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ABSTRACT

Modulations, the moments where key change, are struc-
turally important in tonal music. Analyzing music, espe-
cially studying large-scale music structure of a piece, of-
ten implies to look for modulations. State-of-the-art key-
finding algorithms generally aim at identifying keys rather
than studying the way they change. Here, we introduce
new ways to model modulations with the help of features
based on musicological knowledge, as well as an algorithm
estimating the tonal plan of a piece. We study the concept
of current diatonic pitch set and introduce a heuristic to de-
tect dominant-to-tonic progressions. We design three prox-
imity measures to assess how close the music is from each
key. These measures are then combined by an algorithm
that identifies an optimal tonal plan. We report results on a
corpus including 38 movements from Mozart’s string quar-
tets, obtaining a 84.8% prediction of correct keys with in-
sight on where the modulations occur.

1. INTRODUCTION

1.1 Tonality and Modulation

How do pitches relate to each other during a musical piece?
Are some pitches more stable than others? Do some pitches
attract some others? Tonality consists of a hierarchical ar-
rangement of pitches, referred to in this context as scale
degrees. This hierarchy implies specific relations between
these pitches like stabilities, attractions as well as harmonic
directedness.

The principle of tonality appeared during the baroque era,
in the 17th century, emerging from modality. Synthesiz-
ing and expanding concepts from earlier theorists (Zarlino,
Mersenne, Sauveur), Rameau developed a comprehensive
theory on tonality, in his Traité de l’harmonie réduite à ses
principes naturels [1]. The term “tonality” however ap-
peared first in the Dictionnaire historique des musiciens,
artistes et amateurs, morts ou vivans written by French
music theorist Choron in 1810 [2]. Choron states that “mod-
ern tonality” only includes two modes, the Major one and
the minor one. He also indicates the scales associated with
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these modes. Theories on tonality were considerably deep-
ened across the XVIIIth and XIXth century by music the-
orists who were often composers themselves, such as Rie-
mann. Tonality is still largely used nowadays in Western
music, notably in popular music.

Tonal musical pieces usually start and end in the same
key, referred to as the main key or global key. However,
composers tend to switch to alternative keys in order to
create contrast, emotions, or simply give a new direction to
the musical rhetoric. The moment when the key changes
during the piece is called a modulation.

Modulating is generally considered to be a delicate mu-
sical task. The arrival of the new key must be “prepared”
in order to smooth the perception of the change while con-
serving its novelty. Some theorists have proposed “good”
and “bad” ways to modulate. Among other composers,
Max Reger wrote 100 melodic and harmonic progressions
that modulate, mainly from C Major or A minor to each
of the other keys.

Identifying keys and modulations is generally one of the
first tasks of the music analyst when confronted with a new
score. Indeed, key changes are often associated with sec-
tion boundaries defining the musical structure. The sonata
form is a well-known example of this phenomenon where
the two themes forming the exposition are in a different
key. The modulation between these two themes, often ac-
companied by a specific cadence called the medial caesura,
provides an outline of its structure [3].

1.2 MIR Research on Key Finding in Symbolic Scores

Researchers in the Music Information Retrieval (MIR) com-
munity have designed a number of key finding algorithms
in symbolic scores. In 1971, the approach of Christopher
Longuet-Higgins [4] consisted in progressively eliminat-
ing the keys which do not include the notes of the begin-
ning of the score until one last key remained. Some deci-
sion rules are added to help with the most difficult cases.
This algorithm was able to retrieve the key of the fugues
of Bach’s Well-tempered Clavier. A similar approach has
later been used by Vos and van Geenen [5].

One of the most popular approach is the use of pitch pro-
files, first introduced by Krumhansl and Kessler in 1982 [6].
A pitch profile is an histogram that states the prevalence
of the different pitches in a key. Later, Krumhansl and
Schmuckler proposed a key finding algorithm that estimates
the correlation between the pitch profile and the histogram
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of pitches extracted from the musical score [7], whereas
Lerdahl introduced tonal pitch space [8] that can be used
as a pitch profile with key finding algorithms.

The use of different pitch profiles became a standard ap-
proach to estimate the global key of a piece. Such methods
were experimented upon and improved by Temperley [9],
Aarden [10], Bellman [11], Haas et al. [12], Sapp [13], Al-
brecht and Shanahan [14], and more recently by Nápoles
López et al. [15].

Machine learning approaches, especially those including
neural networks, have gained considerable popularity these
last years in MIR researches including key finding. For
instance, both Chen et al.and Micchi et al. [16–18] estimate
local keys, among other musical attributes, from a per beat
tonal analysis of Beethoven Piano Sonatas.

These algorithms are fairly accurate when it comes to
detecting global keys and possibly long term local keys.
However, they are not designed to precisely identify where
the modulations occur and what actually makes the modu-
lations, with the notable exception of work by Chew [19].
Chew establishes a distance from a set of pitches to a key
using the spiral array introduced in [20]. The tonal plan
is then modeled as a sequence of boundaries dividing the
score in successive keys. It minimizes the distance with
pitches included in the corresponding segments. The com-
plexity of the approach increases with the number of mod-
ulations.

1.3 Contents

We present here an original approach to model key change
with the help of musicological knowledge-based features
used by an algorithm estimating the tonal plan of a piece.

We introduce the current diatonic pitch set as well as an
heuristic to detect V → I progressions. Based on these
concepts, we design two proximity measures to assess how
close the music is from a given tonality. We also design a
measure assessing the smoothness of a modulation from
one key to another (Section 2). We then propose a way to
combine these three measures to identify keys and modula-
tions (Section 3). We finally present our results on a corpus
of Mozart’s string quartets. We analyze further results on
the Presto of the third quartet (K 157), which we denote
K157.3, and give perspectives for future research on key
and modulation detection (Sections 4 and 5).

2. THREE MEASURES FOR A MODULATION

What aspects of the music make the listener – and the an-
alyst – feel that the key is modulating? A first signal is
when one of the notes does not “match” the current tonal-
ity. This note can be generally identified on the score by
the presence of an accidental, generally notated with a flat,
a sharp or a natural sign, or because it is a cancellation
of a previous accidental. Such an accidental changes the
scale currently heard. However, it does not always mean
that the key has changed: It can also be a nonchord tone

that ornaments the melodic line, such as in passing tones,
neighbor tones, retardations, appoggiaturae, escape tones
and anticipations.

A confirming signal of modulation is often found in some
harmonic progression, such as an arrival on the new tonic
or, even stronger, a dominant-tonic (V→ I) progression in
the new key [21].

Finally, depending on the period, a composer will tend
to favor certain keys relative to the main key, raising ex-
pectations of some modulations in the experienced listener
or analyst. For the classical period, the tonalities that a
composer tends to employ are generally associated with
the scale degrees of the main key, prioritizing the domi-
nant, or the relative major for a minor main key [21]. This
is indeed the case for the Mozart quartets studied here (see,
at the end of this paper, Table 3 and discusion).

We introduce thus three proximity measures to determine
at a beat b “how far” we are from a key k. The first two
measures look at previous pitches and chords, and the third
one assesses the plausibility of modulation:

• How different are the pitches in the score around b
from the pitches of the key k? (pitch compatibility)

• Did a stable harmonic sequence in key k occur in the
near past of b ? (harmonic anchoring)

• Does a key k have a peculiar affinity or relationship
to other potential previous key k′ ? (relationship
proximity)

These measures are designed for scores with full pitch
spelling information. We strongly believe that when it comes
to tonal music, it provides information not only about pitch
but also about its function – “sharpening” or “flattening”
a pitch is a thoughtful choice by the composer, impor-
tant for the analysis. On data without such information,
pitch spelling algorithms [22] could be applied first but the
pitches which are the most difficult to spell are precisely
the challenging ones for key and modulation estimation.

2.1 Pitch Compatibility

2.1.1 Current Diatonic Pitch Set

Each note sounding in a score confirms or modifies our per-
ception of the current tonality. Suppose that we are used to
hearing C\. When one hears a C], the perception of the di-
atonic scale may change. If we now hear only C], we are
likely to think we are in a tonality including this pitch. Of
course, approaches based on pitch profiles consider statis-
tics on C\ and C], but they do not take into account the
directedness of music: one or a few C] can alter our per-
ception, no matter how many C\ there were before.

To model this phenomenon, we introduced the current di-
atonic pitch set, also called current diatonic scale, in [23].
We define N as the set of the seven pitch names:

N = {C,D,E, F,G,A,B}



Figure 1. mm27-29 of Mozart’s first movement of String
Quartet No. 13 in D minor (K173.1). This is a high mod-
ulating passage, to an unexpected E minor , just after the
secondary thematic zone. Each bar presents a V→ I pro-
gression, in G minor , C Major , then B Major – even if
they are only tonicizations and not full modulations.

The current diatonic pitch set CS(b) is a vector with 7 val-
ues built by associating to each of the pitch names in N
the last encountered accidental ([[, [, \, ], ]]) on b or right
before. It can thus have theoretically 57 different values,
even if many of these values are not musically relevant. If
one of the 7 pitches was not used before b, we consider
the accidental suggested by the key signature of the piece.
In Figure 1, the current diatonic pitch set at beat 2 of the
measure 27 is thus

CS(2) = {C],D,E[, F ],G,A,B[}

(the C] being heard in a previous measure not displayed in
this figure).

The current diatonic pitch set is evaluated at each beat. If
two accidentals are encountered for the same pitch name
between two beats, only the last one is considered.

2.1.2 Usual Diatonic Pitch Sets

Which pitch set do we expect in a given tonality? We de-
fine S(k) as follows:

• for the major keys, pitches of the usual major scale,
as {C,D,E, F,G,A,B} for C Major ,

• for the minor keys, pitches of the minor harmonic
scale, as {C,D,E[, F,G,A[,B(\)} for C minor .

2.1.3 Diatonic Pitch Set Distance and Pitch
Compatibility Measure

Given any two diatonic pitch sets S and S ′, we define the
distance ddiat(S,S ′) as the number of differently altered
notes between them:

ddiat(S,S ′) = |{n ∈ N with S[n] 6= S ′[n]}|

We evaluate the pitch compatibility between the notes of
the score until beat b and some key k by comparing the
alterations of the current diatonic pitch set CS(b) with the
alterations of S(k), the usual diatonic pitch set of key k.

For each beat b and candidate key k, we will use as a
proximity measure the value ddiat(CS(b),S(k)). For ex-
ample, in Figure 1:

ddiat(CS(2),S(G minor)) = |{C}| = 1

ddiat(CS(2),S(C minor)) = |{C,F,A,B}| = 4

The measure captures that having recently heard an F]
makes a G minor more relevant than a C minor .

Figure 2 shows an example of an actual modulation. At
the cadence in D minor , we have

CS(b) = {C],D,E, F,G,A,B[},

and the same CS(b) is still found at measure 8. The C\ at
measure 10 yields a scale which is exactly S(F Major):

CS(c) = {C,D,E, F,G,A,B[},

2.2 Tonality Anchoring

2.2.1 Detection of V→I progressions

The most stable harmonic progression for a key is the one
from the dominant (fifth scale degree, V ) to the tonic (first
scale degree, I). Such V→I progressions are a good con-
firmation that a modulation occurs. However, a V→I pro-
gression can occur on another scale degree than the first
one (what is called a tonicization, as in Figure 1). Due to
tonicization, modulations can thus not be solely based on
V → I , but such progressions are nevertheless important
contributions to modulations.

Our heuristic to detect a V → I progression in key k is
when there are at least two of the three following voice
leadings:

¬ the third of V (also known as the leading tone) going
to the tonic of I,

 the seventh of V going to the third of I,

® the root from V going to the root from I.

In Figure 2, this heuristic identifies a V→ I progression
in F Major with V occurring on the second beat of mea-
sure 10 and I on the first beat of measure 11.

Note that this heuristic produces false positives for homo-
nym keys. In Figure 2 again, the V→ I on the cadence on
measure 8 is on a cadence in D minor , but the heuristics
also falsely detects it as a V→I in D Major , because two
of the three voice leadings characteristic of D Major are
found. The heuristic will also falsely consider I → IV
movements as V→I .

2.2.2 Tonality Anchoring Measure

We propose the proximity for some key k to be harmon-
ically minimal if, on some beat b, a progression from the
dominant to the tonic is occurring in this tonality. Other-
wise, the proximity value should be as big as its distance
from a V → I progression. Thus we define the measure
cV→I(b, k) using the distance in beats from the last V→ I
progression in the tonality k:

cV→I(b, k) =

 0 if the harmony at b is the V or the I
of a V→I progression in k

min[c, cV→I(b− 1, k) + 1] otherwise



Figure 2. Measures 4 to 12 of the fourth
movement of Mozart’s String Quartet No. 15
(K421).

The movement is in D minor . There is a
modulation in F Major starting at measure 10.
The V → I movements confirm both of these
keys. However, there is also a V → I move-
ment of a tonicization at the end of measure
6. The voice leadings used by the proposed
heuristics are highlighted. The diatonic pitch
sets a, b, and c are discussed in the text: The
C\ of measure 10 changes the perception of the
current diatonic pitch set and contributes to the
modulation in F Major .

To avoid values that are too high, we bound this value by
a constant c = 20. Note that the value 0 is given at the
moment the V occurs, because it triggers the modulation.

2.3 Tonality Proximity

Music theorists have developed several systems drawing
relationships between keys. The best known is probably
the circle of fifths, introduced by Diletski [24] and refac-
tored to its current form by Heinichen [25]. By assuming
that the enharmonics are in fact the same notes (equal tem-
perament hypothesis; E[ = D]) and starting from a given
note, the sequence of 12 fifths in the same direction (as-
cending or descending) allows to go through all the notes
of the chromatic scale then to return to the starting note.

While working on Mozart’s string quartets, we noticed
that Mozart often switched between Major and minor modes
of the same tonality. The circle of fifths is not designed
for this behavior, whereas it is present in the table of rela-
tionships between tonalities introduced by Gottfried Weber
in Versuch einer geordneten Theorie der Tonsetzkunst [26]
(see Figure 3).

We define dW (k, k′), our measure of proximity between
two keys k and k′, as the euclidean distance between those
two keys in Weber’s table:

dW (k, k′) = min
(√
|xk′ − xk|2 + |yk′ − yk|2, w

)
where (xk, yk) and (xk′ , yk′) are the coordinates of both
keys in the table and w = 10 is a bounding constant.

As an example, dW (D minor , F Major) = 1 whereas
dW (D minor , C) =

√
2. It is more common in the clas-

sical era to modulate from D minor towards F Major , as
in Figure 2, than towards C Major .

The Weber’s table seems to be relevant only for the classi-
cal period. Modulations are more daring from the roman-
tic era, favoring enharmonic and chromatic modulations.
It would then be interesting to favor theories that allow
switching from one key to another in very few chords, as
for example those of Max Reger [27] or Tchaïkovski [28].

Figure 3. Extract of the Table of the relationship of keys
from [26]. Major keys are uppercase, minor keys are low-
ercase.

3. ESTIMATING THE TONAL PLAN
AND THE MODULATIONS

BY COMBINING THE THREE MEASURES

We now describe a dynamic programming algorithm that
uses the three measures described above to estimate the
tonal plan of a piece. Computing a tonal plan k1 . . . kB of
a piece of B beats requires to select a key kb for each beat
b ∈ [1, B]. The tonal plan returned by the algorithm opti-
mally minimizes a combination of the three measures for
the whole piece. We use here a simple weighted combina-
tion of the three measures. We associate to any tonal plan
k1 . . . kB a cost:

D(k1 . . . kB) =
∑

b∈[1,B]

[α · cV→I(b, kb)/c

+ β · ddiat(CS(b),S(kb))/7]
+
∑

b∈[2,B]

γ · dW (kb−1, kb)/w

where the divisions by c, 7, and w normalize each of
the three measures to obtain values between 0 and 1. The
weights α, β, and γ further ponder the relative importance
of the three measures.



The optimal plan k1 . . . kB that minimizes D(k1 . . . kB)
can be computed by dynamic programming, as optimiz-
ing k1 . . . kb can be done by combining an optimal partial
plan k1 . . . kb−1 with a key kb. We consider that there are
42 possible keys that correspond to all the triplets:

{C,D,E, F,G,A,B} × {], \, [} × {Major , minor}

The algorithm thus builds an array D of size B × 42. For
a beat b and a candidate key k, the value D(b, k) estimates
the likelihood from this key k on the beat b, assuming that
the tonal plan calculated until there is optimal. It is com-
puted by D(1,k) = 0, and, when b ≥ 2:

D(b, k) = α · cV→I(b, k)/c

+ β · ddiat(CS(b),S(k))/7
+ min

k′
[γ · dW (k, k′)/w + D(b− 1, k′)]

When theB×42 values ofD(b, k) are computed, we look
for the optimal plan k1 . . . kB in the table by backtracking:

• for the last beat bB , choose the key kB that mini-
mizes D(bB , kB) ;

• for the preceding beat bB−1, choose the key kB−1 ;
that minimizes dW (kB−1, k

′) +D(bB−1, kB−1)

• repeat until the first beat b1.

4. EVALUATION AND DISCUSSION

4.1 Corpus and Implementation

The corpus gathers 38 movements of Mozart’s String Quar-
tets, with manual annotation of keys and cadences. It is an
enhancement of the corpus used and described in previ-
ous works on sonata forms [23, 29]. The corpus contains
**kern files with full pitch spelling information, retrieved
from KernScores [?], together with reference annotation
data including keys, and is available at www.algomus.
fr/data.

We implemented the algorithms within the Python mu-
sic21 framework [30]. The beat granularity used is the
quarter note for binary time signatures and the dotted quar-
ter note for ternary time signatures. We consider this to be
sufficient to model most of the harmonic rhythm in this
repertoire.

4.2 Discussion on the Measures

To discuss the relevance of the proposed measures, we fo-
cus on the third movement of the string quartet No 3, here
called K157.3. This movement is in rondo form and its
main key is C Major . The modulations to other keys (the
dominant GMajor and the parallel C minor ) are easily
identifiable and observable.
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Figure 4. Pitch compatibility measure
ddiat(CS(b),S(k)) along K157.3 for keys k ∈
{C Major , GMajor , C minor , C[ minor}. The
thick bar at the bottom shows the keys in the reference
annotation.

Figures 4 and 5 show curves representing, for each beat,
the ddiat and cV→I measures for a set of selected keys as
well as the combined optimal measure. The selected keys
are:

• C Major , the main key of the movement,

• GMajor , the dominant key of C Major (modula-
tion at measures 17 through 32),

• C minor , the parallel key of C Major (modulation
at measures 49-56 and 61-64),

• C[ minor , an intentional distant key to confirm the
pertinence of each measure.

The distance dW on keys is not computed on each beat in
an independent way as it requires the hypothetical last best
key in order to take into account how likely the resulting
transition is. We thus do not evaluate independently dW ,
but together with D in the next section.

4.2.1 Current Diatonic Pitch Sets and Pitch
Compatibility Measure

Figure 4 shows that the pitch compatibility measure suc-
cessfully estimates ddiat(b, C[ minor) to be unlikely through-
out the piece. There is indeed not much compatibility be-
tween pitches of C[ minor and the pitches actually played
in the movement.

For a majority of the beats, the key of the reference an-
notation is the only one to be assigned the minimal value
(0) by the pitch compatibility measure. The best ddiat(b, k)
value describes the correct key for 243 out of the 252 beats.
The current diatonic pitch set alone, therefore, appears to
be sufficient to detect the key at beat b.

Starting from beat 100, only ddiat(b, C minor) provides
a value of zero for a few beats. In this region, Mozart pro-
gressively modulates by gradually introducing notes of the

www.algomus.fr/data
www.algomus.fr/data


key ref pred TP FN FP F1

C Major 28 34 24 4 10 0.77
C minor 4 26 2 2 24 0.13
GMajor 4 5 3 1 2 0.67
G minor 0 3 0 0 3 ·
E[Major 2 0 0 2 0 ·
others 0 48 0 0 48 ·
(C[ minor ) 0 0 0 0 0 ·

Table 1. V → I progressions in K157.3, in the reference
annotation (ref), predicted by the heuristics (pred), among
which false negatives and positives (FN and FP), and asso-
ciated F1 measure.

upcoming keyC minor . The current diatonic pitch sets re-
trieved in this region do not exactly fit with any of the keys
but still favor this key of C minor in a few beats. Note
that between beats 112 and 119, the key of the reference
annotation E[Major is correctly detected, although the
corresponding curve is not shown in the figure for clarity.

4.2.2 V→I Progressions

The reference annotation on K157.3 contains 38 V → I
movements. The heuristic detects 116 V→ I movements,
with 29 true positives (Table 1). As expected, most of the
87 false positives are on parallel keys and on I → IV
progressions. For example, spurious V → I are detected
in F Major , F minor , A[Major and in A[ minor while
they are in fact I → IV in C Major and E[Major . Fo-
cusing on the two most present keys in the piece, C Major
and GMajor , there are finally few false positives (12/39).

The heuristics thus manages to detect relevant signals for
modulations, even if it detects other signals too.

4.2.3 Tonality Anchoring Measure

The Figure 5 displays the evolution of the tonality anchor-
ing measure cV→I(b, k) with the same selection of four
keys along K157.3. As for the pitch compatibility mea-
sure, the maximum value c = 20 of cV→I(b, C[ minor)
for b > 20 indicates that tonality anchoring measure suc-
cessfully excludes distant keys. Indeed, cV→I(0, k) = 0
for all keys and progressively converge towards c unless a
V→I movement is detected.

The values of cV→I(b, C Major) and cV→I(b, C minor)
are often very close due to the false positives in the V→ I
detection. The consequence is the poor performance of
cV→I(b, k) by itself, predicting correctly only 66 of the 252
beats of K157.3.

cV→I(b, C Major) cV→I(b, d minor) cV→I(b, F Major)

4.3 Key and Modulation Detection

We now evaluate the algorithm by combining the three
measures. The best coefficients α, β, and γ, were eval-
uated on the corpus was on the 38 Mozart’s string quar-
tets, by testing values between 0 and 4 (with increments of
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Figure 5. Tonality anchoring measure cV→I(b, k) along
K157.3
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Figure 6. Average accuracies of key detection over the 38
Mozart’s string quartets when one of the α/β/γ coefficient
is constant.

about 0.002 for α, 0.02 for β, and 0.5 for γ). No training
set was separated from the corpus. Overfitting could thus
arise, but we felt it was a reasonable risk due to the size of
the corpus and the very small number of parameters.

Figure 6 shows the average prediction accuracy of key de-
tection when one coefficient is constant and the two other
changes. Table 2 shows that although the current diatonic
pitch set measure alone (β = 1) yields good results, adding
the others measures improves the local key detection by
17.5%. The optimal values of α = 0.016, β = 0.3, and
γ = 4.0 reflect that, even after bounding and normaliza-
tion, cV→I is generally high and does not significantly help
the detection here, probably due to the false positives (see
the discussion in the previous section).

Table 3 further details these results with the best coeffi-
cients. The algorithm shows a higher F1 measure (and so
better results) on pieces in major main keys than in minor
main keys. This is a known issue in key detection and is
mostly explained by the floating 6th and 7th scale degrees
of the minor scale. It is confirmed by the better perfor-
mance for estimating major keys than minor keys. The
algorithm seems also reliable to find which beats are in
the main key, which is fortunate as over 50% of the cor-
pus beats are in the main key. The choice of Weber table



method α β γ correct
only ddiat 0 1 0 67.3
only cV→I 1 0 0 16.3
no modulation 0 0 1 50.0
best coefficients 0.016 0.3 4 84.8

Table 2. Correct key prediction (percentage of beats) on
the corpus. When α = β = 0, then D(b, k) is minimal
when each beat is in the main key: This baseline algorithm
considers that no modulations occur.

to model the relationships between keys seems a judicious
choice as keys used by Mozart in the corpus are the ones
that are directly aside the main key in the Weber table (with
the exception of V when the main key is in minor mode).
However, the algorithm seems to have trouble finding sub-
dominant related keys (ii, iv and IV). The reason for this
behaviour is still under investigation.
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Figure 7. Key Detection along K157.3 by combining the
three measures with the optimal α, β, γ coefficients. The
graph shows the difference D(k, b)−mink′ D(k′, b).

As an example, we examine the prediction on K157.3 in
detail. Figure 7 plots the combined D(b, k) measure (as
well as, for clarity, the difference of this measure with the
best measure between all keys) with the optimal values of
α, β, and γ found above. It confirms again that C[ minor
is not expected. The proposed method manages to find
the main key of C Major and all modulations (GMajor ,
C minor , and – not shown – E[Major ), at most within
2 beats of the place the modulation occurs in the reference
analysis. The key detection works here on 248 of the 252
beats, improving the prediction with ddiat alone. Indeed,
the computation of D, including dW , favors some stabil-
ity in the predicted keys, preventing the algorithm from
switching keys for only 1 or 2 beats when a nonchord tone
do appear.

5. CONCLUSIONS

When analyzing music, looking at how keys change and
modulations are performed is at least as interesting as keys

Major mode main key (I)
key ref pred TP FP FN F1

I 5801 5999 5451 548 350 0.92
V 2851 2846 2525 321 326 0.89
vi 469 410 330 80 139 0.75
IV 386 382 241 141 145 0.63
i 204 217 159 58 45 0.76
v 152 129 81 48 71 0.58
ii 130 18 9 9 121 0.12
[III 102 84 63 21 39 0.68
others 238 248 139 109 99 –
total 10333 10333 8998 1335 1335 0.87

Minor mode main key (i)
key ref pred TP FP FN F1

i 1268 1038 1012 26 256 0.88
I 544 543 462 81 82 0.85
[III 421 654 385 269 36 0.72
V 262 234 213 21 49 0.86
iv 247 133 118 15 129 0.62
v 177 230 155 75 22 0.76
others 253 340 117 223 136 –
total 3172 3172 2462 710 710 0.78

Table 3. Key detection accuracy over the 38 Mozart string
quartets in the 30 movements in a major key (top), and in
the 8 movements in a minor key (bottom), with the best
coefficients. The results are gathered by keys. Each key
is identified by how its tonic relates to the scale degrees of
the main key of each movement. Major key are uppercase
while minor key are lowercase.

themselves. We have introduced various techniques to model
key changes based on essential signs of modulation, such
as the current diatonic pitch set and V→I progressions.

Combined with a tonality proximity measure, these tech-
niques create good estimations of the tonal plan, with more
than 80% correct estimations on classical string quartets –
without any computation of a pitch profile. In particular,
the ddiat measure alone provides a very good estimation
of the keys and their change.

Perspectives include a more accurate V→I detection and
more complete benchmarks, including comparisons with
alternative key finding algorithms, as well as an evaluation
of the detected position of each modulation. The combina-
tion of the three measures is still very simple – improved
combinations, possibly involving machine learning, could
probably improve the raw results.

Altogether, these new models on tonalities could be used
for providing (semi-)automatic harmonic analysis while fur-
ther providing insights on the signals involved in the mod-
ulations.
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