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Abstract—This paper deals with algorithms for positive
semidefinite matrix factorization (PSDMF). PSDMF is a recently-
proposed extension of nonnegative matrix factorization with
applications in combinatorial optimization, among others. In
this paper, we focus on improving the local convergence of an
alternating block gradient (ABG) method for PSDMF in a noise-
free setting by replacing the quadratic objective function with the
Poisson log-likelihood. This idea is based on truncated Wirtinger
flow (TWF), a phase retrieval (PR) method that trims outliers in
the gradient and thus regularizes it. Our motivation is a recent
result linking PR with PSDMEF. Our numerical experiments
validate that the numerical benefits of TWF may carry over
to PSDMF despite the more challenging setting, when initialized
within its region of convergence. We then extend TWF from PR
to affine rank minimization (ARM), and show that although the
outliers are no longer an issue in the ARM setting, PSDMF with
the new objective function may still achieves a smaller error for
the same number of iterations. In a broader view, our results
indicate that a proper choice of objective function may enhance
convergence of matrix (or tensor) factorization methods.

Index Terms—Positive semidefinite factorization, nonnegative
factorizations, phase retrieval, low-rank approximations, opti-
mization

I. INTRODUCTION

This paper deals with improving the local convergence
of algorithms for positive semidefinite matrix factorization
(PSDMF) [1], [2]. In PSDMF, the (i,j)th entry x;; of a
nonnegative matrix X € R7*” is written as an inner product
of two K x K symmetric positive semidefinite (psd) matrices
A, and Bj, indexed by i = [I], j = [J]:

i = (A;,Bj) £ tr{A]B;} = tr{A;B;} ()

where [I] £ 1,...,1, tr{-} denotes the trace of a matrix,

and = means equal or approximately equal, depending on
the context. The minimal number K such that a nonnegative
matrix X admits an exact PSDMF is called the psd rank of
X [1]. Each psd matrix A; and B; may have a different
rank, denoted R4, and R, respectively. We shall sometimes
refer to the psd rank K as the “outer rank” and to R4, and
Rp; as “inner ranks” [3]. When A; and B; are constrained
to be diagonal matrices Vi, j, PSDMF becomes equivalent to
nonnegative matrix factorization (NMF) (e.g., [4]).

PSDMF was proposed as an extension to a fundamental
result [5] in combinatorial optimization that links NMF with
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geometry. Since it was first introduced, PSDMF attracted a
significant amount of attention and has found applications in
numerous fields, including combinatorial optimization [2], [6],
quantum communication complexity [2], quantum informa-
tion theory [7], and recommender systems [8]. Despite the
increasing interest in PSDMF, only a few algorithms have
been proposed so far, e.g., [3], [8], [9]. In this paper, we do
not focus on a specific application but on understanding some
of the optimization properties of PSDMF, in a more general
perspective.

Our work is motivated by a recent result [10] showing a
link between PSDMF and affine rank minimization (ARM)
(e.g., [11], [12]), and in particular with phase retrieval (PR)
(e.g., [13]), which can be considered as a special case of ARM.
We explain their link to PSDMF briefly in Section II, which
is dedicated to background material.

In [10], we presented a new type of local optimization
scheme for PSDMF that is based on alternating block gradient
(ABG). In this ABG scheme, each subproblem is based on
Wirtinger flow (WF) [13] or ARM [11], [12], depending on
the values of the inner ranks, and the objective function is
based on quadratic loss.

This paper is motivated by truncated Wirtinger flow
(TWF) [14], [15], a variant of WF obtained by replacing the
quadratic objective function with a non-quadratic one, together
with special regularization based on fruncating excessive
values from the gradient and the objective function. These
excessive values do not appear in the quadratic objective. TWF
improves the convergence rate also in the noise-free case, and
requires appropriate initial conditions. In this paper, starting
from Section III, we build an ABG algorithm in which each
subproblem is based on the principles of TWF, and study to
which extent the ideas of TWF can be applied to PSDMF.

Our main result is that in the case where all inner ranks
are equal to 1, a setting equivalent to locally minimizing a
TWEF criterion in each subproblem, we observe phenomena
analogous to those in TWF as predicted by our geometrical
analysis in Section IV, provided we are in the basin of attrac-
tion of a global minimum. This special case of PSDMF, known
as Hadamard square root or phaseless rank, is of particular
interest (e.g., [3], [16], [17]). When some of the inner ranks
are larger than one, there is no need for truncation, as we show
in Section IV. Yet, we still observe faster convergence to the
global minimum with our non-quadratic objective, a matter
than needs to be further looked into.



Although we focus on the Poisson log-likelihood, as in [15],
we keep in mind that the same principles are likely to
hold also for other objective functions; see further discussion
in Section VI. To the best of our knowledge, this paper is the
first to suggest that changing the objective function within the
same algorithmic framework in a matrix factorization problem
can result in improved numerical properties, in the noise-free
case, provided proper initialization and regularization (e.g.,
truncation) when necessary.

In this paper, we use real-valued notations. However, all our
results extend straightforwardly to the complex-valued case.

II. A LINK BETWEEN PSDMF AND PHASE RETRIEVAL

In PSDMF applications, the psd matrices are often of low
rank, i.e., RAi,RBj < K (e.g., [17]). Hence, the psd matrices
can be written as

A;2U, U] and B; £V,;V], 2)

where U; € REXE4; and V, e REXEB; are full-rank factor
matrices (factors, for short). With this change of variables, the
model in (1) can be written as

zi; = (U, U]V, V) = tr{U; U] V,;V]} = |[UV,[|7.3)
In the special case where J = 1, (3) can be written as
yi = |UT V%, )

where we replaced V; with 'V and z;; with y;. When U,
are given, finding V from y;, i« = [I], in (4) is equivalent to
ARM (e.g., [11], [12]). In this case, U; can be regarded as
sensing matrices and 'V as the signal of interest. If all factors
are vectors: v € R¥ and u; € R¥ Vi, (4) can be written as

yi = (wiul,vh) = [ulv? = [(w, V)P i=[1]. (5

When all vectors u; are given, the problem of estimating
v from the phaseless observations y; in (5) is known as
(generalized) PR [18]. In a PR context, u; are sometimes
referred to as sensing vectors and v as a signal of interest.
We conclude that PR (5) and ARM (4) are special cases of
PSDMF [10].

Back from PR or ARM to PSDMF: Consider a random
noise model acting independently on each observation in (4).
Then, for a broad range of noise models, the log-likelihood of
the model parameters given an observation can be written as
d(ys, U V||%), where d(¢,n) is a divergence between any
two nonnegative numbers ¢, 7, and where d(¢,n) > 0 with
d(¢,n) = 0 if and only if ( = 7. For example, d(¢{,n) =
1(¢ —n)? leads to the quadratic objective function. Then, a
maximum likelihood estimate (MLE) to the ARM problem
in (4) can be found by minimizing, with respect to (w.r.t.) V,
the objective function

I

> Ay, [UT V7). 6)

i=1

Similarly, based on (3), an MLE to PSDMF can be found by
minimizing, w.r.t. U; and V, Vi, j, the objective function

I J
DD Ay, [UT V3. (7)
i=1 j=1

Looking at (6) and (7), we see how any ARM method for (6)

can be used to optimize (7) : given {U;}!_,, apply ARM

subsequently to update each V; in (7). Then change roles:
fix {V;} ]le and apply the method to update U; subsequently
for each . Repeat until a stopping criterion is achieved. The
alternating optimization strategy for PSDMF has already been
proposed, e.g., in [3], [8], [9], [19] . The link between these
methods and PR is pointed out in [10]. The ABG method

in [10] is based on decreasing the objective function in (6)

by gradient descent with a quadratic objective function, as

in [11], [12]. Addressing the PR problem associated with (5)

via gradient descent with a quadratic objective function is

termed WF [13].

III. EXTENDING TWF TO ARM

Starting from this section, we gradually build an ABG
method for PSDMF based on TWEF [15]. For the sake of
simplicity, we focus on the Poisson log-likelihood, as in [15].
In this case, the objective function in (7) is based on the
Kullback-Leibler divergence (KLD): dgp (¢,1) = ¢ log(%) —
¢ +n. PSDMF with a Poisson log-likelihood thus consists of
decreasing the objective function

I J
YD IUTV G — i log([UT V1)

i=1 j=1

f

+ Tij log(mij) — Tgj (8)

whose gradient w.r.t. V; € CH*Bs; is
= (UTVS3 - w)
Vv.f=29 i Y JIF 2
v =22 e

U,Ulv;. )

In the complex-valued case, change - T to -™ and divide Vv, f
by 2. For a specific j, (8) and (9) are the low-rank general-
izations of the Poisson objective and gradient in TWF [15].
One can thus obtain ARM and PSDMF algorithms based on
the Poisson log-likelihood by replacing the quadratic objective
function and gradient in [10]-[12] with those in (8) and (9).

Our first step, of extending TWF from rank-1 signal re-
covery to ARM, and of stating PSDMF with a Poisson log-
likelihood, is thus complete. We point out that [15, Sec. §]
mention extending TWF to ARM, but only when the sensing
vectors are rank-1. However, due to the symmetric nature of
the subproblems, in the general PSDMF case we do not restrict
the inner ranks in any of the factors.

IV. A GEOMETRIC EXPLANATION

The second step in extending TWF to PSDMF is revisiting
the truncation idea. For this purpose, we follow in the steps
of [15] and inspect the locus of the gradient in (9) at the
proximity of the solution.



We begin with the case where all factors are vectors, which
is equivalent to the setting in TWF. The locus of the gradient
in (9) for a specific value of j is illustrated in Fig. 1 (left). This
figure is a reconstruction of [15, Figure 2.1] using the same
parameters. It shows that the desired values of the gradient,
around the origin, are rather small (see inset) compared with
the outliers, which are few but very large. These large and
undesired gradient values occur only in specific directions. A
similar examination will reveal that the quadratic objective
function does not have outliers (the gradient for the quadratic
case is similar to (9), but without the denominator).

The idea of TWF [15] is to avoid these outliers and thus
better focus on the desired values. Chen and Candes provide
coefficients that allow to detect elements in the gradient
and the objective function that are associated with undesired
contributions. They show that this procedure achieves faster
convergence and better resilience to noise than without trun-
cation, provided an appropriate initialization.

Next, we study the outlier problem in the general low-rank
case. As an example, we look at the locus of the gradient
in (9) when U; are now 2 X 2 “sensing matrices” instead
of 2 x 1 vectors. The “signal” vector is the same as in the
previous plot. Figure 1 (right) depicts the locus. We observe
that the outliers are significantly smaller and fewer. As in the
one-dimensional example in Fig. 1 (left), the outliers occur
only in specific directions. Otherwise, the shape of the locus
did not change much. We observed similar trends with other
values of ranks and matrix sizes. This indicates that truncation
will have little to no effect as one gets further away from the
case where all inner ranks are equal to one. Our numerical
results in Section VI validate this.

0 i
0 T -2 m -1
-200 -4 | 27

-400 4-20 2 46
-600
-800
0 500 1000 1500 6
Fig. 1. Comparison of size of outliers in gradient for differ-

ent dimensions of Uj;. Each plot depicts the locus of the _gradient
(U7 z)|% — |UTv|%) |UT 2|20, U v with v = [27 8], z =
[3 6] . The entries of U; are drawn independently from A(0,1) and
then normalized s.t. ||U;||r = 1. Each plot depicts 103 independent draws
of U;. In each plot, the axes are fit to the data, no zoom and no cropping
(except inset in left plot). U; is a 2 X 1 vector as in [15, Fig. 2.1] (left) and
a 2 X 2 matrix (right).

V. A PSDMF ALGORITHM BASED ON TWF

Algorithm 1 describes one subproblem in our TWF-based
ABG scheme for updating {V;}7_, given {U,;}/_,. In the
special case where all inner ranks are equal to one, Algo-
rithm 1 is essentially equal to TWF [15].

The outliers discussed in Section IV are avoided by using
a regularized version of the gradient, Vv, fy, in Algorithm 1.
The regularization I[S;-Jh £l applied to the ith element of the

gradient sets it to zero (i.e., does not add it to the sum) if at
least one of the following events occurs:

gii & {alb MUIVille aub}

— IVllF
"[UIV,|p-llg; — lell}
IVl F

(10)

£y & {||U2vj|% gl <

where x; is the jth column of X and q; is a vector whose
ith entry is equal to ||U] V,||%. The truncation rules in (10)
generalize the truncation rules in [15] to the low-rank case.

If backtracking line search is used, [15, Sec. 2.3] suggest
a dedicated truncation procedure. Algorithm 2 extends it to
the general low-rank case. In Algorithm 2, in analogy to [15,
Sec. 2,3], P; £ Vv, fi, and

FOVH) 2 (U3 — 2 log([UTV,[3))
€T (Vy)

where T(V;) £ {i | [UTV;]r > a®|[Vr

(11a)

and |[UTP; |l < a®[Pyllr}. (11b)

Equation (11) describes the truncation rules for the objective
function in the backtracking line search procedure in Algo-
rithm 2, which generalize those in [15, Sec. 2.3] to the case
where both “sensing vectors” and “signal” may be matrices.

Algorithm 1 Updating {V;}7_, based on TWF
Input: X € Ry, Uy,..., Uy, Vi,...,Vy, a'®, o, ol

QOutput: V,,... V.
1: 7 <— Choose initial step size
2: for j=1:J do e
I U, V;llz—2ij) o
3 Vv fee 2L USRS UUTY, Lo e
4: tj < Choose step size (e.g., 7 or Algorithm 2)
5 V]’ < Vj — %ijftr
6: end for

Algorithm 2 Backtracking line search

Input: 7, apek, Boek» &, of
1: while f(Vj — TPj)> f(Vj) - abckTHPJH% do
2 T = Bo«kT
3: end while

VI. NUMERICAL EXPERIMENTS

We compare our proposed Poisson-based ABG, with and
without truncation, to ABG [10] and to the two variants
of coordinate descent (CD) [3], cyclic and Gauss-Southwell
(GS), the latter with parameter a5 = 0.5. The competing
methods: ABG and CD, use a Gaussian objective function.
We set apex = 0.1, Bpex = 0.35 for backtracking line
search (Algorithm 2) for ABG [10] and for our proposed
method. The initial step size for the backtracking line search
is chosen by evaluating numerically the Lipschitz constant of
the gradient, as described in [10]. The truncation parameters



are identical to those suggested as default in [15, Sec. 2.3]:
o =0.1, o™ =5 =aP, oM = 6.

In our first numerical experiment, whose results are shown
in Fig. 2, the input is a 20 x 20 nonnegative matrix (I =
20 = J) generated from factors whose entries are drawn
independently from A/(0,1). The factors have K = 5 rows.
We test two settings with different values of inner ranks:
(i) RA =1= RB (ii) RA = 2, RB = 1, where RAi = RA
Vi and Rp, = Rp Vj. In each of the 200 Monte Carlo (MC)
trials, the input matrix X and initial factors are drawn anew,
and all algorithms use the same initialization. Our input matrix
provides 400 observations, and the corresponding numbers of
free model variables for each setting are 175, and 255, respec-
tively. Hence, these are low-rank scenarios. The algorithms are
given the true values of the ranks. Hence, achieving a global
minimum is equivalent to exact factorization. The stopping
criterion is 60 iterations. We define as one iteration ¢ a pair
of subproblems that update both sets of factors, indexed by 4
and j. Our algorithms are implemented in Matlab. We use the
CD code given in https://sites.google.com/site/exactnmf/. We
scale the initial factors, before running the algorithms, using
the procedure in [3].

Initialization: As noted by [3], the loss function for
PSDMF (7) is in general highly nonconvex. As a result, the
chance of achieving a global minimum with random initializa-
tion is very small in low-rank settings and in problems whose
size is not sufficiently small. Spectral initialization (e.g., [11]-
[13], [15]), which is essential for TWF, is not applicable to
PSDMF because the roles of “sensing matrix” and “signal”
change at every subproblem, and both are unknowns that have
to be estimated from the data. For these reasons, and for the
sake of our preliminary study of our proposed methods, we
chose another strategy, which initializes the algorithms within
a sufficiently small region around the true solution. Each entry
in an initialization factor is the sum of (1 — p) times the
true entry and p times an independently drawn number from
N(0,1), and the overall is normalized such that the variance
of this new random variable (since we draw the entries of the
true factors from A(0,1), too) is one. This normalization is
chosen to guarantee that we work in a regime that allows for
exact recovery in WF/TWF setting (e.g., [13], [15]). We set
p = 0.1, as this value turned out to guarantee convergence of
(most of) our tests of the truncated Poisson-based objective.

The purpose of the first experiment is to compare the
performance of the two objective functions when the algorithm
is already within its (assumed) region of convergence (ROC).
Due to lack of space, other experiments, such as determining
the size of the ROC of each method and the rate of success
with respect to the various model parameters (matrix size,
inner and outer ranks), as well as more realistic initialization
strategies, are beyond the scope of this paper.

Results: Figure 2 shows our results. Each boxplot rep-
resents the logarithm of the normalized model fit error
log( ‘Xxﬁ‘”F , for each method. The plot on the left
in Fig. i corresponds to R4 = 1 = Rp, which is the direct
extension of TWF to PSDMF. The plot on the right, with

— +* I
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Fig. 2. Comparison of model fit error for a fixed number of iterations.

PSDMF of a 20 x 20 matrix with randomly-generated factors. Initialization
with perturbed true factors. Left: R4 =1 = Rp, right: R4 =2, Rg = 1.

Ra =
TWEF.

The results for R4 = 1 = Rp are generally in accordance
with TWF [15]. The smallest error is achieved by our TWF-
based method. Non-truncated Poisson stopped with a relatively
large error, indicating poor convergence due to outliers. ABG,
which is the counterpart of our Poisson-based methods but
with a Gaussian objective function, performs better than the
Poisson-based objective with no truncation, but the error is
still relatively large. The competing CD methods achieved
the second-best results. We point out that the computational
complexity of the Poisson log-likelihood variant of ABG is
similar to that of quadratic ABG; it is identical in the case of
all inner ranks equal to 1. The per-subproblem computational
complexity of ABG [10] and its Poisson log-likelihood variant
is smaller than that of CD [3].

The outliers (red crosses) indicating relatively large errors in
the truncated Poisson case probably imply that the initializa-
tion is close to the boundary of the ROC, and thus not all trials
converged towards a global minimum. In general, the results
in Fig. 2 indicate that the outlier phenomenon observed in
TWEF [15] indeed appears also in PSDMF, despite the evident
differences between TWF and PSDMF.

We now turn to the low-rank case, addressed in the right plot
of Fig. 2. In this setting, we do not observe an advantage of
truncated versus non-truncated Poisson, in accordance with our
geometric analysis in Section IV and Fig. 1. Still, the Poisson
objective managed to achieve a smaller error per fixed number
of iterations than its Gaussian counterpart. In this setting,
the CD methods achieved a smaller error than our gradient-
based methods for the same number of iterations. However,
one should keep in mind that CD has a larger computational
complexity per iteration, see [3], [10]. Similar trends were
observed when we increased the values of the inner ranks.

Our second experiment shows the effect of the Poisson
log-likelihood on a different data set, a slack matrix of the
regular 10-gon (a ten-sided polygon), denoted as S1g. Sig is a
10 x 10 matrix, whose explicit form can be found, e.g., in [3].
PSDMF of geometric data, and slack matrices in particular, is
a central application of PSDMF [1], [3]. Our input matrix X
is Sy normalized such that || X|| = 1. Here, we use random
initialization: initial factors with dimensions K =5, R4 =1,
Rp = 3, whose entries are drawn independently from A/(0, 1).

Results: Figure 3 (left) shows our results in terms of
the number of iterations each algorithm needed to achieve

2, Rp = 1 corresponds to our ARM extension of



. LX—-X,|2 _
the same normalized model fit error W < 1077,

We run 50 MC trials, each with a new initialization that is
the same for all algorithms. Figure 3 (right) illustrates the
evolution of the model fit error of each algorithm for one
run in this setting; here, all algorithms are implemented in
Matlab. Figure 3 does not show the results for truncated
Poisson because this method did not converge properly, in
this setting. The reason is probably not only the lack of
outliers in this low-rank setting, as explained in Section IV,
but also due to the fact that the truncation constants proposed
by [15] were designed for factors whose entries are drawn
from the standard normal distribution N(0, 1), an assumption
that does not hold in the case of geometric data. In Fig. 3
(left), we observe that our proposed method with the Poisson
objective (and no truncation) often achieves the desired model
fit error with the fewest number of iterations; note that the
per-iteration complexity must be taken into account. The CPU
time comparison in Fig. 3 (right) is only illustrative because
our Matlab implementation is not optimized for speed. Still, it
indicates that the proposed method can converge much faster
than its competitors, consistently with Fig. 3 (left).
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Fig. 3. PSDMF of Sip with K = 5, R4 = 1, Rg = 3. Random
initialization. Left: Comparison of number of iterations for the same model
fit error. Right: Evolution of error versus CPU time in one run.

Conclusion: Our results provide proof of concept to the idea
of improving the convergence of exact PSDMF by changing
the objective function. However, our results depend heavily
on the type of data and on initialization within the ROC, in
certain cases. There is still need for further study of the ROC
of each PSDMF method and its dependence on the model
parameters, ranks and dimensions. Our results call for further
theoretical validation. Our results provide further motivation
to design more efficient PSDMF methods with better global
convergence. A possible direction is more recent techniques
used in PR, see, e.g., [20] and references therein.

We mention that Gaussian and Poisson log-likelihoods
are special cases of the [-divergence, a popular tool in
NMF (e.g., [21]). Extending our algorithm to (-divergence is
straightforward: the only change in the gradient in (9) is the
power of the denominator, which becomes (2— $3) instead of 1.
One can readily verify, by plotting diagrams similar to those
in Fig. 1 for other values of 3, that the size of the outliers
is continuous in the value of 3. It is thus worth exploring
the benefit of truncation and use of other objectives also for
other values of 3 in all concerned applications, namely PR,
ARM, and PSDMF. This paper addressed only the noise-free
case: study of the usefulness of PSDMF with non-Gaussian
objectives in the presence of noise is left for follow-up work.

In a broader view, the idea of accelerating factorizations by

changing the objective function and truncating outliers might
allow to accelerate other methods, and thus serve purposes
beyond providing better resilience to non-Gaussian types of
noise.
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