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A thick–point approximation of a small body embedded

in an elastic medium: justification with an asymptotic analysis

Arnaud Heibig∗ Nidhal Mannai∗† Adrien Petrov∗ Yves Renard∗

June 29, 2020

Abstract

The present paper proposes an approximation of the influence of a small inclusion, having different
stiffness, in an elastic medium restricting its cinematics to a finite dimensional space. The problem, for
the unknown displacement, is written in accordance of transmission conditions between elastic medium
and inclusion. The multi–scale asymptotic expansions techniques, by using some corrective terms, are
introduced to model the inclusion influence in both initial and approximated problems. Finally, some
error estimates for asymptotic expansions are presented and different strategies are compared.

Key words. Asymptotic expansion, linear elasticity, multi–scale analysis, transmission problem, solv-
ability

1 Introduction

This paper introduces a new approximation of the influence of a small inclusion in an elastic medium,
so–called thick–point approximation, consisting in a restriction of cinematics of the inclusion to some pre-
defined finite dimensional spaces such as spaces of degree one or two polynomials. A rigorous justification
is given in terms of asymptotic analysis allowing to quantify the approximation order as well.

The interface problems served in the last decades as a cornerstone for developing mathematical models
for inclusions embedded in elastic media. Some of these models are used in automotive industry to
design tires having specific structure stiffnesses. A considerable amount of engineering and mathematical
literature is devoted to this topic. We are specially interested in small elastic inclusions or inhomogeneities
in a two–dimensional elastic body. Since the inclusions are usually small compared to the size of the
body, it is rather costly from numerical viewpoint to take them into account. Naturally, the numerical
approximation of such problems requires a severe mesh refinement near the inclusions, which sometimes
prevents from taking them into account in the computations. If the inclusions are arranged within a

∗Université de Lyon, CNRS, INSA de Lyon Institut Camille Jordan UMR 5208, 20 Avenue A. Einstein, F–69621
Villeurbanne, France (arnaud.heibig@insa-lyon.fr, nidhal.mannai@insa-lyon.fr, apetrov@math.univ-lyon1.fr,

yves.renard@insa-lyon.fr)
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periodic network, the homogenization techniques could be used and the macroscopic model is valid,
provided the characteristic properties of the body are modified accordingly (see [1, 23]). Such approaches
do not hold for local inhomogeneities, which are usually omitted in the applications, at least for the
smallest ones, and/or integrated into the macroscopic domain. An other approach consists to use the
asymptotic analysis to determine the influence of inclusions (see [7, 10, 16, 17, 29, 32]) which is adopted
in the present work.

Many references in the literature deal with the case of perturbations whether transmission problems
(essentially for conductivity and Helmholtz equation) and perforated domains and cavities. For further
details, the reader is referred to [29, 18, 7, 26, 27, 22, 17, 10, 11] and to the reference therein. Concerning
the case of inclusions, a method allowing to find the stresses set up in an elastic body was originally
introduced in [13] and later on developed in [14, 28, 19, 20, 4, 30, 25] for various inclusions shape. On
the other hand, the reconstruction techniques of small inclusions using only boundary measurements are
described in [2]. The approach used in this work consists in deriving some asymptotic expansions of the
boundary perturbations coming from the inclusions influences that has been initiated in [5] and extended
in this work to the approximated case up to the order second order leading to deduce some approximation
error estimates. Some other contributions dealing with the techniques using asymptotic expansions to
treat inclusions can be found in [31, 6].

This paper is organized as follows. In Section 2, we give precisely the geometrical setting we shall work
within. More precisely, the solvability of a pair of two dimensional approximations of the transmission
problem between a body and inclusion both supposed to be elastic is recalled. Then Section 3 emphasizes
some optimal error estimates for asymptotic expansions. Section 4 is dedicated to describe the thick–point
approximation and perform its asymptotic expansion, up to the second order. This allows in Section 5 to
give some error estimates depending on the choice of the finite dimensional space used. Section 6 treats
the special case of a circular inclusion obtaining some optimal results. Section 7 gives the strong form of
the thick–point approximation problem when first degree polynomial are used. Finally, a few conclusions
are given in Section 8.

2 Mechanical model and mathematical formulation

We consider a reference configuration Ω ⊂ R2 supposed to be with a Lipschitz–continuous boundary Γ.
Let Ωε

f ⊂ R2 be a bounded connected domain of characteristic dimension ε representing an inclusion in

Ω. The boundary of this inclusion is denoted by Γε and Ω1
f

def
=

Ωε
f

ε . The inclusion is assumed to be small

enough compared to the characteristic size of the matrix represented by Ωε
m

def
= Ω\Ω̄ε

f ⊂ R2 of radius R
with a Lipschitz–continuous Γε (see FIGURE 1).

The present work deals with an antiplane problem which can be reduced to a Poisson problem. More
precisely, we focus on the normal component to the plane (O, x1, x2) denoted by ũε(x1, x2). We assume
the non–homogenous Dirichlet conditions and the continuity conditions on the boundary Γε hold on Γ
and Γε, respectively. Let U ∈ H1/2(Γ) be a prescribed displacement on Γ. The mathematical problem is
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Figure 1: A small inclusion in an elastic medium

formulated as follows:

−αf∆ũεf = 0 in Ωε
f ,

−αm∆ũεm = 0 in Ωε
m,

ũεf = ũεm on Γε,

αf∂nũ
ε
f = αm∂nũ

ε
m on Γε,

ũεm = U on Γ,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

where ∂n denote the normal derivative, αf > 0 and αm > 0 are the shear coefficients in the inclusion and
in the matrix, respectively while ũεf and ũεm are the unknown solutions to problem (2.1) in the inclusion
Ωε
f and in the matrix Ωε

m, respectively.
Let us describe the weak formulation associated to problem (2.1). Introducing the set

ṼU
def
= {v ∈ H1(Ω) : v|Γ = U},

the weak formulation associated to problem (2.1) is given by
find ũε ∈ ṼU such that for all w ∈ H1

0(Ω)∫
Ωε

f

αf∇ũεf · ∇wf dx+

∫
Ωε

m

αm∇ũεm · ∇wmdx = 0.
(2.2)

Since U ∈ H1/2(Γ), the trace theorem implies that there exists g ∈ H1(Ω) satisfying g|Γ = U. Let us define

ũε0 ∈ H1
0(Ω) such that ũε

def
= ũε0 + g ∈ ṼU. Hence, the weak formulation (2.2) can be rewritten as follows

find ũε0 ∈ H1
0(Ω) such that for all w ∈ H1

0(Ω),∫
Ωε

f

αf∇ũε0f · ∇wf dx+

∫
Ωε

m

αm∇ũε0m · ∇wmdx

= −
∫

Ωε
f

αf∇g · ∇wf dx−
∫

Ωε
m

αm∇g · ∇wmdx.

(2.3)

The existence and uniqueness results to problem (2.3) can be proved by using Lax–Milgram’s theorem.
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3 Asymptotic expansion for the antiplane problem

This section is devoted to the asymptotic expansion of the antiplane problem up to second order. The
reader is referred to [5] for further details on this approach. This step plays a crucial role to get some
error estimates with respect to the size of the inclusion for the approximation.

3.1 First order expansion for the antiplane problem

We consider first the asymptotic expansion of the first order. To this aim, we define by ũ0 the displacement
in Ω without any inclusion. Taking ε = 0 in (2.2), we get the following weak formulationfind ũ0 ∈ ṼU such that for all w ∈ H1

0(Ω),∫
Ω
αm∇ũ0 · ∇wdx = 0.

(3.1)

Substracting (2.2) to (3.1), we obtain∫
Ωε

f

(αf − αm)∇ũ0 · ∇wf dx+

∫
Ωε

f

αf∇(ũεf − ũ0) · ∇wf dx+

∫
Ωε

m

αm∇(ũεm − ũ0) · ∇wmdx = 0 (3.2)

for all w ∈ H1
0(Ω). By using the following notation d̃0ε

k
def
= ũεk − ũ0, k ∈ {f,m}, the identity (3.2) can be

rewritten as follows:∫
Ωε

f

(αf − αm)∇ũ0 · ∇wf dx+

∫
Ωε

f

αf∇d̃0ε
f · ∇wf dx+

∫
Ωε

m

αm∇d̃0ε
m · ∇wmdx = 0 (3.3)

for all w ∈ H1
0(Ω). In order to deal with fixed domain and interface, we introduce the following scaling

y
def
= x

ε and we define D̃0ε
k (y)

def
= d̃0ε

k (x), k ∈ {f,m}. It comes that

ε

∫
Ω1

f

(αf − αm)∇ũ0(εy) · ∇wf (εy)dy +

∫
Ω1

f

αf∇D̃0ε
f (y) · ∇wf (εy)dy

+

∫
Ωε

m/ε
αm∇D0ε

m(y) · ∇wm(εy)dy = 0

(3.4)

for all w ∈ H1
0(Ω). Let Ω∞

def
= R2\Ω1

f and Ṽlog be an Hilbert space defined by

Ṽlog
def
=
{
v ∈ D′(R2) : (1 + |x|2)

− 1
2 (log(2 + |x|2))

−1
v ∈ L2(R2) and ∇v ∈ L2(R2)

2
}
,

endowed with the norm

‖u‖
Ṽlog

def
=
(
‖(1 + |x|2)

− 1
2 (log(2 + |x|2))

−1
v‖2L2(R2) + ‖∇v‖2L(R2))2

) 1
2 .

The reader is referred to [5, Appendix] for some further explanations on this functional space. Fix R0 � 1,
we define a closed subspace ṼR0

log ↪→ Ṽlog by

ṼR0

log
def
=
{
v ∈ Ṽlog :

∫ π

−π
v(R0 cos(θ), R0 sin(θ))dθ = 0

}
.
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We assume ε small enough compared to the size of Ω and we eliminate completely the dependence on ε
by approximating the identity (3.4) as follows:

find W̃ 0 ∈ ṼR0

log such that for all w ∈ ṼR0

log,∫
Ω1

f

(αf − αm)∇ũ0(0) · ∇wf dy +

∫
Ω1

f

αf∇W̃ 0
f · ∇wf dy +

∫
Ω∞

αm∇W̃ 0
m · ∇wmdy = 0.

(3.5)

Note that all the constant functions are included in Ṽlog and Poincaré’s inequality can be obtained on
the quotient space of the weighted Sobolev space with constant functions. Clearly, the last two terms on
the left hand side of (3.5) are bilinear, coercive and continuous forms on ṼR0

log while the first term on the

term on the left hand side of (3.5) is linear and continuous on ṼR0

log. Then, the existence and uniqueness
results come from Lax–Milgram’s theorem. On the other hand, we observe that∫

Ωε
f

(αf − αm)∇ũ(0)(0) · ∇wf dx+

∫
Ωε

f

αf∇
(
εW̃ 0

f

( ·
ε

))
· ∇wf dx

+

∫
Ωε

m

αm∇
(
εW̃ 0

m

( ·
ε

))
· ∇wmdx = 0

(3.6)

for all w ∈ H1
0(Ω). Subtracting (3.2) to (3.6), we find∫

Ωε
f

(αf − αm)(∇ũ(0) −∇ũ(0)(0)) · ∇wf dx+

∫
Ωε

f

αf∇
(
ũ− ũ(0) − εW̃ 0

( ·
ε

))
· ∇wf dx

+

∫
Ωε

m

αm∇
(
ũ− ũ(0) − εW̃ 0

( ·
ε

))
· ∇wmdx = 0

(3.7)

for all w ∈ H1
0(Ω). Setting d̃1ε def

= ũε − ũ0 − εW̃ 0
( ·
ε

)
, with x ∈ Ω, we also have



d̃1ε ∈ H1(Ω) and for all w ∈ H1
0(Ω),∫

Ωε
f

(αf − αm)(∇ũ(0) −∇ũ(0)(0)) · ∇wf dx+

∫
Ωε

f

αf∇d̃1ε · ∇wf dx

+

∫
Ωε

m

αm∇d̃1ε · ∇wmdx = 0,

with d̃1ε = −εW̃ 0
( ·
ε

)
on Γ.

(3.8)

The following estimate on the rest d̃1ε of the first order expansion can be proved.

Lemma 3.1. There exists a constant C > 0, independent of ε, such that∥∥∥d̃1ε
∥∥∥

H1(Ω)
≤ Cε2. (3.9)

Proof. Let L : H1/2(Γ)→ H1(Ω) be a continuous lifting operator [24]. We define z̃ε
def
= L

(
−εW̃ 0

( ·
ε

))
and



6 A. Heibig, N. Mannai, A. Petrov, Y. Renard

r̃1ε def
= d̃1ε − z̃ε. Clearly, r̃1ε ∈ H1

0(Ω) and according to (3.8), we get∫
Ωf

αf∇r̃1ε
f · ∇wf dx+

∫
Ωm

αm∇r̃1ε
m · ∇wmdx+

∫
Ωε

f

(αf − αm)(∇ũ0(0)−∇ũ0) · ∇wf dx

= −
∫

Ωf

αf∇z̃ε · ∇wf dx−
∫

Ωm

αm∇z̃ε · ∇wmdx.

Taking w = r̃1ε ∈ H1
0(Ω), we find

αf
∥∥∇r̃1ε

f

∥∥2

L2(Ωε
f )

+ αm
∥∥∇r̃1ε

m

∥∥2

L2(Ωε
m)

+

∫
Ωε

f

(αf − αm)(∇ũ0(0)−∇ũ0) · ∇r̃1ε
f dx

= −
∫

Ωε
f

αf∇z̃ε · ∇r̃1ε
f dx−

∫
Ωε

m

αm∇z̃ε · ∇r̃1ε
m dx,

which by using Cauchy–Schwarz’s inequality implies that∥∥∇r̃1ε
∥∥

L2(Ω)
≤ C

(∥∥∇ũ0(0)−∇ũ0
∥∥

L2(Ωε
f )

+
∥∥∇z̃ε∥∥

L2(Ω)

)
.

By Poincaré’s inequality, we get∥∥r̃1ε
∥∥

H1(Ω)
≤ C

(∥∥∇ũ0(0)−∇ũ0
∥∥

L2(Ωε
f )

+
∥∥∇z̃ε∥∥

L2(Ω)

)
.

Since r̃1ε def
= d̃1ε − z̃ε, we obtain∥∥∥d̃1ε

∥∥∥
H1(Ω)

≤ C
(∥∥∇ũ0(0)−∇ũ0

∥∥
L2(Ωε

f )
+
∥∥z̃ε∥∥

H1(Ω)

)
.

By using the continuity of the lifting operator L, it comes that∥∥∥d̃1ε
∥∥∥

H1(Ω)
≤ C

(∥∥∇ũ0(0)−∇ũ0
∥∥

L2(Ωε
f )

+ ε
∥∥∥W̃( ·

ε

)∥∥∥
H1/2(Γ)

)
.

We evaluate first
∥∥∇ũ0(0)−∇ũ0

∥∥
L2(Ωε

f )
. To this aim, we observe that

∇ũ0(x) = ∇ũ0(0) +O(|x|).

Then, we conclude that ∥∥∇ũ0(x)−∇ũ0(0)
∥∥

L2(Ωε
f )
≤ |x| ≤ Cε2.

It remains to evaluate
∥∥W̃ ( ·ε)∥∥H1/2(Γ)

. Let us define x
def
= (r cos(θ), r sin(θ)) for all r ≥ R0. Notice that

W̃ 0 ∈ ṼR0

log and there exists (ãn, b̃n) ∈ R2 for all n ∈ N∗ and θ ∈ [0, 2π] such that

W̃ 0
( ·
ε

)
=
∑
n≥1

(εR0

r

)n
(ãn cos(nθ) + b̃n sin(nθ)). (3.10)
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Let Ωc be a regular subset of R2 such that Γ ∈ Ω̊c and there exist (r1, r2) ∈ R+×R+ satisfying r1 < r < r2

on Ωc. Then we infer that ∥∥∥W̃ 0
( ·
ε

)∥∥∥
H1/2(Γ)

≤ C
∥∥∥W̃ 0

( ·
ε

)∥∥∥
H1(Ωc)

. (3.11)

Choosing ε > 0 such that ε < r1
2R0 , we obtain

∥∥∥∇W̃ 0
( ·
ε

)∥∥∥
L2(Ωc)

≤
4εR0

√
µ(Ωc)

r2
1

∑
n≥1

n
(εR0

r1

)n−1(
|ãn| +

∣∣∣̃bn∣∣∣) ≤ Cε,
∥∥∥W̃ 0

( ·
ε

)∥∥∥
L2(Ωc)

≤ 2εR0

r1

∑
n≥1

(εR0

r1

)n−1(
|ãn| +

∣∣∣̃bn∣∣∣) ≤ Cε,
(3.12a)

(3.12b)

where µ(Ωε
f ) stands for the usual measure of Ωε

f . Carrying (3.12) into (3.11), we get∥∥∥W̃ 0
( ·
ε

)∥∥∥
H1/2(Γ)

≤ Cε,

Finally, we have ∥∥∥d̃1ε
∥∥∥

H1(Ω)
≤ Cε2,

which concludes the proof.

3.2 Second order expansion for the antiplane problem

The approach adopted here is similar to the one used to obtain the first order expansion. Namely, let
D̃1ε(y)

def
= d̃1ε(x) and observe that

1

ε

∫
Ω1

f

(αf − αm)(∇ũ(0) −∇ũ(0)(0)) · ∇wf dy +

∫
Ω1

f

αf∇D̃1ε · ∇wf dy

+

∫
Ωε
m
ε

αm∇D̃1ε · ∇wmdy = 0

(3.13)

for all w ∈ H1
0

(
Ω
ε

)
. Then (3.13) is approximated by the following problem:

find W̃ 1 ∈ ṼR0

log such that for all w ∈ ṼR0

log,∫
Ω1

f

(αf − αm)Hũ0(0)y · ∇wf dy +

∫
Ω1

f

αf∇W̃ 1
f · ∇wf dy +

∫
Ω∞

αm∇W̃ 1
m · ∇wmdy = 0,

(3.14)

where W̃ 1 and Hũ0(0) denote the second order corrector term and Hessian matrix associated to ũ0 in
x = 0, respectively. Observe that for all w ∈ H1

0(Ω) extended by zero in R2\Ω, w belongs to Ṽlog. Then
we have ∫

Ωε
f

(αf − αm)Hũ0(0)x · ∇wf dx+

∫
Ωε

f

ε2(αf − αm)∇ṽ · ∇wf dx

+

∫
Ωε

m

αm∇
(
ε2W̃ 1

m

( ·
ε

))
· ∇wmdx+

∫
Ωε

f

αf∇
(
ε2W̃ 1

f

( ·
ε

))
· ∇wf dx = 0

(3.15)
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for all w ∈ H1
0(Ω). On the one hand, let ṽ ∈ H1(Ω) be a corrector term allowing to eliminate the first

order term W̃ 0 on Γ and satisfying ∫
Ω
αm∇ṽ · ∇wdx = 0 (3.16)

for all w ∈ H1
0(Ω) with ṽ = −R0

r (ã1 cos(θ)+b̃1 sin(θ)) on Γ. Setting d̃2ε def
= ũε − ũ0 − εW̃ 0

( ·
ε

)
− ε2W̃ 1

( ·
ε

)
+ ε2ṽ.

According to (3.8), (3.15) and (3.16), we find

d̃2ε ∈ H1(Ω) and for all w ∈ H1
0(Ω),∫

Ωε
f

(αf − αm)(∇ũ(0) −∇ũ(0)(0)−Hũ0(0)x+ ε2∇ṽ) · ∇wf dx

+

∫
Ωε

f

αf∇d̃2ε · ∇wf dx+

∫
Ωε

m

αm∇d̃2ε · ∇wmdx = 0,

with d̃2ε = −εW̃ 0
( ·
ε

)
− ε2W̃ 1

( ·
ε

)
+ ε2ṽ on Γ.

(3.17)

Let us define

z̃2ε def
= L

(
− εW̃ 0

( ·
ε

)
− ε2W̃ 1

( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ))

)
and r̃2ε def

= d̃2ε − z̃2ε

where L denotes the lifting operator introduced above. Similarly to the first order expansion, we may
prove that ∥∥∥d̃2ε

∥∥∥
H1(Ω)

≤ C
(∥∥∥∇ũ0 −∇ũ(0)(0)−Hũ0(0)x

∥∥∥
L2(Ωε

f )
+ ε2 ‖∇ṽ‖L2(Ωε

f )

+ ε2
∥∥∥W̃ 1

( ·
ε

)∥∥∥
H1/2(Γ)

+
∥∥∥−εW0

( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ))

∥∥∥
H1/2(Γ)

)
.

(3.18)

According to the expansion obtained in the previous section and definition of ṽ, it comes

−εW̃ 0
( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ)) = −

∑
n≥2

(R0

r

)n
εn+1(ãn cos(θ) + b̃n sin(θ)).

Let Ωc regular subset of R2 such that Γ ⊂ Ω̊c and there exist (r1, r2) ∈ R+ × R+ satisfying r1 < r < r2

on Ωc. Then we infer that ∥∥∥W̃ 0
( ·
ε

)∥∥∥
H1/2(Γ)

≤ C
∥∥∥W̃ 0

( ·
ε

)∥∥∥
H1(Ωc)

. (3.19)

Choosing ε > 0 such that ε < r1
2R0 , we find

∥∥∥−∇(εW̃ 0
( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ))

)∥∥∥
L2(Ωc)

≤
4εR0

√
µ(Ωc)

r2
1

∑
n≥2

(
n
(R0

r1

)n−1
εn(ãn cos(θ) + b̃n sin(θ))

)
≤ Cε3.

(3.20)
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Furthermore, we have ∥∥∥εW̃ 0
( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ))

∥∥∥
L2(Ωc)

≤
∑
n≥2

((R0

r1

)n
εn+1(ãn cos(θ) + b̃n sin(θ))

)
≤ Cε3.

(3.21)

Clearly, it comes that ∥∥∥εW̃ 0
( ·
ε

)
− ε2R

0

r
(ã1 cos(θ) + b̃1 sin(θ))

∥∥∥
L2(Ωc)

≤ Cε3. (3.22)

By using Cauchy–Schwarz’s inequality, we immediately deduce that

‖∇ũ0 −∇ũ(0)(0)−Hũ0(0)x‖L2(Ωε
f ) ≤ Cε3,

and since ṽ is an harmonic function, its gradient is bounded, so that

‖∇ṽ‖L2(Ωε
f ) ≤ Cε.

As we already mentioned above, a similar approach to the one presented in the previous section for W̃ 0

is used to get W̃ 1. Namely, we have ∥∥∥W̃ 1
( ·
ε

)∥∥∥
H1/2(Γ)

≤ Cε.

Clearly, we may deduce from the above estimates that∥∥∥d̃2ε
∥∥∥

H1(Ω)
≤ Cε3. (3.23)

4 Thick–point approximation with small inclusion

The present section is dedicated to approximate the displacement uε in the inclusion Ωε
f in some finite

dimensional space Qε introduced later on. More precisely, we replace ũε by uε in (2.1) and we assume
that uεf belongs to Qε in the inclusion Ωε

f . Let us define the following spaces:

Vε
U

def
= {v ∈ H1(Ω) : v|Ωε

f
∈ Qε with v|Γ = U}, Vε def

= {v ∈ H1(Ω) : v|Ωε
f
∈ Qε}, Vε

0
def
= {v ∈ Vε : v|Γ = 0}.

Using Galerkin’s principle, the weak formulation associated to the approximated problem is given by
find uε ∈ Vε such that for all w ∈ Vε

0∫
Ωε

f

αf∇uεf · ∇wf dx+

∫
Ωε

m

αm∇uεm · ∇wmdx = 0.
(4.1)

The existence and uniqueness of a solution to problem (4.1) is rather classical and its verification is let
to the reader.
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4.1 A preliminary approximation result

In order to write the asymptotic expansion of the approximate problem (4.1), let us introduce ProjVε
U

(ũ0)

the orthogonal projection of ũ0 onto Vε
U in the following sense:

ProjVε
U

(ũ0) ∈ Vε
U and for all w ∈ Vε

0,∫
Ωε

f

∇ProjVε
U

(ũ0) · ∇wf dx+

∫
Ωε

m

∇ProjVε
U

(ũ0) · ∇wmdx = 0.
(4.2)

The following estimate between ProjVε
U

(ũ0) and ũ0 is intensively used later on.

Lemma 4.1. Assume that Qε contains Pk(Ω
ε
f ), the space of polynomials of degree less or equal to k on

Ωε
f , then there exists a constant C > 0 such that∥∥∥ProjVε

U
(ũ0)− ũ0

∥∥∥
H1(Ω)

≤ Cεk+1. (4.3)

Proof. Let ϕ defined as the kth order rest of ũ0 Taylor expansion in Ω. Let K ⊂⊂ Ω be a fixed compact
neighborhood 0. Since ϕ is bounded in C∞(K), there exists a constant CK > 0, depending on K, such
that

∀x ∈ K : |ϕ(x)| ≤ CK |x|k+1 and |∇ϕ(x)| ≤ CK |x|k. (4.4)

In the sequel, we omit the index K in the notation CK . For all ε > 0, we define zε ∈ H1(Ω) such that
zε = ũ0 − ϕ on Ωε

f , zε|Γε
= ũ0 − ϕ|Γε , zε|Γ = U and

∀w ∈ H1
0(Ωε

m) :

∫
Ωε

m

∇zε · ∇wdx = 0.

Notice that

∀w ∈ H1
0(Ωε

m) :

∫
Ωε

m

∇ũ0 · ∇wdx = 0,

which implies that

∀w ∈ H1
0(Ωε

m) :

∫
Ωε

m

∇(zε − ũ0) · ∇wdx = 0. (4.5)

Let us define ζ ∈ D(R2;R+), 0 ≤ ζ ≤ 1, such that ζ = 1 and ζ = 0 in a neighborhood of Ω̄1
f and R2\Ω,

respectively. For ε > 0 and x ∈ R2, we define ζε
def
= ζ

( ·
ε

)
and ψε

def
= ζεϕ. Thus it is clear that ψε ∈ H1(Ωε

m)
and ψε|Γε

= ϕ|Γε . We may infer that (zε− ũ0 +ψε)|Γε = 0 and obviously (zε− ũ0 +ψε)|Γ = 0, which implies

that zε − ũ0 + ψε ∈ H1
0(Ωε

m). On the other hand, identity (4.5) leads to

∀w ∈ H1
0(Ωε

m) :

∫
Ωε

m

∇(zε − ũ0 + ψε) · ∇wdx =

∫
Ωε

m

∇ψε · ∇wdx. (4.6)

Define

βε
def
=

{
zε − ũ0 + ψε on Ωε

m,

0 on Ωε
f .
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Clearly, βε ∈ H1
0(Ω). Denote Poincaré’s constant by CΩ > 0, independent of ε > 0, related to Ω. Since

βε = 0 on Ωε
f , we get

‖βε‖H1(Ω) ≤ CΩ ‖∇βε‖L2(Ω) ≤ CΩ ‖∇βε‖L2(Ωε
m) .

Taking w = βε|Ωε
m

into (4.6), and using Cauchy–Schwarz’s inequality, we find

‖∇βε‖L2(Ωε
m) ≤ C ‖∇ψ

ε‖L2(Ωε
m) .

Hence, we have
‖βε‖H1(Ω) ≤ C ‖∇ψ

ε‖L2(Ωε
m) .

which implies that ∥∥zε − ũ0 + ψε
∥∥

H1(Ω)
≤ C ‖∇ψε‖L2(Ωε

m) ,

and finally, according to the triangular inequality, we obtain∥∥zε − ũ0
∥∥

H1(Ωε
m)
≤ C ‖ψε‖H1(Ωε

m) . (4.7)

It remains to estimate ‖ψε‖H1(Ωε
m). To this aim, we first observe that∫

Ωε
m

|∇ψε|2 dx ≤
∫

Ωε
m

∣∣∣1
ε
∇ζ
( ·
ε

)
ϕ
∣∣∣2 dx+

∫
Ωε

m

∣∣∣ζ( ·
ε

)
∇ϕ
∣∣∣2 dx

≤ C
( 1

ε2

∫
supp(ζε)

|ϕ|2 dx+

∫
supp(ζε)

|∇ϕ|2 dx
)
,

where supp(ζε) denotes the support of ζε. By using (4.4), we obtain∫
Ωε

m

|∇ψε|2 dx ≤ Cµ(supp(ζε))ε2k,

where µ is Lebesgue’s measure in R2. Since µ(supp(ζε)) ≤ Cε2, it comes that∫
Ωε

m

|∇ψε|2 dx ≤ Cε2k+2. (4.8)

Once again by using (4.4), we find

‖ψε‖2L2(Ωε
m) =

∫
supp(ζε)

|ζεϕ|2 dx ≤ Cε2k+2µ(supp(ζε)).

It follows that

‖ψε‖2L2(Ωε
m) ≤ Cε

2k+4,

which by using (4.6)–(4.8) leads to ∥∥zε − ũ0
∥∥

H1(Ωε
m)
≤ Cεk+1. (4.9)
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Let us emphasize that ∥∥zε − ũ0
∥∥

H1(Ωε
f )

= ‖ϕ‖H1(Ωε
f ) ≤ Cµ(Ωε

f )(ε2k+2 + ε2k).

Since the diameter of Ωε
f is smaller that Cε and by using (4.4), we may infer that µ(Ωε

f ) ≤ Cε2. Hence
we get ∥∥zε − ũ0

∥∥2

H1(Ωε
f )
≤ Cε2k+2. (4.10)

According to (4.9) and (4.10), we get ∥∥zε − ũ0
∥∥

H1(Ω)
≤ Cεk+1.

Since zε ∈ Vε
U, we may infer that∥∥∥ProjVε

U
(ũ0)− ũ0

∥∥∥
H1(Ωε

m)
≤
∥∥zε − ũ0

∥∥
H1(Ωε

m)
≤ Cεk+1,

which proves the lemma.

4.2 First order asymptotic expansion for the approximated problem

We establish now the first order asymptotic expansion for the approximated problem. Namely, we assume
that P1(Ωε

f ) ⊂ Qε where P1(Ωε
f ) denotes the space of polynomials of degree less or equal to 1 on Ωε

f .
From (4.2) and (4.1), we deduce that∫

Ωε
f

αf∇(uεf − ProjVε
U

(ũ0)) · ∇wf dx+

∫
Ωε

m

αm∇(uεm − ProjVε
U

(ũ0)) · ∇wmdx

+

∫
Ωε

f

(αf − αm)∇ProjVε
U

(ũ0) · ∇wf dx = 0

(4.11)

for all w ∈ Vε
0. Then, we define d0ε

k
def
= uεk − ProjVε

U
satisfying the following variational formulation:

d0ε ∈ Vε
0 and for all w ∈ Vε

0,∫
Ωε

f

αf∇d0ε · ∇wf dx+

∫
Ωε

m

αm∇d0ε · ∇wmdx+

∫
Ωε

f

(αf − αm)∇ProjVε
U

(ũ0) · ∇wf dx = 0.
(4.12)

It is also convenient to introduce the following functional spaces:

Vlog
def
=
{
v ∈ Ṽlog : v|Ω1 ∈ Q1

}
and VR0

log
def
=
{
v ∈ Vlog :

∫ π

−π
v(R0 cos(θ), R0 sin(θ))dθ = 0

}
.

Notice that the first order corrector W 0 for the P1 approximation is obtained by replacing ProjVε
U

(ũ0)

in (4.12) by ũ0 and proceeding as in Section 3, we get
W 0 ∈ Vlog and for all w ∈ VR0

log,∫
Ω1

f

(αf − αm)∇ũ0(0) · ∇wf dy +

∫
Ω1

f

αf∇W 0
f · ∇wf dy +

∫
Ω∞

αm∇W 0
m · ∇wmdy = 0.

(4.13)
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Choosing w such that w ∈ Vε
0 holds and its extension vanishes, it comes from (4.13) that∫

Ωε
f

αf∇
(
εW 0

f

( ·
ε

))
· ∇wf dx+

∫
Ωε

m

αm∇
(
εW 0

m

( ·
ε

))
· ∇wmdx

+

∫
Ωε

f

(αf − αm)∇ũ(0)(0) · ∇wf dx = 0

(4.14)

for all w ∈ Vε
0. Setting d1ε def

= uε − ProjVε
U

(ũ0)− εW 0
( ·
ε

)
, we have

d1ε ∈ Vε and for all w ∈ Vε
0,∫

Ωε
f

αf∇d1ε · ∇wf dx+

∫
Ωε

m

αm∇d1ε · ∇wmdx

+

∫
Ωε

f

(αf − αm)(∇ũ(0)(0)−∇ProjVε
U

(ũ0)) · ∇wf dx = 0,

with d1ε = −εW 0
( ·
ε

)
on Γ.

(4.15)

Lemma 4.2. There exists a constant C > 0, independent of ε, such that∥∥d1ε
∥∥

H1(Ω)
≤ Cε2. (4.16)

Proof. The strategy adopted here is quite similar to the one developed in the proof of Lemma 3.1. First,
we may observe that∥∥d1ε

∥∥
H1(Ω)

≤ C
(∥∥∥∇ũ(0)(0)−∇ProjVε

U
(ũ0)

∥∥∥
L2(Ωε

f )
+ ε
∥∥∥W 0

( ·
ε

)∥∥∥
H1/2(Γ)

)
Arguing as for W̃ 0 introduced in Section 3, W 0 is an harmonic function on Ω∞ and satisfies the following
identity:

W 0
(x
ε

)
=
∑
n≥1

(εR0

r

)n
(an cos(nθ) + bn sin(nθ)). (4.17)

Therefore, we have∥∥d1ε
∥∥

H1(Ω)
≤ C

(∥∥∥∇ũ(0)(0)−∇ũ(0)
∥∥∥

L2(Ωε
f )

+
∥∥∥∇(ũ(0) − ProjVε

U
(ũ0))

∥∥∥
L2(Ωε

f )

)
+ Cε2, (4.18)

and we may conclude the proof

4.3 Second order asymptotic expansion for the approximated problem

We exhibit the second order asymptotic expansion for the approximated problem. Namely, we assume
that P2(Ωε

f ) ⊂ Qε where P2(Ωε
f ) denotes the space of polynomials of degree less or equal to 2 on Ωε

f . Let
us define the following spaces:

Vv
def
=
{
v ∈ H1(Ω) : v|Γ = −R0

r (a1 cos(θ) + b1 cos(θ))
}

and Vε
v

def
= {v ∈ Vv : v|Ωε

f
∈ Qε}.
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On the one hand, let v be the solution to the following problem:Find v ∈ Vv such that for all w ∈ H1
0(Ω),∫

Ω
αm∇v · ∇wdx = 0.

(4.19)

On the other hand, let W 1 be a corrector defined by a scaled form of (4.13) in a dilated geometry satisfying
W 1 ∈ VR0

log and for all w ∈ Vlog,∫
Ω1

f

(αf − αm)Hũ0(0)y · ∇wf dy +

∫
Ω1

f

αf∇W 1
f · ∇wf dy +

∫
Ω∞

αm∇W 1
m · ∇wmdy = 0.

(4.20)

Choosing w ∈ Vε
0, we get∫

Ωε
f

αf∇
(
ε2W 1

f

( ·
ε

))
· ∇wf dx+

∫
Ωε

m

αm∇
(
ε2W 1

m

( ·
ε

))
· ∇wmdx

+

∫
Ωε

f

(αf − αm)Hũ0(0)x · ∇wf dx = 0.

(4.21)

for all w ∈ Vε
0. Setting d2ε = uε−ProjVε

U
(ũ0)− εW 0

( ·
ε

)
− ε2W 1

( ·
ε

)
− ε2ProjVε

v
(v). We may deduce from

(3.16), (4.22), (4.12) and (4.1) that

d2ε ∈ Vε
U and for all w ∈ V0

ε ,∫
Ωε

f

(αf − αm)
(
∇ProjVUε ũ

0 −∇ũ(0)(0)−Hũ0(0)x− ε2∇v
)
· ∇wf dx

+

∫
Ωε

f

αf∇d2ε · ∇wf dx+

∫
Ωε

m

αm∇d2ε · ∇wmdx = 0,

with d2ε = −εW 0
( ·
ε

)
− ε2W 1

( ·
ε

)
− ε2ProjVε

U
(v) on Γ.

(4.22)

Now proceeding as in Section 3.2, we may easily deduce the following lemma:

Lemma 4.3. There exists a constant C > 0, independent of ε, such that∥∥d2ε
∥∥

H1(Ω)
≤ Cε3. (4.23)

5 Error estimate for the thick–point approximation

The asymptotic expansion of the two preceeding sections allow us to give some estimates on the thick–
point approximation order. We treat several cases depending on the choice of the finite dimensional space
Qε. We begin with the polynomial spaces P1(Ωε

f ) and P2(Ωε
f ). Then, we enrich these two spaces with a

few functions which span the correctors W̃ 0 solution to (3.6) and W̃ 1 solution to (3.15). More precisely,
let

W̃ 0,0 and W̃ 0,1,



A multi–scale asymptotic analysis of a small body embedded in an elastic medium 15

be the solutions to (3.6) for ∇ũ0(0) =

(
1
0

)
and ∇ũ0(0) =

(
0
1

)
, respectively, and consider

Qε
1

def
= Span

{
P1(Ωε

f ), W̃ 0,0
( ·
ε

)
|Ωε

f

, W̃ 0,1
( ·
ε

)
|Ωε

f

}
. (5.1)

Similarly, noting that Trace(Hũ0(0)) = 0 since ũ0 is a harmonic function, let also

W̃ 1,0 and W̃ 1,1,

be the solutions to (3.15) for Hũ0(0) =

(
1 0
0 −1

)
, and Hũ0(0) =

(
0 1
1 0

)
, respectively, and consider

Qε
2 = Span

{
P2(Ωε

f ), W̃ 0,0
( ·
ε

)
|Ωε

f

, W̃ 0,1
( ·
ε

)
|Ωε

f

, W̃ 1,0
( ·
ε

)
|Ωε

f

, W̃ 1,1
( ·
ε

)
|Ωε

f

}
. (5.2)

Obviously, the restriction on Ωε
f of any W̃ 0

( ·
ε

)
solution to (3.6) belong to Qε

1 and Qε
2 and the restriction

on Ωε
f of any W̃ 1

( ·
ε

)
solution to (3.15) into Qε

2. We introduce functionals | · |1,Ω on L2(Ω) as follows:

|u|1,Ω
def
= ‖∇u‖L2(Ω) .

When using only P1(Ωε
f ), we can set the following result.

Lemma 5.1. If P1(Ωε
f ) ⊂ Qε, then there exists a constant C > 0 such that:

‖ũε − uε‖H1(Ω) ≤ Cε. (5.3)

Proof. Observe first that

ũε − uε = ũ0 + εW̃ 0
( ·
ε

)
+ d̃1ε − ProjVε

U
(ũ0) + εW 0

( ·
ε

)
+ d1ε.

Since both ‖d̃1ε‖H1(Ω) and ‖d1ε‖H1(Ω) are O(ε2), using the fact that ũε − uε ∈ H1
0(Ω) and the equivalence

of the norm and semi–norm in H1
0(Ω), we obtain

‖ũε − uε‖H1(Ω) ≤ C
(∥∥∥ũ0 − ProjVε

U
(ũ0)

∥∥∥
H1(Ω)

+ ε
∣∣∣W̃ 0

( ·
ε

)
−W 0

( ·
ε

)∣∣∣
1,Ω

+ ε2

)
.

The difference
∥∥∥ũ0 − ProjVε

U
(ũ0)

∥∥∥
H1(Ω)

is O(ε2) according to Lemma 4.1 and since P1(Ωε
f ) ⊂ Qε. Finally,

using W̃ 0 ∈ VR0

log and W̃ 0 ∈ ṼR0

log the evaluation of
∣∣∣W̃ 0

( ·
ε

)
−W 0

( ·
ε

)∣∣∣
1,Ω

leads to

∣∣∣W̃ 0
( ·
ε

)
−W 0

( ·
ε

)∣∣∣2
1,Ω
≤
∫

Ω
ε

∣∣∣1
ε
ε∇(W̃ 0 −W 0)

∣∣∣2 1

ε
dy =

∫
R2

∣∣∣∇(W̃ 0 −W 0)
∣∣∣2 dy ≤ C,

which ends the proof.
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Clearly, the fact that the term
∣∣∣W̃ 0

( ·
ε

)
−W 0

( ·
ε

)∣∣∣
1,Ω

is limited to being O(ε) is a source of non–

optimality. Furthermore, this estimate is independent of both ε and Qε. This indicates that the best
possible estimate when Qε = P2(Ωε

f ) is not better than ‖ũε − uε‖H1(Ω) = O(ε). We can improve this by
using Qε

1 and Qε
2 as follows.

Lemma 5.2. If Qε
1 ⊂ Qε then there exists C > 0 such that:

‖ũε − uε‖H1(Ω) ≤ Cε
2

Proof. Clearly, when Qε
1 ⊂ Qε, we have W̃ 0 ∈ VR0

log, so that W̃ 0 = W 0. Consequently, the term∣∣∣W̃ 0
( ·
ε

)
−W 0

( ·
ε

)∣∣∣
1,Ω

is vanishing which gives the result, following the proof of Lemma 5.1.

Lemma 5.3. If Qε
2 ⊂ Qε then there exists C > 0 such that:

‖ũε − uε‖H1(Ω) ≤ Cε
3. (5.4)

Proof. Using the order two expansion, we have

ũε − uε = ũ0 + εW̃ 0
( ·
ε

)
+ ε2W̃ 1

( ·
ε

)
+ ε2ṽ + d̃2ε

− ProjVε
U

(ũ0)− εW 0
( ·
ε

)
− ε2W 1

( ·
ε

)
− ε2(ProjVε

v
v)− d2ε.

We established that both
∥∥∥d̃2ε

∥∥∥
H1(Ω)

and
∥∥d2ε

∥∥
H1(Ω)

are O(ε3). Now, since Qε
2 ⊂ Qε, both W̃ 0 and W̃ 1

belong to VR0

log, so that W̃ 0 = W 0 and W̃ 1 = W 1. Moreover, W̃ 0 = W 0 implies also v = ṽ. Consequently,
we get

‖ũε − uε‖H1(Ω) ≤ C
(∥∥∥ũ0 − ProjVε

U
(ũ0)

∥∥∥
H1(Ω)

+
∥∥∥ṽ − ProjVε

v
(ṽ)
∥∥∥
H1(Ω)

+ ε3
)
.

Using Lemma 4.1 for both ũ0 and ṽ and since P2(Ωε
f ) ⊂ Qε we deduce the desired result.

It is also possible to recover an optimal estimate using a norm on a crown–shaped domain excluding
a small zone around the inclusion. For an arbitrary fixed r > 0, we establish the following result.

Lemma 5.4. For r > 0 small enough and P1(Ωε
f ) ⊂ Qε, there exist a constant C > 0 such that

‖ũε − uε‖H1(Ω\B(O,r)) ≤ Cε
2.

Proof. Following the proof of Lemma 5.1, we still obtain

‖ũε − uε‖H1(Ω\B(O,r)) ≤ C
(
ε
∣∣∣W̃ 0

( ·
ε

)
−W 0

( ·
ε

)∣∣∣
1,Ω\B(O,r)

+ ε2

)
.

We conclude by using the expansions of W̃ 0 and W 0 given by (3.10) and (4.17), respectively, and by
obtaining ∣∣∣W̃ 0

( ·
ε

)
−W 0

( ·
ε

)∣∣∣2
1,Ω\B(O,r)

=

∫
Ω\B(O,r)

∣∣∣∇(W̃ 0
( ·
ε

)
−W 0

( ·
ε

))∣∣∣2 dx ≤ Cε2.
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6 Special case of the circular inclusion

If we consider the special case of a circular inclusion, it is possible to give the explicit expression of the
first and second order correctors W̃ 0 and W̃ 1. Indeed, from the weak form (3.6) and (3.15), integrating
by part and using the fact that Trace(Hũ0(0)) = 0 since ũ0 is a harmonic function, they are solution to
the following strong problem for i ∈ {0, 1}:

−αf∆W̃ i
f = 0 in Ω1

f ,

−αm∆W̃ i
m = 0 in Ω∞,

W̃ i
f = W̃ i

m on Γ1,

αf∂nW̃
i
f = αm∂nW̃

i
m + φi on Γ1,∫ π

−π
W̃ i
m(R0 cos(θ), R0 sin(θ))dθ = 0,

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

with φ0 def
= ∇ũ0(0) ·

(
cos(θ)
sin(θ)

)
and φ1 def

=

(
Hũ0(0)

(
cos(θ)
sin(θ)

))
·
(

cos(θ)
sin(θ)

)
. The domain Ω1

f being the unit

disk in that case, and taking into account (6.1e) and the continuity condition (6.1c), we can expand W̃ 0

and W̃ 1 as follows for i ∈ {0, 1}:

W̃ i
f (y) =

+∞∑
n=1

rn(ãi,n cos(nθ) + b̃i,n sin(nθ)),

W̃ i
m(y) =

+∞∑
n=1

r−n(ãi,n cos(nθ) + b̃i,n sin(nθ)).

Concerning W̃ 0 and denoting κ
def
=

αm−αf

αm+αf
, the condition (6.1d) implies(

ã0,1

b̃0,1

)
= κ∇ũ0(0), ã0,n = b̃0,n = 0, for n ≥ 2,

and denoting Hũ0(0) =

(
h11 h12

h12 h22

)
, it implies for W̃ 1:

ã1,2 =
κ

2
(h11 − h22), b̃1,2 = κh12, ã0,n = b̃0,n = 0, for n 6= 2.

This leads to the following expression of W̃ 0 and W̃ 1:

W̃ 0
f (y) = κ∇ũ0(0) · y, W̃ 0

m(y) =
1

|y|2
κ∇ũ0(0) · y,

W̃ 1
f (y) = κ((h11 − h22)(y2

1 − y2
2) + 2h12y1y2), W̃ 1

f (y) =
1

|y|2
κ((h11 − h22)(y2

1 − y2
2) + 2h12y1y2).

It is to be noted that W̃ 0
f

( ·
ε

)
∈ P1(Ωε

f ) and W̃ 1
f

( ·
ε

)
∈ P2(Ωε

f ). This means that, with reference to the

notations of Section 5, Qε
1 = P1(Ωε

f ) and Qε
2 = P2(Ωε

f ), which, thanks to Lemmas 5.2 and 5.3, leads to
the following result, meaning that the optimality is reached:
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Lemma 6.1. In the case of a circular inclusion, if P1(Ωε
f ) ⊂ Qε, then there exists C > 0 such that

‖ũε − uε‖H1(Ω) ≤ Cε
2,

and if P2(Ωε
f ) ⊂ Qε, then there exists C > 0 such that

‖ũε − uε‖H1(Ω) ≤ Cε
3.

7 Strong form of the thick–point approximation in the case Qε = P1(Ω
ε
f)

We introduced the thick–point approximation in Section 4 in a weak form only. It is of course possible
to deduce a strong form of the correpsonding problem. The aim of this section is to give the strong form
when Qε = P1(Ωε

f ). Since in that case uεf belongs to P1(Ωε
f ), it comes that there exists (aεf , b

ε
f , c

ε
f ) ∈ R3

such that

uεf (x1, x2) = aεfx1 + bεfx2 + cεf .

According to Green’s formulae, we may deduce from (4.1) that for all w ∈ Vε
U, we have

αf∇uεf · ∇wfµ(Ωε
f ) +

∫
Ωε

m

αm∆uεmwmdx+

∫
Γε

αm∂nu
ε
mwmds = 0. (7.1)

Since w ∈ Vε
0, we may infer that wf = wm and (7.1) can be rewritten as follows:

αf∇uεf · ∇wfµ(Ωε
f ) +

∫
Ωε

m

αm∆uεmwmdx+

∫
Γε

αm∂nu
ε
mwf ds = 0. (7.2)

In the case where wf = 0, for all w ∈ Vε
0, we get∫

Ωε
m

αm∆uεmwmdx = 0,

which implies that

∆uεm = 0 a.e. on Ωε
m. (7.3)

Clearly, we may deduce from (7.2) and (7.3) that

aεf = − αm
αfµ(Ωε

f )

∫
Γε

∂nu
ε
mx1 ds and bεf = − αm

αfµ(Ωε
f )

∫
Γε

∂nu
ε
mx2 ds. (7.4)

While in the case where wf = 1, we find ∫
Γε

αm∂nu
ε
m ds = 0 (7.5)
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According to (7.4) and (7.5), we deduce uε satisfies the following problem:

αm∆uεm = 0 on Ωε
m,

uεm = uεf on Γε,

uεf (x1, x2) = − αm
αfµ(Ωε

f )

(
x1

∫
Γε

∂nu
ε
mx1 ds+ x2

∫
Γε

∂nu
ε
mx2 ds

)
in Ωε

f ,∫
Γε

αm∂nu
ε
mds = 0

uεm = U on Γ.

8 Conclusion

In this paper, we presented an approximation model for a small inclusion in an elastic medium, in antiplane
displacement, the thick–point approximation, which consists in approximating the displacement in the
inclusion in a finite dimensional space. In order to justify its relevance, we have presented an asymptotic
analysis of the initial model, derived from [5], as well as an asymptotic analysis of the approximated model.
These two analyses allowed us to derive an error analysis between the initial model and the approximated
one and allowed us to distinguish between completely optimal cases and non–optimal cases. Specifically,
the first and second degree polynomial approximation was not found optimal in the general case with only
a convergence in O(ε). Optimality (i.e. O(ε2) and O(ε3) convergence respectively) was obtained with
the enrichment of the polynomial spaces with a few solutions to the equations defining the correctors. A
notable exception is the case of the circular inclusion where a the optimality is reached without enrichment.

One of the main perspectives of this work, apart from the fact that it should easily extend to the case
of plane elasticity as in [5], is to derive optimal numerical methods for the account of small inclusions in
media at the lowest computational cost.
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[23] E. Lignon. Modélisation multi–échelles de nappes fibrés en compression. Ph.D. thesis, Ecole Poly-
technique (2011).
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