prigent (2010) investigated perfor-
mance measurement for financial structured products,
thanks to the so called Sharpe-Omega ratio that is an
extension of the Omega ratio. Their originality was
to compute downside risk measure using put option
volatility instead of historical volatility. This allows
them to take account of the asymmetry of the return
probability distribution. They determined that the op-
timal combination of risk free, stock and call/put in-
struments with respect to this performance measure,
is not necessarily increasing and concave as opposed to
traditional optimal Sharpe ratio portfolio for the same
instruments. Similarly, Gilli et al. (2011) studied port-
folios using the Omega function, looking at their empir-
ical performance, especially the effects of allowing short
positions. Their originality was to consider short po-
sition which is traditionally ignored. They found that
overall, short positions can improve risk-return charac-
teristics of a portfolio but mitigated this findings with
the constraints involved in short positions that often
carries additional constraints in terms of transactions
costs and liquidity.

Bertrand and luc Prigent (2011) analyzed the per-
formance of two main portfolio insurance methods, the
OBPI and CPPI strategies, using downside risk mea-
sures, thanks to Omega measure. They showed that
CPPI strategies perform better than OBPI. Kapsos
et al. (2014) looked at the maximum Omega ratio.
They established that it can be computed as a linear
program optimization problem. While the Omega ra-
tio is theoretically a nonconvex function, Kapsos et al.
(2014) l showed that this can be reformulated as a con-
vex optimization problem that can be solved thanks to
a linear program. This convex reformulation for Omega
ratio maximization can be seen as a direct analogy
of the mean-variance framework for the Sharpe ratio
maximization and paved the way for our work that
will show the strong connection between Omega and
Sharpe ratio. van Dyk et al. (2014) provided a nice
empirical research on the difference of ranking between
Sharpe and Omega ratio. They compared the ranking
of 184 international long/short (equity) hedge funds,
over the period January 2000 to December 2011 using
their monthly returns. They concluded that Omega
ratio does indeed provide useful additional informa-
tion to investors compared to the one only provided
by Sharpe ratio alone. Belles-Sampera et al. (2014)
generalized Omega ratio in a so called GlueVaR risk
measure. It combines Value-at-Risk and Tail Value-

at-Risk at different tolerance levels and has analytical
closed-form expressions for commonly used distribu-
tion like Normal, Log-normal, Student-t and Gener-
alized Pareto distributions. They showed that under
certain condition, a subset of GlueVaR risk measures
fulfils the property of tail-subadditivity Sharma et al.
(2016) worked on the threshold to be used in portfolio
optimization with Omega ratio. In order to maximize
the Omega ratio for the overall portfolio, one needs to
consider a threshold point to compute the Omega ratio
as optimizing at all thresholds is not realistic. They de-
cided to use the conditional value-at-risk at an α confi-
dence level CVaRα of the benchmark market. They ar-
gue that this α-value reflects the attitude of an investor
towards losses. Like in Kapsos et al. (2014), this for-
mulation can be cast as a linear program for mixed and
box uncertainty sets and a second order cone program
under ellipsoidal sets, and hence becomes tractable.
They showed that the optimal portfolios resulting from
the Omega-CVaRα model exhibit a superior perfor-
mance compared to the classical CVaRα model in the
sense of higher expected returns, Sharpe ratios, modi-
fied Sharpe ratios, and lesser losses in terms of VaRα

and CVaRα values. Guo et al. (2016) worked on the
property for one asset to have a higher Omega ratio
than a second one. They showed that second-order
stochastic dominance (SSD) and/or second-order risk
seeking stochastic dominance (SRSD) alone for any two
prospects is not sufficient to imply that the Omega
ratio of one asset is always greater than that of the
other one. Indeed, they proved that the second-order
stochastic dominance only implies higher Omega ratios
only for thresholds that are between the mean of the
smaller-return asset and the mean of the higher-return
asset. When considering first-order stochastic domi-
nance, the restriction on the thresholds does not apply
and first-order stochastic dominance implies preference
of the corresponding Omega ratios for any threshold.
Krezolek and Trzpiot (2017) introduced an extension
of Omega ratio called GlueVaR risk measure and illus-
trated this on metals market investments. GlueVaR
risk measures combine Value-at-Risk and Tail Value-
at-Risk at different tolerance levels and have analytical
closed-form expressions for the most frequently used
distribution functions in many applications, i.e. Nor-
mal, Log-normal, Student-t and Generalized Pareto
distributions. Metel et al. (2017) is an illuminating
paper as it is the first to notice the correspondence be-
tween Sharpe and Omega ratio under jointly elliptic
distributions of returns. Compared to our work, their
proof is more convoluted and does not emphasize the
important fact that elliptic distributions satisfy some
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symmetry properties that validates the proof. Rambo
and Vuuren (2017) ranked fund returns and compared
results obtained with those obtained from the Sharpe
ratio over two periods: 2001 to 2007 and 2008 to 2013.
They found that Omega ratio provides far superior
rankings. Guo et al. (2018) investigated whether there
is any Sharpe or Omega ratio rule that prove that
one asset outperforms another one. They found that
Sharpe ratio rule is not able to detect preference under
general strong dominance cases. In contrast to mean-
variance rule implied by Sharp ratio that does not work
under first order dominance, Omega ratio can help de-
tecting better performance under first order stochastic
dominance. Caporin et al. (2018) is a nice work on the
overall developments on Omega ratio over the last two
decades. They emphasized two flaws of Omega ratio.
First, Omega ratio does not comply with Second-order
Stochastic Dominance as already noted by Guo et al.
(2016). Second, trade-off between return and risk cor-
responding to the Omega measure, is highly influenced
by the mean return. They illustrated their work on
long-only asset and hedge fund databases to confirm
the issues with Omega ratio. Bernard et al. (2019)
proved that in a continuous-time setting, the problem
of maximizing Omega ratio is ill-posed and leads to
excessive risk taking. They investigated if additional
constraints could offset the Omega ratio risk problem
but concluded that this was not obvious and caution
should be taken when using Omega ratio for making
asset allocation decisions.

3 Contribution and paper out-
line

In this paper, we first present elliptical distributions
and some of their key properties in section 4. We
emphasize that these distributions encompasses many
standard distributions and are a generalization of nor-
mal distribution in terms of symmetry assumptions. 5
we provide the exact computation of the Omega ra-
tio for the normal distribution and show that optimiz-
ing the Omega ratio for a portfolio is indeed similar
to optimizing the Sharpe ratio. We extend this result
by noticing that the equivalence between Omega and
Sharpe ratio relies on properties of symmetry of the
normal distribution and can be extended to elliptical
distributions. We show that this result can be proved
very rapidly thanks to the specific nature of the Omega
ratio. We conclude that Omega ratio is oversold and
is in most cases not providing additional information
compared to stochastic dominance.

4 Elliptical distributions

It is well known that a normal distribution is fully char-
acterized by its first and second moments. It is less well
known or at least less emphasized that the normal dis-
tribution also has a very nice property in terms of sym-
metry with respect to its first and second moments. If
one plots iso-density curves in two or three dimension
for the multi variate normal, one would obtain ellip-
soid as illustrated by 1 and 2. This symmetry accord-
ing to axes leads to the so called elliptic distributions
called like this because they are elliptically contoured
distributions. Elliptic distribution were introduced by
Kelker (1970) and further studied in Cambanis et al.
(1981) and by Fang et al. (1990).

Figure 1: Contour plot for normal with positive corre-
lation

4.1 spherical distributions

A first intuitive idea is to define spherical distributions.
Let us denote by U ∈ Rn×n an orthogonal matrix,
that is UUT = UTU = In. The matrix U defines an
orthogonal linear transformation LU : Rn×n 7→ Rn×n
defined by X → UX. Please note that this is not
necessarily a rotation as the matrix associated with the
transformation is not necessarily a rotation matrix. It
does not necessarily comply with det(U) = 1.

Definition 4.1. A random vector X = (X1, . . . , Xn)
has a spherical distribution if it is invariant according
to any orthogonal linear transformation, that is for any
U ∈ Rn×n such that UUT = UTU = In, we have
UX ∼ X where X ∼ Y means that X and Y are equal
in law or in distribution.
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Figure 2: Contour plot for normal with weak correla-
tion

Remark 4.1. In particular, the distribution of a
spherical distributed random variable, X, is invariant
under rotations as rotations matrices are special cases
of orthogonal matrices.

It can be shown easily (see Fang et al. (1990)) that X
is a spherical distribution is equivalent to the existence
of a function φ(.) such that for any t ∈ Rn, we have

ΦX(t) = φ(tT t) = φ(t21 + . . .+ t2n) (1)

where ΦX(t) denotes the characteristic function

ΦX(t) = E[eit
TX]. The function φ is referred to as

the generator of the distribution and it is quite com-
mon to write X ∼ Sn(φ) where Sn denotes the spheri-
cal distribution in Rn. A nice theorem that translates
into an enlightening geometrical interpretation is that
there exists a representation form for any spherical dis-
tribution. This is the following theorem known as the
spherical representation theorem:

Theorem 4.1. A random vector X = (X1, . . . , Xn)
has a spherical distribution if and only if there exists
S a random variable uniformly distributed on the unit
sphere Sn−1 =

{
s ∈ Rn : ssT = 1

}
and R ≥ 0 a ran-

dom variable independent of S such that

X ∼ RS. (2)

If in addition, the scalar random variable R has a finite
second moment E[R2] <∞, then the first two moments
of X exist and are given by:

E[X] = 0, Cov(X) = 1/n E[R2]In. (3)

Remark 4.2. The random variable R is often referred
to as the radius of the spherical distribution and can be
interpreted geometrically in dimension two or three as
the mean radius of the ellipsoid, also seen as the radius
the major axis of the ellipse.

Remark 4.3. Spherical distributions means that there
are distributions that comply with some symmetrical
properties (invariance along any rotation but also along
any orthogonal linear transformation). This should
not be confused with distributions on the sphere like
the Fisher–Bingham or Kent distribution, the Von
Mises–Fisher distribution or even the Bingham dis-
tribution that are sometimes incorrectly called spher-
ical distributions! They are not at all spherical dis-
tributions but rather distributions on the sphere which
means that they are probability distribution such that
the probability assigned to the unit sphere is 1 and 0
elsewhere. In general, a spherically distributed random
vector does not have its density support restricted to the
sphere. It does not, either necessarily possess a density.
However, if it does, the marginal densities of dimension
smaller than n − 1 are continuous and the marginal
densities of dimension smaller than n− 2 are differen-
tiable (except possibly at the origin in both cases). Uni-
variate marginal densities for n greater than 2 are non-
decreasing on (−∞, 0) and non-increasing on (0,∞).

Remark 4.4. A typical example of a spherical dis-
tribution is the multi variate normal distribution with
covariance matrix proportional to the identity. The
multivariate t-distribution is a typical example of a fat
tailed spherical distribution. Let Z be a multi variate
spherical normal distribution Z ∼ Nn(0, In) and R be
a chi squared distribution R ∼ χ2

k with k degrees of
freedom independent of Z .The random vector

Y =
√
k
Z

R
(4)

has a multivariate t-distribution with k degrees of free-
dom. Thanks to this writing, it is easy to see that its
belongs to the family of n-dimensioned spherical distri-
butions.

Obviously, for multi variate Gaussian, imposing that
the covariance matrix is proportional to the identity
matrix is too restrictive. This naturally leads to the
extension of spherical distributions that are elliptical
distributions.

4.2 Elliptical distributions

Definition 4.2. A (n × 1) random vector X is said
to have an elliptical distribution with parameters µ a

4



(n×1) constant vector and Σ a (n×n) constant matrix
if X has the same distribution as µ+Λ>Y, where Y ∼
Sn(φ) and Λ is a (k × n) matrix such that Λ>Λ = Σ
with rank(Σ) = k. We shall write X ∼ ECn(µ,Σ, φ).

Remark 4.5. Elliptical distributions can be seen as
an extension of the multi variate normal distribution
denoted by Np(µ,Σ).

Let X be a multinormal distribution X ∼ Nn(µ,Σ).
Then X ∼ En(µ,Σ, φ) and φ(u) = exp (−u/2). As
the density surface for the multivariate normal dis-
tribution is given by f(x) = det(2πΣ)−

1
2 exp{− 1

2 (x −
µ)>Σ−1(x − µ)}, it is easy to see that this density is
constant on ellipses (see for instance 1). This explains
why these distributions have been called elliptical.

Below are summarized the main properties of ellip-
tical distributions:

Theorem 4.2. Elliptical random vectors X have the
following properties:

• Basic properties: any linear combination of ellip-
tically distributed variables is elliptical and any of
its marginal distributions is also elliptical.

• Representation form: a scalar function φ(.) can
determine an elliptical distribution En(µ,Σ, φ) for
every µ ∈ Rp and Σ ≥ 0 with rank(Σ) = k iff
φ(t>t) is a p-dimensional characteristic function.
If there exist two representation forms of X such
that X ∼ En(µ,Σ, φ) and X ∼ En(µ∗,Σ∗, φ∗), then
there exists a constant c > 0 such that

µ = µ∗, Σ = cΣ∗, φ∗(.) = φ(c−1.).

• Characteristic function and representation: the
characteristic function of X, ΦX(t) is of the form

ΦX(t) = eit
>µφ(t>Σt)

for a scalar function φ. X ∼ En(µ,Σ, φ) with
rank(Σ) = k iff X has the same distribution as:

µ+RΛ>U (k) (5)

where R ≥ 0 is a random scalar variable indepen-
dent of U (k). U (k) is a random vector distributed
uniformly on the unit sphere surface in Rk and Λ
is a (k × n) matrix such that Λ>Λ = Σ.

• Assume that X ∼ En(µ,Σ, φ) and E(R2) < ∞.
Then its first two moments exist and are given by:

E(X) = µ, Cov(X) =
E(R2)

rank(Σ)
Σ = −2φ>(0)Σ.

• Assume that X ∼ En(µ,Σ, φ) with rank(Σ) = k.
Then

Q(X) = (X − µ)>Σ−(X − µ)

has the same distribution as R2 in equation 5

• An elliptic distribution has a density function of
the form

f(x) = C · g
(
(x− µ)>Σ−1(x− µ)

)
where C is the normalizing constant, x is an n-
dimensional random vector with median vector mu
(which is also the mean vector if the latter exists),
and Σ is a positive definite matrix which is propor-
tional to the covariance matrix if the latter exists.

Remark 4.6. The second item of this theorem states
that Σ, φ,Λ are not unique, unless we impose a condi-
tion on the determinant, that is det(Σ) = 1.

Remark 4.7. The distribution function of R is a key
characteristic of the elliptical distribution and can lead
to elliptical distributions that share most of their char-
acteristic in common. Hence it is called the generat-
ing variate of the elliptical distribution family. Using
extreme value theory, it is useful to characterize fat
tailed elliptical distributions. If the generating vari-
ate R belongs to the maximum domain of attraction
of the Frechet distribution (Embrechts et al. (2003)),
this writes as FR = λ(x) × x−α for all x > 0, where
α > 0 and λ is a slowly varying function (Resnick
(2014)). The parameter α is then called the tail in-
dex of the generating distribution function FR which
corresponds also to the tail index of the regularly vary-
ing random vector X (Hult and Lindskog (2002)). This
shows in particular that multivariate elliptical distribu-
tions allow for heavy tails while encompassing at the
same time a simple linear dependence structure from
the multi variate normal. Hence, in addition to the
multi variate normal distribution, the multi variate t-
distribution Fang et al. (1990), the symmetric gener-
alized hyperbolic distribution Barndorff-Nielsen et al.
(1982), the sub-Gaussian α-stable distribution (Rachev
and Mittnik, 2000, p. 437) are elliptical distributions.

Remark 4.8. Because of their representation, ellipti-
cal distributions generalizes nicely Gaussian properties.
This is because their characteristic function writes as

ΦX(t) = eit
>µφ(t>Σt) (6)

which is a weakened form of the multi variate Gaussian
distribution that is given by

ΦX(t) = eit
>µ exp(−1/2t>Σt) (7)
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Remark 4.9. Because of their nice property of gen-
eralizing multi variate Gaussian distribution with po-
tentially fat tailed distributions, elliptical distributions
are meaningful for financial data modeling. The the-
ory of portfolio optimization developed by Markowitz
(1952) and continued by Tobin (1958), Sharpe (1963)
is the basis of modern portfolio risk management. It
relies on the Gaussian distribution hypothesis and its
quintessence is that the portfolio diversification effect
depends essentially on the covariance matrix, i.e. the
linear dependence structure of the portfolio compo-
nents. Elliptical distributions generalize nicely this
portfolio theory as they cope well with linear trans-
formations. In particular, if the returns on all as-
sets available for portfolio formation are jointly ellipti-
cally distributed, then all portfolios can be characterized
completely by their location and scale – that is, any two
portfolios with identical location and scale of portfolio
return have identical distributions of portfolio return.
Various features of portfolio analysis, including mutual
fund separation theorems and the Capital Asset Pricing
Model, can be easily extended for all elliptical distribu-
tions, making this kind of distributions appealing.

5 Omega ratio

Definition 5.1. As presented in Keating and Shadwick
(2002b) and Keating and Shadwick (2002a), for an as-
set whose return r has a cumulative probability distri-
bution function F and θ is the target return threshold
defining what is considered a gain versus a loss, the
Omega ratio is defined as

Ω(θ) =

∫∞
θ

[1− F (r)] dr∫ θ
−∞ F (r) dr

(8)

When θ is set to zero the gain-loss-ratio by Bernardo
and Ledoit arises as a special case Bernardo and Ledoit
(2000). The selling point of the omega ratio compared
to Sharpe ratio and other traditional risk ratio is that
at first sight, it seems to depend on the entire return
distribution through the cumulative probability distri-
bution function F as well as not rely on any particular
moments in terms of value and even existence, making
it intellectually very attractive. Graphically, for a θ
value of 2.70 percent and the cumulative distribution
given by figure 3, the Ω(θ) ratio is defined as the ratio
of the red area over the blue area.

Omega ratio has been created to be able to compare
different assets in terms of their risk profile. Figures
4 and 5 provide in log scale the omega ratio for four
portfolio. The omega ratio is a real function that is

Figure 3: Graphical interpretation of Omega ratio Ω(θ)
defined as the ratio of the shaded red over the blue area

infinite for large negative value of θ decreases with θ
and tends to 0 for large positive value of θ. The perfect
case is to have one curve of a portfolio above all the
other one for any value of θ. However, this particular
case of Pareto optimality (meaning the curve is above
all other curves for any value of θ) is extremely rare
and in practice, curves cross each other making the
call to select one asset or portfolio among the other
ones harder.

Figure 4: Ω(θ) ratio for four portfolios in practice

Remark 5.1. It is worth mentioning that the Omega
ratio can be meaningless if for instance the numer-
ator term

∫∞
θ

[1 − F (r)] dr or the denominator term∫ θ
−∞ F (r) dr are undefined. Surprisingly, this is ig-

nored in the literature about the Ω(θ) ratio. A typical
example of a distribution that has an undefined Ω(θ)
ratio is a power law F ∼ |r|α with 1 < α ≤ 2 .

Remark 5.2. The case of the power law for α = 2
is illuminating. A corresponding elliptical distribution
is the Cauchy distribution whose density is given by
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Figure 5: Ω(θ) ratio for six portfolios in practice

f(r) = 1

πσ
[
1+( r−µσ )

2
] , where µ is the location parame-

ter and σ the scale parameter. Its cumulative density
function is given by F (r) = 1

π arctan
(
r−µ
σ

)
+ 1

2 . To
keep things simple, let us take the case of µ = 0 and
σ = 1, which is the normalized Cauchy distribution.
The numerator of the omega ratio is then given as the
limit for A→ +∞ of∫ A

θ

[1− F (r)] dr =

∫ A

θ

1

2
− 1

π
arctan(r)dr (9)

=

[
r

2
−
r arctan(r)− ln(1+r2)

2

π

]A
θ

→
A→+∞

+∞ (10)

This shows that whenever, we speak about Omega ratio,
we need to impose that the two terms (numerator and
denominator) are well defined. This is the subject of
the following proposition

Proposition 5.1. The Ω(θ) ratio terms are defined if
and only if the right and left tails of the cumulative
distribution are dominated by 1

|r|α with α > 1. This

means in particular that the existence of the Ω(θ) ratio
implies that lim

r→−∞
rF (r) = 0.

Proof. Given in appendix 7.1

In contrast, the Sharpe ratio is for a given level θ is
defined as follows:

Definition 5.2. The Sharpe ratio (for the reference
level θ) S(θ) is defined as the excess return over θ di-
vided by the standard deviation

S(θ) =
µ− θ
σ

(11)

As said in the introduction, Sharpe and Omega ra-
tio have been strongly opposed. We shall see this
is not completely correct. In the particular case of
a normal probability distribution function F , it is
fairly easy to compute the Ω(θ). Let us denote by
ψ the standard normal probability distribution func-
tion ψ(x) = 1√

2π
exp(−x2/2) and Ψ(x), the standard

normal cumulative probability distribution function
Ψ(x) =

∫ x
−∞ ψ(u)du. We have

Proposition 5.2. If returns follow a normal proba-
bility distribution function N (µ, σ), the Ω(θ) ratio is
given by

Ω(θ) = 1 +
1

ψ(S(θ))
S(θ) −Ψ(−S(θ))

(12)

Proof. Given in appendix 7.2

If we explicitly expand equation (12) for the normal
distribution, we get

Ω(θ) = 1 +

√
2π

exp(−S(θ)2/2)
S(θ) −

∫ −S(θ)
−∞ exp(−u2/2) du

(13)

Proposition 5.3. If returns follow a normal probabil-
ity distribution function N (µ, σ), the Ω(θ) ratio is an
increasing function of S(θ)

Proof. Given in appendix 7.3

It follows that maximizing the Omega ratio
at level θ is equivalent to maximize the Sharpe
ratio for a risk free rate θ. Moreover, if we are
looking at returns at a given level of volatility, it means
that we impose that σ is a constant. In this particular
case, as the Sharpe only depends on the first moment:
S(θ) = µ−θ

σ = µ−θ0
σ + θ0−θ

σ , maximizing the Sharpe
does not depend on the corresponding risk free rate
level θ and can be done at the risk free rate. We there-
fore obtain the important result given by the following
proposition

Proposition 5.4. Under a target volatility constraint,
and for a normal distribution, maximizing the Ω(θ) is
strictly the same as maximizing the Sharpe ratio!

We will see in the following that the property is not
restricted to normal distribution but can easily be ex-
tended to elliptic distributions as we have just used
symmetry properties of the distribution. More pre-
cisely, we can compute explicitly the Ω(θ) ratio as fol-
lows:
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Proposition 5.5. If the Ω(θ) ratio is well defined
and if returns follow an elliptic probability distribu-

tion function proportional to g
(
− 1

2

[
u−µ
σ

]2)
, writing

ψ(u) = Cg(− 1
2u

2) and Ψ(v) =
∫ v
−∞ Cg(− 1

2u
2) du, the

corresponding re-normalized probability and cumulative
probability distribution functions, as well as the follow-
ing function G(u):

G(u) =

∫ u

−∞
Cg(x) dx (14)

then the Ω(θ) ratio is given by

Ω(θ) = 1 +
1

G(− 1
2S(θ)

2)

S(θ) −Ψ(−S(θ))
(15)

Proof. Given in appendix 7.4

Remark 5.3. The re-normalizing constant C is de-
fined as

∫∞
−∞ Cg(− 1

2u
2) du = 1, or equivalently

C =
1∫∞

−∞ g(− 1
2u

2) du
(16)

Remark 5.4. In the case of the normal distribution,
the function g is simply the exponential function.

Proposition 5.6. For elliptic distribution, the Ω(θ)
ratio is an increasing function of S(θ).

Proof. Given in appendix 7.5

We come now to the central property

Proposition 5.7. Under a target volatility constraint,
and for an elliptic distribution, maximizing the Ω(θ) is
strictly the same as maximizing the Sharpe ratio!

6 conclusion

In this paper, we have shown that under elliptic dis-
tributions assumptions, with tail dominated by 1/rα

for some α > 1, the Ω(θ) ratio is well defined. Under
these assumption, the Ω(θ) ratio can be computed in
closed form and is an increasing function of the Sharpe
ratio for a risk free rate taken to θ. Assuming that
we impose a target volatility constraint, meaning we
only care about portfolio for a given level of volatility,
maximizing the Ω(θ) ratio is not any more dependent
on the parameter θ and is obtained by maximizing the
true Sharpe ratio for the real risk free rate. This means
that under target volatility constraint, first order dom-
inance (higher first moment) provides the best Sharpe
and the best Omega ratio.

References

Barndorff-Nielsen, O., Kent, J., and Sorensen, M.
(1982). Normal variance-mean mixtures and z dis-
tributions. Int. Statist. Rev., 50:145–159.

Belles-Sampera, J., Guillén, M., and Santolino, M.
(2014). Beyond value-at-risk: Gluevar distortion risk
measures. Risk Analysis, 34(1):121–134.

Bernard, C., Vanduffel, S., and Ye, J. (2019). Optimal
strategies under omega ratio. European Journal of
Operational Research, 275:755–767.

Bernardo, A. and Ledoit, O. (2000). Gain, loss,
and asset pricing. Journal of Political Economy,
108(1):144–172.

Bertrand, P. and luc Prigent, J. (2011). Omega perfor-
mance measure and portfolio insurance. Journal of
Banking and Finance, 35:1811–1823.

Cambanis, S., Huang, S., and Simons, G. (1981).
On the theory of elliptically contoured distributions.
Journal of Multivariate Analysis, 11(3):368–385.

Caporin, M., Costola, M., Jannin, G., and Maillet, B.
(2018). On the (ab)use of omega? Journal of Em-
pirical Finance, 46:11–33.

Embrechts, P., Mikosch, T., and Klüppelberg, C.
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7 Appendix

7.1 Proof of Proposition 5.1

The case of the numerator and denominator are the
same. Hence, let us only prove the case for the de-
nominator. Using the comparison test for improper
integral and the fact that F is always positive, we have

that
∫ θ
−A F (r) dr is well defined for A→∞ if and only

F is dominated by some function 1
|r|α for α > 1. To

conclude the proof, let us first notice that

lim
r→−∞

rF (r) = − lim
r→∞

rF (−r) (17)

As F is dominated by 1
|r|α for α > 1 for large nega-

tive value of r, we have easily that

lim
r→∞

rF (−r) ≤ lim
r→∞

1

rα−1
(18)

→
r→∞

0 (19)

which shows that lim
r→−∞

rF (r) = 0 .

7.2 Proof of Proposition 5.2

If returns follow a normal probability distribution func-
tion N (µ, σ), the Omega ratio, Ω(θ), writes as:

Ω(θ) =

∫∞
θ

[1−Ψ
(
r−µ
σ

)
] dr∫ θ

−∞Ψ
(
r−µ
σ

)
dr

(20)

=

∫∞
θ−µ
σ

[1−Ψ (x)]σ dx∫ θ−µ
σ

−∞ Ψ (x) σ dx

=

∫∞
−S(θ)[1−Ψ (x)] dx∫ −S(θ)
−∞ Ψ (x) dx

(21)

where S(θ) = µ−θ
σ . Using an integration by parts, we

have∫ a

−∞
Ψ (x) dx = [xΨ(x)]

a
−∞ −

∫ a

−∞
xψ (x) dx

= aΨ(a) + ψ (a) (22)
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Using this result and the fact that ψ(u) = ψ(−u), 1−
Ψ (x) = Ψ (−x), we have:∫ −S(θ)

−∞
Ψ (x) dx = ψ(S(θ))− S(θ)Ψ(−S(θ)) (23)∫ ∞

−S(θ)
[1−Ψ (x)] dx = ψ(S(θ))− S(θ)Ψ(−S(θ)) + S(θ)

Hence the result

Ω(θ) = 1 +
1

ψ(S(θ))
S(θ) −Ψ(−S(θ))

(24)

which concludes the proof

7.3 Proof of Proposition 5.3

As a function of S(θ), the Ω(θ) ratio ’s derivative with
respect to S(θ) is given by

∂

∂S(θ)
Ω(θ) =

ψ(S(θ))

S(θ)2
(
ψ(S(θ))
S(θ) −Ψ(−S(θ))

)2 (25)

The strict positiveness of the derivatives concludes the
proof that Ω(θ) ratio is an increasing function of S(θ).

7.4 Proof of Proposition 5.5

With notations of Proposition 5.5, we can remark that
ψ(u) = ψ(−u), 1 − Ψ(u) = Ψ(−u), Ψ

′
(u) = ψ(u) and

that G(u) is defined (see equation (14)) such that

∂

∂u
G(−1

2
u2) = −uψ(u) (26)

We can also remark that the proper definition of the
Ω(θ) ratio implies (see proposition 5.1) that Ψ(v) is
dominated by some function 1

|v|α for some α > 1 for

large negative value of v. In particular, we have that
limv→−∞ vΨ(v) = 0. The fact that Ψ(v) is dominated
by some function 1

|v|α for some α > 1 for large negative

value of v implies also that g is dominated by 1

|v|
α+1
2

for some α > 1 for large negative value of v, hence the
function G defined by G(u) =

∫ u
−∞ Cg(x) dx is well

defined. We also have that limv→−∞ vψ(v) = 0.
We can therefore compute the following integral by

integration by parts:∫ a

−∞
Ψ (x) dx = [xΨ(x)]

a
−∞ −

∫ a

−∞
xψ(x) dx

= aΨ(a) +G(−1

2
a2) (27)

where we have used that limv→−∞ vΨ(v) = 0 and
limv→−∞ vψ(v) = 0.

Let us come back to our initial problem about com-
puting the Ω(θ) ratio. We have

Ω(θ) =

∫∞
θ

[1−Ψ
(
r−µ
σ

)
] drσ∫ θ

−∞Ψ
(
r−µ
σ

)
dr
σ

(28)

=

∫∞
θ−µ
σ

[1−Ψ (x)] dx∫ θ−µ
σ

−∞ Ψ (x) dx

=

∫ S(θ)
−∞ Ψ (x) dx∫ −S(θ)
−∞ Ψ (x) dx

(29)

where S(θ) = µ−θ
σ . Using the intermediate result (27),

we have

Ω(θ) =
S(θ)Ψ(S(θ)) +G(− 1

2S(θ)2)

−S(θ)Ψ(−S(θ)) +G(− 1
2S(θ)2)

(30)

= 1 +
1

G(− 1
2S(θ)

2)

S(θ) −Ψ(−S(θ))
(31)

which concludes the proof

7.5 Proof of Proposition 5.6

Under the elliptical assumption for the distribution,
proposition (5.5) applies. As a function of S(θ), the
Ω(θ) ratio ’s derivative with respect to a is given by

∂

∂S(θ)
Ω(θ) =

∂

∂S(θ)

1
G(− 1

2S(θ)
2)

S(θ) −Ψ(−S(θ))
(32)

= −

∂
∂S(θ)

G(− 1
2S(θ)

2)

S(θ) − G(− 1
2S(θ)

2)

S(θ)2 + ψ(−S(θ))(
G(− 1

2S(θ)
2)

S(θ) −Ψ(−S(θ))
)2

=
G(− 1

2S(θ)2)

S(θ)2
(
ψ(S(θ))
S(θ) −Ψ(−S(θ))

)2 (33)

where we have used again that

∂

∂u
G(−1

2
u2) = −uψ(u) (34)

and the parity of the function ψ: ψ(−u) = ψ(u). The
strict positiveness of the derivatives concludes the proof
that Ω(θ) ratio is an increasing function of S(θ).
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