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Abstract. The understanding of the statistical properties and
of the dynamics of multistable systems is gaining more and
more importance in a vast variety of scientific fields. This is
especially relevant for the investigation of the tipping points
of complex systems. Sometimes, in order to understand the
time series of given observables exhibiting bimodal distri-
butions, simple one-dimensional Langevin models are fit-
ted to reproduce the observed statistical properties, and used
to investing-ate the projected dynamics of the observable.
This is of great relevance for studying potential catastrophic
changes in the properties of the underlying system or reso-
nant behaviours like those related to stochastic resonance-
like mechanisms. In this paper, we propose a framework
for encasing this kind of studies, using simple box models
of the oceanic circulation and choosing as observable the
strength of the thermohaline circulation. We study the sta-
tistical properties of the transitions between the two modes
of operation of the thermohaline circulation under symmet-
ric boundary forcings and test their agreement with simpli-
fied one-dimensional phenomenological theories. We ex-
tend our analysis to include stochastic resonance-like ampli-
fication processes. We conclude that fitted one-dimensional
Langevin models, when closely scrutinised, may result to be
more ad-hoc than they seem, lacking robustness and/or well-
posedness. They should be treated with care, more as an
empiric descriptive tool than as methodology with predictive
power.

1 Introduction

An interesting property of many physical systems with sev-
eral degrees of freedom is the presence of multiple equilib-
ria (or, more in general, of a disconnected attractor) for a
given choice of the parameters. In such a case, the system

does not obey ergodicity and its asymptotic state depends on
what is the basin of attraction the initial condition belongs
to. Among the many interesting properties of multi-stable
systems, we may mention their possibility of featuring hys-
teretic behaviour: starting from an initial equilibriumx= xin
realized for a given value of a parameterP =Pin and increas-
ing adiabatically the value ofP so that the system is always
at equilibrium followingx = x′(P ), we may eventually en-
counter bifurcations leading the system to a new branch of
equilibria x = x′(P ) such that, if we revert the direction of
variation ofP , we may end up to a different final stable state
xfin = x′(Pin) 6= x(Pin)= xin. More generally, we can say
that the history of the system determines which of the stable
states is realized for a given choice of the parameters.

Whereas hysteretic behaviour has first been discussed in
the context of magnetism, climate dynamics offers some
outstanding examples where multistability is of great rele-
vance, such as the classical problem of the snowball/snow-
free Earth (Saltzman 2002; Lucarini et al., 2010; Pierrehum-
bert et al., 2011). In this context, the problem which has
probably attracted the greatest deal of interest in the last two
decades is that of the stability properties of the thermoha-
line circulation (THC). Since paleoclimatic evidences sug-
gest that the large scale circulation of the Atlantic Ocean
presents at least two, qualitatively different, stable modes
of operation (Boyle et al., 1987; Rahmstorf, 2002), theoreti-
cal and modellistic efforts have long been directed to under-
standing the mathematical properties of the circulation and
the physical processes responsible for switching from one to
the other stable mode and those responsible for ensuring the
stability of either equilibrium.

Interestingly, it has been possible to construct very sim-
ple models of the THC (Stommel, 1961; Rooth, 1982) able
to feature most of the desired properties, and models of
higher degrees of complexity have basically confirmed the
robustness of such properties of multistability, from simple
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10 V. Lucarini et al.: Bistable systems with stochastic noise

two-dimensional convective equations models (Cessi and
Young, 1992; Vellinga, 1996; Lucarini et al., 2005, 2007) to
simplified climate models (Stocker and Wright, 1991; Rahm-
storf, 1995; Stocker and Schmittner, 1997). Whereas cli-
mate models of intermediate complexity now consistently
represent the THC as a multistable system (Rahmstorf et
al., 2005), results are not conclusive when full 3-D climate
models are considered (Stouffer and Manabe, 2003; Scott
et al., 2008). Nonetheless, recent simulations performed by
Hawkins et al. (2011) with a full 3-D climate model have suc-
cessfully reproduced the kind of bistability properties shown
by Rahmstorf et al. (2005). In the case of THC, the strength
of the hydrological cycle plays the role of dominant parame-
ter, whose variation can lead the system through bifurcations
(Sijp and England, 2006, 2011; Sijp et al., 2011). A detailed
account of these analyses can be found in Rahmstorf (1995),
Scott et al. (1999), and Titz et al. (2001, 2002). The mat-
ter is of great relevance for understanding climate variability
and climate change because, if the system is close to a bi-
furcation point, small changes in the parameters value could
have virtually irreversible effects, driving the climate system
a qualitatively different steady state. As evidenced in many
studies (see, e.g. Kuhlbrodt et al., 2007), a transition from the
present state of the THC to a state featuring weaker merid-
ional circulation would have very relevant climatic effects at
regional and global scale, as the northward ocean heat trans-
port in the Atlantic would be greatly reduced.

The potential of shut-off of the THC is considered a high
impact climate risk – even if its likelihood for the present
climate is considered very low (Rahmstorf, 2006) – and the
conditions under which such a transition can occur are prob-
ably the best example of a “climate tipping point” (Lenton et
al., 2008).

Since we are dealing in principle with a 3-D fluid with
complex thermodynamical and dynamical properties, a lot
of efforts have been directing at finding, using suitable scal-
ing and simplified theoretical setting, an approximate one-
dimensional ordinary differential equation equation of the
form q̇ =F(q,P ), whereq is the intensity of the THC andP
is a set of parameters of the system. Such an equation would
be able to represent at least in a semi-quantitative way the
evolution of the THC strength as a function of the strength
and some parameters only and, by solvingF(q,P ) = 0,
would provide the (in general) multiple equilibria corre-
sponding to a specific choice of the set of parametersP . An
excellent account of this methodology can be found in Di-
jkstra (2005). Note that, very recently, a related surrogate
one-dimensional dynamics for a salinity indicator has been
proposed to fit the output of a comprehensive climate model
(Sijp et al., 2011).

The dynamics of multistable systems becomes rather inter-
esting when stochastic forcing is considered. In the most ba-
sic case, such a forcing is represented in the form of additive
white noise. Noise introduces on one side small scale vari-
ability around each of the stable equilibria of the system,

and, on the other side, allows for jumps (large scale vari-
ability) driving the system across the boundaries separat-
ing the basin of attraction of the fixed points. See Friedlin
and Wentzel (1998) for a detailed mathematical treatment of
these problems. Since the landmark Hasselmann’s (1976)
contribution, it has become clearer and clearer in the cli-
mate science community that stochastic forcing components
can be treated as quite reliable surrogates for high frequency
processes not captured by the variables included in the cli-
mate model under consideration (Fraedrich, 1978; Saltzman,
2002). This has raised the interest in exploring whether tran-
sitions between stable modes of operation of the THC far
from the actual tipping points could be triggered by noise,
representing high-frequency (with respect to the ocean’s time
scale) atmospheric forcings, of sufficient amplitude (Cessi,
1994; Monahan, 2002). Along these lines, it has become es-
pecially tempting to interpret the dynamics of the THC in
presence of noise as resulting from an effective Langevin
equation of the formdq = F(q,p)dt + εdW – wheredW
is the increment of a Wiener process – as this opens the
way to approaching the problem in terms of one-dimensional
Fokker-Planck equation. Ditlevsen (1999) suggested the
possibility of considering more general stochastic processes
for accommodating the statistical properties of observational
data.

The Langevin equation approach has also led various re-
searchers to study whether the process of stochastic reso-
nance (Gammaitoni et al., 1998) – basically noise-enhanced
response amplification to periodic forcing – could explain
the strength of the climate response (in terms of actual THC
strength) in spite of the relative weakness of the Milankovic
forcing. Note that stochastic resonance, which has enjoyed
great success in fields ranging from microscopic physics to
neurobiology and perception, was first proposed in a climatic
context (Benzi et al., 1982; Nicolis, 1982; Benzi, 2010).
Velez-Belchi et al. (2001) provided the first example of a sim-
ple THC box-model featuring stochastic resonance, and later
Ganopolski and Rahmstorf (2002) observed a similar mech-
anism in action in a much more realistic climate model.

In this work we would like to examine critically the effec-
tiveness and robustness of using one-dimensional Langevin
equations to represent the dynamical and statistical proper-
ties of the THC strength resulting from models which fea-
ture more than one degree of freedom. This is methodologi-
cally relevant, in the context of recent efforts directed at un-
derstanding whether the transitions between different steady
states associated to the tipping points can be highlighted by
early indicators (Scheffer et al., 2008). In Sect. 2 we show
how to construct, from data, the form of the effective driv-
ing force and the intensity of noise, and propose tests for
investigating the robustness of the approach. In Sect. 3 we
describe the main properties of the simple box models of the
oceanic circulation analysed in this paper. In Sect. 4 we test
our methodology by studying, in various cases, whether it
is possible to represent consistently the statistical properties
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of the THC strength resulting from the stochastic forcing of
the models introduced in Sect. 3 using an one-dimensional
Langevin model. In Sect. 5 we further expand our analy-
sis by testing whether the matching conditions for observing
stochastic resonance are obeyed. In Sect. 6 we present our
conclusions.

2 Theoretical background

2.1 Modelling a bistable system

Let’s consider a one dimensional Langevin equation for the
variablex of the form:

dx=F(x)dt+εdW, (1)

whereF(x) is a smooth function ofx giving the drift term,
W is a standard Wiener process anddW is its infinitesimal
increment, so thatε parameterises the strength of the stochas-
tic forcing. As well known, the invariant probability density
function (pdf)π(x) can be written as:

π(x)=Ce
−2V (x)

ε2 (2)

whereV (x) is the effective potential such thatdV (x)/dx =

−F(x) andC is the normalisation constant. The local ex-
trema of the potential correspond to the fixed points of the
deterministic system obtained whenε= 0, and in particular
its local minima (maxima) giving the stable (unstable) equi-
libria. Quite intuitively, in the stochastic case, the peaks of
the invariant probability distribution correspond to the min-
ima of the potential.

In the prototypical situation of a confining double well po-
tential, where we refer to the position of the right and left
minimum ofV (x) asx+, x−, and to local maximum asx0,
the two peaks of theπ(x) are separated by a dip correspond-
ing to the local maximum of the potential, while for large
positive and negative values ofx theπ(x) approaches zero
asV (x) diverges for|x| →∞. The average rate of transition
r(+ → −) from the basin of attraction ofx+ to that ofx−

can be approximated using the Kramer’s formula:

r(+ →−)=
1

2π

√
V ′′(x+)V ′′(x0)e

−2
V (x0)−V (x+)

ε2 (3)

under the condition that the absolute value of the exponent
is larger than one, so thatV (x0)−V (x+)≥ ε

2/2. This cor-
responds to the physical condition that the noise is moderate
with respect to the depth of the potential well. The average
rate of transitionr(− → +) in the opposite direction can be
obtained by exchanging the sign plus with the sign minus
in the previous expression. The Kramer’s formula basically
expresses the general fact that at stationary state a detailed
balance conditions applies.

Let’s now consider the less idealised case where we ob-
serve a scalar output signaly(x) generated by a stochastic or
chaotic deterministic flow of the systemx living, in general,
in an N-dimensional phase space, and let’s assume that the
empirical pdfπ(y) is bimodal, so that two peaks are found
at y = y+, y = y−, separated by a local minimum aty = y0.
We wish to test the possibility of constructing a Langevin
equation for the scalary:

dy=Feff(y)dt+εeffdW (4)

so that the statistics generated by Eq. (4) closely resembles
the one deriving from the full system. Such a representa-
tion would bypass the details of the full dynamics of the sys-
tem and its construction can be approached by imposing con-
straints based upon the populations of the basin of attractions
of the two modes and upon the transition probability between
such basins. Basically, this amounts to defining an effective
projected dynamics.

The observation time of the variabley must be long
enough to allow for a robust estimate of the pdf and for ob-
serving many transitions between the two modes. From the
empirical pdf of the considered observableπ(y) we derive
the function(y)= −ln(π(y)). In order to achieve compati-
bility with Eq. (2), we define

2Veff(y)/ε
2
eff =U(y)+const. (5)

The functionU(y) contains information on both the effec-
tive potential of the system and on the effective intensity of
the noise. Substituting the expression ofVeff(y) in Eq. (3),
we can write, e.g. the average rater(+ →−) as follows:

r(+ →−)≈
ε2

eff

4π

√
U ′′(y+)U ′′(y0)e

−(U(y0)−U(y+)) (6)

By comparing this expression with the observed transition
rate, we can finally find the actual value ofεeff, because all
the other terms can be computed from the time series of the
y observable. Assuming that in the region between the two
minima and the local maximum the functionU(y) is smooth,
we obtain the following expression, which is numerically
more robust as the second derivatives disappear:

r(+ →−)≈

√
2ε2

eff

π

(U(y0)−U(y+))

(y+ −y0)2
e−(U(y0)−U(y+))

=
2
√

2

π

(V (y0)−V (y+))

(y+ −y0)2
e
−

(
2
V (y0)−V (y+)

ε2eff

)
(7)

where G(+ → −) =

√
2
π
(U(y0)−U(y+))

(y+−y0)
2 e−(U(y0)−U(y+)) is a

factor depending only on the observed probability. Note
that Eqs. (6)–(7) are valid under the condition thatU(y0)−

U(y+)& 1 or, equivalently, thatπ(y+)/π(y0)& e. By plug-
ging the obtained value ofεeff into Eq. (5) we deriveVeff(y).
We can then reconstruct the effective Langevin equation in
the form given in Eq. (4). It is crucial that the same value for
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12 V. Lucarini et al.: Bistable systems with stochastic noise

εeff is obtained when using as benchmark the average rate
r(− →+), because otherwise we have that the reconstructed
dynamics does not obey detailed balance, or, equivalently,
there is a mismatch between time-scales of the transitions
and steady state populations of the two basins. Such an issue
is not relevant in the special case when the pdf of the system
is symmetric with respect toy0.

2.2 Robustness

Let’s now consider an N-dimensional Langevin equation of
the form:

dxi =Fi(x1,...,xN )dt+εijdWj (8)

where thedwj terms indicate increments of independent
Wiener processes and theFi(x1,...,xN ) are the (generally
nonlinear) drift terms. We can write the Langevin equation
for the observabley constructed as linear combination of the
system variablesy= cixi as follows:

dy= ciFi(x1,...,xN )dr+ciεijdWj

= ciFi(x1,...,xN )dt+ ε̄dW (9)

where, exploiting the independence of the Wiener processes,

we haveε̄ =

√
6Nj=1(ciεij )

2. If the deterministic part of

system (9) features two stable equilibriax+ andx−, when
stochastic noise is added, we will see hopping between the
basins of attraction of these two points. When looking at
the variabley = cixi as output of the system, we will see
a bimodal distribution where the two peaks are centred at
y+ = cixi,+ andy− = cixi,−, respectively, with a local mini-
mum in-between situated aty0.

The true dynamics of the observabley is indeed given in
Eq. (9), but, if we are provided only with the time series of
y, the best we can do in to try to derive the “best” approx-
imate equation – the one-dimensional Langevin model – of
the form given in Eq. (4), using the heuristic procedure de-
scribed above. Comparing Eqs. (4) and (9), we understand
that the difference in the drift termsciFi(x1,...,xN )−Feff(y)

describes the deterministic dynamics of they variable which
cannot be parameterised in terms of they variable alone. We
may expect that ify is a slow variable, which retains the long
term memory of the system, such a difference is small, and
the dynamics ofy is truly quasi-one-dimensional In there is
time-scale separation, one may expect that the impact of the
faster variables on its evolution can be effectively expressed
as noise, thus determining the value ofε̄ (Saltzman, 2002).
Therefore, the ratiōε/εeff gives an indirect measure of how
strong is this effect, being close to 1 if the dominant contri-
bution for comes from the direct stochastic forcing into the
system.

Since constructing an ad-hoc one-dimensional model from
a time-series is typically possible by following the lines de-
scribed above, we need to introduce some criteria to test
the robustness of the approach we have undertaken. This is

needed in order to check whether our methodology is solely
descriptive of the statistics of the chosen observable system
for a given choice of parameters, or, instead, has predictive
power, in terms of allowing one to understand how the sta-
tistical properties of the observable change when the param-
eters of the full system are altered. Obviously, as mentioned
above, choosing a suitable variabley will be crucial in en-
suring the effectiveness of this one-dimensional parameteri-
sation:

– As a first condition of robustness, we may ask that if
we multiply the noise intensity of the true system by a
factor α, so thatεij → αεij in Eq. (8), we obtain that
correspondinglyεeff → αεeff and the effective potential
Veff(y) is not altered in Eq. (4).

– Another condition of robustness is that if in Eq. (9) we
alter the noise matrixεij in such a way that̄ε is not
altered in Eq. (9), we would like that, correspondingly,
εeff andVeff are not altered in Eq. (4).

These conditions basically require that the reconstructed de-
terministic drift term is independent of the intensity of the
noise – so that an underlying deterministic dynamics is well
defined – and the reconstructed noise intensity scales linearly
with the actual noise applied to the system, so that we can
construct a relationship such asεeff(ε̄)≈ γ ε̄

3 Simple box models of the thermohaline circulation

3.1 Full model

We consider the simple deterministic three-box model of
the deep circulation of the Atlantic Ocean introduced by
Rooth (1982) and thoroughly discussed in Scott et al. (1999)
and Lucarini and Stone (2005a, b). The model consists of
a northern high-latitude box (box 1), a tropical box (box 2),
and a southern high-latitude box (box 3). The volume of the
two high-latitude boxes is the same and is 1/V times the vol-
ume of the tropical box, whereV is chosen to be equal to 2.
The physical state of the boxi is described by its temperature
Ti and its salinitySi ; the boxi receives from the atmosphere
the net flux of heatHi and the net flux of freshwaterFi ; the
freshwater fluxes globally sum up to 0, so that the average
oceanic salinity is a conserved quantity of the system. The
box i is subjected to the oceanic advection of heat and salt
from the upstream box through the THC, whose strength is
q. The dynamics of the system is described by the evolution
equation for the temperature and the salinity of each box. Af-
ter a suitable procedure of non-dimensionalisation (Lucarini
and Stone, 2005a), we obtain the following final form for
the temperature and salinity tendency equations for the three
boxes:

Ṫ1 =

{
q(T2−T1)+H1
|q|(T3−T1)+H1

(10a)
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Ṫ2 =

{ q
V
(T3−T2)+H2

|
q
V

|(T1−T2)+H2
(10b)

Ṫ3 =

{
q(T1−T3)+H3, q >0
|q|(T2−T3)+H3, q ≤ 0

(10c)

Ṡ1 =

{
q(S2−S1)−F1
|q|(S3−S1)−F1

(10d)

Ṡ2 = −
1

V
(Ṡ1+ Ṡ3) (10e)

Ṡ3 =

{
q(S1−S3)−F3, q >0
|q|(S2−S3)−F3, q ≤ 0

(10f)

whereq = k(ρ1 − ρ3) and ρi = ρ0(1−αTi +βSi), so that
q = k(β(S1−S3)−α(T1−T3)),α andβ are the usual thermal
and haline expansion coefficients,ρ0 is a baseline density,
andk is the hydraulic constant controlling the water trans-
port. Such a parameterisation was first introduced by Stom-
mel (1961) for a hemispheric box model, whereas the ap-
proximate linear relationship between the density difference
between the two high-latitude regions and the THC strength
has been confirmed by simplified yet realistic GCM simula-
tions (Rahmstorf, 1995; Scott et al., 2008).

The freshwater fluxesFi are considered given constants,
with F2 = −(F1+F3)/V , so thatS1+V S2+S3= (V +2)S0
at all times, whereS0 = 35 psu is a baseline salinity. Instead,
the heat fluxHi = λ(T̄i −Ti) is such that the box tempera-
ture is relaxed to a fixed target temperatureT̄i with the time
constantλ−1. Such a representation mimics the combined ef-
fect of radiative heat transfer and of a meridional heat trans-
port. This also implies that the spatial average of ocean tem-
peratureT̃ = (T1 +V T2 +T3)/(2+V ) obeys the evolution

equation˙̃T = λ(˜̄T − T̃ ), where˜̄T is the spatial average of the
target temperature, so that asymptotically (and, in practise,
after few units ofλ−1)T̃ is a conserved quantity. Therefore,
we practically haveṪ2 ≈ −(Ṫ1 + Ṫ3)/V . We usually have
that the internal time scale of the systemq−1 is much larger
thanλ−1, thus implying that the thermal relaxation is fast.

The water of the high latitude ocean box where down-
welling occurs is warmer and more saline that than situated
on the opposite side of the planet, since it receives advection
from the warm and saline equatorial box. Since the haline
contribution is stronger, the downwelling box is denser than
the upwelling box. The sign ofq is positive if downwelling
occurs in box 1, and negative if it occurs in box 3. The buoy-
ancy fluxes in the upwelling and downwelling boxes serve
different purposes in determining the dynamics of the sys-
tem. In fact, the strength of the circulation at equilibriumqref

depends only on the strength of the buoyancy fluxes in the
upwelling boxHu,eq andFu:

|qref| =

√
k(αHu,eq+βFu),

where the sign ofqeq is positive if u= 1 and negative if
u= 1. Instead, for a given value ofFu the realised pattern of
circulation is stable as long asFd . 3Fu, which implies that
Fd = 3Fu a bifurcation leading to an instability of the sys-
tem is found. Such an instability exchanges the role of the
upwelling and downwelling boxes. Therefore, if, e.g. in the
initial stateu= 3 andd = 1, andF3 is kept fixed, the sys-
tem features bistability for the following range of values of
F1 : 1/3F3 .F1 . 3F3. These approximate relations become
exact in the limit of infinitely fast thermal relaxation.

Following Scott et al. (1999) and Lucarini and
Stone (2005a), we select for the constants of the sys-
tem the valuesk = 1.5× 10−6 s−1, α = 1.5× 10−4 K−1,
β = 8.0×10−4 (psu)−1, λ= 1.3×10−9 s−1, V = 2. When
symmetric boundary conditions are considered with
T̄1 = T̄3 = 0◦C, T̄3 = 30◦C, F1 = F3 = 9× 10−11 psu s−1,
we obtain at steady state|qref| = 1.47× 10−11 s−1. The
sign of q depends uniquely on the initial conditions of the
integration: we have 50 % probability of ending up in either
the northern or the southern downwelling state if random
initial conditions are chosen. Since the internal time scale
|qref|

−1
≈ 215y is much larger than the thermal time scale

λ−1
≈ 25y, we conclude that the thermal relaxation is a fast

process.
The physical valuẽq of the strength of the thermohaline

circulation can be found from the normalised value above
as q̃ = qVbox,1, whereVbox,1 = Vbox,3 = Vbox,2/V = 1.1×

1017 m3 is the volume of either high-latitude box. Instead,
the physical value of the net freshwater flux̃Fi into box i is
obtained as̃Fi =FIVbox,i/S0; its intensive value per unit sur-
face results to bẽFi =FiVbox,i/Abox,iS0 =FiDbox/S0 where
Dbox = 5000 m is the common depth of the three oceanic
boxes. Therefore, our base state features reasonable val-
ues for the net poleward transport of freshwater flux – about
2.8×105 m3 s−1

= 0.28 Sv, and for the THC strength – about
1.55×107 m3 s−1

= 15.5 Sv.

3.2 Simplified model

A simplified version of the model given in Eq. (10a–f) can
be derived by assuming that the thermal restoring constant
λ→ ∞ so that the time scale of the feedbackλ−1

→ 0. Thus,
the temperatures of the three boxes are such that at all times
Ti = T̄i , so that we obtain a reduced dynamical system with
only 2 degrees of freedom (d.o.f.):

Ṡ1 =

{
q(2S0−3/2S1−1/2S3)−F1 q >0
|q|(S3−S1)−F1 q ≤ 0

(11a)

www.nonlin-processes-geophys.net/19/9/2012/ Nonlin. Processes Geophys., 19, 9–22, 2012



14 V. Lucarini et al.: Bistable systems with stochastic noise

Ṡ3 =

{
q(S1−S3)−F3 q >0
|q|(2S0−3/2S3−1/2S1)−F3 q ≤ 0

(11b)

where the THC strength can be written asq = kβ(S3 −S1).
Note that, since the system (11a–b) has been obtained by per-
forming a singular perturbation to (10a–f), we need to renor-
malize the value of the hydraulic constantk in order to ob-
tain qref = 1.47× 10−11 s−1 at steady state when choosing
F1 = F3 = 9×10−11 psu s−1 as above. The resulting value
is k = 3.0×10−7 s−1, with |qref| =

√
kβFu =

√
kβF1. The

same physical scalings described above apply here. Such a
simplified model retains the most relevant elements of the
dynamics of the full model, even if the thermal dynamical
feedback (Scott et al., 1999) are missing.

4 Numerical experiments: fitting the dynamics from the
population and the transition rates

4.1 Symmetric forcing to the simplified model

We now modify the dynamical system (11a–b) by including
additive noise in both the evolution equations for bothS3 and
S1 so that we obtain the following system of stochastic dif-
ferential equations in the Ito form:

dS3 =

{
q(2S0−3/2S1−1/2S3)dt−F1dt+ε1dW1, q >0
|q|(S3−S1)dt−F1dt+ε1dW1 q ≤ 0

(12a)

dS3 =

{
q(S1−S3)dt−F3dt+ε3dW3, q >0
|q|(2S0−3/2S3−1/2S1)dt−F3dt+ε3dW3 q ≤ 0

(12b)

wheredW1,3 are the increments of two independent Wiener
processes. Note that Ditlevsen (1999) proposed the possi-
bility of considering more general noise processes to explain
the THC dynamics. Hereby, we stick to the more usual white
noise case.

We then perform a set of experiments by integrating
the stochastic differential Eq. (12a–b) using the numeri-
cal scheme proposed in Mannella and Palleschi (1989) for
values ofε1 = ε3 = ε ranging from 3.6× 10−10 psu s−1/2

to 6.2× 10−10 psu s−1/2. This corresponds to a range of
noise strength for the physical freshwater flux of 1.12×

106 m3 s−1/2 to 1.96×106 m3 s−1/2. In more concrete terms,
we are exploring stochastic perturbations to the freshwater
flux whose variability (standard deviation), over the charac-
teristic internal time scale|qref|

−1
≈ 215 yr, range between

27 % and 47 % of the baseline valueF1 = F3. Results are
presented for sets of 100 ensemble members for each value
of ε, with each integration lasting 106 yr. The chosen time
step is 1 yr.

We wish to study the possibility of defining up to a good
degree of precision a consistent stochastic dynamics for the
THC strengthq involving onlyq itself and noise. Following

Fig. 1. Empirical probability distribution function for the THC
strength in the 2 d.o.f. model for selected values of symmetrically
applied noise.

the procedure outlined in Sect. 2, for each value ofε1 = ε3 =

ε, where we have on purpose kept the system’s parameters
invariant with respect to exchanging the box 1 and the box 3,
we attempt the derivation of the deterministic drift term and
the stochastic noise defining the effective Langevin equation
for the THC strength:

dq =Feff(q,ε)dt+εeff(ε)dW (13)

where our notation accommodates for a noise-dependent ef-
fective drift term, which corresponds to an efficient poten-
tial Veff(q,ε), such thatFeff(q,ε)= −dVeff(q,ε)/dq. The
pdfs π(q) feature a very strong dependence on the inten-
sity of the noise, with, as expected, higher noise intensity
associated to flatter distributions (Fig. 1). We then derive
the normalised potentialU(q,ε)= −ln(π(q,ε)) (Fig. 2). By
matching the observed hopping rater(+ →−) (Fig. 3a) with
the right hand side of the formula given in Eq. (7) – in
Fig. 3b we present the values of the factorr(+ → −) – we
derive for each value ofε the corresponding value ofεeff.
Note that for each value of the noise we use only the ob-
served difference between the value ofU(q,ε) evaluated in
q = 0 and inq = |qref| and the value of|qref|, and the upper
bound ofε has been chosen so thatU(q0,ε)−U(q+,ε)=

U(q0,ε)−U(q−,ε)& 1.5. As shown in Fig. 3c, we obtain
that up to a high degree of precisionεeff ≈ γ

√
2kβε = γ ε̄,

whereγ ≈ 1 for all values ofε. Moreover, also is in agree-
ment with our expectations given at the end of Sect. 2, we
have thatVeff(q,ε)≈ Veff(q), so that the effect of adding
noise does not impact the deterministic drift term, or, in other
terms, a deterministic dynamics is well defined. Figure 4
shows that for all values of noise the obtained effective po-
tentials collapse into a single universal function, apart from
an additive constant of no physical significance.

Our experimental procedure has shown quite convincingly
that we can reduce the time evolution of the THC strength to
a one-dimensional Langevin equation. We wish now to in-
vestigate how to derive analytically the drift and the noise
term in Eq. (13) and an expression for the hopping rate
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Fig. 2. One-dimensional adimensional potentialU(q) obtained as
minus the logarithm of the pdf given in Fig. 1.

r(+ → −). Rewriting the system (10a–b) with respect to
the new variablesq = kβ(S1 − S3)= k(ρ1 − ρ3) andQ=

k(ρ1+ρ3), we obtain the following coupled evolution equa-
tions:

dq = q(2kρ̃−3/2q2/|q|−Q)dt+εqdWq (14a)

dQ= q(2kρ̃+1/2q2/|q|−Q)dt−kβ(F1+F3)dt+εQdWQ (14b)

whereρ̃ = ρ0(1−α(T̃1 +2T̃2 + T̃3)/4+βS0) is the average
density of the system, we have that, following Eq. (7),εq =

εQ = kβ

√
ε2

1 +ε2
3, anddWq , dWQ are increments of Wiener

processes. Note that the drift terms in both Eq. (11) is odd
with respect to theq→ −q transformation and the SDE for
the THC strength is in the form of Eq. (9), withεq − ε̄. We
assume that the system spends most of its time near the two
deterministic equilibria withq = ∓|qref|, and that over the
timescales of our interest the deterministic drift term of the
variableQ vanishes. Assuming that the random forcing onQ

has little impact onq, we derive the following approximate
Langevin equation for the evolution of the THC strength:

dq ≈ −2q(q2/|q|−|qref|)dt+εqdWq , (15)

where, the drift term is odd with respect to parity and is in-
dependent of the noise strength. The corresponding effec-
tive potentialVeff(q) is independent ofε and can be written
asVeff(q)= −q2

|qref|+2/3q2
|q|+ const. Note that this is

a not a quartic symmetric potential but has the same par-
ity properties and is twice differentiable everywhere. As
shown in Fig. 4, this functional form closely approximates
the experimental findings previously described, with discrep-
ancies where the probability density is exponentially van-
ishing and small deviations also forq ≈ 0 (where the den-
sity is also low). Moreover, ifε1 = ε3, we obtain that
εq = ε̄=

√
2kβε1 ≈ εeff, so that the agreement between our

experimental and theoretical findings for both the determin-
istic and stochastic part of the dynamics is quite satisfactory.
This suggests that in the experimental setting of Eq. (12a–b)

Fig. 3. Goodness of the one-dimensional approach for the reduced
2 d.o.f. model. (a) Average rate of hopping between the north-
ern and southern sinking equilibriar(+ → −)= r(− → +) (black
line). The theoretical value is shown with the red line. Data are in
units of s−1. (b) Geometrical factorG(+ → −)=G(− → +) of
the hopping rate computed from Eq. (7). Adimensional quantity.
(c) Value of the parameterγ giving the ratio betweenεeff (obtained
asa divided byb) and the theoretically derived expression

√
2kβε.

Adimensional quantity.

it is possible to project very efficiently the dynamics of the
system on the variableq alone, which seems to capture well
the slow manifold (Saltzman, 2002) of the system. Using
Eq. (15), we obtain the following approximate expression for
the average rate of transitionr(+ →−) between the northern
sinking and the southern sinking state,

r(+ →−)≈
2
√

2

3π
|qref|e

−
|qref|

2

a(kβε)2

=
2
√

2

3π

√
kβF1e

−
(F1)

3/2

a

√
kβε2 = r(− →+), (16)

where the last identity is due to the symmetry of the poten-
tial. This formula provides rates in excellent agreement with
the outputs of the numerical simulations, as can be seen by
comparing the red and the black line in Fig. 3a.

4.2 Asymmetric forcing to the simplified model

The obtained results suggest that the simplified model of the
THC with only 2 degrees of freedom allows for a robust treat-
ment of the one-dimensional stochastic dynamics of the THC
strength. Nonetheless, in the previous set of experiments we
have only verified the first condition for the robustness of
the one-dimensional representation (well-posedness for lin-
ear scaling on the forcings). In this section, we wish to test
how the system behaves when, following Eq. (9), we change
the noise matrixεij in such a way that the term noise strength
ε̄ for the considered observable is not altered. Therefore, we
perform a new set of experiments, where the stochastic forc-
ing is exerted only in one of the two boxes, e.g. box 1, so that
in Eq. (12a–b) we setε3 = 0 andε1 =

√
2ε for each value of

ε considered in the previous set of experiments. This choice
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Fig. 4. One-dimensional efficient potentialVeff(q) controlling the
evolution of the THC strength in the 2 d.o.f. model with symmet-
ric noise. The results of some numerical experiments are shown
together with the analytical estimate.

Fig. 5. Empirical probability distribution function for the THC
strength in the 2 d.o.f. model with noise applied only in box 1.

guarantees that we have exact correspondence for the values

of εq = ε̄= kβ

√
ε2

1 +ε2
3 =

√
2kβε, so that Eq. (9) looks ex-

actly the same as in the previous set of experiments. Unfortu-
nately, as shown in Fig. 5, following the procedure described
in Sect. 2 we obtain for all values ofε an asymmetric prob-
ability distribution function, with the northern sinking equi-
librium being the most probable state. The prominence of
theq >0 conditions become stronger as we consider weaker
intensities for the noise. Therefore, the proposed stochastic
modelling is not as robust as one could have guessed.

At a second thought the presence of asymmetry in this
case becomes clearer. In this case the two sinking states
undergo different forcing, because whenq > 0 the stochas-
tic forcing is exerted only in the box where downwelling
occurs, whereas whenq ≤ 0 the stochastic forcing impacts
only the box where upwelling occurs. Since, as explained
at the beginning of Sect. 3 and discussed in Lucarini and
Stone (2005a), the impact of changing freshwater fluxes
is different in terms of destabilising the system depending
on whether the forcing is applied in the box where down-
welling or upwelling occurs, the two states are not equivalent

Fig. 6. Goodness of the one-dimensional approach for the non-
symmetric case.(a) Average hopping ratesr(+ → −) (blue line)
andr(− → +) (red line). Data are in units of s−1. (b) Geometrical
factorsG(+ → −) (blue line) andG(− → +) (red line) computed
from Eq. (7). Adimensional quantities.(c) Value of the parameter
rγ giving the ratio betweenεeff (obtained asa divided byb) and
the theoretically derived expression

√
2kβε. Adimensional quanti-

ties. The values obtained using the+ →− (blue) and− →+ (red)
processes are not compatible.

anymore. In the previous set of experiments, as opposed to
that, both boxes were equally (in a statistical sense) stochas-
tically forced, and so that the northern and southern sinking
states had equivalent forcings at all times. The more for-
mal mathematical reason why the statistical properties ofq

are different in the two sets of experiments even if Eq. (9)
is apparently the same can be traced to the differences in
the correlation between the stochastic forcings toq andQ
– compare Eq. (14a–b). In the case of symmetric stochas-
tic forcing in the freshwater fluxes into the two boxes with
ε1 = ε3, it is easy to see that the increments to the Wiener
processesdWq anddWQ are not correlated, whereas when
ε3 = 0 the two quantitiesdWq anddWQ are identical so that
their correlation is unitary.

We wish now to test whether, in such an asymmetric set-
ting of forcings, the pdfs of the THC strength scale with the
intensity of the noise in such a way to allow the possibility of
defining consistently an effective potentialVeff(q,ε) driving
the deterministic part of the one-dimensional stochastic evo-
lution of the THC strength. Given the asymmetry of the pdfs,
such an effective potential would, unavoidably, be different
from the one derived in the previous set of experiments, so
that in no way we can be satisfied in terms of robustness
of the one-dimensional Langevin approach. But, if we are
able to define such an effective potential, we can deduce that
each choice of the correlation matrix for the noise in the full
system determines a specific projected effective deterministic
dynamics, which is a weaker, but maybe still useful, result.

We follow the procedure described in Sect. 2, and for all
the chosen values ofε we have thatU(q0,ε)−U(q−,ε)& 1.5
andU(q0,ε)−U(q=,ε)& 1.5. In Fig. 6a we present the hop-
ping ratesr(+ → −) (blue) andr(− → +) (red). We see
that both values increase monotonically withε, as stronger
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noise favours transitions. Note that, quite unexpectedly, for
ε > 7× 10−10 psu s−1/2 (beyond the range where our full
analysis is performed, not shown),r(+ → −) becomes big-
ger. By simple population algebra, this implies that the frac-
tion of states withq < 0 is larger than 1/2, even if the most
probable state is given, in all cases, byq = qref>0. In Fig. 6b
we plot the factorsG(+ → −) andG(− → +). By match-
ing the rate of transition with the correspondingG factor,
one obtains for each value ofε the effective noise intensity
εeff such that the probability distribution of the states and the
transitions statistics are compatible. As mentioned before, in
order to have a consistent picture, we need to obtain the same
value ofεeff by either using the+ → − or the− → + path.
In Fig. 6c (compare with Fig. 3c) we show thatεeff does not
scale linearly withε (or, equivalently,γ is not a constant) as
found in the symmetric case, and, much more seriously, that
there is no consistency between its value as obtained using
the statistics of the+ → − and− → + transitions. Given
the mismatch between the time-scale of the transitions and
the populations in the two basins, we cannot reconstruct a
well-defined effective potentialVeff(q,ε), so that a consis-
tent one-dimensional Langevin representation of the dynam-
ics and statistics of the THC strength as proposed in Eq. (13)
is not possible here. This can be the case if noise can effec-
tively activate non-trivial dynamical processes allowing for
a transition between the neighbourhoods of the two steady
states withq = ±|qeff|, where by non-trivial we mean that
they cannot be represented even approximately as a function
of q only.

4.3 Symmetric forcing to the full system

We now revert to the full system described at the begin-
ning of Sect. 3 and consider the case of symmetric bound-
ary conditions. By adding stochastic perturbations to the
freshwater fluxes in a similar fashion as in Eq. (11a–b), so
that Fj → Fj = εjdWj/dt with j = 1.3 in Eq. (10a–f) we
obtain the following Langevin equations for the variables
q = k(ρ1−ρ3) andQ= k(ρ1+ρ3) :

dq = q(2̃q−3/2q2/|q|−Q)dt+

kαλ(T1−T3)dt+εqdWq , (17a)

dQ= q(2kρ̃+1/2q2/|q|−Q)dt−β(F1+F3)dt+

kαλ(T̃1−T1+ T̃3−T3)dt+εQdWQ, (17b)

where the same notation as in Eq. (14a–b) has been used.
Note that, as opposed to Eq. (11), the deterministic drift term
is not odd with respect to theq→ −q transformation, since
in this case explicit temperature dependent terms are present,
so that a negative parity is realised only when the signs of
both T1 −T3 and S1 − S3 are changed. Note that, follow-
ing the same derivation as in the case of the system with 2
d.o.f. and assuming that over time-scales of interest the drift

Fig. 7. Empirical probability distribution function for the THC
strength in the full model for some selected values of symmetrically
applied noise.

of Q is negligible, we end up writing the same approximate
autonomous Eq. (15) for the THC strength under the hypoth-
esis that the system spends most time near the two determin-
istic fixed pointsq = ±|qeq|. This suggests that also in this
case we might empirically derive a well-defined effective po-
tentialVeff(q) analogous to the one obtained for the 2 d.o.f.
model if considering stochastic forcing acting on both boxes
1 and 3.

Therefore, we follow the analysis of the previous subsec-
tion, and concentrate to stochastic perturbations to the fresh-
water flux having the same strengthε1 = ε3 = ε in both hemi-
spheres. We first observe that, as anticipated, for a given
value ofε the distribution of the THC strength is flatter than
in the case of the 2 d.o.f. model (Fig. 7). In order to ob-
tain a pdf analogous to what obtained in the 2 d.o.f. case,
in the full model we need to consider a stochastic forcing
smaller by about 25 %, which suggests that the full model is,
in some sense, less stable. We will discuss this below. As
before, we select values ofε such thatU(q0,ε)−U(q=,ε)=

U(qo,ε)−U(q−,ε)& 1.5 in order to be able to use Kramers’
formula as a constraint to check the consistency of our data
with the one-dimensional Langevin model. In Fig. 8a we
report the hopping rates as a function of the intensity of
the noise. The behaviour is qualitatively analogous to what
shown in Fig. 3a for the 2 d.o.f. model, but, in agreement with
the discussion above, the hopping rate between theq >0 and
the q < 0 states are consistently higher for the full model
when the same stochastic forcing is considered. In Fig. 8b
we present the factorG(+ → −)=G(− → +) introduced
in Eq. (7), which depends uniquely on the ratio between
the probability density at the two maxima and at the local
minimum for q = 0. Figure 8c, similarly to Fig. 3c, shows
the proportionality constantγ between the value ofεeff and
the value ofε̄=

√
2kβε. The parameterγ should be close

to unity in the case the projection of the dynamics onq is
“trivial” (as in the case of the 2 d.o.f. model with symmetric
stochastic forcing), and, more importantly,γ should be ap-
proximately independent ofε. In the case analysed here both
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Fig. 8. Goodness of the one-dimensional approach for the full
model.(a) Average rate of hopping between the northern and south-
ern sinking equilibriar(+ →−)= r(− →+) (black line). The the-
oretical value is shown with the red line. Data are in units of s−1.
(b) Geometrical factorG(+ →−)=G(− →+) of the hopping rate
computed from Eq. (7). Adimensional quantity.(c) Value of the pa-
rameterγ giving the ratio betweenεeff (obtained asa divided byb)
and the theoretically derived expression

√
2kβε. The value ofγ ob-

tained if considering the renormalized value (referred to the 2 d.o.f.
model) fork can be read on the right hand side scale. Adimensional
quantities.

conditions are not satisfied. The first issue points to the fact
that we need to renormalize the constants when developing
a lower dimensional projected dynamics (which is exactly
what we did when constructing the 2 d.o.f. model from the
full model). In fact, if we consider as effectivek the one con-
sidered for the 2 d.o.f. model, the values ofγ are relatively
close to 1 (check the scale on the right hand side of Fig. 8c).
More critical is the presence of a nonlinear relation between
εeff andε, which is caused by the fact that in the full model
faster modes are excited by noise and impact in a nontriv-
ial way the effective surrogate noise acting on theq variable
taken as independent.

When reconstructing fromU(q,ε) the actual effective po-
tentialVeff(q,ε) using Eq. (5), we obtain that the effective po-
tential is a function ofq only, so thatVeff(q,ε)=Veff(q) (see
Fig. 9) so that it is possible to disentangle completely the drift
term from the stochastic forcing. Moreover, such potential is
very similar to what obtained in the reduced model with 2
d.o.f., as can be seen by comparing Figs. 4 and 9. The height
of the potential barrier between the two minima is slightly
lower in the case of the full model analysed here, in agree-
ment with the argument of the destabilising feedback due
to the thermal restoring process presented by Lucarini and
Stone (2005a). This can be explained as follows: since per-
turbations in the value ofq−|qeq| are positively correlated
to perturbationsT1−T3 thanks to advection, the contribution
kαλ(T1−T3) in Eq. (17a) weakens the force driving the sys-
tem towards the nearby deterministic fixed point, thus en-
hancing its instability. Overall, the good agreement between
Figs. 4 and 9 implies that the deterministic dynamics of the
THC strength is robustly consistent between the full and re-
duced model.

Fig. 9. One-dimensional efficient potentialVeff(q) controlling the
evolution of the THC strength in the 5 d.o.f. model with symmetric
noise. The results of some numerical experiments are shown to-
gether with the analytical estimate. The results are rather similar to
what shown in Fig. 4.

5 Numerical experiments: stochastic resonance

Stochastic resonance (Benzi et al., 1982; Nicolis 1982; Gam-
maitoni et al., 1998) is an exceedingly interesting process
whereby noise amplifies the response of the system at the
same frequency of a periodic forcing. Typically, it is realised
when we consider a Langevin equation of the form:

dx=F(x)dt+Asin(ωt+φ)dt+εdW (18)

where the drift termF(x)= −dV (x)/dx derives from a
(symmetric, but necessarily so) potentialV (x) with a double
well-structure like those considered in this study. We can as-
sociate the time dependent driftG(x,t)=F(x)+Asin(ωt+
φ) to a time dependent potentialW(x,t)= −

∫
dxF(x)−

Asin(ωt +φ)= V (x)−Axsin(ωt +φ). The periodic forc-
ing modulates the bistable system, so that one stable state
corresponding to one of the two minima results to be less
stable than the other every half a period of the forcing, so
that every period the populations of the neighbourhoods of
these points are, alternatively, exponentially increased and
suppressed by a factor exp(±2A(|x= − x0|)/ε

2). As accu-
rately discussed in Gammaitoni et al. (1998), when we tune
the noise intensityε so that the inverse of the hopping rate
given in Eq. (7) for the unperturbed system is approximately
equal to half of the periodπ/ω, the system is in a condi-
tion where there is maximum probability for leaving the less
stable state into the more stable one, before, randomly, the
system switches back. In this case, the system attains a high
degree of synchronisation with the input periodic signal, so
that the output is basically a square wave with constant phase
difference with the sinusoidal forcing.

Interestingly, even if the stochastic resonance is apparently
a highly nonlinear process, it can be accurately described us-
ing linear response theory, whereby one studies the ampli-
tude of the output signal at the same frequency of the peri-
odic forcing for various values of the noise. Such amplitude,
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Fig. 10.Response to linear periodic perturbation as a function of the
background noise for five experimental settings. Case 1 and 2 are
indicative of stochastic resonance. The value of noise realising the
approximate matching conditionr(+ →−)= r(− →+)=π/ω0 is
indicated.

in the weak field limit, is proportional to the amplitude of the
periodic forcingA (Gammaitoni et al., 1998).

Along these lines, we consider the 2 d.o.f. model, and
take into account a periodic modulation to the freshwa-
ter fluxes, so thatF1 → F2 +φ1F sin(ωt) andF3 → F3 +

ψ1F sin(ωt), with symmetric background forcingF1 =F3.
Assuming that the stochastic forcing acts with equal strength
ε1 = ε3 = ε on both boxes 1 and 3, as analysed in Sect. 4.1,
we obtain that Eq. (15), which satisfactorily describes the
one-dimensional stochastic dynamics ofq, is modified as fol-
lows:

dq ≈ −2q(q2/|q|−|qref|)dt+kβ(φ−ψ)1F sin(ωt)+εqdWq , (19)

which is exactly in the form of Eq. (15). As we see, for a
given value of1F , the strength of the periodic forcing toq
depends only on the absolute value of the difference(φ−ψ),
and not separately on the values ofφ andψ . If the dynamics
of q is accurately described by a one-dimensional Langevin
equation, we expect to be able to observe the process of
stochastic resonance whenω and εq are suitably matched.
In order to test this, we set the periodω=ω0 = 2π/19 000 yr
– where the period of 19 000 yr has been chosen because it is
long compared to the internal time scale|qref|

−1
≈ 215 yr and

has paleoclimatic relevance in conjunction to Milankovitch
theory (Velez-Bechi et al., 2001; Saltzman, 2002) – choose
a moderate value for the amplitude of the sinuisodal mod-
ulation1F = 9×10−12 s−2 and study the amplitude of the
ω0 frequency component of the times series ofq as a func-
tion of ε, and create an ensemble of 100 members for each
considered setting. We can state that the phenomenology
of stochastic resonance is well reproduced if (a) we find
the characteristic peak for the response in the vicinity of a
value ofε such that the corresponding hopping rate for the
unperturbed system given in Fig. 3a is close toπ/ω0, and
(b) such response depends, for all values ofε, on (φ−ψ)

only. We refer to the scenario whereφ= −ψ = 1/2 as case
1, and the scenario whereφ = 1,ψ = 0 as case 2. Note that

the caseφ = 0,ψ = −1 is identical to case 2 by symmetry.
The results are reported in Fig. 10, with the black line corre-
sponding to case 1 and the red line corresponding to case 2.
The obtained curves for the amplitude of the response agree
very accurately, especially considering the rather small un-
certainty, and feature exactly the right shape as presented in
Gammaitoni et al. (1998). We observe a relatively broad res-
onance for values of noise comparable to those inducing in
the unperturbed system transitions with average rate similar
to the semiperiod of the forcing. Finding quite accurately the
signature of stochastic resonance is a further proof that in the
special setting of the unperturbed system considered here the
dynamics ofq is indeed quasi-one dimensional.

We want to contrast this positive outcome with what one
obtains by adding periodic perturbations of the same form
as above to an “unperturbed” state featuring stochastic forc-
ing acting on box 1 only, described in Sect. 4.2. We choose
exactly the same forcing parameters as above and repeat the
experiments using the same ensemble size. We refer to the
scenario whereφ = −ψ = 1/2 as case 3, and the scenario
whereφ = 1,ψ = 0 as case 4, and to the scenario where
φ = 0,ψ = −1 as case 5. Note that here case 4 and case
5 are not equivalent. We obtain (see Fig. 10) that in the
three cases, whereas we obtain qualitatively and quantita-
tively analogous results for the normalised amplitude of the
response of the output at the same frequency of the forcing,
the curves are distinct with high statistical significance and
differ also from what obtained for cases 1 and 2. Such dis-
crepancy would not be possible if the dynamics ofq were ac-
curately described with a one-dimensional effective potential
plus stochastic noise plus periodic forcing. The fact that the
three curves 3, 4, and 5 are not superimposed (and disagree
with 1 and 2) further supports the fact that the dynamics ofq

is not quasi-one dimensional. Nonetheless, an obvious pro-
cess of resonance (not strictly one-dimensional) is obviously
still in place.

6 Conclusions

In this work we have re-examined the classic problem of
trying to reconstruct the effective stochastic dynamics of
an observable from its time series in the special case of a
clearly bimodal empirical probability density function. This
issue is especially relevant in climatic and paleoclimatic re-
search, where it is very tempting to try to deduce the large
scale, qualitative properties of the climate system, their mod-
ulation with time, the potential presence of tipping points
through the observations of long time series of proxy data
(Livina and Lenton, 2007; Livina et al., 2009). Furthermore,
since amplifying mechanisms such as stochastic resonance
have been proposed to explain enhanced low frequency vari-
ability of the oceanic circulation as a result of slow mod-
ulations of some parameters (Ganopolski and Rahmstorf,
2002), such empirically reconstructed statistical/dynamical
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properties may be interpreted as starting points to deduce
special “sensitivities” of the climate system. Therefore, an
important question is to understand how accurate and robust
these procedures of reconstruction are.

From this work it is apparent that from the statistical prop-
erties of the time series of an observable featuring a sym-
metric bimodal pdf it seems relatively easy to construct the
corresponding one-dimensional Langevin equation by deter-
mining the drift term and the intensity of the white noise
by basically imposing a self-consistent population dynam-
ics. Assuming that the observable is a function of the phase
space variables of a stochastic dynamical systems, it is an ob-
vious temptation to interpret the obtained equation as the de-
scription of the projected dynamics for the observable, where
the impact of the other (in general, many) neglected degrees
of freedom of the system contributes to defining the effec-
tive deterministic dynamics and to creating a surrogate white
noise term. Nonetheless, if the pdf of the observable is not
symmetric, the possibility of constructing a meaningful sur-
rogate stochastic dynamics relies on the fact that one should
be able to describe consistently the hopping process and be-
tween the two attraction basins and their steady state popula-
tions.

In this work we have considered two very simple box mod-
els of the oceanic circulation (Rooth, 1982; Scott et al., 1999;
Lucarini and Stone, 2005a, b), comprising two high latitude
and a low latitude boxes with time-dependent temperature
and salinity as testbeds for these methodologies. These mod-
els are able to reproduce the bistability properties of the ther-
mohaline circulation, by featuring two possible asymmetric
circulations (one mirror image of the other) in presence of
symmetric external heat and freshwater forcings. In both
models the circulation strength is parameterised as propor-
tional to the difference between the densities of the two high-
latitude boxes. The simpler 2 d.o.f. model is suitably derived
from the full, 5 d.o.f. model by imposing a fixed temperature
for the boxes.

We first impose stochastic forcing of the same intensity
on the freshwater forcings to the two high-latitude boxes and
observe that the resulting pdf of the thermohaline circulation
strength is bimodal and symmetric. More importantly, for
both models the dynamics ofq can be accurately described
with a Langevin equation with a drift term derived from a
one-dimensional effective potential plus stochastic noise. An
excellent approximation to the true dynamics (as well as to
the hopping rates) can be obtained in an explicit form by im-
posing that the sum of the densities of the two high-latitude
boxes is a slow variable. The main difference between the
two is that in the full model the nonlinear feedbacks acting
on the variable we are neglecting alter in a nontrivial, non-
linear way the effective surrogate noise acting on theq vari-
able. In other terms, in the case of the full model a careful
tuning of the noise allows for taking care very accurately –
in a statistical sense – of the effect of all the variables we
are neglecting. Our results are obtained for a specific value

of the background freshwater forcingF1 = F3, but the fol-
lowing scaling allow to extensively generalise our findings:
q ∼ (F1)

1/2,Veff(q)∼ (F1)
3/2,εeff ∼ (F1)

3/4. Things change
dramatically when considering the case of stochastic forcing
acting only on one of the two high-latitude boxes. We tune
our experiments in such a way that, apparently, the Langevin
equation for theq variable is not altered with respect to the
previous case. Not only we obtain a non-symmetric pdf,
but, moreover, it is not possible to reconstruct an approxi-
mate but consistent stochastic dynamics for theq variable
alone. Therefore, there is no ground for achieving a satis-
factory projection of the dynamics, and a one-dimensional
Langevin equation cannot be derived.

Finally, we test the possibility of observing the mechanism
of stochastic resonance in the simplified 2 d.o.f. model by
superimposing a slow periodic modulation on the freshwater
fluxes in the two high-latitude boxes to the acting stochas-
tic forcings. Whereas in the scenario where the noise acts
with equal strength in both boxes we obtain numerically out-
puts in close agreement with the theory stochastic resonance
for one dimensional systems, thus supporting the idea that
a projected dynamics is indeed a good approximation when
attempting a description of the properties ofq, the opposite
holds in the scenario where the noise acts only on one box.
This further supports the fact that in this case the dynamics
of q is not trivially quasi-one dimensional, and transitions
occur through processes that cannot be written precisely as a
function ofq only.

Our results support the idea that deducing the approximate
stochastic dynamics for an observable of a multidimensional
dynamical system from its time series is definitely a non-
trivial operation. The reconstructed drift term and the noise
forcing depend, in general, in a non-trivial way on the inten-
sity and correlation properties of the white noise of the true
system. This implies that a “true” projected dynamics can-
not be defined. Therefore, in practical applications, it seems
tentative to assume that from the pdf of a bimodal observ-
able obtained with a given level of noise it is possible to un-
derstand how the bistability property of the full system will
change when the level of the input noise is altered. In particu-
lar, it seems difficult to be confident on obtaining information
on how the rate of transition between the two equilibria will
change and on the characteristics of tipping points. This also
suggests that recent claims of the possibility of detecting ro-
bustly early warning signals for critical transitions at tipping
points from time series as proposed in Scheffer (2008) must
be carefully checked.

A better understanding of the properties of multistable
models can be reached only by going beyond a simplified
description of the statistical properties of the observables we
are mostly interested into. In order to address these points,
we will attempt the kind of critical analysis proposed in this
paper on more complex models but still idealised models
of the thermohaline circulation, such as that considered in
Lucarini et al. (2005, 2007). We will test to what extent a
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simple one-dimensional Langevin model for the evolution of
the THC strength can be defined and in which range of the
parameters determining the boundary conditions, and how
the drift and noise terms of the Langevin model – if it can
be defined – are related to the internal parameters of the full
system. At a more theoretical level, we will try to propose ap-
proximate ways for dealing with the transitions between high
occupations regimes in multidimensional gradient flows, at-
tempting to derive a markovian description of transitions be-
tween discrete states.
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