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30.1 Introduction

Over the last few decades, several advancements in experimental techniques have allowed for the mea-
surement of health parameters at a high sampling frequency [3,5]. Although a frequency analysis of the
data often reveals major anomalies and helps in the diagnostic process, a great part of the information is
hidden in fine properties of the measured time series. Among these properties, extreme fluctuations of
health parameters may trigger irreversible processes and result in acute crisis. In the ambit of cardiovas-
cular disease, blood pressure fluctuations may trigger acute hypotensive (hypertensive) episodes and, in
some cases, cardiac crisis. For a series of independent and identically distributed (iid) variables, a tradi-
tional extreme value analysis straightforwardly gives the probability of observing extremely low (or high)
fluctuations of health parameters [13]. However, blood pressure data have internal correlations originating
from the quasiperiodic biological processes responsible for blood circulation. Therefore, in order to pro-
vide effective warnings against cardiac crisis, the traditional techniques must be accompanied by methods
that preserve the dynamical information contained in the data.

In previous studies, the risk of observing acute hypotensive or hypertensive episodes has been assessed
either by analyzing blood pressure data averaged over 1 minute [16], or by using neural network mul-
timodels [11], or via spectral techniques [2]. All these techniques usually rely on the identification of a
single-threshold pressure value defined by counting the exceedances (hypertensive episodes) or the deficits
(hypotensive episodes) with respect to such a threshold. Statistics are always computed under the nongen-
uine assumption that pressure data are iid. However, when this assumption is satisfied, these methods
would only provide information on the tails of the distribution, without inspecting the bulk statistics. This
would prevent from providing a global map of the status of the patient, providing the nursing staff with



the detailed conditions of the patient. Moreover, they do not associate the probability of extreme pressure
events to a time scale of medical interest, e.g., length of a medical treatment or of an operation.

In this chapter we show that, by combining the celebrated theory of Poincaré recurrences [9] with
extreme value statistics, one can devise an efficient algorithm to measure the range of expected fluctu-
ations of systolic and diastolic arterial pressures. Such a range can be used to assess the dinical state of a
patient and therefore the condition of the patient. The combination of the extreme value statistics with
new results from dynamical systems theory allow for a proper treatment of correlations in the data, with-
out the assumption that data are iid. The chapter is structured as follows: Section 30.2 gives an overview
on the method and describe the link between recurrences of blood pressure values and rare events. In Sec-
tion 30.3 we present the multiparameter intelligent monitoring in intensive care (MIMIC) database and
describe some general properties of the blood pressure time series. Section 30.4 is dedicated to the data
analysis and the definition of an index that directly measure the probability of observing the likelihood for
recurrences of pressure values. We conclude by discussing our findings.

30.2 The Method

Here, we briefly give some theoretical elements of the method of recurrences. For a time series p(t) we
start by defining the common approaches in the definition of a recurrence of a certain value p*. Such a
description is accompanied by direct visualization of the different methods in Figure 30.1.

e The exact recurrence of the value p* occurs if we have p(t) = p*. This definition is very restrictive as
it requires to observe identical values of p*. In the upper panel of Figure 30.1 exact recurrences are
found on the intersections between the orbits and the solid horizontal line.

e The spatial approach consists of choosing an interval Ap such that p(t) is a recurrence of p(t*) if
p" — Ap < p(t) < p* + Ap. In Figure 30.1, it corresponds to considering all the values falling in the
solid rectangle. The spatial approach is equivalent to the so-called peak-over-threshold technique for
extremes introduced by Pickands [17]. Extracting the recurrences this way correspond to sampling
the statistics of the distances dist(p(t), p*) < Ap, with Ap acting as a threshold value. This statistics
will depend on the choice of Ap and instead it will not be sensible on the dynamics. A random
reshuffle of the time series will reproduce exactly the same threshold statistics, while destroying all
the correlations in the dataset.

o The time window approach does not imply the selection of a threshold Ap but rather the introduction
of a time scale 1. The recurrence is defined as the closest value of p* in the interval t, formally
min(dist(p(t), p*)) for t* < t < £ + 1. We construct the statistics of such recurrences by extracting
n values in all intervals of length t. These points are marked by the circles in the lower panel of
Figure 30.1.

We stick on to the latter approach because it preserves the dynamical information contained in the data,
i.e., a reshuffle of the data does not produce the same asymptotic distribution as it happens for the Pickands
method. In the limit of n, T = 00, a series of minima

Xi = min(g(dist(p(t),p*))) ti<t<ti+x

with g(-) a generic observable function, will obey the generalized extreme value (GEV) distribution:

_ ~1/%
Fs(xp,0,8) =CXP{- [l +§ (xa—u)] ] . (30.1)

A GEV holds for 1 4 E(x — n)/o > 0, where . € R is the location parameter, o > 0 the scale parameter,
and § the shape parameter that discriminates the type of tail behavior: Gambel law for bulk statistics with
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FIGURE30.1 Example of three different definitions of recurrences of the value p* of a time series. Upper panel: exact
recurrences occur if p(t) = p* (points on the solid line). Central panel: recurrence of p* occurs each time p* — Ap <
p(t) < p* + Ap (points within the solid rectangle). Lower panel: recurrences are sampled over a time interval t as the
closest values to p* are measured in each interval.

exponential tails (§ = 0), Fréchet laws for unbounded tails (§ > 0), and Weibull laws for tails bounded
from above (§ < 0). As shown by in References 6 through 10, the convergence is given by a combination
of the exponential recurrences statistics for chaotic systems and the functional form of the observable
function g(-). In particular, letting g(-) = — log(-), the asymptotic GEV is always a Gumbel law with the
shape parameter & = 0 [9]. The use of the logarithmic function to measure the distances is not arbitrary
and it has been justified in several papers as it allows for a correct sampling of the so-called short returns
[1,20]. This result is used to answer the following question:

Given a time series representing a chaotic dynamics, and an observation p*, what is the typical time scale
1 such that this observation is recurring in the dynamics?

We can answer by measuring the likelihood of a fit of the X;’s to the Gumbel model, provided that we
have extracted the data as described above:

e If the fit succeeds, it means that we are likely to observe a recurrence of p* in 1. We can repeat the
experiment for shorter bin lengths and find the smallest t such that the fit converges. This defines
the shortest convergent recurrence time.

o Ifthe fit fails, the recurrence of p* in 1 is unlikely. We can repeat the experiment by increasing the
value of t until the fit succeeds to find the shortest recurrence time.
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FIGURE 30.2 An example of time series of systemic arterial pressure (dashed line) and pulmonary arterial pressure
(solid line) for a patient with unstable post infarction angina.

For the applicability of this method on blood pressure data, first, we have to check the chaotic behaviors
of the time series, and then assess the typical time scales involved in the process. For this purpose, in the
next section, we perform a first analysis of the blood pressure data, which will clarify these two important

issues.

30.3 The Blood Pressure Data

The data have been extracted by the MIMIC II database [19] that includes, for each patient, a time series
of systemic and pulmonary arterial pressures sampled at 300 Hz. Data have been collected over a period of
about 1 h. The general characteristics of the time series analyzed are presented in Figure 30.2. The series
refers to patient 28 of the MIMIC database (mgh028), recovered at the Massachusetts General Hospital
(MGH) for unstable postinfarction angina. We isolate only 10 s of the time series corresponding roughly
to 3 - 10* observations. It is apparent that data are not iid: the periodic signature of the heartbeat is evident,
although deviations from the periodic behavior both in time and amplitude can be observed. On longer
time scales, ambient conditions, human interactions, and/or pharmacological treatments trigger a chaotic
behavior that legitimates the assumptions made in the previous sections. Such chaotic behavior of systemic
pressure data has been reported by several authors [21,22]. This first analysis also provides a minimal time
scale for the recurrence technique: we will need to consider a period t longer than the heartbeat oscillation
in order to properly sample recurrences of a chaotic system. In the next section, we will start the recurrence
analysis by analyzing the effects of T on the statistics.

30.4 Analysis

Our goal is to provide an accurate information on the status of patients by applying the recurrence tech-
niques described in the previous sections. The final product of such an analysis will be a map of health
parameters (here systemic and pulmonary arterial pressures) that inform the nursing staff on the status of
the patient and whether he experienced anomalous pressure values with respect to a certain time scale of
interest T. We recall the procedure applied on the data in an algorithmic way:

1. We divide the full time series (the length is typically 1 h) in n intervals of length t.

2. We fix a reference pressure value p*.

3. In each interval, we take the closest value of p(t) to the chosen p*, obtaining n values py,p2,...,pn
as shown in Figure 30.1.

. We construct a series of logarithmic returns for such values, namely X; = — log(dist(p;, p*)).

5. We fit the X; to the GEV model checking the goodness of the Gumbel model.

o



We repeat the analysis over and over changing the reference points, until all the p* between min(p)
and max(p) have been selected. As mentioned before, if there are enough recurrences of a certain pressure
value in T, the fit will succeed; otherwise it will fail. As a measure of the goodness of the Gumbel model, we
use a suitably renormalized likelihood function. This provides a measure of the probability that a patient
will experience a pressure value psgr in a time interval 1. The distance between the Gumbel law and the
histograms will be quantified by the quantity 8 defined as

L(parr)
Lmax — Lmin
Here, Ly, .. is the negative likelihood function of observing a Gumbel distribution for the recurrences of

the value p* = pagr. Since L attains infinity for a perfect fit and minus infinity for a completely unreliable
fit, then & takes values in the range (—1, 1), so that

8(parr) =

e 8(parr) > 0 indicates how likely is the recurrence of the value p* every t seconds.
e 3(parr) < 0 indicates how unlikely the value p* recurs in a T time interval.

First, we verify the consistency of our method with respect to the usual pressure measurements. The
maxima of 8 should correspond with the measured systolic and diastolic pressures, respectively p. and
pa, and they should not sensibly change with 1. This is what is shown in Figure 30.3 for the series of
patient mgh002 and for three different values of t. This patient was admitted to the hospital for resection
and grafting of abdominal aortic aneurysm and his measured systemic pressure parameters were pg =
60 mmHg and p; = 130 mmHg. Effectively, from Figure 30.3 we observe two maxima of 3 corresponding
to ps and py. However, although the value of py is consistent with the one measured at the hospital, the
estimate for the systolic pressure is 150 mmHg higher than the one estimated using classical techniques.
This is explainable by looking at the shape of the distribution of  around the p, value that is skewed toward
values smaller than p,. We recover the value of p, measured at the hospital by taking a conditional mean
of ppr restricted to values higher than 80 mmHg.

These first considerations already point to the problem of measuring only average values of pressure,
rather than fully characterizing the probability distributions as we attempt to do here. Moreover, the anal-
ysis of 3 clearly points to a large range of fluctuations around the p,-detected value and suggests that this
patient could experience hypertensive episodes, underestimated with the classical measurements. We also
observe that the parameters slightly depend on t and that for the shortest time interval T = 1 s curves of
3 are not smooth. This effect can also be detected for other patients and it is explainable with the general
argument pointed out in the previous section, i.e., T must be larger than the heartbeat period in order to
get a good convergence for 3. For this reason, in the remaining of this chapter, we will fix T = 4 s to avoid
such problems. We remark that the parameter t can be varied to correspond to a specific time of interest
for medical treatments.

To show the capability of the method, we analyzed several other patients presenting different clini-
cal histories. In Figure 30.4 we present the quantity § for three particular subjects: patient 1—mgh002
considered in the previous analysis (left panels); patient 2—mgh001 presenting a carotid endarterectomy
(central panels); and patient 3—mgh028 showing an unstable postinfarction angina (right panels). In all
the cases, the two maxima corresponding to the systolic and diastolic pressures are recognizable. How-
ever, their location and the range of fluctuations associated with each of them strongly varies. For patient
2, the hemodynamic data recorded in the database are p; = 140 and ps = 50 mmHg, in agreement with
our observations. The analysis also points to a moderate hypertensive risk. For patient 3, we observe a
slight deviation from the p, value reported in the database (p; = 130 and ps = 50 mmHg) again due to the
skewed nature of the distribution of the systolic blood pressure already observed in References 14 and 18.

The general medical case of a patient is not given by a single hemodynamic parameter but rather by
a combination of them. One of the advantages of the recurrence technique described in this chapter is
that it is trivially expandable to multiple hemodynamic parameters. As an example, we consider both the
arterious parr and the pulmonary pressure p,p, and define the joint probability of observing a Gumbel
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FIGURE 30.3 Normalized likelihood of the Gumbel distribution 3 for three different values of T = 1, 2, 3 5. Maxima
indicate the location of the estimated systolic pressure p, and diastolic pressure p4.
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FIGURE 30.4 Normalized likelihood of the Gumbel distribution 3 of the systemic arterial pressure data p gy for
three different patients: patient 1 admitted to the hospital for resection and grafting of an abdominal aortic aneurysm,
patient 2 for carotid endarterectomy, and patient 3 for unstable postinfarction angina. Time interval is t = 4s.

distribution for the recurrences of a specific couple of values p* = (parr, par). The structure of the func-
tion 8(parr, par) will therefore give an immediate information on the joint risk of experiencing pulmonary
and systemic hypertension (or hypotension). For the three patients previously described, the results are
reported in Figure 30.5. The left panel refers to patient 1: light gray indicate that the probability of observ-
ing a couple of values (pArr, pap) is high, dark gray that this combination is unlikely. For this patient, there
exists a moderate risk of experiencing a combination of pulmonary and systemic hypertensive events. The
analysis of patient 2 (central panels) still points to a risk of moderate systemic hypertension. The analysis of
pulmonary pressure reveals that this risk is also associated with pulmonary hypertension: the 8(pAzr> Pp)
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FIGURE30.5 Normalized likelihood of the Gumbel distribution & for three different patients obtained by combining
systemic arterial parr and pulmonary arterial p4p pressure data. Time interval is T = 4s. Left panels: patient with
resection and grafting of an abdominal aortic aneurysm. Central panels: patient with carotid endarterectomy. Right
panels: patient with unstable postinfarction angina. Positive values of § mean that we are very likely to observe the
corresponding values of pressure, negative values that they are unlikely.

profile consists of a sort of ring of probable values, i.e., the bimodal structure observed for the pressure
data also repeats for the pulmonary pressure. Finally, 8(p s g7, p4p) for patient 3 shows a more complicated
pattern associated with a higher risk of hypertensive pulmonary episodes with respect to blood arterial
episodes. This is also reported in the logbook of the MGH database.

30.5 Final Remarks

The main achievement of this chapter is to provide a method for the detection of recurrences of pres-
sure values. The recurrence technique shows that the concept of systolic and diastolic blood pressures
commonly used in the medical care units can be insufficient for assessing the risk of hypotensive and
hypertensive episodes. The main drawback of pure statistical techniques is the misleading assumption
that the data are iid, a problem that we overcome by using an approach based on recurrences. Here, we
have introduced a parameter 3 directly linked to the likelihood of observing a Gumbel statistics expected
on a theoretical basis for the recurrences of pressure values. Positive values of § are associated with higher
probabilities and negative values are associated with lower ones. In other words, the profiles of § provide
the following information: for each pair of values psgr, Pap, a positive § means that, if the conditions of
the patient stay stationary, it is likely to observe such values again. This allows to take actions if there is a
risk for acute episodes and therefore they provide a useful instrument for operators of medical care units.
With respect to the common methods, based on computing the histograms and the probability distribu-
tion of pressure values, the study of recurrences provides the following advantages: (i) the probability of
observing a certain pressure value is given with respect to a certain time scale t and condensed in an index
with values of [ 1 +1]. This means that one can plan medical treatments, operations, or examinations that
last for a specific time knowing the risks associated with the patient. (ii) It allows for combining several
variables giving the joint probability of observing a combination of health parameters in the time scale of
interest . (iii) It provides a precise information on the quantity of data needed to assess the Gumbel statis-
tics. This prevents one from overestimating or underestimating the recurrence times. (iv) The technique
is easy to implement—a self-written MATLAB code has been used to perform the analysis—and can run




in real time. Profiles of 8 can be updated with new data, e.g., every minute, giving a map for the changing
risk for each patient. This technique can be easily extended to any framework where chaotic time series are
available even if they show fractal or multifractal properties and/or power law behavior (see, e.g., [4,12])
as theoretically described in Reference 15. In these cases, traditional statistical approaches are more likely
to return biased estimations as they implicitly assume continuous support for the time series as well as
independence among the data.
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