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Quantum limits of sub-Laplacians via joint spectral
calculus
Cyril Letrouit

Abstract. We establish two results concerning the Quantum Limits (QLs) of some sub-Laplacians.
First, under a commutativity assumption on the vector fields involved in the definition of the sub-
Laplacian, we prove that it is possible to split any QL into several pieces which can be studied
separately, and which come from well-characterized parts of the associated sequence of eigenfunc-
tions.
Secondly, building upon this result, we study in detail the QLs of a particular family of sub-

Laplacians defined on products of compact quotients of Heisenberg groups. We express the QLs
through a disintegration of measure result which follows from a natural spectral decomposition of
the sub-Laplacian in which harmonic oscillators appear.
Both results are based on the construction of an adequate elliptic operator commuting with the

sub-Laplacian, and on the associated joint spectral calculus. They illustrate the fact that, because of
the possible high degeneracies in the spectrum, the spectral theory of sub-Laplacians is very rich.

1. Introduction and main results

1.1. Motivation

The main goal of this paper is to establish some properties of the eigenfunctions of families
of hypoelliptic operators in the high-frequency limit. A typical problem is the description
of the Quantum Limits (QL) of the operator, i.e., measures that are weak limits of a sub-
sequence of squares of eigenfunctions. All the operators we consider in the sequel are
sub-Laplacians, and they are in particular hypoelliptic as we will see shortly.

1.1.1. Sub-Laplacians. Let us now recall the general definition of a sub-Laplacian. Let
𝑛 ∈ N∗ and let 𝑀 be a smooth, connected and compact manifold of dimension 𝑛 without
boundary. Let 𝑋1, . . . , 𝑋𝑁 be smooth vector fields on 𝑀 that are not necessarily indepen-
dent but which satisfy the so-called Hörmander bracketing condition

The vector fields 𝑋1, . . . , 𝑋𝑁 and their iterated Lie brackets [𝑋𝑖 , 𝑋 𝑗 ],
[𝑋𝑖 , [𝑋 𝑗 , 𝑋𝑘 ]], etc. span the tangent space 𝑇𝑥𝑀 at every point 𝑥 ∈ 𝑀 . (1.1)
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Let also 𝜇 be a smooth (positive) volume form on 𝑀 . We consider the operator

ΔsR = −
𝑁∑︁
𝑖=1

𝑋∗
𝑖 𝑋𝑖 =

𝑁∑︁
𝑖=1

(𝑋2𝑖 + div𝜇 (𝑋𝑖)𝑋𝑖) (1.2)

where 𝑋∗
𝑖
is the transpose of 𝑋𝑖 in 𝐿2 (𝑀, 𝜇). The “sR” index in ΔsR stands for “sub-

Riemannian”. The operator ΔsR is non-positive and self-adjoint. Then

D = Span(𝑋1, . . . , 𝑋𝑁 ) ⊂ 𝑇𝑀

is called the distribution. We note that Laplace–Beltrami operators are particular kinds of
sub-Laplacians.1
Under the assumption (1.1), ΔsR is hypoelliptic (see [20]) and has a compact resolvent:

this follows from subelliptic regularity estimates of the form

∃ 𝑟 ∈ N, ∃𝐶 > 0, ‖𝑢‖2
𝐻 1/𝑟 (𝑀 ) ≤ 𝐶

(
‖ΔsR𝑢‖2𝐿2 (𝑀 ) + ‖𝑢‖2

𝐿2 (𝑀 )
)

(see [33, Theorem 17 and estimate (17.20)]). Thus there exists a sequence of (complex-
valued) eigenfunctions of −ΔsR associated to the eigenvalues in increasing order 0 = 𝜆1 <
𝜆2 ≤ · · · (with 𝜆 𝑗 →+∞ as 𝑗→+∞) which is orthonormal for the 𝐿2 (𝑀, 𝜇) scalar product.

1.1.2. Quantum Limits. The main purpose of this paper is to understand the weak limits
of the sequence of probability measures |𝜑𝑘 |2𝑑𝜇 where (𝜑𝑘 )𝑘∈N∗ is a sequence of nor-
malized eigenfunctions of −ΔsR associated to eigenvalues tending to +∞, for particular
sub-Laplacians ΔsR.
There is a phase space extension of these weak limits whose behaviour is also of

interest. Let us recall the following definition (see [17]).

Definition 1. Let (𝑢𝑘 )𝑘∈N∗ be a bounded sequence in 𝐿2 (𝑀) and weakly converging to 0.
A microlocal defect measure of (𝑢𝑘 )𝑘∈N∗ is any Radon measure 𝜈 on 𝑆∗𝑀 for which there
exists an extraction 𝜎 : N∗ → N∗ such that for any 0-th order pseudodifferential operators
𝐴 with principal symbol 𝑎 = 𝜎𝑃 (𝐴) (see Appendix A.1), there holds

(𝐴𝑢𝜎 (𝑘) , 𝑢𝜎 (𝑘) ) −→
𝑘→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜈.

Here, (·, ·) denotes the 𝐿2 (𝑀, 𝜇) scalar product.

Microlocal defect measures are useful tools for studying the (asymptotic) concen-
tration and oscillation properties of sequences; note they are necessarily non-negative
(see [17]).

1To see that the Laplace–Beltrami operator on a Riemannian manifold (𝑀, 𝑔) is a sub-Laplacian,
take 𝜇 to be the Riemannian volume and take 𝑋1 (𝑞) , . . . , 𝑋𝑁 (𝑞) spanning 𝑇𝑞𝑀 for any 𝑞 (without
necessarily being independent, since this is not always possible globally), with lengths adjusted in a way
that the principal symbol of −Δ𝑔 coincides with the principal symbol of

∑𝑁
𝑖=1 𝑋

∗
𝑖
𝑋𝑖 . One can check that

Δ𝑔 = −∑𝑁
𝑖=1 𝑋

∗
𝑖
𝑋𝑖 .
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Definition 2. Given a sequence (𝜑𝑘 )𝑘∈N∗ of eigenfunctions of −ΔsR with ‖𝜑𝑘 ‖𝐿2 (𝑀,𝜇) = 1,
we call Quantum Limit (QL) any microlocal defect measure of (𝜑𝑘 )𝑘∈N∗ .

Remark 3. Since 𝜑𝑘 , 𝑘 ∈ N∗ is normalized, any QL is a probability measure on 𝑆∗𝑀 .

For any Riemannian manifold (𝑀, 𝑔), it is well known that any QL 𝜈 of the Laplace–
Beltrami operator Δ𝑔 is invariant under the geodesic flow exp(𝑡 ®𝐺). Here 𝐺 = 𝜎𝑃 (

√︁
−Δ𝑔)

and ®𝐺 is the associated Hamiltonian vector field (the geodesic vector field), and the claim
is that exp(𝑡 ®𝐺)𝜈 = 𝜈 for any 𝑡 ∈ R. To prove it, we note that for any sequence (𝜑𝑘 )𝑘∈N∗

consisting of normalized eigenfunctions of −Δ𝑔, there holds

(𝐴
√︁
−Δ𝑔𝜑𝑘 , 𝜑𝑘 )𝐿2 − (

√︁
−Δ𝑔𝐴𝜑𝑘 , 𝜑𝑘 )𝐿2 = 0 (1.3)

for any 𝑡 ∈ R, any 𝑘 ∈ N∗ and any 0-th order pseudodifferential operators 𝐴. It follows
from the commutation rule for pseudodifferential operators that

∫
𝑆∗𝑀

{𝜎𝑃 (𝐴), 𝐺}𝑑𝜈 = 0,
which in turn implies ®𝐺𝜈 = 0 and exp(𝑡 ®𝐺)𝜈 = 𝜈 for any 𝑡 ∈ R.
The structure and the invariance properties of the QLs of sub-Laplacians are more

complicated than that of Riemannian Laplacians. To see it, let us consider a general sub-
Laplacian ΔsR, the principal symbol

𝑔∗ = 𝜎𝑃 (−ΔsR),

and the associated sub-Riemannian geodesic flow ®𝑔∗. The invariance of QLs of ΔsR under
the sub-Riemannian geodesic flow ®𝑔∗ is still true, but it does not provide any information
about the part of the QL lying in (𝑔∗)−1 (0) since the geodesic flow is stationary at such
points. Indeed, we note that the above computation (1.3) does not work anymore for gen-
eral sub-Laplacians since

√
−ΔsR is not a pseudodifferential operator near its characteristic

cone (𝑔∗)−1 (0) (due to the blow-up of some derivatives of
√
𝑔∗).

We denote by
Σ = (𝑔∗)−1 (0) = D⊥ ⊂ 𝑇∗𝑀

the characteristic cone (where ⊥ is in the sense of duality). We make the identification

𝑆∗𝑀 = 𝑈∗𝑀 ∪ 𝑆Σ (1.4)

where 𝑆∗𝑀 is the cosphere bundle obtained by taking the quotient of the fibers of 𝑇∗𝑀

by R+,𝑈∗𝑀 = {𝑔∗ = 1} has any of its points identified with some point in 𝑆∗𝑀 by homo-
geneity, and the remaining elements in 𝑆∗𝑀 are the directions along which 𝑔∗ = 0. This
last set can be identified with 𝑆Σ, the quotient of Σ by R+.
In the sequel, we denote by 𝒫(𝐸) the set of Radon probability measures on a given

Hausdorff space 𝐸 . The following result due to Colin de Verdière, Hillairet and Trélat,
which is valid for any sub-Laplacian ΔsR, is the starting point of our analysis.

Proposition 0. [10, TheoremB and Remark 1.4] Let (𝜑𝑘 )𝑘∈N∗ be an 𝐿2 (𝑀, 𝜇)-normalized
sequence of eigenfunctions of −ΔsR with eigenvalues (𝜆𝑘 )𝑘∈N∗ labeled in non-decreasing
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order and tending to +∞. Let 𝜈 be a QL associated with (𝜑𝑘 )𝑘∈N∗ . Using the identification
(1.4), the probability measure 𝜈 can be written as the sum

𝜈 = 𝛽𝜈0 + (1 − 𝛽)𝜈∞ (1.5)

of two mutually singular measures with 𝜈0, 𝜈∞ ∈ 𝒫(𝑆∗𝑀), 𝛽 ∈ [0, 1] and
(1) 𝜈0 (𝑆Σ) = 0 and 𝜈0 is invariant under the sub-Riemannian geodesic flow ®𝑔∗;
(2) 𝜈∞ is supported on 𝑆Σ.

Moreover, if (𝜑𝑘 )𝑘∈N∗ is an orthonormal basis of 𝐿2 (𝑀, 𝜇), there exists an increasing
sequence (𝑘ℓ)ℓ∈N of positive integers, of density 1, i.e.,

lim
𝛼→+∞

#{ℓ ∈ N | 𝑘ℓ ≤ 𝛼}
𝛼

= 1,

such that, if 𝜈 is a QL associated with a subsequence of (𝜑𝑘ℓ )ℓ∈N, then the support of 𝜈 is
contained in 𝑆Σ, i.e., 𝛽 = 0 in the previous decomposition.2

The last part of Proposition 0 shows that 𝜈∞ is the “main part” of the QL. In [10],
its invariance properties are determined in the following particular case (we do not recall
here the definitions of three-dimensional contact sub-Laplacian and Reeb flow which can
be found in [10]):

Theorem 0. If ΔsR is a three-dimensional contact sub-Laplacian, then 𝜈∞ is invariant
under the lift of the Reeb flow to 𝑆Σ.

Our main results, namely Theorems 1, 2 and 3, establish invariance properties of 𝜈∞
for other sub-Laplacians, showing a richer behavior than in the three-dimensional contact
case.

Remark 4. Explicit examples of QLs for which 𝛽 ≠ 0 are given in [10, Proposition 3.2(1)].

Remark 5. In this paper, we take the Euclidean point of view, in that we do not use pseu-
dodifferential calculus adapted to the stratified Lie algebra, a calculus that is frequently
involved with sub-Laplacians. Nevertheless, our results share connexions with important
problems in non-commutative Fourier analysis, as explained in Section 1.4.

1.2. A preliminary result under a commutativity assumption

The description of QLs for general sub-Laplacians is a difficult problem, as is the case for
Riemannian Laplacians (see Section 1.4).

2The proof of this last fact follows from the results in [10], although it is not explicitely stated there.
Let us sketch the proof. By [10, Proposition 4.3], we know that the microlocal Weyl measure of ΔsR is
supported in 𝑆Σ. It then follows from [10, Corollary 4.1] that for every 𝐴 ∈Ψ0 (𝑀 ) whose principal symbol
vanishes on Σ, there holds𝑉 (𝐴) = 0, where𝑉 (𝐴) is the variance introduced in [10, Definition 4.1]. Finally,
following the proof of Theorem B(2) in [10], we get the result.
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In this paper, we restrict our attention to particular sub-Laplacians, for which, despite
their lack of ellipticity, techniques of joint (elliptic) spectral calculus apply in the presence
of additional commutativity assumptions.
The preliminary result which we present in this section holds under a commutativity

assumption which we now introduce.

1.2.1. The commutativity assumption. Let us fix a sub-Laplacian ΔsR on 𝑀 as in (1.2).
In this paper, we take the notation N = {0, 1, . . .} for the set of non-negative integers. We
make the following assumption:

Assumption 6. There exist 𝑚 ∈ N and 𝑍1, . . . , 𝑍𝑚 smooth global vector fields on 𝑀 such
that:
(i) At any point 𝑥 ∈ 𝑀 where D𝑥 ≠ 𝑇𝑥𝑀 , the vector fields 𝑍1 (𝑥), . . . , 𝑍𝑚 (𝑥) com-

plete D𝑥 into a basis of 𝑇𝑥𝑀 (in particular, they are independent and thus do
not vanish at these points);

(ii) For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚, there holds [ΔsR, 𝑍
∗
𝑖
𝑍𝑖] = [𝑍∗

𝑖
𝑍𝑖 , 𝑍

∗
𝑗
𝑍 𝑗 ] = 0.

Point (ii) is a strong assumption, sometimes related to the action of a group of sym-
metries. Assumption 6 is satisfied for example in the following cases:
• For (elliptic) Laplace–Beltrami operators. In this case, 𝑚 = 0.
• For sub-Laplacians on (quotients of) step 2 Carnot groups. A Carnot group is a sim-
ply connected nilpotent Lie group 𝐺 which is stratified of step 2, in the sense that
its left-invariant Lie algebra 𝔤, assumed to be real-valued and of finite dimension, is
endowed with a vector space decomposition 𝔤 = 𝔳 ⊕ 𝔷 where 𝔷 = [𝔳, 𝔳] ≠ {0} and
[𝔳, 𝔷] = {0}. The exponential map exp : 𝐺 → 𝔤, which is a diffeomorphism, allows
to identify 𝐺 and 𝔤. We also assume that 𝔤 carries a scalar product 〈·, ·〉 for which 𝔳
and 𝔷 are mutually orthogonal. There exists an orthonormal basis of left-invariant vec-
tor fields 𝑋1, . . . , 𝑋𝑁 of 𝔳 for 〈·, ·〉 |𝔳. The associated sub-Laplacian is Δ𝔤 =

∑𝑁
𝑖=1 𝑋

2
𝑖
,

which can also be defined on any compact left-quotient 𝐻 of𝐺. Then, taking the family
(𝑍 𝑗 )1≤ 𝑗≤𝑚 as a basis of 𝔷, we see that Assumption 6 is satisfied. This setting encom-
passes the case of sub-Laplacians defined on quotients of the (2𝑑 + 1)-dimensional
Heisenberg group, or more generally for H-type (Heisenberg-type) sub-Laplacians
(see [25], [13] and Appendix A.3).

• For Baouendi–Grushin-type sub-Laplacians: e.g., for 𝜕2𝑥 + sin(𝑥)2𝜕2𝑦 in (R/2𝜋Z)2, the
set of points 𝑥 such that D𝑥 ≠ 𝑇𝑥𝑀 consists of the singular lines {𝑥 = 0} and {𝑥 = 𝜋},
and we can take 𝑍1 = 𝜕𝑦 . Note that the usual Baouendi–Grushin operator is 𝜕2𝑥 + 𝑥2𝜕2𝑦 ,
but we put here a sine in order to define it on a compact manifold without boundary.

• For the horizontal Laplacian associated to a connection on a principal bundle over a
Riemannian manifold. The 𝑍𝑖 are then generated by the Lie algebra of the structure
group and sweep out the fiber (see [29, Section 11.2 and Appendix B]). Joint eigen-
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functions of horizontal Laplacians on principal bundles have already been studied in
several papers, see for instance [18] and [38].

• The above examples are “step 2,” but it is also possible to build ad hoc sub-Laplacians
satisfying Assumption 6 and requiring higher-order brackets of the 𝑋𝑖 to generate the
whole tangent bundle (see Appendix A.2).

• For manifolds obtained as products of the previous examples (and associated sub-
Laplacians obtained by sum), since Assumption 6 is stable under product.
Assumption 6 may be regarded as a quantum integrability assumption (see [40]). There

is an R𝑚 action generated by the Poisson commuting Hamiltonians ℎ𝑍 𝑗 on 𝑇∗𝑀 induced
by the 𝑍 𝑗 , with momentum map (

√
𝑔∗, |ℎ𝑍1 |, . . . , |ℎ𝑍𝑚 |) : 𝑇∗𝑀 → R𝑚+1. Therefore, the

present work has to be compared with [43] (notably Section 3), where the quantum limits
for on- and off-diagonal matrix elements are computed in the case where there is a torus
action. The main difference is that the present work deals with a non-compact abelian
action.

1.2.2. The cotangent bundle 𝑻∗𝑴 under Assumption 6. Our goal in this section is to
describe the cotangent bundle 𝑇∗𝑀 when Assumption 6 is satisfied. Along the way, we
introduce a bunch of useful notations.
In this paper, we denote by 𝜔 the canonical symplectic form on the cotangent bundle

𝑇∗𝑀 of 𝑀 . In local coordinates (𝑞, 𝑝) of 𝑇∗𝑀 , we have 𝜔 =
∑
𝑗 𝑑𝑝 𝑗 ∧ 𝑑𝑞 𝑗 where 𝑞 =

(𝑞1, . . . , 𝑞𝑁 ) and 𝑝 = (𝑝1, . . . , 𝑝𝑁 ). Given a smooth Hamiltonian function ℎ : 𝑇∗𝑀 → R,
we denote by ®ℎ the corresponding Hamiltonian vector field on 𝑇∗𝑀 , defined by 𝜄 ®ℎ𝜔 =

−𝑑ℎ. Given any smooth vector field 𝑉 on 𝑀 , we denote by ℎ𝑉 the Hamiltonian function
(momentum map) on 𝑇∗𝑀 associated with 𝑉 , defined in local coordinates by ℎ𝑉 (𝑞, 𝑝) =
𝑝(𝑉 (𝑞)). The Hamiltonian flow exp(𝑡®ℎ𝑉 ) of ℎ𝑉 projects onto the integral curves of 𝑉 .
In the entirety of the sequel, we consider a sub-Laplacian ΔsR satisfying Assumption 6.

Let P be the set of all subsets of {1, . . . , 𝑚}. We write Σ as a disjoint union

Σ =
⊔
J∈P

ΣJ (1.6)

where, for J ∈ P, ΣJ is defined as the set of points (𝑞, 𝑝) ∈ Σ for which{
𝑗 ∈ {1, . . . , 𝑚}, ℎ𝑍 𝑗 (𝑞, 𝑝) ≠ 0

}
= J . (1.7)

Note that (1.6) is a disjoint union. Also, let us justify that the sets ΣJ are non-empty. We
denote by 𝜋 : 𝑇∗𝑀 → 𝑀 the canonical projection. We notice that 𝜋(Σ) = {𝑥 ∈ 𝑀, D𝑥 ≠

𝑇𝑥𝑀} ≠ ∅. We pick 𝑞 ∈ 𝜋(Σ), then the non-vanishing vector fields 𝑍 𝑗 are independent
at 𝑞 (point (i) in Assumption 6). Since ℎ𝑍 𝑗 (𝑞, 𝑝) = 𝑝(𝑍 𝑗 (𝑞)), we conclude that for any
J ∈ P there exists 𝑝 such that (𝑞, 𝑝) ∈ ΣJ .

1.2.3. Quantum Limits under Assumption 6. Our first preliminary result states that it
is possible to split any QL into several pieces that come from well-characterized parts of
the associated sequence of eigenfunctions. In practice, it will be possible to study each
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piece separately, and then to glue the results together. In order to give a precise statement,
we need to define joint microlocal defect measures.

Definition 7. Let (𝑢𝑘 )𝑘∈N∗ , (𝑣𝑘 )𝑘∈N∗ be bounded sequences in 𝐿2 (𝑀) such that 𝑢𝑘 and
𝑣𝑘 weakly converge to 0 as 𝑘 → +∞. A joint microlocal defect measure of (𝑢𝑘 )𝑘∈N∗ and
(𝑣𝑘 )𝑘∈N∗ is any Radon measure 𝜈joint on 𝑆∗𝑀 for which there exists an extraction 𝜎 :
N∗ →N∗ such that for any 0-th order pseudodifferential operators 𝐴 with principal symbol
𝑎 = 𝜎𝑃 (𝐴), there holds

(𝐴𝑢𝜎 (𝑘) , 𝑣𝜎 (𝑘) ) −→
𝑘→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜈joint.

In case 𝑢𝑘 = 𝑣𝑘 for any 𝑘 ∈ N∗, we recover the microlocal defect measures of Defi-
nition 1. Note that joint microlocal defect measures are signed measures, and that joint
QLs (defined as joint microlocal defect measures of two sequences of normalized eigen-
functions) are not necessarily invariant under the geodesic flow, even in the Riemannian
case.
The following proposition will be instrumental to the proof of our main results.

Proposition 8. Let ΔsR satisfy Assumption 6. We assume that (𝜑𝑘 )𝑘∈N∗ is a normalized
sequence of eigenfunctions of −ΔsR with associated eigenvalues 𝜆𝑘 → +∞. Then, up to
extraction of a subsequence, one can decompose

𝜑𝑘 = 𝜑
∅
𝑘 +

∑︁
J∈P\{∅}

𝜑
J
𝑘
, (1.8)

with the following properties:
• The sequence (𝜑𝑘 )𝑘∈N∗ has a unique QL 𝜈;
• For any J ∈ P and any 𝑘 ∈ N∗, 𝜑J

𝑘
is an eigenfunction of −ΔsR with eigenvalue 𝜆𝑘 ;

• Using the identification (1.4), the sequence (𝜑∅
𝑘
)𝑘∈N∗ admits a unique microlocal

defect measure 𝛽𝜈∅, where 𝛽 ∈ [0, 1], 𝜈∅ ∈ 𝒫(𝑆∗𝑀) and 𝜈∅ (𝑆Σ) = 0;
• For any J ∈ P \ {∅}, the sequence (𝜑J

𝑘
)𝑘∈N∗ also admits a unique microlocal defect

measure 𝜈J , having all its mass contained in 𝑆ΣJ;
• For any J ≠ J ′ ∈ P, the joint microlocal defect measure of the sequences (𝜑J

𝑘
)𝑘∈N∗

and (𝜑J′

𝑘
)𝑘∈N∗ vanishes. As a consequence,

𝜈 = 𝛽𝜈∅ +
∑︁

J∈P\{∅}
𝜈J (1.9)

and the sum (1 − 𝛽)𝜈∞ :=
∑

J∈P\{∅}
𝜈J is supported in 𝑆Σ.

In (1.9), we separated the empty set from the other subsets J ∈ P \ {∅} to emphasize
on the concentration of 𝛽𝜈∅ on𝑈∗𝑀 , while the rest of the measure 𝜈 in (1.9) is supported
in 𝑆Σ. This is purely artificial, since one could have included 𝛽𝜈∅ into the sum over J .
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Besides, the notation 𝜈∅ used above corresponds to the notation 𝜈0 in [10] (see Propo-
sition 0 above): we changed it to get a unified notation for the different parts of the QL,
namely 𝜈∅ and 𝜈J .
Proposition 8 is proved with joint spectral calculus (see [31, VII and VIII.5]) for the

operators 𝑍∗
1𝑍1, . . . , 𝑍

∗
𝑚𝑍𝑚 and −ΔsR which is made possible thanks to Assumption 6.

The ideas underlying Proposition 8 are close to those of [7, Theorem 0.6] and the proof is
inspired by the seminal paper [17].

1.3. Main results on products of the three-dimensional Heisenberg group

1.3.1. Products of the three-dimensional Heisenberg group. Our main results give fur-
ther information on QLs, but are restricted to a specific family of sub-Laplacians, which
in particular satisfy Assumption 6. In order to define these operators, let us first recall the
definition of the three-dimensional Heisenberg group. If we endow R3 with the product
law

(𝑥, 𝑦, 𝑧) ★ (𝑥 ′, 𝑦′, 𝑧′) = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ − 𝑥𝑦′), (1.10)

then, with this law, H̃= (R3,★) is a Lie group, which is isomorphic to the group of matrices
©­­«
1 𝑥 −𝑧
0 1 𝑦

0 0 1

ª®®¬ , 𝑥, 𝑦, 𝑧 ∈ R


endowed with the standard product law on matrices.
We consider the left quotient H = Γ\H̃ where Γ = (

√
2𝜋Z)2 × 2𝜋Z is a cocompact

subgroup of H̃ (so that H is compact). Note that H is not homeomorphic to an abelian
torus since its fundamental group is (Γ, ★), which is non-commutative. The vector fields
on H

𝑋 = 𝜕𝑥 and 𝑌 = 𝜕𝑦 − 𝑥𝜕𝑧
are left invariant, and we consider

ΔH = 𝑋2 + 𝑌2

the associated sub-Laplacian; here 𝜇 is the Lebesgue measure 𝜇 = 𝑑𝑥𝑑𝑦𝑑𝑧 and (𝑋,𝑌 ) is
orthonormal for 𝑔.
Then, we consider the product manifold H𝑚 and the associated sub-Laplacian Δ for

some integer 𝑚 ≥ 2, that is

Δ = ΔH ⊗ (Id)⊗𝑚−1 + Id ⊗ ΔH ⊗ (Id)𝑚−2 + · · · + (Id)⊗𝑚−1 ⊗ ΔH, (1.11)

which is a second-order pseudodifferential operator. Below, we give an expression (1.12)
for Δ which is more tractable. All the eigenvalues of −Δ are integers and we will describe
them more precisely in Section 5.1.1. In the sequel, we fix once for all an integer 𝑚 ≥ 2.
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Remark 9. If (𝜑𝑘 )𝑘∈N∗ denotes an orthonormal basis of 𝐿2 (H) consisting of eigenfunc-
tions of −ΔH, then

{𝜑𝑘1 ⊗ · · · ⊗ 𝜑𝑘𝑚 | 𝑘1, . . . , 𝑘𝑚 ∈ N∗}

is an orthonormal basis of 𝐿2 (H𝑚) consisting of eigenfunctions of −Δ. However, there
exist orthonormal bases of 𝐿2 (H𝑚) which cannot be put in this tensorized form.

In this introductory section, the sub-Laplacian we consider is either ΔH, or Δ, or an
arbitrary sub-Laplacian ΔsR on a general sub-Riemannian manifold (𝑀,D, 𝑔). In all cases,
we keep the same notations 𝑔∗, Σ and 𝑆Σ to denote the objects introduced in Section 1.2.2,
without any reference in the notation to the underlying manifold even for the particular
sub-Laplacians ΔH and Δ. It should not lead to any confusion since the context is precisely
stated when necessary.
In order to give a precise statement of our main results, it is necessary to introduce a

decomposition of the sub-Laplacian Δ defined by (1.11). Taking coordinates (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 )
on the 𝑗-th copy of H, we can write

Δ =

𝑚∑︁
𝑗=1

(𝑋2𝑗 + 𝑌2𝑗 ) (1.12)

with 𝑋 𝑗 = 𝜕𝑥 𝑗 and 𝑌 𝑗 = 𝜕𝑦 𝑗 − 𝑥 𝑗𝜕𝑧 𝑗 . We note that Δ satisfies Assumption 6 (for 𝑍 𝑗 = 𝜕𝑧 𝑗
for 𝑗 = 1, . . . , 𝑚).
For 1 ≤ 𝑗 ≤ 𝑚, we consider the operator 𝑅 𝑗 =

√︃
𝜕∗𝑧 𝑗 𝜕𝑧 𝑗 and we make an 𝐿2 (H𝑚)

Fourier expansion with respect to the 𝑧 𝑗 -variable in the 𝑗-th copy ofH. On the eigenspaces
corresponding to non-zero modes of this Fourier decomposition, we define the operator
Ω 𝑗 = −𝑅−1

𝑗
Δ 𝑗 = −Δ 𝑗𝑅−1

𝑗
where Δ 𝑗 = 𝑋2𝑗 + 𝑌2𝑗 . Thus, −Δ acts as

− Δ =

𝑚∑︁
𝑗=1

𝑅 𝑗Ω 𝑗 (1.13)

on any eigenspace of −Δ on which 𝑅 𝑗 ≠ 0 for any 1 ≤ 𝑗 ≤ 𝑚. Moreover, 𝑅 𝑗 and Ω 𝑗 are
pseudodifferential operators of order 1 in any cone of 𝑇∗H𝑚 whose intersection with some
conic neighborhood of the set {𝑝𝑧 𝑗 = 0} is reduced to 0 (but not near {𝑝𝑧 𝑗 = 0} since the
principal symbol |𝑝𝑧 𝑗 | of 𝑅 𝑗 is not differentiable there).
The operator Ω 𝑗 , seen as an operator on the 𝑗-th copy of H, is an harmonic oscillator,

having in particular eigenvalues 2𝑛 + 1, 𝑛 ∈ N (see [10, Section 3.1]). Moreover, the oper-
ators Ω𝑖 (considered this time as operators on H𝑚) commute with each other and with the
operators 𝑅 𝑗 .

1.3.2. Flows and probabilities on 𝚺. Let us briefly describe Σ for the sub-Laplacian Δ.
Denoting by (𝑞, 𝑝) the canonical coordinates in 𝑇∗H𝑚 as

𝑞 = (𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑧𝑚)
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and
𝑝 = (𝑝𝑥1 , 𝑝𝑦1 , 𝑝𝑧1 , . . . , 𝑝𝑥𝑚 , 𝑝𝑦𝑚 , 𝑝𝑧𝑚 ),

we obtain that

Σ =
{
(𝑞, 𝑝) ∈ 𝑇∗H𝑚 | 𝑝𝑥 𝑗 = 𝑝𝑦 𝑗 − 𝑥 𝑗 𝑝𝑧 𝑗 = 0 for any 1 ≤ 𝑗 ≤ 𝑚

}
.

The map

Σ → H𝑚 × R𝑚

(𝑞, 𝑝) ↦→ (𝑞, 𝑝𝑧1 , . . . , 𝑝𝑧𝑚 )

is one-to-one. Above any point 𝑞 ∈ H𝑚, the fiber of Σ is of dimension 𝑚, and therefore,
above any point 𝑞 ∈ H𝑚, 𝑆Σ consists of an (𝑚 − 1)-dimensional sphere. At some point
in Section 5, we will consider the coordinates (𝑞, 𝑝𝑧1 , . . . , 𝑝𝑧𝑚 ) on Σ and the coordinates
(𝑞, [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ]) on 𝑆Σ, where the notation [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] stands for homogeneous
coordinates.
Writing Σ as a disjoint union (1.6), we notice that ΣJ is the set of points (𝑞, 𝑝) ∈ Σ

with 𝑝 = (𝑝𝑥1 , 𝑝𝑦1 , 𝑝𝑧1 , . . . , 𝑝𝑥𝑚 , 𝑝𝑦𝑚 , 𝑝𝑧𝑚 ) such that{
𝑗 ∈ {1, . . . , 𝑚}, 𝑝𝑧 𝑗 ≠ 0

}
= J .

The notation 𝑆ΣJ designates in the sequel the set of points (𝑞, 𝑝) of 𝑆Σ which have null
(homogeneous) coordinate 𝑝𝑧𝑖 for any 𝑖 ∉ J and non-null 𝑝𝑧 𝑗 for 𝑗 ∈ J . Note that this set
is, in general, neither open nor closed.
For J ∈ P \ {∅}, we consider the simplex

SJ =

{
𝑠 = (𝑠 𝑗 ) ∈ RJ

+ ,
∑︁
𝑗∈J

𝑠 𝑗 = 1
}

and, for 𝑠 = (𝑠 𝑗 ) ∈ SJ and (𝑞, 𝑝) ∈ ΣJ , we set

𝜌J𝑠 (𝑞, 𝑝) =
∑︁
𝑗∈J

𝑠 𝑗 |𝑝𝑧 𝑗 |.

We denote by 𝜎𝑃 the principal symbol (see Appendix A.1). We have

𝜌J𝑠 (𝑞, 𝑝) = (𝜎𝑃 (𝑅𝑠)) |ΣJ where 𝑅𝑠 =
∑︁
𝑗∈J

𝑠 𝑗𝑅 𝑗 , (1.14)

noting that 𝑅𝑠 is a pseudodifferential operator in ΣJ . Moreover, the vector field

®𝜌J𝑠 =
∑︁
𝑗∈J
sgn(𝑝𝑧 𝑗 )𝑠 𝑗𝜕𝑧 𝑗 . (1.15)

is well-defined on ΣJ and smooth.3

3Roughly speaking, ®𝜌J𝑠 is some kind of Hamiltonian vector field associated to 𝜌J𝑠 , but note that ΣJ is
not necessarily a symplectic manifold since it may be odd-dimensional, hence the term “Hamiltonian” is
not meaningful here.
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Remark 10. All coordinates 𝑥𝑖 , 𝑦𝑖 (for 1 ≤ 𝑖 ≤ 𝑚) and 𝑧𝑖 (for 𝑖 ∉ J ) are preserved under
the flow of ®𝜌J𝑠 . Once fixed these coordinates, any trajectory of the flow of ®𝜌J𝑠 is conju-
gated to a geodesic trajectory in the flat |J |-dimensional Euclidean torus. This trajectory
depends only on 𝑠 and the signs of the 𝑝𝑧 𝑗 , which are preserved by the flow.

Finally, we introduce a set of probability measures on 𝑆∗H𝑚 having specific invariance
properties:

𝒫∞ =

{
𝜈∞ ∈ 𝒫(𝑆∗H𝑚) which can be written as 𝜈∞ =

∑︁
J∈P\{∅}

∫
SJ

𝜈J𝑠 𝑑𝑄
J (𝑠),

where for any J ∈ P, 𝑄J is a non-negative Radon measure on SJ ,

and ∀J ∈ P,∀𝑠 ∈ SJ , 𝜈
J
𝑠 ∈ 𝒫(𝑆∗H𝑚), 𝜈J𝑠 (𝑆∗H𝑚 \ 𝑆ΣJ) = 0,

and for 𝑄J-almost any 𝑠 ∈ SJ , 𝜈
J
𝑠 is invariant under ®𝜌J𝑠

}
. (1.16)

This means that for any continuous function 𝑎 : 𝑆Σ → R, there holds∫
𝑆Σ

𝑎𝑑𝜈∞ =
∑︁

J∈P\{∅}

∫
SJ

( ∫
𝑆ΣJ

𝑎𝑑𝜈J𝑠

)
𝑑𝑄J (𝑠).

Any measure 𝜈∞ ∈ 𝒫∞ is supported in 𝑆Σ, and its invariance properties are given sepa-
rately on each set 𝑆ΣJ (for J ∈ P \ {∅}). Its restriction to any of these sets, denoted in
the sequel by

𝜈J =

∫
SJ

𝜈J𝑠 𝑑𝑄
J (𝑠),

can be disintegrated with respect to SJ , and for 𝑄J-almost any 𝑠 ∈ SJ , there is a corre-
sponding measure 𝜈J𝑠 which is invariant under the flow 𝑒𝑡 ®𝜌

J
𝑠 .

1.3.3. Main results. Our first main result is the following.

Theorem 1. Let (𝜑𝑘 )𝑘∈N∗ be an 𝐿2 (H𝑚)-normalized sequence of eigenfunctions of −Δ
associated with the eigenvalues 𝜆𝑘 → +∞. Let 𝜈 be a QL associated to the sequence
(𝜑𝑘 )𝑘∈N∗ . Then the measure 𝜈∞ defined in (1.5) satisfies 𝜈∞ ∈ 𝒫∞ where 𝒫∞ has been
introduced in (1.16).

Note that Theorem 1 holds for any 𝐿2 (H𝑚)-normalized sequence of eigenfunctions of
−Δ, and not only for the bases described in Remark 9.
We were not able to prove that all elements of 𝒫∞ can be realized as a QL, which

would be some kind of converse of Theorem 1. We do not know whether it is true. How-
ever, we were able to prove two results in this direction.
The first one realizes a family of probability measures strictly included in𝒫∞ as QLs.

Any element in this family is obtained as the tensorial product of two measures: J being
fixed, the first measure is a kind of Lebesgue measure in the copies of H corresponding to
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𝑖 ∉ J , and the second measure is a measure “invariant in the 𝑧 𝑗 variable” in the copies of
H corresponding to 𝑗 ∈ J .
To make it rigorous, we denote by HJ (resp. H∉J) the product of copies of H with

variables 𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 , for 𝑗 ∈ J (resp. 𝑗 ∉ J ). We defineℳJ as the set of Radon proba-
bility measures on 𝑆∗HJ which are invariant under 𝜕𝑧 𝑗 for 𝑗 ∈ J . Then, we define the
probability measure ℓ∉J on 𝑇∗H∉J as the tensorial product of the Haar measure on H∉J

and the Dirac mass on the zero section in the fibers. And finally we set

𝒟
J = {𝑚J ⊗ ℓ∉J | 𝑚J ∈ ℳ

J} (1.17)

which is viewed as a set of Radon probability measures on 𝑆∗H𝑚.
Our second main result is the following.

Theorem 2. For any J ∈ P \ {∅}, let 𝜈J ∈ 𝒟
J , and let 𝑐J ≥ 0 so that∑︁

J∈P\{∅}
𝑐J = 1.

Then
𝜈 =

∑︁
J∈P\{∅}

𝑐J𝜈
J

is a QL.

Theorem 2 has the drawback that any measure 𝜈 as in the statement is invariant under
all vector fields 𝜕𝑧 𝑗 at the same time, and thus Theorem 2 does not prove the existence
of QLs which are invariant under a single flow ®𝜌J𝑠 . Our last result shows that such QLs
indeed exist:

Theorem 3. If 𝑚 ≥ 2, there exists a QL 𝜈 such that the equation ®𝜌J𝑠 𝜈 = 0 is satisfied only
for a unique J ∈ P \ {∅} and a unique 𝑠 ∈ SJ .

This last result shows that all vector fields ®𝜌J𝑠 play a role at the quantum level.

1.3.4. Comments on the main results.

Spectrum of −𝚫. The particularly rich structure of the QLs of the sub-Laplacian −Δ
described in Theorem 1 is due to the high degeneracy of its spectrum. To make an analogy
with the Riemannian case, the QLs of the usual flat Riemannian torus T2 = R2/Z2 have a
rich structure (see [23]), whereas the eigenfunctions and the QLs of irrational Riemannian
tori are simply obtained as tensor products.
Recall that the spectrum spec(−ΔH) is given by

spec(−ΔH) =
{𝜆ℓ,𝛼 = (2ℓ + 1) |𝛼 | | ℓ ∈ N, 𝛼 ∈ N∗} ∪ {𝜇𝑘1 ,𝑘2 = 2𝜋(𝑘21 + 𝑘

2
2) | (𝑘1, 𝑘2) ∈ Z

2}

where 𝜆ℓ,𝛼 is of multiplicity |𝛼 |, multiplied by the number of decompositions of 𝜆ℓ,𝛼 into
the form (2ℓ′ + 1) |𝛼′ | (see [15, Corollary 3.3], [10, Proposition 3.1]). Therefore, using a
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tensorial orthonormal basis of 𝐿2 (H𝑚) consisting of eigenfunctions of −Δ, we get that

spec(−Δ) ={ 𝐽∑︁
𝑗=1

(
2𝑛 𝑗 + 1

)
|𝛼 𝑗 | + 2𝜋

2(𝑚−𝐽 )∑︁
𝑖=1

𝑘2𝑖 with 0 ≤ 𝐽 ≤ 𝑚, 𝑘𝑖 ∈ Z, 𝑛 𝑗 ∈ N, 𝛼 𝑗 ∈ N∗
}

(see Section 5 for a detailed proof) and the multiplicities in spec(−Δ) can be deduced
from those in spec(−ΔH). For a description of the eigenfunctions of ΔH, see [15, Section
3]; the eigenfunctions of Δ are sums of tensor products of these eigenfunctions. Note that
the eigenvalues for which 𝐽 =𝑚 form a density-one subsequence of all eigenvalues labeled
in increasing order.
The specific algebraic structure of spec(−Δ) will be exploited in particular to prove

Theorems 2 and 3.

Remark 11. Contrarily to those of flat tori (see [23]), the QLs of H𝑚 (or, more precisely,
their pushforward under the canonical projection onto H𝑚) are not necessarily absolutely
continuous. This fact has already been noticed in the case𝑚 = 1 in [10, Proposition 3.2(2)]
– in this case the Dirac measure on a Reeb orbit is a (projected) QL. This can be under-
stood as follows: on flat tori the microlocal defect measures of joint eigenfunctions are
Lebesgue measures on phase space tori, which project without singularities to the base.
But for H𝑚, since there exist Hermite eigenfunctions which concentrate on closed orbits,
the associated QLs have singular projections.

Remark 12. There is no clear link of our result with the concept of “second microlocal-
ization,” although such a link may seem possible at first sight. Focusing on a QL supported
in 𝑆Σ, our study builds upon a spectral decomposition of it, and not upon a second direc-
tion of microlocalization as is usually done while studying fine properties of sequences of
solutions of an operator (see for example [12]).

1.4. Related problems and bibliographical comments.

Quantum Limits of Riemannian Laplacians. The study of QLs for Riemannian Lapla-
cians is a long-standing question. Over the years, a particular attention has been drawn
towards Riemannian manifolds whose geodesic flow is ergodic since in this case, up to
extraction of a density-one subsequence, the set of QLs is reduced to the Liouville mea-
sure, a phenomenon which is called Quantum Ergodicity (see for example [34], [9], [42]).
For compact arithmetic surfaces, a detailed study of invariant measures lead to the resolu-
tion of the Quantum Unique Ergodicity conjecture for these manifolds, meaning that the
extraction of a density-one subsequence in the previous result is even not necessary for
these particular manifolds ([26]). In manifolds which have a degenerate spectrum, the set
of QLs is generally richer: see for example [23] for the description of QLs on flat tori or [4]
for the case of the disk. Also, the QLs of the sphere S𝑑 equipped with its canonical metric
(see [24]) have been fully characterized. However, to the author’s knowledge, few papers
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until now have been devoted to the study of QLs of product of Riemannian manifolds (see
[3], [22, Corollary 2], [5] for recent results).

Quantum Limits of sub-Laplacians. The understanding of QLs of general sub-Laplacians
remains a largely unexplored question. Their study was undertaken in the work [10], which
was mainly devoted to the three-dimensional contact case – encompassing for example the
case of the manifoldH – although some results are valid for any sub-Laplacian (see Propo-
sition 0 of the present paper). The authors proved Weyl laws (i.e., results “in average” on
eigenfunctions), a result of decomposition of QLs, and also Quantum Ergodicity proper-
ties (i.e., equidistribution of QLs under an ergodicity assumption) for three-dimensional
contact sub-Laplacians. The QLs of H-type (or Heisenberg-type) sub-Laplacians were
also implicitly studied in [13] thanks to a detailed study of the Schrödinger flow: the
authors developed a notion of semiclassical measures adapted to “Heisenberg type” sub-
Laplacians thanks to non-commutative Fourier analysis and a subsequent adapted defini-
tion of pseudodifferential operators. Taking in Theorem 2.10(ii)(2) of [13] eigenfunctions
of the sub-Laplacian as initial data of the Schrödinger equation yields a decomposition of
QLs which may be regarded as an analog of Theorem 1 in the context of H-type groups
(more precisely, one should use the adaptation to the compact (quotient) setting of these
results which was done in [14], among other things); however, the result of [13] is proved
by totally different techniques, and in particular the splitting of QLs which we obtain
through joint spectral calculus (see below) is replaced in [13] by non-commutative har-
monic analysis.

Non-commutative harmonic analysis. As already mentioned in Remark 5, it is pos-
sible to use the stratified Lie algebra structure to study the spectral theory of (nilpotent)
sub-Laplacians, as done for example in [13]. This work builds upon non-commutative har-
monic analysis (see [37]) to develop a pseudodifferential calculus and semiclassical tools
“naturally attached to the sub-Laplacian”. It is likely that one could have given a proof of
Theorems 1, 2 and 3 based on similar tools as in [13]. The point of view we adopt in the
present paper is different: it only requires “classical” pseudodifferential calculus (briefly
recalled in Appendix A.1) since there is still enough commutativity and ellipticity from
the choice of operators under study. Beside making the results more accessible to some
readers, it allows us to isolate in each eigenfunction the piece which is responsible, in the
high-frequency limit, for a given part of the QL. Moreover, our method only builds upon
abstract commutation arguments, at least for Proposition 8, and in particular it avoids the
computation of irreducible representations which are always specific to certain families of
groups (e.g., H-type groups in [13]).
Part of our results can be reinterpreted through the light of noncommutative harmonic

analysis. For example, the part of the QL in𝑈∗𝑀 , namely 𝛽𝜈∅ (see (1.9)), is described in
[13] as the part of the semiclassical measure supported above the finite dimensional rep-
resentations 𝜋0,𝜔𝑥 (see [13, Section 2.2.1]), and the fact that 𝛽𝜈∅ = 0 for “almost all” QLs
(see Proposition 0) can be recovered from the fact that the Plancherel measure denoted by
|𝜆 |𝑑𝑑𝜆 in [13] gives no mass to finite-dimensional representations.
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Also, in the setting covered by Theorems 1, 2 and 3, i.e., products of quotients of the
Heisenberg group, the joint spectrum of (Δ1, . . . , Δ𝑚, 𝑖−1𝜕𝑧1 , . . . , 𝑖−1𝜕𝑧𝑚 ), which can be
drawn in R2𝑚, is called “Heisenberg fan”. This terminology was introduced in [35] for the
three-dimensional Heisenberg sub-Laplacian; in our case, this fan consists in a discrete set
of points which can be gathered into lines (see [35, Figure 1]). In case 𝑚 = 1, the subset of
points (or joint eigenvalues) corresponding to 𝜑∅

𝑘
and 𝜈∅ in the statement of Theorem 1 can

be seen as points close to the vertical line {0} × R ⊂ R2. Similar descriptions can be given
in case 𝑚 ≥ 2. Also, let us mention that we could derive from the proof of Proposition
8 a generalization of the definition of the Heisenberg fan to any sub-Laplacian satisfying
Assumption 6, as the joint spectrum of (−ΔsR,

√︁
𝑍∗
1𝑍1, . . . ,

√︁
𝑍∗
𝑚𝑍𝑚).

Let us also mention that sub-Laplacians on products of Heisenberg groups (and, more
generally, on “decomposable groups”) were analysed in [6] with a non-commutative har-
monic analysis point of view in order to establish Strichartz estimates (see notably [6,
Section 1.4 and Corollary 1.6]).

Joint spectral calculus. A key ingredient in the proof of all results of the present paper
is the joint spectral calculus (see [31, VII and VIII.5] and [7]) associated to the operators
𝑍∗
1𝑍1, . . . , 𝑍

∗
𝑚𝑍𝑚 and −ΔsR. This joint calculus, at least for Heisenberg groups, is well-

known, see for example [11, Section 2], or [39] for the quotient case. It was used for
instance in [30] to prove a Marcinkiewicz multiplier theorem in H-type groups.

Structure of the paper. In Section 2 we prove Proposition 8 using joint spectral calcu-
lus. Section 3 is devoted to preliminary steps in the proof of Theorem 1. Building upon
Proposition 8, we establish Theorem 1 in Section 4. In Section 5, we prove Theorem 2 by
constructing explicitly a sequence of eigenfunctions with prescribed QL. In Section 6, we
prove Theorem 3.
In Appendix A.1, we recall some basic facts of pseudodifferential calculus and a

related elementary lemma. In Appendix A.2, we build an example of step 3 sub-Laplacian
satisfying Assumption 6. Finally, in Appendix A.3, we prove a result concerning QLs of
flat contact manifolds in any dimension: for such manifolds, the invariance properties of
QLs are essentially the same as in the three-dimensional case. Although this is a direct
consequence of the results in [13], we decided to provide here a short and self-contained
proof since this can be seen as a toy model for the averaging techniques used repeatedly
in the proof of Theorem 1.

2. Proof of Proposition 8

2.1. Notation

We fix a sub-Laplacian ΔsR satisfying Assumption 6, we fix (𝜑𝑘 )𝑘∈N∗ a sequence of
eigenfunctions of −ΔsR associated with the eigenvalues (𝜆𝑘 )𝑘∈N∗ with 𝜆𝑘 → +∞ and
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‖𝜑𝑘 ‖𝐿2 = 1, and, possibly after extraction of a subsequence, we assume that (𝜑𝑘 )𝑘∈N∗

has a unique QL 𝜈.
Let us first give an intuition of how the proof goes. Set

𝐸 = Id − ΔsR +
𝑚∑︁
𝑗=1

𝑍∗
𝑗𝑍 𝑗 ∈ Ψ2 (𝑀). (2.1)

We decompose 𝜑𝑘 as a sum of functions which are joint eigenfunctions of −ΔsR and of all
the 𝑍∗

𝑗
𝑍 𝑗 for 1 ≤ 𝑗 ≤ 𝑚. Thus they are also eigenfunctions of 𝐸 . Each of these functions

is an eigenfunction of −ΔsR with same eigenvalue 𝜆𝑘 as 𝜑𝑘 . Then, roughly speaking, we
gather some of these functions into 𝜑∅

𝑘
or into 𝜑J

𝑘
for some J ∈ P \ {∅}, depending on

their eigenvalues with respect to the operators 𝑍∗
𝑗
𝑍 𝑗 (for 1 ≤ 𝑗 ≤ 𝑚) and −ΔsR.

Fix J ∈ P \ {∅}. The functions we select (asymptotically as 𝑘 → +∞) to be in 𝜑J
𝑘

are those such that the following spectral inequalities are satisfied:
(1) −ΔsR � 𝐸 ;
(2) if 𝑖 ∉ J , then 𝑍∗

𝑖
𝑍𝑖 � 𝐸 ;

(3) if 𝑗 ∈ J , then 𝑍∗
𝑗
𝑍 𝑗 & 𝐸 .

Here, since we consider joint eigenfunctions of −ΔsR, 𝐸 and 𝑍∗
𝑗
𝑍 𝑗 for any 1 ≤ 𝑗 ≤ 𝑚,

the above notation 𝐴 � 𝐵 (resp. 𝐴 & 𝐵) means that as 𝑘 → +∞ the ratio between the
eigenvalue with respect to 𝐴 and the eigenvalue with respect to 𝐵 tends to 0 (resp. is
bounded below).
Before proceeding towards a rigorous proof, we introduce a few notations. The princi-

pal symbol of 𝐸 is

𝜎𝑃 (𝐸) = 𝑔∗ +
𝑚∑︁
𝑗=1
𝜎𝑃 (𝑍∗

𝑗𝑍 𝑗 )

hence 𝐸 is elliptic, thanks to point (i) in Assumption 6. For 𝑛 ∈ N∗, let 𝜒𝑛 ∈ 𝐶∞
𝑐 (R, [0, 1])

such that 𝜒𝑛 (𝑥) = 1 for |𝑥 | ≤ 1
2𝑛 and 𝜒𝑛 (𝑥) = 0 for |𝑥 | ≥

1
𝑛
. Thanks to functional calculus

(see [31, VII and VIII.5]), for J ∈ P \ {∅}, the operator

𝑃J
𝑛 = 𝜒𝑛

( Id − ΔsR
𝐸

)∏
𝑖∉J

𝜒𝑛

( 𝑍∗
𝑖
𝑍𝑖

𝐸

) ∏
𝑗∈J

(1 − 𝜒𝑛)
( 𝑍∗

𝑗
𝑍 𝑗

𝐸

)
(2.2)

is well-defined. Note that, thanks to point (ii) in Assumption 6, we know that 𝐸 commutes
with 𝑍∗

𝑗
𝑍 𝑗 , for any 1 ≤ 𝑗 ≤ 𝑚, and with −ΔsR, which explains why we are allowed to use

the quotients of operators in (2.2). Similarly, we consider

𝑃∅
𝑛 = (1 − 𝜒𝑛)

(
Id − ΔsR

𝐸

)
+ 𝜒𝑛

(
Id − ΔsR

𝐸

) 𝑚∏
𝑖=1

𝜒𝑛

(
𝑍∗
𝑖
𝑍𝑖

𝐸

)
. (2.3)

We note that for any 𝑛 ∈ N, ∑︁
J∈P

𝑃J
𝑛 = Id. (2.4)



Quantum limits of sub-Laplacians via joint spectral calculus 17

2.2. A preliminary lemma

Lemma 13. For any J ∈ P, the following properties hold:
(1) 𝑃J

𝑛 ∈ Ψ0 (𝑀);
(2) [𝑃J

𝑛 ,ΔsR] = 0;
(3) If J ≠ ∅, then 𝜎𝑃 (𝑃J

𝑛 ) → 1ΣJ pointwise as 𝑛 → +∞, where 1ΣJ is the charac-
teristic function of ΣJ (defined in (1.6)).
If J = ∅, then 𝜎𝑃 (𝑃J

𝑛 ) → 1𝑈 ∗𝑀 pointwise as 𝑛→ +∞, where 1𝑈 ∗𝑀 is the char-
acteristic function of𝑈∗𝑀 .

Proof. Let us prove Point (1). Since 𝐸 ∈ Ψ2 (𝑀) is elliptic, it is invertible, and thus

(Id − ΔsR)𝐸−1 = 𝐸−1 (Id − ΔsR) ∈ Ψ0 (𝑀)

is self-adjoint. Hence, by [19, Theorem 1(ii)], (1 − 𝜒𝑛)
(
Id−ΔsR
𝐸

)
∈ Ψ0 (𝑀) with principal

symbol

(1 − 𝜒𝑛)
( 𝑔∗

𝜎𝑃 (𝐸)

)
.

Similarly, the operators 𝜒𝑛
(
Id−ΔsR
𝐸

)
, 𝜒𝑛

(
𝑍 ∗
𝑖
𝑍𝑖

𝐸

)
and (1 − 𝜒𝑛)

(
𝑍 ∗
𝑗
𝑍 𝑗

𝐸

)
(for any 1 ≤ 𝑖, 𝑗 ≤ 𝑚)

belong to Ψ0 (𝑀) with respective principal symbols

𝜒𝑛

( 𝑔∗

𝜎𝑃 (𝐸)

)
, 𝜒𝑛

( |ℎ𝑍𝑖 |2
𝜎𝑃 (𝐸)

)
and (1 − 𝜒𝑛)

( |ℎ𝑍 𝑗 |2
𝜎𝑃 (𝐸)

)
.

Hence, 𝑃J
𝑛 ∈ Ψ0 (𝑀).

Point (2) is an immediate consequence of functional calculus, since ΔsR commutes
with 𝐸 and with 𝑍∗

𝑗
𝑍 𝑗 for any 1 ≤ 𝑗 ≤ 𝑚.

Let us prove Point (3). For 𝜅 > 0, we consider the cone

𝑆𝜅 :=
{

𝑔∗

𝜎𝑃 (𝐸)
≤ 𝜅

}
⊂ 𝑇∗𝑀

and, for 1 ≤ 𝑗 ≤ 𝑚, we also consider the cone

𝑇
𝑗
𝜅 =

{ |ℎ𝑍 𝑗 |2

𝜎𝑃 (𝐸)
≤ 𝜅

}
⊂ 𝑇∗𝑀.

For the moment, we assume J ≠ ∅. Then, the support of 𝜎𝑃 (𝑃J
𝑛 ) is contained in 𝑆 1

𝑛
,

in 𝑇 𝑖1
𝑛

for 𝑖 ∉ J and in the complementary set (𝑇 𝑗1
2𝑛
)𝑐 for 𝑗 ∈ J . It follows that, in the

limit 𝑛 → +∞, 𝜎𝑃 (𝑃J
𝑛 ) vanishes everywhere outside the set of points (𝑞, 𝑝) satisfying

𝑔∗ (𝑞, 𝑝) = 0,

ℎ𝑍𝑖 (𝑞, 𝑝) = 0, ∀𝑖 ∉ J
ℎ𝑍 𝑗 (𝑞, 𝑝) ≠ 0, ∀ 𝑗 ∈ J .
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We note that these relations exactly define the set ΣJ .
Conversely, let (𝑞, 𝑝) ∈ ΣJ . Our goal is to show that 𝜎𝑃 (𝑃J

𝑛 ) (𝑞, 𝑝) = 1 for sufficiently
large 𝑛 ∈ N∗. It follows from a separate analysis of the principal symbol of each factor in
the product (2.2):
• Since (𝑞, 𝑝) ∈ Σ, there holds 𝑔∗ (𝑞, 𝑝) = 0, hence

𝜒𝑛

( 𝑔∗

𝜎𝑃 (𝐸)

)
= 1;

• For 𝑖 ∉ J , since ℎ𝑍𝑖 (𝑞, 𝑝) = 0, there holds

𝜒𝑛

( |ℎ𝑍𝑖 |2
𝜎𝑃 (𝐸)

)
(𝑞, 𝑝) = 1;

• For 𝑗 ∈ J , we know that ℎ𝑍 𝑗 (𝑞, 𝑝) ≠ 0. Hence, for 𝑛 sufficiently large, at (𝑞, 𝑝),

(1 − 𝜒𝑛)
( |ℎ𝑍 𝑗 |2
𝜎𝑃 (𝐸)

)
(𝑞, 𝑝) = 1.

All in all, 𝜎𝑃 (𝑃J
𝑛 ) (𝑞, 𝑝) = 1 for sufficiently large 𝑛, which proves Point (3) in case J ≠ ∅.

For the proof in the case J = ∅, we note that by definition of 𝐸 (2.1), we have

𝜒𝑛

( Id − ΔsR
𝐸

) 𝑚∏
𝑖=1

𝜒𝑛

( 𝑍∗
𝑖
𝑍𝑖

𝐸

)
= 0

as soon as 𝑛 ≥ 𝑚 + 1. The rest of the proof for J = ∅ is very similar to the case J = ∅,
for the sake of brevity we do not repeat it here.

2.3. Proof of Proposition 8

We finally prove Proposition 8. We consider, for fixed 𝑛 ∈ N and J ∈ P, the sequence
(𝑃J
𝑛 𝜑𝑘 )𝑘∈N∗ , which, thanks to Point (2) of Lemma 13, is also a sequence of eigenfunctions

of −ΔsR with the same eigenvalues as 𝜑𝑘 . For any 𝐴 ∈ Ψ0 (𝑀), using that 𝑃J
𝑛 is self-

adjoint, there holds

(𝐴𝑃J
𝑛 𝜑𝑘 , 𝑃

J
𝑛 𝜑𝑘 ) = (𝑃J

𝑛 𝐴𝑃
J
𝑛 𝜑𝑘 , 𝜑𝑘 ) −→

𝑘→+∞

∫
𝑆∗𝑀

𝜎𝑃 (𝑃J
𝑛 )2𝜎𝑃 (𝐴)𝑑𝜈.

Hence (𝑃J
𝑛 𝜑𝑘 )𝑘∈N∗ has a unique microlocal defect measure 𝜈J𝑛 = 𝜎𝑃 (𝑃J

𝑛 )2𝜈. Finally,
we take 𝜈J a weak-star limit of (𝜈J𝑛 )𝑛∈N and 𝛽𝜈∅ a weak-star limit of (𝜈∅𝑛 )𝑛∈N, with
𝜈∅ ∈ 𝒫(𝑆∗𝑀) and 𝛽 ∈ [0, 1]. Up to successive extractions we can assume that all these
weak-star limits are obtained with the same extraction 𝜎1 : N∗ → N∗.

Lemma 14. There holds 𝜈∅ (𝑆Σ) = 0 and, for J ∈ P \ {∅}, 𝜈J gives no mass to the
complement of 𝑆ΣJ in 𝑆∗𝑀 .
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Proof. For J ∈ P (possibly J = ∅) and any 𝐴 ∈ Ψ0 (𝑀), using that 𝑃J
𝜎1 (𝑛) is self-adjoint,∫

𝑆∗𝑀
𝜎𝑃 (𝐴)𝑑𝜈J𝜎1 (𝑛) =

∫
𝑆∗𝑀

𝜎𝑃 (𝑃J
𝜎1 (𝑛) )

2𝜎𝑃 (𝐴)𝑑𝜈

−→
𝑛→+∞

{ ∫
𝑆∗𝑀

𝜎𝑃 (𝐴)1𝑆ΣJ 𝑑𝜈 if J ≠ ∅∫
𝑆∗𝑀

𝜎𝑃 (𝐴)1𝑈 ∗𝑀 𝑑𝜈 if J = ∅

by the dominated convergence theorem and Lemma 13, which proves the result.

Let us summarize the situation: there exists an extraction 𝜎1 : N∗ → N∗ such that for
any 𝑎 ∈ 𝒮

0
hom (𝑀) (see Appendix A.1),∫

𝑆∗𝑀
𝑎𝑑𝜈

J
𝜎1 (𝑛) −→

𝑛→+∞

{ ∫
𝑆∗𝑀

𝑎𝑑𝜈J if J ≠ ∅∫
𝑆∗𝑀

𝑎𝛽𝑑𝜈∅ if J = ∅
(2.5)

and for any 𝑛 ∈ N∗ and any 𝐴 ∈ Ψ0 (𝑀) with principal symbol 𝑎,

(𝐴𝑃J
𝜎1 (𝑛)𝜑𝑘 , 𝑃

J
𝜎1 (𝑛)𝜑𝑘 ) −→

𝑘→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜈
J
𝜎1 (𝑛) . (2.6)

Choosing first 𝑛 large, and then 𝑘 large, the combination of (2.5) and (2.6) yields the
existence of a function 𝑟 tending to +∞ at +∞ with 𝑟 (𝑘) � 𝑘 at +∞ such that 𝑃J

𝑟 (𝑘)𝜑𝑘 has
a unique microlocal defect measure which is 𝜈J for J ≠ ∅ and 𝛽𝜈∅ for J = ∅.
Setting 𝜑J

𝑘
= 𝑃

J
𝑟 (𝑘)𝜑𝑘 , due to (2.4), we have

𝜑𝑘 = 𝜑
∅
𝑘 +

∑︁
J∈P\{∅}

𝜑
J
𝑘
. (2.7)

Let us prove that (2.7) implies (1.9). For that, we first recall an elementary lemma con-
cerning the microlocal defect measure of a sum of sequences. It is proved in the case 𝑝 = 2
in [16, Proposition 3.3] and a direct induction gives the general case.

Lemma 15. Let 𝑝 ∈ N∗ and (𝑢1
𝑘
)𝑘∈N, (𝑢2𝑘 )𝑘∈N, . . . , (𝑢

𝑝

𝑘
)𝑘∈N be sequences of functions

weakly converging to 0, each with a unique microlocal defect measure 𝜇1, . . . , 𝜇𝑝 , respec-
tively. We assume that 𝜇1, . . . , 𝜇𝑝 are pairwise mutually singular. Then the sequence
(𝑢1
𝑘
+ · · · + 𝑢𝑝

𝑘
)𝑘∈N has a unique microlocal defect measure, which is 𝜇1 + · · · + 𝜇𝑝 .

Combining Lemma 14, Lemma 15 and (2.7), we obtain (1.9), which finishes the proof
of Proposition 8.

3. Preliminaries for the proof of Theorem 1

This section is devoted to preliminary steps for the proof of Theorem 1. We fix 𝑚 ≥
2 and ΔsR = Δ as in Section 1.3. Recall that the case 𝑚 = 1 has been handled in [10,
Proposition 3.2].
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3.1. Reduction to a fixed J ∈ P \ {∅}.

The first step in the proof consists in reducing the analysis to the part of the QL above ΣJ
for some J ∈ P \ {∅}, and it is achieved thanks to Proposition 8. Thanks to Proposition
8, it is possible to assume that (𝜑𝑘 )𝑘∈N∗ is a sequence of eigenfunctions with eigenvalue
tending to +∞, and with a unique microlocal defect measure 𝜈, which can be assumed to
be supported in 𝑆Σ. Indeed, thanks to Proposition 8, we can even assume that all the mass
of 𝜈 is contained in 𝑆ΣJ for some J ∈ P \ {∅}, i.e., 𝜈 = 𝜈J (simply by considering only
the term 𝜑J

𝑘
). Once we have established the decomposition

𝜈J =

∫
SJ

𝜈J𝑠 𝑑𝑄
J (𝑠), (3.1)

Theorem 1 follows by just gluing all pieces of 𝜈 together thanks to Proposition 8.
Therefore, in order to establish Theorem 1, we assume that the unique microlocal

defect measure of (𝜑𝑘 )𝑘∈N∗ has no mass outside 𝑆ΣJ for some J ∈ P \ {∅}. Due to
the analysis done in Section 2.3, there exists a function 𝑟 (𝑘) tending to +∞ as 𝑘 → +∞
such that 𝜑J

𝑘
= 𝑃

J
𝑟 (𝑘)𝜑𝑘 has the same microlocal defect measure as 𝜑𝑘 . Thus, to analyze

this microlocal defect measure, we can replace without loss of generality 𝜑𝑘 by 𝑃J
𝑟 (𝑘)𝜑𝑘

which is still an eigenfunction with same eigenvalue. The new 𝜑𝑘 satisfies (3.2) below. By
symmetry, we can also assume that J = {1, . . . , 𝐽} with 𝐽 = Card(J).
To sum up, the sequence (𝜑𝑘 )𝑘∈N∗ that we consider is no more a general sequence of

normalized eigenfunctions with eigenvalues tending to +∞, but it satisfies the following
property:

Property 16. The sequence (𝜑𝑘 )𝑘∈N∗ is a bounded sequence of eigenfunctions of −Δ
labeled with increasing eigenvalues tending to +∞, and with unique microlocal defect
measure 𝜈. Moreover, there exist 𝐽 ≤ 𝑚 and 𝑟 (𝑘) → +∞ as 𝑘 → +∞ such that

𝜑𝑘 = 𝑃
J
𝑟 (𝑘)𝜑𝑘 (3.2)

for J = {1, . . . , 𝐽} and for any 𝑘 ∈ N∗, where 𝑃J
𝑛 is defined in (2.2). In particular, 𝜈 has

no mass outside 𝑆ΣJ .

3.2. Illustration and sketch of proof

Since the rest of the proof is slightly involved, in this section we provide an illustration
and a sketch of proof. The proof is written in full details in Section 4. Logically, one may
omit the discussion which follows and proceed directly to the next section.

Illustration of Theorem 1. To get an intuition of Theorem 1, fix (𝑛1, . . . , 𝑛𝑚) ∈ N𝑚, and
consider a sequence of normalized eigenfunctions (𝜓𝑘 )𝑘∈N∗ of −Δ given in a tensor form
as in Remark 9, such that, for any 𝑘 ∈ N∗, 𝜓𝑘 is also, for any 1 ≤ 𝑗 ≤ 𝑚, a sequence of
eigenfunctions of 𝑅 𝑗 with eigenvalue tending to +∞, and of Ω 𝑗 with eigenvalue 2𝑛 𝑗 + 1.
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We notice that any associated QL 𝜈 is supported in 𝑆Σ: it follows directly from the argu-
ments developed in the proof of Proposition 8, since for any 1 ≤ 𝑗 ≤ 𝑚, the eigenvalues
with respect to 𝑅2

𝑗
(which plays the role of 𝑍∗

𝑗
𝑍 𝑗 in Assumption 6) are much larger than

the eigenvalues with respect to −Δ.
Let J = {1, . . . , 𝑚} ∈ P. Then, 𝜈 is necessarily invariant under the vector field ®𝜌J𝑠 ,

where 𝑠 = (𝑠1, . . . , 𝑠𝑚) ∈ SJ is defined by 𝑠 𝑗 =
2𝑛 𝑗+1

2𝑛1+1+···+2𝑛𝑚+1 for 𝑗 = 1, . . . , 𝑚. To see it,
we set

𝑅 =

∑𝑚
𝑗=1 (2𝑛 𝑗 + 1)𝑅 𝑗∑𝑚
𝑗=1 2𝑛 𝑗 + 1

and we note that for any 𝐴 ∈ Ψ0 (H𝑚), we have

( [𝐴, 𝑅]𝜓𝑘 , 𝜓𝑘 ) = (𝐴𝑅𝜓𝑘 , 𝜓𝑘 ) − (𝐴𝜓𝑘 , 𝑅𝜓𝑘 ) = 0

since 𝜓𝑘 is an eigenfunction of 𝑅. In the limit 𝑘 → +∞, taking the principal symbol, we
obtain ∫

𝑆Σ

(𝜌J𝑠 𝑎)𝑑𝜈 = 0,

where 𝑎 = 𝜎𝑃 (𝐴). Since it is true for any 𝑎 ∈ 𝒮
0 (H𝑚) (the set of symbols of order 0, see

Appendix A.1 for notations), this implies ®𝜌J𝑠 𝜈 = 0. Hence, for such sequences (𝜓𝑘 )𝑘∈N∗ ,
any QL 𝜈 is invariant under ®𝜌J𝑠 and 𝑄J is a Dirac mass on 𝑠 in the decomposition (3.1).
Roughly speaking, any QL supported on 𝑆Σ is a linear combination of sequences as in

the above example, for different J ∈ P \ {∅} and different 𝑠 ∈ SJ .

Roles of 𝑹 𝒋 and 𝛀𝒋 . The operators 𝑅 𝑗 and Ω 𝑗 play a key role in the proofs of Theorem
1, 2 and 3. As illustrated in the previous paragraph, the operators Ω 𝑗 are linked with
the parameters 𝑠 ∈ SJ : in some sense, once the eigenfunctions have been orthogonally
decomposed with respect to the operators 𝑅 𝑗 and Ω 𝑗 (as explained in Section 3.3), the
ratios between the Ω 𝑗 -s determine the invariance property of the associated QLs through
the parameter 𝑠 and the vector field ®𝜌J𝑠 . On the other side, the operators 𝑅 𝑗 ‘determine’
the microlocal support of the associated QLs, for example they determine the element
J ∈ P \ {∅} for which the QL concentrates on 𝑆ΣJ .

Sketch of proof. In order to simplify the presentation, in this sketch of proof, we assume
that J = {1, . . . , 𝑚} and we omit the use of subscripts involving J , but the ideas are
similar for any J ∈ P \ {∅}.
We notice that (3.2) together with the fact that J = {1, . . . , 𝑚} ensures that 𝜑𝑘 has

no zero Fourier modes along the 𝑧 𝑗 variables for any 𝑗 ∈ {1, . . . , 𝑚}. Let us use the
decomposition (1.13) to write each 𝜑𝑘 as a sum of eigenfunctions of operators of the
form

∑𝑚
𝑗=1

(
2𝑛 𝑗 + 1

)
𝑅 𝑗 for some integers 𝑛1, . . . , 𝑛𝑚:

𝜑𝑘 =
∑︁

(𝑛1 ,...,𝑛𝑚) ∈N𝑚
𝜑𝑘, (𝑛1 ,...,𝑛𝑚) , (3.3)

with Ω 𝑗𝜑𝑘, (𝑛1 ,...,𝑛𝑚) = (2𝑛 𝑗 + 1)𝜑𝑘, (𝑛1 ,...,𝑛𝑚) , ∀ 1 ≤ 𝑗 ≤ 𝑚.
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We will see in Section 3.3 that the decomposition (3.3) is orthogonal, and therefore
each eigenfunction 𝜑𝑘, (𝑛1 ,...,𝑛𝑚) has the same eigenvalue 𝜆𝑘 as 𝜑𝑘 . Then, we do a careful
analysis of this decomposition into modes, which, in the limit 𝑘 → +∞, gives the disinte-
gration 𝜈 =

∫
S 𝜈𝑠𝑑𝑄(𝑠).

We take a partition of N𝑚 into 2𝑁 thin positive cones 𝐶𝑁
ℓ
(with 0 ≤ ℓ ≤ 2𝑁 − 1) with

vertex 𝑉 =
(
− 1
2 , . . . , −

1
2
)
(see Figure 1), and we group the eigenfunctions 𝜑𝑘, (𝑛1 ,...,𝑛𝑚)

with index (𝑛1, . . . , 𝑛𝑚) in the same cone 𝐶𝑁ℓ into a single eigenfunction

𝜑𝑁𝑘,ℓ =
∑︁

(𝑛1 ,...,𝑛𝑚) ∈𝐶𝑁
ℓ

𝜑𝑘, (𝑛1 ,...,𝑛𝑚)

of −Δ. Since the cones 𝐶𝑁
ℓ
partition N𝑚, we have

𝜑𝑘 =

2𝑁−1∑︁
ℓ=0

𝜑𝑁𝑘,ℓ (3.4)

for any 𝑁 ∈ N∗.
Taking a microlocal defect measure 𝜈𝑁

ℓ
in each sequence (𝜑𝑁

𝑘,ℓ
)𝑘∈N∗ and making 𝑁 →

+∞, we obtain from (3.4) the disintegration 𝜈 =
∫
S 𝜈𝑠𝑑𝑄(𝑠). This follows from the fact that

for any 𝑠 = (𝑠1, . . . , 𝑠𝑚) ∈ S, there exists a sequence of positive cones𝐶𝑁
ℓ (𝑁 ) in the partition

degenerating as 𝑁 → +∞ to the half-line with vertex 𝑉 and parametrized by 𝑠: for this,
choose a sequence of cones (𝐶𝑁

ℓ (𝑁 ) )𝑁 ∈N for which the indices (𝑛1,𝑁 , . . . , 𝑛𝑚,𝑁 ) ∈ (N𝑚)N
satisfy( 2𝑛1,𝑁 + 1
2𝑛1,𝑁 + 1 + · · · + 2𝑛1,𝑁 + 1 , . . . ,

2𝑛1,𝑁 + 1
2𝑛1,𝑁 + 1 + · · · + 2𝑛1,𝑁 + 1

)
−→
𝑁→+∞

(𝑠1, . . . , 𝑠𝑚).

For this choice of cones 𝐶𝑁
ℓ (𝑁 ) , 𝑑𝑄(𝑠) accounts for the relative mass, in the limit

𝑁 → +∞, of the eigenfunction 𝜑𝑁
𝑘,ℓ (𝑁 ) in the sum (3.4).

The invariance property ®𝜌𝑠𝜈𝑠 = 0 can be seen from the fact that, for any large 𝑁 and any
ℓ = ℓ(𝑁) satisfying 0 ≤ ℓ ≤ 2𝑁 − 1, each eigenfunction 𝜑𝑘, (𝑛1 ,...,𝑛𝑚) with (𝑛1, . . . , 𝑛𝑚) ∈
𝐶𝑁
ℓ (𝑁 ) is indeed an eigenfunction of the operator

𝑚∑︁
𝑖=1

( 2𝑛𝑖 + 1
2𝑛1 + 1 + · · · + 2𝑛𝑚 + 1

)
𝑅𝑖

and thus a quasimode of 𝑅𝑠 = 𝑠1𝑅1 + · · · + 𝑠𝑚𝑅𝑚 if 𝑠 = (𝑠1, . . . , 𝑠𝑚) ∈ S denotes the
parameter of the limiting half-line (with vertex𝑉) of the positive cones𝐶𝑁

ℓ (𝑁 ) as 𝑁→+∞.
Hence, 𝜑𝑁

𝑘,ℓ
is an approximate eigenfunction of 𝑅𝑠 , from which it follows by a classical

argument that 𝜈𝑠 is invariant under the vector field ®𝜌𝑠 of 𝜌𝑠 = (𝜎𝑃 (𝑅𝑠)) |Σ.

3.3. Spectral and symplectic preliminaries

In this section, we gather a few facts which will be used in the proof of Theorem 1.
We use the notations introduced in Section 1.3, notably 𝑅 𝑗 , Ω 𝑗 for the operators

defined through a Fourier expansion with respect to the 𝑧 𝑗 -variables, and satisfying (1.13).
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Lemma 17. The following properties hold:
(1) The operator Ω 𝑗 , seen as an operator on the 𝑗-th copy of H, has eigenvalues
2𝑛 + 1, 𝑛 ∈ N.

(2) [Ω𝑖 ,Ω 𝑗 ]𝜑 = [𝑅𝑖 , 𝑅 𝑗 ]𝜑 = [Ω𝑖 , 𝑅 𝑗 ]𝜑 = 0 for any 𝑖, 𝑗 and any 𝜑 whose 0-th Fourier
mode with respect to 𝑧𝑖 and 𝑧 𝑗 vanishes.

(3) The operators 𝑅 𝑗 and Ω 𝑗 are pseudodifferential operators in any cone of 𝑇∗H𝑚

whose intersection with some conic neighborhood of the set {𝑝𝑧 𝑗 = 0} is reduced
to 0, in particular on ΣJ .

(4) The Hamiltonian vector field associated to the Hamiltonian 𝜎𝑃 (𝑅 𝑗 ) = |𝑝𝑧 𝑗 | is
sgn(𝑝𝑧 𝑗 )𝜕𝑧 𝑗 .

(5) The Hamiltonian flow 𝜃 𝑗 (·) associated to𝜎𝑃 (Ω 𝑗 ) is stationary on ΣJ when 𝑗 ∈ J .

Proof. Point 1 is proved in [10, Section 3.1]. Point 2 follows from the definition of Ω𝑖 , 𝑅 𝑗
in Section 1.3.1 (they are defined only on the direct sum of the eigenspaces corresponding
to non-zero eigenvalues of the operators 𝜕𝑧𝑖 and 𝜕𝑧 𝑗 ).
Point 3 follows from the fact that in any conic set𝑈 ⊂ 𝑆∗H𝑚 which is the complement

of a conic neighborhood of {𝑝𝑧 𝑗 = 0}, |𝑝𝑧 𝑗 | is infinitely differentiable. It is indeed an
elliptic first-order classical symbol in𝑈. The standard quantization of |𝑝𝑧 𝑗 | is 𝑅 𝑗 , which is
an elliptic first-order pseudodifferential operators when acting on functions microlocalized
in 𝑈. Then Ω 𝑗 = Δ 𝑗/𝑅 𝑗 is also an elliptic first-order pseudodifferential operators when
acting on functions microlocalized in𝑈.
Point 4 then follows from a direct computation.
For Point 5, we notice that

𝜎𝑃 (Ω 𝑗 ) =
ℎ2
𝑋 𝑗

+ ℎ2
𝑌𝑗

|ℎ𝜕𝑧 𝑗 |

in the cones where Ω 𝑗 is a pseudodifferential operator. Since ℎ𝑋 𝑗 = ℎ𝑌𝑗 = 0 on Σ, this
Hamiltonian vector field vanishes on ΣJ , and 𝜃 𝑗 is stationary on ΣJ .

4. Proof of Theorem 1

In this section, building upon Section 3, we prove Theorem 1. In the sequel, the notation
(·, ·) stands for the 𝐿2 (H𝑚) scalar product, and the associated norm is denoted by ‖·‖𝐿2 .
Also, we recall that we assumed J = {1, . . . , 𝐽}.

4.1. Positive cones

We consider the quadrant

C =

{
(𝑥1, . . . , 𝑥𝐽 ) ∈ R𝐽 | 𝑥 𝑗 ≥ −1

2
for any 1 ≤ 𝑗 ≤ 𝐽

}
.
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and we define
𝑉 =

(
− 1
2
, . . . ,−1

2

)
∈ R𝐽 .

A positive cone with vertex at 𝑉 is a subset 𝐾 of C \ {𝑉} such that

𝑊 ∈ 𝐾 ⇒ 𝑉 + 𝜆(𝑊 −𝑉) ∈ 𝐾

for any 𝜆 > 0 and any 𝑊 ∈ C. We notice that any positive cone 𝐾 with vertex at 𝑉 can
be split into two non-empty positive cones 𝐾1, 𝐾2 with vertex at 𝑉 : for this, we choose a
half-space 𝐻 containing 𝑉 in its boundary and containing some of the points of 𝐾 but not
all, and we set 𝐾1 = 𝐾 ∩ 𝐻 and 𝐾2 = 𝐾 ∩ 𝐻𝑐 . We call this a “bisection of 𝐾”.
We now define a sequence of partitions of C into positive cones with vertex at 𝑉 . We

first partition C into 2 cones by bisection of C. This gives a first partition of C. Then we
obtain a second partition of C by bisecting each of these two cones. And so on and so
forth, refining our partition at each step by bisecting all cones of the previous partition.
The 𝑁-th partition is made of 2𝑁 positive cones with vertex at 𝑉 .
Formalizing this, these positive cones 𝐶𝑁

ℓ
⊂ C, for 𝑁 ∈ N∗ and 0 ≤ ℓ ≤ 2𝑁 − 1, satisfy

the following properties (see Figure 1 below):
(1) For any 𝑁 ∈ N∗ and any 0 ≤ ℓ ≤ 2𝑁 − 1, 𝐶𝑁

ℓ
is a positive cone with vertex at 𝑉 ,

i.e.,
𝑉 + 𝜆(𝑊 −𝑉) ∈ 𝐶𝑁ℓ , ∀𝜆 > 0, ∀𝑊 ∈ 𝐶𝑁ℓ ;

(2) For any 𝑁 ∈ N∗, (𝐶𝑁
ℓ
)0≤ℓ≤2𝑁−1 is a partition of C, i.e.,

2𝑁−1⋃
ℓ=0

𝐶𝑁ℓ = C and 𝐶𝑁ℓ ∩ 𝐶𝑁ℓ′ = ∅, ∀ℓ ≠ ℓ′;

(3) Each partition is a refinement of the preceding one: for any 𝑁 ≥ 2 and any 0 ≤ ℓ ≤
2𝑁 − 1, there exists a unique 0 ≤ ℓ′ ≤ 2𝑁−1 − 1 such that 𝐶𝑁

ℓ
⊂ 𝐶𝑁−1

ℓ′ .
We also impose that the aperture of the positive cones 𝐶𝑁0 , . . . , 𝐶

𝑁

2𝑁−1 tends uniformly to
0 as 𝑁 → +∞. To give a precise statement of this last assumption, we denote by ℒ the
set of half-lines issued from 𝑉 and contained in C, and we note thatℒ is parametrized by
𝑠 ∈ SJ . We assume the following
(4) There exists 𝑑 : N→ R+ with 𝑑 → 0 as 𝑁 → +∞, such that for any 𝑁 ∈ N, any

ℓ ∈ {0, . . . , 2𝑁 − 1} and any 𝑠′, 𝑠′′ parametrizing lines in 𝐶𝑁
ℓ
, we have

‖𝑠′ − 𝑠′′‖1 ≤ 𝑑 (𝑁). (4.1)

As a consequence, for any 𝐿 ∈ ℒ parametrized by 𝑠 ∈ SJ , there exists a subse-
quence (𝐶𝑁

ℓ (𝑠,𝑁 ) )𝑁 ∈N∗ that converges to 𝐿 in the sense that⋂
𝑁 ∈N

𝐶𝑁
ℓ (𝑠,𝑁 ) = 𝐿.

Remark 18. The positive cones 𝐶𝑁
ℓ

can be seen as positive sub-cones of the Heisenberg
fan (whose definition has been recalled in Section 1.4).
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Figure 1. The positive cones 𝐶𝑁
ℓ
, for 𝐽 = 2, 𝑁 = 3.

4.2. Spectral decomposition of Quantum Limits

Recall that we assumed J = {1, . . . , 𝐽}. We notice that (2.2) and (3.2) guarantee that
𝜑𝑘 has no zero Fourier modes along the 𝑧 𝑗 variables for any 𝑗 ∈ J . Using Point 2 of
Lemma 17, we can simultaneously diagonalize the operators Ω 𝑗 for 𝑗 ∈ J . This yields a
decomposition of 𝜑𝑘 on the joint eigenspaces of the Ω 𝑗 for 𝑗 ∈ J : according to (3.3), we
obtain for any (𝑛 𝑗 ) ∈ NJ , 𝑘 ∈ N∗ and 𝑗 ∈ J a function 𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) such that

Ω 𝑗𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) = (2𝑛 𝑗 + 1)𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) .

Moreover we have

𝜑𝑘 =

2𝑁−1∑︁
ℓ=0

𝜑𝑁𝑘,ℓ (4.2)

where
𝜑𝑁𝑘,ℓ =

∑︁
(𝑛1 ,...,𝑛𝐽 ) ∈𝐶𝑁ℓ

𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) . (4.3)

For any 𝑁 ∈ N∗ and any 0 ≤ ℓ ≤ 2𝑁 − 1, we take

𝜈𝑁ℓ a microlocal defect measure of the sequence (𝜑
𝑁
𝑘,ℓ)𝑘∈N∗ .

By diagonal extraction in 𝑘 ∈ N∗ (which we omit in the notations), we can assume that any
of these microlocal defect measures is obtained with respect to the same subsequence.

Lemma 19. The following properties hold:
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(1) All the mass of 𝜈𝑁
ℓ

is contained in 𝑆ΣJ for any 𝑁 ∈ N∗ and any 0 ≤ ℓ ≤ 2𝑁 − 1;
(2) For 𝑁 ∈ N∗ and ℓ ≠ ℓ′ with 0 ≤ ℓ, ℓ′ ≤ 2𝑁 − 1, the joint microlocal defect measure

(see Definition 7) of (𝜑𝑁
𝑘,ℓ

)𝑘∈N∗ and (𝜑𝑁
𝑘,ℓ′)𝑘∈N∗ vanishes. In particular, for any

𝑁 ∈ N∗,

𝜈 =

2𝑁−1∑︁
ℓ=0

𝜈𝑁ℓ . (4.4)

and also for any 𝑁0 ≤ 𝑁 fixed and any 0 ≤ ℓ0 ≤ 2𝑁0 − 1,

𝜈
𝑁0
ℓ0

=
∑︁

ℓ such that
𝐶𝑁
ℓ

⊂𝐶𝑁0
ℓ0

𝜈𝑁ℓ . (4.5)

Proof. The proof mainly relies on averaging techniques (see also Appendix A.3 for a result
obtained by these techniques in the much simpler context of flat contact sub-Laplacians).
We first prove Point (1). Applying 𝑃J

𝑟 (𝑘) (see (3.2)) on both sides of (4.2), we get that

2𝑁−1∑︁
ℓ=0

𝑃
J
𝑟 (𝑘)𝜑

𝑁
𝑘,ℓ = 𝑃

J
𝑟 (𝑘)𝜑𝑘 = 𝜑𝑘 =

2𝑁−1∑︁
ℓ=0

𝜑𝑁𝑘,ℓ .

We observe that 𝑃J
𝑛 ∈ Ψ0 (H𝑚) commutes with the operators Ω 𝑗 for 𝑗 ∈ J , thanks to

its explicit expression (2.2). Hence 𝑃J
𝑟 (𝑘) (𝜑𝑘, (𝑛1 ,...,𝑛𝑚 ,0,...,0) ) = 𝜑𝑘, (𝑛1 ,...,𝑛𝑚 ,0,...,0) for any

(𝑛1, . . . , 𝑛𝑚) ∈ N𝑚, and we deduce

𝜑𝑁𝑘,ℓ = 𝑃
J
𝑟 (𝑘)𝜑

𝑁
𝑘,ℓ .

Point (1) now follows from the fact that 𝜎𝑃 (𝑃J
𝑟 (𝑘) ) → 1ΣJ as 𝑘 → +∞ (see Lemma 13).

We now turn to the proof of Point (2).
Let 𝐵 ∈ Ψ0 (H𝑚) be microlocally supported in a conic set in which 𝑅 𝑗 ,Ω 𝑗 act as first-

order pseudodifferential operators for any 𝑗 ∈ J . A typical example of microlocal support
for 𝐵 is given by any conic subset of 𝑇∗H𝑚 whose intersection with some conic neighbor-
hood of the set {𝑝𝑧 𝑗 = 0} is reduced to 0, for any 𝑗 ∈ J . We set 𝑈 (𝑡) = 𝑈 (𝑡1, . . . , 𝑡𝐽 ) =
𝑒𝑖 (𝑡1Ω1+···+𝑡𝐽Ω𝐽 ) for 𝑡 = (𝑡1, . . . , 𝑡𝐽 ) ∈ (R/2𝜋Z)𝐽 .
The average of 𝐵 is then defined by (see [41])

𝐴 =

∫
(R/2𝜋Z)𝐽

𝑈 (−𝑡)𝐵𝑈 (𝑡)𝑑𝑡. (4.6)

Fact 20. There holds [𝐴,Ω 𝑗 ] = 0 for any 1 ≤ 𝑗 ≤ 𝐽. Also, 𝜎𝑃 (𝐴) = 𝜎𝑃 (𝐵) on 𝑆ΣJ .

We postpone the proof of this fact to the end of the present section.
Let 𝑁, ℓ, ℓ′ be as in the statement of Point (2). The joint microlocal defect measure

of (𝜑𝑁
𝑘,ℓ

)𝑘∈N∗ and (𝜑𝑁
𝑘,ℓ′)𝑘∈N∗ has no mass outside 𝑆ΣJ (due to the fact that 𝜑𝑁𝑘,ℓ =

𝑃
J
𝑟 (𝑘)𝜑

𝑁
𝑘,ℓ
). This, combined with the second part of Fact 20, yields

(𝐵𝜑𝑁𝑘,ℓ , 𝜑
𝑁
𝑘,ℓ′) − (𝐴𝜑𝑁𝑘,ℓ , 𝜑

𝑁
𝑘,ℓ′) −→

𝑘→+∞
0. (4.7)
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Fact 21. Let 𝐷 ∈ Ψ0 (H𝑚) satisfy [𝐷,Ω 𝑗 ] = 0 for any 𝑗 ∈ J . Let 𝑓 , 𝑔 be each in a joint
eigenspace of the Ω 𝑗 , meaning that for any 𝑗 ∈ J , Ω 𝑗 𝑓 = 𝑛 𝑗 𝑓 , Ω 𝑗𝑔 = 𝑛′

𝑗
𝑔 for some

𝑛 𝑗 , 𝑛
′
𝑗
∈ 2N + 1. We assume that there exists 𝑗 ∈ J such that 𝑛 𝑗 ≠ 𝑛′𝑗 . Then (𝐷 𝑓 , 𝑔) = 0

[because 𝐷 leaves any joint eigenspace of the Ω 𝑗 ( 𝑗 ∈ J ) invariant, and the eigenspaces
are orthogonal].

Since 𝐴 commutes with Ω 𝑗 for any 1 ≤ 𝑗 ≤ 𝐽, by (4.3) and Fact 21, we know that
(𝐴𝜑𝑁

𝑘,ℓ
, 𝜑𝑁

𝑘,ℓ′) = 0. Hence, plugging into (4.7), we get that (𝐵𝜑
𝑁
𝑘,ℓ
, 𝜑𝑁

𝑘,ℓ′) tends to 0 as
𝑘 → +∞. Using this result for all possible 𝐵 ∈ Ψ0 (𝑀) with microlocal support satisfying
the property recalled at the beginning of the proof, we obtain that the joint microlocal
defect measure of (𝜑𝑁

𝑘,ℓ
)𝑘∈N∗ and of (𝜑𝑁

𝑘,ℓ′)𝑘∈N∗ vanishes. Evaluating (𝐵𝜑𝑘 , 𝜑𝑘 ) in the
limit 𝑘 → +∞ and using (4.2), we conclude the proof of Point (2).

Proof of Fact 20. For 1 ≤ 𝑗 ≤ 𝐽, since

𝑑

𝑑𝑡 𝑗
𝑈 (−𝑡)𝐵𝑈 (𝑡) = 𝑖𝑈 (−𝑡) [𝐵,Ω 𝑗 ]𝑈 (𝑡),

integrating in the 𝑡 𝑗 variable, using thatΩ 𝑗 commutes with𝑈 (𝑡), and that exp(2𝑖𝜋Ω 𝑗 ) = Id
(since the eigenvalues of Ω 𝑗 belong to N), we get that [𝐴,Ω 𝑗 ] = 0 for any 1 ≤ 𝑗 ≤ 𝐽.
For 1 ≤ 𝑗 ≤ 𝐽, recall that 𝜃 𝑗 (·) denotes the flow of the Hamiltonian vector field of

𝜎𝑃 (Ω 𝑗 ). By Egorov’s theorem, 𝐴 has principal symbol

𝑎 := 𝜎𝑃 (𝐴) =
∫
(R/2𝜋Z)𝐽

𝜎𝑃 (𝐵) ◦ 𝜃1 (𝑡1) ◦ · · · ◦ 𝜃𝐽 (𝑡𝐽 ) 𝑑𝑡 (4.8)

(see [10, Lemma 6.1] for similar arguments). Since 𝜃 𝑗 is stationary on ΣJ for 1 ≤ 𝑗 ≤ 𝐽

(see Lemma 17), we get that 𝜎𝑃 (𝐴) = 𝜎𝑃 (𝐵) on 𝑆ΣJ .

4.3. Disintegration of measures

From the equality (4.4) taken in the limit 𝑁 → +∞, we will deduce in this section that

𝜈J =

∫
SJ

𝜈J𝑠 𝑑𝑄
J (𝑠).

Note that a simple Fubini argument does not suffice since 𝑄J is not the Lebesgue mea-
sure in general (it may contain Dirac masses). Instead, we have to adapt the proof of the
classical disintegration of measure theorem (see [32]).
First of all, we define a measure 𝑄J over the simplex SJ as follows. It has been

explained at the beginning of Section 4 that the set ℒ of half-lines issued from 𝑉 and
contained in C is parametrized by 𝑠 ∈ SJ . For 𝑁 ∈ N∗ and 0 ≤ ℓ ≤ 2𝑁 − 1, we consider
the subset of SJ given by

S𝑁ℓ =
{
𝑠 ∈ SJ , 𝑠 parametrizes a half-line ofℒ contained in 𝐶𝑁ℓ

}
. (4.9)
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Then we define
𝑄J (S𝑁ℓ ) = 𝜈𝑁ℓ (𝑆Σ) (4.10)

and we extend it by finite additivity and complementation to the algebra of subsets of SJ
generated by the S𝑁

ℓ
for 𝑁 ∈ N and ℓ ∈ {0, . . . , 2𝑁 − 1}. Due to (4.5), 𝑄J is a sigma-

additive function on this algebra. Therefore, by the Caratheodory (or Hahn-Kolmogorov)
extension theorem, (4.10) defines a (unique) non-negative Radon measure 𝑄J on the
sigma-algebra generated by the cones 𝐶𝑁

ℓ
, which consists of the Borel sets of SJ .

Given 𝑁 ≥ 1, 0 ≤ ℓ ≤ 2𝑁 − 1 and a continuous function 𝑓 : 𝑆ΣJ → R, we set

𝑓 𝑁ℓ =
1

𝜈𝑁
ℓ
(𝑆ΣJ)

∫
𝑆ΣJ

𝑓 𝑑𝜈𝑁ℓ (4.11)

if 𝜈𝑁
ℓ
(𝑆ΣJ) ≠ 0, and 𝑓 𝑁ℓ = 0 otherwise.

Proposition 22. Given any continuous function 𝑓 : 𝑆Σ → R, for 𝑄J-almost all 𝑠 ∈ SJ ,
there exists a real number 𝑒( 𝑓 ) (𝑠) such that

𝑓 𝑁
ℓ (𝑠,𝑁 ) −→

𝑁→+∞
𝑒( 𝑓 ) (𝑠),

where, for any 𝑁 ∈ N∗, ℓ(𝑠, 𝑁) is the unique integer 0 ≤ ℓ(𝑠, 𝑁) ≤ 2𝑁 − 1 such that
𝑠 ∈ S𝑁

ℓ (𝑠,𝑁 ) .
In the sequel, we call ℓ(𝑠, 𝑁) the approximation at order 𝑁 of 𝑠.

We postpone the proof of Proposition 22 to Section 22.
From (4.4) and (4.11), we infer that for any 𝑁 ≥ 1,∫

𝑆ΣJ

𝑓 𝑑𝜈J =

2𝑁−1∑︁
ℓ=0

∫
𝑆ΣJ

𝑓 𝑑𝜈𝑁ℓ =

2𝑁−1∑︁
ℓ=0

𝑓 𝑁ℓ 𝜈
𝑁
ℓ (𝑆ΣJ),

and the dominated convergence theorem together with the definition of 𝑄J and Proposi-
tion 22 yield ∫

𝑆ΣJ

𝑓 𝑑𝜈J =

∫
SJ

𝑒( 𝑓 ) (𝑠)𝑑𝑄J (𝑠). (4.12)

We see that for a fixed 𝑠 ∈ SJ ,

𝐶0 (𝑆ΣJ ,R) 3 𝑓 ↦→ 𝑒( 𝑓 ) (𝑠) ∈ R

is a non-negative linear functional on 𝐶0 (𝑆ΣJ ,R). By the Riesz-Markov theorem, there
exists a unique Radon probability measure 𝜈J𝑠 on 𝑆ΣJ such that

𝑒( 𝑓 ) (𝑠) =
∫
𝑆ΣJ

𝑓 𝑑𝜈J𝑠 . (4.13)

Putting (4.12) and (4.13) together, we get∫
𝑆ΣJ

𝑓 𝑑𝜈J =

∫
SJ

( ∫
𝑆ΣJ

𝑓 𝑑𝜈J𝑠

)
𝑑𝑄J (𝑠)

which is the desired disintegration of measures formula.
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4.4. Invariance of the measures 𝝂J𝒔

There remains to show that 𝜈J𝑠 is invariant under the flow generated by ®𝜌J𝑠 . We start with
an “approximate invariance” lemma.

Lemma 23. Let 𝐴 be a 0-th order pseudodifferential operator microlocally supported in
a conic set where 𝑅 𝑗 ,Ω 𝑗 act as first-order pseudodifferential operators for any 𝑗 ∈ J .
Then there exists 𝐶𝐴 > 0 such that for any 𝑁 ∈ N∗, any 0 ≤ ℓ ≤ 2𝑁 − 1 and any 𝑠 ∈ SJ
such that the half-line issued from 𝑉 and defined by the 𝐽 equations 2𝑥 𝑗+1

2𝑥1+1+···+2𝑥𝐽+1 = 𝑠 𝑗
(and 𝑥 𝑗 ≥ −1/2) lies in 𝐶𝑁

ℓ
, there holds���� ∫
𝑆ΣJ

( ®𝜌J𝑠 𝑎)𝑑𝜈𝑁ℓ

���� ≤ 𝐶𝐴𝑑 (𝑁)𝜈𝑁ℓ (𝑆ΣJ). (4.14)

where 𝑎 = 𝜎𝑃 (𝐴).

Proof. For the moment, we assume in addition to the assumptions of the statement that 𝐴
commutes with Ω1, . . . ,Ω𝐽 and with Δ 𝑗 = 𝑋2𝑗 +𝑌2𝑗 for any 𝐽 + 1 ≤ 𝑗 ≤ 𝑚. The fact that it
is sufficient to consider such 𝐴 will be justified later in the proof. Recall that 𝑅𝑠 has been
defined in (1.14).
Using that [𝐴, 𝑅𝑠] commutes with Ω1, . . . ,Ω𝐽 in order to kill crossed terms (see Fact 21),
we have

( [𝐴, 𝑅𝑠]𝜑𝑁𝑘,ℓ , 𝜑
𝑁
𝑘,ℓ)

=

(
[𝐴, 𝑅𝑠]

∑︁
(𝑛1 ,...,𝑛𝐽 ) ∈𝐶𝑁ℓ

𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) ,
∑︁

(𝑛1 ,...,𝑛𝐽 ) ∈𝐶𝑁ℓ

𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0)

)
=

∑︁
(𝑛1 ,...,𝑛𝐽 ) ∈𝐶𝑁ℓ

( [𝐴, 𝑅𝑠]𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) , 𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) ). (4.15)

Let us fix (𝑛1, . . . , 𝑛𝐽 ) ∈ 𝐶𝑁ℓ . For simplicity of notations, we set 𝜑 = 𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) .
We prove that

( [𝐴, 𝑅𝑠]𝜑, 𝜑) =
𝐽∑︁
𝑗=1

(
𝑠 𝑗 −

2𝑛 𝑗 + 1∑𝐽
𝑖=1 2𝑛𝑖 + 1

)
( [𝐴, 𝑅 𝑗 ]𝜑, 𝜑) (4.16)

We set

𝑅 =

∑𝐽
𝑗=1 (2𝑛 𝑗 + 1)𝑅 𝑗 −

∑𝑚
𝑖=𝐽+1 Δ𝑖∑𝐽

𝑗=1 2𝑛 𝑗 + 1
,

which, up to a constant, is the restriction of −Δ to the joint eigenspace of the Ω 𝑗 with
eigenvalues 2𝑛 𝑗 + 1. Using that 𝑅 is selfadjoint (since 𝑅 𝑗 is selfadjoint for any 𝑗) and that
𝜑 is an eigenfunction of 𝑅, we get

( [𝐴, 𝑅]𝜑, 𝜑) = (𝐴𝑅𝜑, 𝜑) − (𝐴𝜑, 𝑅𝜑) = 0
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and therefore, since 𝐴 commutes with Δ𝐽+1, . . . ,Δ𝑚, we get

( [𝐴, 𝑅𝑠]𝜑, 𝜑) = ( [𝐴, 𝑅𝑠 − 𝑅]𝜑, 𝜑) =
𝐽∑︁
𝑗=1

(
𝑠 𝑗 −

2𝑛 𝑗 + 1∑𝐽
𝑖=1 2𝑛𝑖 + 1

)
( [𝐴, 𝑅 𝑗 ]𝜑, 𝜑)

which is exactly (4.16).
Thanks to our choice of microlocal support for 𝐴, we know that [𝐴, 𝑅 𝑗 ] ∈ Ψ0 (H𝑚) for

1 ≤ 𝑗 ≤ 𝐽, and thus is it bounded in 𝐿2 (H𝑚). Combining (4.15) and (4.16), we obtain the
existence of a constant 𝐶𝐴 > 0 depending on 𝐴 such that��( [𝐴, 𝑅𝑠]𝜑𝑁𝑘,ℓ , 𝜑𝑁𝑘,ℓ)�� ≤ 𝐶𝐴 ∑︁

(𝑛1 ,...,𝑛𝐽 ) ∈𝐶𝑁ℓ

𝐽∑︁
𝑗=1

���𝑠 𝑗 − 2𝑛 𝑗 + 1∑𝐽
𝑖=1 2𝑛𝑖 + 1

��� ‖𝜑𝑘, (𝑛1 ,...,𝑛𝐽 ,0,...,0) ‖2𝐿2
≤ 𝐶𝐴𝑑 (𝑁)‖𝜑𝑁𝑘,ℓ ‖

2
𝐿2

(4.17)
where in the last line, we used (4.1) and the fact that distinct joint eigenspaces of the Ω 𝑗

are orthogonal.
In order to pass to the limit 𝑘 → +∞ in these last inequalities, we use the following

lemma.

Lemma 24. On ΣJ , there holds

𝜎𝑃 ( [𝐴, 𝑅𝑠]) |ΣJ = 𝑖 ®𝜌J𝑠 𝑎

where 𝑎 = 𝜎𝑃 (𝐴).

Proof of Lemma 24. Denoting by {·, ·} the Poisson bracket on the symplectic manifold
𝑇∗H𝑚, we have for (𝑞, 𝑝) ∈ ΣJ

𝜎𝑃 ( [𝐴, 𝑅𝑠]) (𝑞, 𝑝) =
1
𝑖
{𝑎,

∑︁
𝑗∈J
sgn(𝑝𝑧 𝑗 )𝑠 𝑗ℎ𝜕𝑧 𝑗 }(𝑞, 𝑝) = 𝑖

∑︁
𝑗∈J
sgn(𝑝𝑧 𝑗 )𝑠 𝑗 (®ℎ𝜕𝑧 𝑗 𝑎) (𝑞, 𝑝)

= 𝑖( ®𝜌J𝑠 𝑎) (𝑞, 𝑝)

where in the last equality we used (1.15).

Since all the mass of 𝜈𝑁
ℓ
is contained in 𝑆ΣJ by Lemma 19, we finally deduce the

upper bound (4.14) from (4.17) and Lemma 24.
We have established this upper bound only for an operator 𝐴 of order 0 which com-

mutes with Ω1, . . . ,Ω𝐽 and Δ 𝑗 for any 𝐽 + 1 ≤ 𝑗 ≤ 𝑚. We would now like to remove this
commutation assumption.
Let 𝑏 ∈ 𝒮

0 (H𝑚) be an arbitrary 0-th order symbol supported in a subset of 𝑇∗HJ

where 𝑅 𝑗 ,Ω 𝑗 act as first-order pseudodifferential operators for any 𝑗 ∈ J . Let also (𝑞, 𝑝)
denote the coordinates in 𝑇∗H𝑚 and (𝑞 𝑗 , 𝑝 𝑗 ) the coordinates in the cotangent bundle of
the 𝑗-th copy of H.
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We notice that 𝑆ΣJ is invariant under translation in 𝑞𝑖 for 𝑖 ∉ J . Hence, considering
the averaged symbol

𝑏̄(𝑞1, . . . , 𝑞𝑚, 𝑝1, . . . , 𝑝𝑚)

=
1

|Vol(H𝑚−𝐽 ) |

∫
H𝑚−𝐽

𝑏(𝑞1, . . . , 𝑞𝑚, 𝑝1, . . . , 𝑝𝐽 , 0, . . . , 0) 𝑑𝑞𝐽+1 . . . 𝑑𝑞𝑚,

we have the following properties:
(i) 𝑏̄ ∈ 𝒮

0 (H𝑚) does not depend on 𝑞𝑖 , 𝑝𝑖 for 𝐽 + 1 ≤ 𝑖 ≤ 𝑚;
(ii) for any vector field 𝑋 on 𝑆ΣJ depending only on the coordinates 𝑞1, . . ., 𝑞𝐽 ,

𝑝1, . . ., 𝑝𝐽 , there holds∫
𝑆ΣJ

(𝑋𝑏̄)𝑑𝜈𝑁ℓ =

∫
𝑆ΣJ

(𝑋𝑏)𝑑𝜈𝑁ℓ . (4.18)

We denote by O𝑝st the standard quantization (see Appendix A.1). We set

𝐴 =

∫
(R/2𝜋Z)𝐽

𝑈 (−𝑡)O𝑝st (𝑏̄)𝑈 (𝑡)𝑑𝑡 ∈ Ψ0 (H𝑚) (4.19)

where𝑈 (𝑡) = 𝑈 (𝑡1, . . . , 𝑡𝐽 ) = 𝑒𝑖 (𝑡1Ω1+···+𝑡𝐽Ω𝐽 ) for 𝑡 = (𝑡1, . . . , 𝑡𝐽 ) ∈ (R/2𝜋Z)𝐽 .
• 𝐴 commutes with Ω 𝑗 for any 1 ≤ 𝑗 ≤ 𝐽. This follows from an argument that we have
already described in the proof of Point (2) of Lemma 19, applied to the formula (4.19).

• 𝐴 also commutes with Δ 𝑗 for any 𝐽 + 1 ≤ 𝑗 ≤ 𝑚 thanks to (i), combined with the fact
that the standard quantization preserves the product structure of the manifold H𝑚 (see
after (A.1)).
The principal symbol of 𝐴 on 𝑆ΣJ coincides with 𝑏̄, due to (4.8) and the fact that 𝜃 𝑗

is stationary on ΣJ for 𝑗 ∈ J . Using (4.14) for 𝐴, this proves that���� ∫
𝑆ΣJ

®𝜌J𝑠 𝑏̄ 𝑑𝜈𝑁ℓ

���� ≤ 𝐶𝐴𝑑 (𝑁)𝜈𝑁ℓ (𝑆ΣJ).

But thanks to (4.18) applied with 𝑋 = ®𝜌J𝑠 (recall that by formula (1.15), ®𝜌J𝑠 does not
depend on 𝑞𝑖 for 𝐽 + 1 ≤ 𝑖 ≤ 𝑚) there holds∫

𝑆ΣJ

( ®𝜌J𝑠 𝑏̄)𝑑𝜈𝑁ℓ =

∫
𝑆ΣJ

( ®𝜌J𝑠 𝑏)𝑑𝜈𝑁ℓ

hence the conclusion.

We finally show how to deduce from Lemma 23 that 𝜈J𝑠 is invariant under the flow
𝑒𝑡 ®𝜌

J
𝑠 . Let 𝐴 ∈ Ψ0 (H𝑚) be microlocally supported in a cone of 𝑇∗H𝑚 whose intersection

with some conic neighborhood of the set {𝑝𝑧 𝑗 = 0} is reduced to 0, for any 𝑗 ∈ J . We set
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𝑎 = 𝜎𝑃 (𝐴). For 𝑄J-almost every 𝑠 ∈ SJ , we have���� ∫
𝑆ΣJ

(
®𝜌J𝑠 𝑎

)
𝑑𝜈J𝑠

���� = ��𝑒( ®𝜌J𝑠 𝑎) (𝑠)�� (by (4.13))

=

���� lim𝑁→+∞

1
𝜈𝑁
ℓ (𝑠,𝑁 ) (𝑆ΣJ)

∫
𝑆ΣJ

( ®𝜌J𝑠 𝑎)𝑑𝜈𝑁ℓ (𝑠,𝑁 )

���� (4.20)

≤ lim
𝑁→+∞

𝐶𝐴𝑑 (𝑁) (by (4.14))

= 0

with the convention that if the denominator in (4.20) is null, then the whole expression is
null. Then we conclude the proof by applying the following fact to ®𝜌J𝑠 which is a vector
field on 𝑆ΣJ :
Fact. Let𝑊 be a manifold, equipped with a measure 𝛿, and let 𝑇 be a complete vector field
on 𝑊 . If

∫
𝑊
(𝑇𝜙)𝑑𝛿 = 0 for every 𝜙 ∈ 𝐶∞

𝑐 (𝑊,R), then the measure 𝛿 is invariant under
the flow of 𝑇 . This is proved by considering the derivative 𝑑

𝑑𝑡

∫
𝑊
𝜙(𝑒𝑡𝑇 𝑤)𝑑𝛿(𝑤) at 𝑡 = 0.

4.5. Proof of Proposition 22

In this section, we finally prove Proposition 22. By linearity of formula (4.11), it is suffi-
cient to prove the statement for 𝑓 ≥ 0. Therefore, in the sequel, we fix 𝑓 ≥ 0. For 𝑁 ≥ 1, we
define the function 𝑓 𝑁 : SJ → R by 𝑓 𝑁 (𝑠) = 𝑓 𝑁

ℓ (𝑠,𝑁 ) , where ℓ(𝑠, 𝑁) is the approximation
at order 𝑁 of 𝑠. Note that 𝑓 𝑁 is constant on S𝑁

ℓ
for 0 ≤ ℓ ≤ 2𝑁 − 1.

For 0 ≤ 𝛼 < 𝛽 ≤ 1, we define 𝑆(𝛼, 𝛽) as the set of 𝑠 ∈ SJ such that

lim inf
𝑁→+∞

𝑓 𝑁 (𝑠) < 𝛼 < 𝛽 < lim sup
𝑁→+∞

𝑓 𝑁 (𝑠).

To prove Proposition 22, it is sufficient to prove that 𝑆(𝛼, 𝛽) has 𝑄J-measure 0 for any
0 ≤ 𝛼 < 𝛽 ≤ 1. Fix such 𝛼, 𝛽. For 𝑠 ∈ 𝑆(𝛼, 𝛽), take a sequence 1 ≤ 𝑁𝛼1 (𝑠) < 𝑁

𝛽

1 (𝑠) <
𝑁𝛼2 (𝑠) < 𝑁

𝛽

2 (𝑠) < · · · < 𝑁𝛼
𝑘
(𝑠) < 𝑁𝛽

𝑘
(𝑠) < · · · of integers such that 𝑓 𝑁 𝛼𝑘 (𝑠) (𝑠) < 𝛼 and

𝑓 𝑁
𝛽

𝑘
(𝑠) (𝑠) > 𝛽 for any 𝑘 ≥ 1. We finally define the following sets:

𝐴𝑘 =
⋃

𝑠∈𝑆 (𝛼,𝛽)
S𝑁

𝛼
𝑘
(𝑠)

ℓ (𝑠,𝑁 𝛼
𝑘
(𝑠))

𝐵𝑘 =
⋃

𝑠∈𝑆 (𝛼,𝛽)
S𝑁

𝛽

𝑘
(𝑠)

ℓ (𝑠,𝑁 𝛽
𝑘
(𝑠))

We have 𝑆(𝛼, 𝛽) ⊂ 𝐴𝑘+1 ⊂ 𝐵𝑘 ⊂ 𝐴𝑘 for every 𝑘 ≥ 1. In particular,

𝑆(𝛼, 𝛽) ⊂ 𝑆(𝛼, 𝛽) :=
⋂
𝑘∈N∗

𝐴𝑘 =
⋂
𝑘∈N∗

𝐵𝑘 . (4.21)

Given any two of the sets S𝑁
𝛼
𝑘
(𝑠)

ℓ (𝑠,𝑁 𝛼
𝑘
(𝑠)) that form 𝐴𝑘 , either they are disjoint or one is

contained in the other. Consequently, 𝐴𝑘 may be written as a disjoint union of such sets,
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denoted by 𝐴𝑘′
𝑘
. This union is countable, since the number of sets S𝑁

ℓ
(𝑁 ∈ N∗, 0 ≤ ℓ ≤

2𝑁 − 1) is countable. Therefore,∫
𝐴𝑘

𝑓 𝑑𝑄J =
∑︁
𝑘′

∫
𝐴𝑘

′
𝑘

𝑓 𝑑𝑄J <
∑︁
𝑘′
𝛼𝑄J (𝐴𝑘′𝑘 ) = 𝛼𝑄

J (𝐴𝑘 )

and analogously, with similar notations,∫
𝐵𝑘

𝑓 𝑑𝑄J =
∑︁
𝑘′

∫
𝐵𝑘

′
𝑘

𝑓 𝑑𝑄J >
∑︁
𝑘′
𝛽𝑄J (𝐵𝑘′𝑘 ) = 𝛽𝑄

J (𝐵𝑘 ).

Since 𝐵𝑘 ⊂ 𝐴𝑘 , we get 𝛼𝑄J (𝐴𝑘 ) > 𝛽𝑄J (𝐵𝑘 ). Taking the limit 𝑘 → +∞, it yields

𝛼𝑄J (𝑆(𝛼, 𝛽)) > 𝛽𝑄J (𝑆(𝛼, 𝛽)),

which is possible only if𝑄J (𝑆(𝛼, 𝛽)) = 0. Therefore, using (4.21), we get𝑄J (𝑆(𝛼, 𝛽)) =
0, which concludes the proof of the proposition.

5. Proof of Theorem 2

5.1. Preliminary steps

In this subsection, we introduce the tools used in the proof of Theorem 2.

5.1.1. Spectral decomposition. We first introduce a spectral decomposition of −Δ. Fix
𝑗 ∈ {1, . . . , 𝑚}, consider the 𝑗-th copy of 𝐿2 (H) in 𝐿2 (H𝑚) � 𝐿2 (H)⊗𝑚, and take the
Fourier decomposition with respect to 𝑧 𝑗 in this copy:

𝐿2 (H) = 𝐿20 ⊕
⊕

𝑛∈N,𝛼∈Z\{0}
𝐸𝑛,𝛼

where 𝜕𝑧 𝑗 acts as 0 on 𝐿20, and on 𝐸𝑛,𝛼,
1
𝑖
𝜕𝑧 𝑗 acts as 𝛼 and Ω 𝑗 as 2𝑛 + 1.

Recall that P stands for the set of all subsets of {1, . . . , 𝑚}. We fix J ∈ P. For (𝑛 𝑗 ) ∈ NJ ,
(𝛼 𝑗 ) ∈ (Z \ {0})J we set

H J
(𝑛 𝑗 ) , (𝛼𝑗 ) = 𝐹

1 ⊗ · · · ⊗ 𝐹𝑚 ⊂ 𝐿2 (H𝑚)

where 𝐹 𝑗 = 𝐸𝑛 𝑗 ,𝛼𝑗 for 𝑗 ∈ J and 𝐹 𝑗 = 𝐿20 for 𝑗 ∉ J .
We have the orthogonal decomposition

𝐿2 (H𝑚) =
⊕
J∈P

⊕
(𝑛 𝑗 ) ∈NJ

(𝛼𝑗 ) ∈(Z\{0})J

H J
(𝑛 𝑗 ) , (𝛼𝑗 ) . (5.1)

We can also write the associated decomposition of −Δ as

−Δ =
⊕
J∈P

⊕
(𝑛 𝑗 ) ∈NJ

(𝛼𝑗 ) ∈(Z\{0})J

𝐻
J
(𝑛 𝑗 ) , (𝛼𝑗 )
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with
𝐻

J
(𝑛 𝑗 ) , (𝛼𝑗 ) =

∑︁
𝑗∈J

(
2𝑛 𝑗 + 1

)
|𝛼 𝑗 | −

∑︁
𝑖∉J

(𝜕2𝑥𝑖 + 𝜕
2
𝑦𝑖
).

From this, we deduce

spec(−Δ)

=

{ ∑︁
𝑗∈J

(
2𝑛 𝑗 + 1

)
|𝛼 𝑗 | + 2𝜋

∑︁
𝑖∉J

(𝑘2𝑖 + ℓ2𝑖 ), with 𝑘𝑖 , ℓ𝑖 ∈ Z, J ∈ P, 𝑛 𝑗 ∈ N, 𝛼 𝑗 ∈ Z \ {0}
}

where spec denotes the spectrum.

5.1.2. Notations. In this section, we define two sets ℬJ and 𝒞
J of Radon probabil-

ity measures, contained in 𝒟J , and which can be seen as “elementary building blocks”
for proving Theorem 2. For this we introduce a few more notations, in addition to those
introduced in Section 1.3.3.
Fix J ∈ P \ {∅}. We first define an equivalence relation J∼ on points inHJ : two points

𝑞, 𝑞′ are in relation if they can be obtained from each other by following the flows of 𝜕𝑧 𝑗 ,
𝑗 ∈ J , i.e., if there exists (𝑠 𝑗 ) ∈ RJ such that

𝑞′ = exp
( ∑︁
𝑗∈J

𝑠 𝑗𝜕𝑧 𝑗

)
𝑞.

Fix 𝑞 ∈ HJ . From the group law (1.10), we see that the equivalence class of 𝑞 is an
embedded submanifold of HJ , homeomorphic to the torus (R/2𝜋Z)J . There is a prob-
ability measure on HJ which is a uniform Dirac delta measure supported on this torus.
Tensorizing this measure with the Lebesgue measure inH∉J we obtain a Radon probabil-
ity measure on H𝑚, which we denote by 𝛼𝑞 . Its support is denoted by 𝑀J

𝑞 ⊂ H𝑚.
We now lift 𝛼𝑞 to 𝑆∗𝑀: we define a probability measure on 𝑆∗H𝑚 supported on 𝑆ΣJ

and whose pushforward under the canonical projection from 𝑇∗H𝑚 to H𝑚 is exactly 𝛼𝑞 .
For that, we notice that if (𝑞, 𝑝) ∈ 𝑆ΣJ , for any 𝑞′ ∈ H𝑚 it makes sense to consider
the point (𝑞′, 𝑝) ∈ 𝑆ΣJ , which is the point in the fiber of 𝑆Σ over 𝑞 that has the same
homogeneous coordinates [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] as 𝑝. This allows us to define

ℋ
J
𝑞,𝑝 = 𝛼𝑞 ⊗ 𝛿𝑝

where 𝛿𝑝 denotes the Dirac mass on 𝑝.
In addition to𝒟J , which has been introduced in (1.3.3), we introduce two other sets:

• The set
ℬ

J =
{
ℋ

J
𝑞,𝑝 | (𝑞, 𝑝) ∈ 𝑆ΣJ

}
(5.2)

which is a subset of 𝒟J . This follows from the definition of 𝒟J and the fact that 𝛼𝑞
is invariant under 𝜕𝑧 𝑗 for any 𝑗 ∈ J .
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• The set of convex combinations of measures in ℬ
J , which consequently is also a

subset of𝒟J :

𝒞
J =

{∑︁
𝑖∈F

𝛽𝑖𝜈𝑖 | F is a finite set,
∑︁
𝑖∈F

𝛽𝑖 = 1,∀𝑖 𝛽𝑖 ≥ 0, 𝜈𝑖 ∈ ℬ
J
}
.

5.2. Core of the proof

In this section, we provide a fully detailed proof of Theorem 2. Proofs with relatively
similar ideas can be found in [24], [27], [36], [5]. The proof uses two main ingredients:
• On the “classical side,” the knowledge of the flows of the vector fields ®𝜌J𝑠 given by
(1.15) (see also Remark 10).

• On the “quantum side,” the specific algebraic structure of spec(−Δ) (see Section 5.1.1).

5.2.1. Step 1: Homogeneity. In this preliminary step, we describe the homogeneity prop-
erties of H𝑚.
The manifold H has a Lie group structure recalled in Section 1.3.1, and thus H𝑚 also

has a Lie group structure obtained by product, whose composition law is denoted by ★𝑚.
The left-translation by 𝑔 is denoted by 𝜏𝑔: 𝜏𝑔𝑞 = 𝑔 ★𝑚 𝑞. The vector fields 𝑋 𝑗 and 𝑌 𝑗 are
left-invariant for★𝑚, and thus Δ is also left-invariant. This implies that the left-translation
by 𝑔 ∈ H𝑚 of an eigenfunction 𝜑 of Δ is also an eigenfunction with same eigenvalue,
denoted by 𝜏𝑔𝜑 = 𝜑 ◦ 𝜏−1𝑔 .

Lemma 25. The QLs of a sequence of 𝐿2 (H𝑚)-normalized eigenfunctions (𝜏𝑔𝜑𝑘 )𝑘∈N∗

are the left-translates by 𝑔 of the QLs of the sequence (𝜑𝑘 )𝑘∈N∗ .

Proof. The left-translation 𝜏𝑔 induces an action on Ψ0 (H𝑚). The image of 𝐴 ∈ Ψ0 (H𝑚)
under left-translation by 𝑔 is denoted by 𝜏̃𝑔𝐴 ∈ Ψ0 (H𝑚): it is defined as (𝜏̃𝑔𝐴) (𝜑) (𝑞) =
𝐴(𝜏−1𝑔 𝜑) (𝜏−1𝑔 𝑞). We have

((𝜏̃𝑔𝐴) (𝜏𝑔𝜑), 𝜏𝑔𝜑)𝐿2 (H𝑚 ,𝜇) = (𝐴𝜑, 𝜑)𝐿2 (H𝑚 ,𝜇) (5.3)

using that the Haar measure 𝜇 is left-invariant.
The left-translation 𝜏𝑔 also induces an action 𝜏𝑔 on the cotangent bundle 𝑇∗H𝑚. We

have
𝜎𝑃 (𝜏̃𝑔𝐴) = 𝜎𝑃 (𝐴) ◦ 𝜏−1𝑔 . (5.4)

Combining (5.3), (5.4) and the definition of QLs, we get the result.

5.2.2. Step 2. Our goal in this subsection is to prove:

Lemma 26. Any 𝜈J ∈ 𝒟
J is a QL, associated to an 𝐿2 (H𝑚)-normalized sequence of

eigenfunctions which are also eigenfunctions of Ω 𝑗 for 𝑗 ∈ J (with eigenvalue 1).

We loosely follow the scheme of proof (and some proofs) of [36].
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According to the Calderón–Vaillancourt theorem, there exists 𝐾 ∈ N such that for any
𝑎 ∈ 𝒮

0 (H𝑚), there holds

(O𝑝(𝑎)𝑢, 𝑢) ≤ 𝐶‖𝑎‖𝐶𝐾 (𝑆∗H𝑚) ‖𝑢‖2𝐿2 . (5.5)

To avoid any confusion, we call weak-∗𝐾 topology the weak-* topology associated to test-
ing against elements of 𝐶𝐾 (𝑆∗H𝑚), and keep the terminology weak-* topology for the
one associated to testing against elements of 𝐶0 (𝑆∗H𝑚).
We prove two facts, which combined together imply Lemma 26.

Fact 27. 𝒞
J is dense in the weak-∗𝐾 topology in 𝒟

J .

Fact 28. Any 𝜈 ∈ 𝒞
J is a QL, associated to an 𝐿2 (H𝑚)-normalized sequence of eigen-

functions which are also eigenfunctions of Ω 𝑗 for 𝑗 ∈ J (with eigenvalue 1).

To explain how to deduce Lemma 26 from these two facts, we first need to metrize
the weak-∗𝐾 topology (a direct diagonal extraction argument using Facts 27 and 28 is not
sufficient to prove Lemma 26).
We denote by X the unit ball of the topological dual of 𝐶𝐾 (𝑆∗H𝑚). When equipped

with the weak-∗𝐾 topology, X is denoted by X∗𝐾 . We construct a metric 𝛿 on X defining
the same topology as the weak-∗𝐾 convergence. We pick a countable sequence (𝑎𝑟 )𝑟 ∈N
which is dense in 𝐶𝐾 (𝑆∗H𝑚) (this space is separable), and we define 𝛿 : X × X → R by

𝛿(ℓ, ℓ′) =
∑︁
𝑟 ∈N
min

(
(ℓ − ℓ′) (𝑎𝑟 ), 2−𝑟

)
.

This is a metric on X, and Id : X∗𝐾 → (X, 𝛿) is a continuous bijection, hence an homeo-
morphism (since X∗𝐾 is compact by the Banach-Alaoglu theorem). We conclude that

the topology induced by 𝛿 coincides with the weak-∗𝐾 topology on X. (5.6)

Proof of Lemma 26. We notice that both 𝒞J and 𝒟J are included in X. Let 𝜈J ∈ 𝒟
J .

For 𝑟 ∈N let 𝜈𝑟 ∈𝒞J with 𝜈𝑟 → 𝜈J in the weak-∗𝐾 topology as 𝑟→+∞. Such a sequence
exists thanks to Fact 27.
For any 𝑟 ∈ N, let 𝜑𝑟 ,𝑛 be an 𝐿2-normalized eigenfunction of Δ which is also an

eigenfunction of Ω 𝑗 for 𝑗 ∈ J with eigenvalue 1, and such that 𝜈𝑟 ,𝑛 ∈ X defined by

∀𝑎 ∈ 𝐶𝐾 (𝑆∗H𝑚), (O𝑝(𝑎)𝜑𝑟 ,𝑛, 𝜑𝑟 ,𝑛) = 𝜈𝑟 ,𝑛 (𝑎)

verifies
∀𝑎 ∈ 𝒮

0 (H𝑚), 𝜈𝑟 ,𝑛 (𝑎) −→
𝑛→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜈𝑟 . (5.7)

Such a sequence exists thanks to Fact 28. And due to (5.5) the convergence (5.7) can
be extended to any 𝑎 ∈ 𝐶𝐾 (𝑆∗H𝑚). Fix 𝜀 > 0. Pick 𝑟 ∈ N sufficiently large such that
𝛿(𝜈𝑟 , 𝜈J) ≤ 𝜀. For 𝑛 ∈ N sufficiently large, 𝛿(𝜈𝑟 ,𝑛, 𝜈𝑟 ) ≤ 𝜀. Thus 𝛿(𝜈𝑟 ,𝑛, 𝜈J) ≤ 2𝜀. Taking
𝜀→ 0, we obtain a sequence of eigenfunctions (𝜓𝑘 )𝑘∈N of the form 𝜓𝑘 = 𝜑𝑟𝑘 ,𝑛𝑘 such that

(O𝑝(𝑎)𝜓𝑘 , 𝜓𝑘 ) =
∫
𝑆∗𝑀

𝑎𝑑𝜈𝑟𝑘 ,𝑛𝑘 =

∫
𝑆∗𝑀

𝑎𝑑𝜈J + 𝑜(1)
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for any 𝑎 ∈ 𝒮
0 (H𝑚) ∩ 𝐶𝐾 (𝑆∗H𝑚) = 𝒮

0 (H𝑚). It follows that 𝜈J is a QL.

5.2.3. Proof of Fact 27. For this proof of density, we argue in two steps, see (5.9) and
(5.10) below. The reason why we cannot argue directly with the Krein–Milman theorem
is that 𝑆ΣJ being not closed, the set 𝒞J is not compact.
Although not closed, the set 𝑆ΣJ can be written as an increasing and countable union

of compact sets 𝐴J
𝑟 , 𝑟 ∈ N, namely

𝐴J
𝑟 =

{
(𝑞, 𝑝) ∈ 𝑆ΣJ

���� |𝑝𝑧 𝑗 |∑
𝑘∈J

|𝑝𝑧𝑘 |
≥ 1/𝑟 for any 𝑗 ∈ J

}
.

For any 𝑟 ∈ N, we denote by 𝒟J
𝑟 the subset of 𝒟J (introduced in (1.17)) containing the

Radon probability measures which are supported in 𝐴J
𝑟 .

Lemma 29. The set 𝒟J
𝑟 is convex, and compact for the weak-∗𝐾 topology.

Proof. The invariance property involved in the definition of 𝒟J (and hence of 𝒟J
𝑟 ) can

be equivalently stated with a set of equations involving only continuous functions on
𝑆∗H𝑚, and moreover 𝐴J

𝑟 is closed, therefore𝒟J
𝑟 is closed for the weak-* topology. Since

𝒟
J
𝑟 contains only Radon measures and using that 𝐶𝐾 (𝑆∗H𝑚) is dense in 𝐶0 (𝑆∗H𝑚), we
deduce that𝒟J

𝑟 is also closed for the weak-∗𝐾 topology. Since X∗𝐾 is compact, it follows
that𝒟J

𝑟 ⊂ X is compact for the weak-∗𝐾 topology.
Finally,𝒟J

𝑟 is convex due to the inclusion

supp(𝑡𝜇1 + (1 − 𝑡)𝜇2) ⊂ supp(𝜇1) ∪ supp(𝜇2)

valid for any measures 𝜇1, 𝜇2. In order to apply the Krein–Milman theorem, we prove the
following lemma.

Lemma 30. Any extremal point of 𝒟J
𝑟 is in ℬ

J .

Proof. Assume for the sake of a contradiction that 𝜃 is an extremal point of𝒟J
𝑟 such that

𝜃 ∉ ℬ
J . According to (5.2), the fact that 𝜃 is not in ℬJ gives information either on its

support “on the base” or “in the fibers”. We explore these two possibilities successively,
and we seek for a contradiction in both cases.

Case 1. First, assume that there exist two points 𝑥 ′, 𝑦′ ∈ 𝑆ΣJ in the support of 𝜃 such that
the projections 𝑥 and 𝑦 of 𝑥 ′ and 𝑦′ on HJ are not in the same equivalence class for J∼.
Our goal is to write 𝜃 under the form

𝜃 = 𝑡𝜃1 + (1 − 𝑡)𝜃2, with 0 < 𝑡 < 1, 𝜃1, 𝜃2 ∈ 𝒟
J
𝑟 , 𝜃1 ≠ 𝜃2. (5.8)

By closedness of the equivalence classes 𝑀J
• (see definition in Section 5.1.2), there exists

a small open set 𝑈 around 𝑥 such that any point in 𝑈 does not belong to 𝑀J
𝑦 . Let 𝑉 be

the union of all sets 𝑀J
• intersecting 𝑈, and 𝑊 = HJ \ 𝑉 . Denote by 𝑉 ′ ⊂ 𝑆∗H𝑚 (resp.
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𝑊 ′ ⊂ 𝑆∗H𝑚) the set of points in 𝐴J
𝑟 whose projection toHJ belongs to𝑉 (resp.𝑊). Then

(5.8) holds with 𝜃1 = 𝜃 (•∩𝑉 ′)
𝜃 (𝑉 ′) , 𝜃2 =

𝜃 (•∩𝑊 ′)
𝜃 (𝑊 ′) and 𝑡 = 𝜃 (𝑉

′). Thus 𝜃 is not extremal, which
is a contradiction.

Case 2. Assume now that there exist two points (𝑞, 𝑝), (𝑞′, 𝑝′) ∈ 𝑆ΣJ in the support of
𝜃 such that the homogeneous coordinates [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] and [𝑝′𝑧1 : · · · : 𝑝

′
𝑧𝑚
] are not

equal. As in the previous case, taking 𝑉 ′ as the set of points (𝑞′′, 𝑝′′) in 𝑆ΣJ whose
homogeneous coordinates [𝑝′′𝑧1 : · · · : 𝑝

′′
𝑧𝑚
] are close to [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] and 𝑊 ′ as the

complementary set, we see that (5.8) holds again with 𝜃1 = 𝜃 (•∩𝑉 ′)
𝜃 (𝑉 ′) , 𝜃2 =

𝜃 (•∩𝑊 ′)
𝜃 (𝑊 ′) and

𝑡 = 𝜃 (𝑉 ′). Thus 𝜃 is not extremal, which is a contradiction.

Conclusion. By case 1 we conclude that the pushforward 𝜋∗𝜃 of 𝜃 through the canonical
projection 𝜋 : 𝑆∗H𝑚 → H𝑚 is the tensorial product of the Lebesgue measure in the com-
ponents ∉ J and of a measure supported on a single equivalence class 𝑀J

𝑞 . Thanks to the
invariance of 𝜃 under the flows of 𝜕𝑧 𝑗 for 𝑗 ∈ J , this last measure is the uniform Dirac
delta measure (see Section 5.1.2) on 𝑀J

𝑞 . Using case 2 we see that there exist homoge-
neous coordinates [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] such that in the fibers of 𝑆∗H𝑚, 𝜃 has mass only on
points having these homogeneous coordinates. Thanks to the invariance of 𝜃 under the
flows of 𝜕𝑧 𝑗 for 𝑗 ∈ J we obtain that 𝜃 is of the form 𝛼𝑞 ⊗ 𝛿𝑝 , i.e., 𝜃 ∈ ℬ

J .

Thanks to the Krein–Milman theorem applied in the locally convex topological vec-
tor space consisting of all measures on 𝑆∗H𝑚 endowed with the weak-∗𝐾 convergence
topology, it follows from Lemmas 29 and 30 that

𝒞
J ∩𝒟

J
𝑟 is dense in the weak-∗𝐾 topology in𝒟J

𝑟 . (5.9)

Now, we justify that

any 𝜈J ∈ 𝒟
J is the weak-∗𝐾 limit of a sequence 𝜈J𝑟 ∈ 𝒟

J
𝑟 as 𝑟 → +∞. (5.10)

Let 𝜒 ∈ 𝐶∞ (R; [0, 1]) such that 𝜒(𝑥) = 0 for 𝑥 ≤ 1 and 𝜒(𝑥) = 1 for 𝑥 ≥ 2. Let 𝜈J ∈ 𝒟
J .

We set for 𝑟 ∈ N∗

𝜈J𝑟 = 𝑐J𝑟 𝜈
J
∏
𝑗∈J

𝜒

( |𝑝𝑧 𝑗 |
𝑟

)
∈ 𝒟

J
𝑟 .

Here 𝑐J𝑟 is a normalizing constant. Since 1𝑆ΣJ 𝜈J = 𝜈J , it follows that 𝑐J𝑟 tends to 1 as
𝑟 → 0. By the dominated convergence theorem, we get that 𝜈J𝑟 converges in the weak-*
topology towards 𝜈J , which proves (5.10) since 𝐶𝐾 (𝑆∗H𝑚) ⊂ 𝐶0 (𝑆∗H𝑚). Combining
(5.6), (5.9) and (5.10), this concludes the proof of Fact 27.

5.2.4. Proof of Fact 28. To prove Fact 28, we start with a preliminary statement, con-
cerningℬJ .

Fact 31. Any 𝜈 ∈ ℬ
J is a QL, associated to an 𝐿2 (H𝑚)-normalized sequence of eigen-

functions which are also eigenfunctions of 𝑅 𝑗 and Ω 𝑗 for 𝑗 ∈ J .
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Proof of Fact 31. Let 𝜈 =ℋ
J
𝑞,𝑝 ∈ ℬ

J . In particular, (𝑞, 𝑝) ∈ 𝑆ΣJ . Thanks to Lemma 25,
we assume in the sequel that 𝑞 = 0. Without loss of generality, we assume furthermore that
J = {1, . . . , 𝐽} for some 1 ≤ 𝐽 ≤ 𝑚.
We construct a sequence of eigenfunctions (𝜑𝑘 )𝑘∈N∗ of −Δ which admits ℋJ

0, 𝑝 as
unique QL. In our construction, for any 𝑘 ∈ N∗, 𝜑𝑘 belongs to the eigenspace H J

(0) , (𝛼𝑗,𝑘 )
for some (𝛼 𝑗 ,𝑘 ) ∈ (N∗)J , and it does not depend on the variables in the 𝑖-th copy of H for
𝑖 ∉ J . Note also that the (0) appearing inH J

(0) , (𝛼𝑗,𝑘 ) means that all 𝜑𝑘 are eigenfunctions
of Ω 𝑗 ( 𝑗 ∈ J ) with eigenvalue 2 × 0 + 1 = 1. Our goal is to choose adequately the 𝐽-tuples
(𝛼 𝑗 ,𝑘 ) 𝑗∈J . A similar argument for 𝑚 = 1 is done in the proof of Point 2 of Proposition 3.2
in [10].
We fix a sequence of 𝐽-tuples (𝛼1,𝑘 , . . . , 𝛼𝐽 ,𝑘 ) ∈ (Z \ {0})𝐽 , for 𝑘 ∈ N∗, such that:

• For any 1 ≤ 𝑗 ≤ 𝐽, 𝛼 𝑗 ,𝑘 → +∞ as 𝑘 → +∞.
• For any 1 ≤ 𝑗 , 𝑗 ′ ≤ 𝐽,

𝛼 𝑗 ,𝑘

𝛼 𝑗′,𝑘
−→
𝑘→+∞

𝑝𝑧 𝑗

𝑝𝑧 𝑗′
, (5.11)

where [𝑝𝑧1 : · · · : 𝑝𝑧𝑚 ] are the homogeneous coordinates of 𝑝 in 𝑆Σ (see Section 1.3.2).
Now, for any 𝑘 ∈ N∗, denoting by 1 the constant function equal to 1 (on some copy of

H), we define
𝜑𝑘 = Φ1𝑘 ⊗ · · · ⊗ Φ𝐽𝑘 ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸

𝑚−𝐽 times

, (5.12)

where, for 1 ≤ 𝑗 ≤ 𝐽,

Φ
𝑗

𝑘
(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ) = 𝜙 𝑗 ,𝑘 (𝑥 𝑗 , 𝑦 𝑗 )𝑒𝑖𝛼𝑗,𝑘 𝑧 𝑗 (5.13)

is an eigenfunction of −Δ 𝑗 (on the 𝑗-th copy of H) with eigenvalue |𝛼 𝑗 ,𝑘 |. The precise
form of 𝜙 𝑗 ,𝑘 will be given below.
In the next paragraphs, we explain how to choose 𝜙 𝑗 ,𝑘 in order to ensure that (𝜑𝑘 )𝑘∈N∗

has a unique QL, which isℋJ
0, 𝑝 .

We first follow some arguments of the proof of [10, Proposition 3.2]. A Fourier expan-
sion in the 𝑧 𝑗 variable yields (see for example [8, Section 2])

− Δ 𝑗 =
⊕
𝛾∈Z

𝐵𝛾 , where 𝐵𝛾 = 𝐴∗
𝛾𝐴𝛾 + 𝛾 for 𝛾 ∈ Z (5.14)

where the operators 𝐴𝛾 , 𝐴∗
𝛾 and 𝐵𝛾 act on the space of functions of the form 𝑒𝑖𝛾𝑧 𝑗𝑔(𝑥 𝑗 , 𝑦 𝑗 ),

with 𝐴𝛾 = 𝜕𝑥 𝑗 + 𝑖𝜕𝑦 𝑗 + 𝛾𝑥 𝑗 (the annihilation operator) and 𝐴∗
𝛾 = −𝜕𝑥 𝑗 + 𝑖𝜕𝑦 𝑗 + 𝛾𝑥 𝑗 (the

creation operator). We have [𝐴𝛾 , 𝐴∗
𝛾] = 2𝛾, hence the eigenspace of 𝐵𝛾 corresponding to

the eigenvalue |𝛾 | is of the form (ker(𝐴𝛾))𝑒𝑖𝛾𝑧 𝑗 .
We note that the function

𝑓 𝑗 ,𝑘 (𝑥 𝑗 , 𝑦 𝑗 ) = exp
(
− 𝛼 𝑗 ,𝑘

𝑥2
𝑗
+ 𝑦2

𝑗

4
+ 𝑖

2
𝛼 𝑗 ,𝑘𝑥 𝑗 𝑦 𝑗

)
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satisfies (
− 𝜕2𝑥 𝑗 − (𝜕𝑦 𝑗 − 𝑖𝛼 𝑗 ,𝑘 )2

)
𝑓 𝑗 ,𝑘 = 𝛼 𝑗 ,𝑘 𝑓 𝑗 ,𝑘

on R2, and its mass concentrates as 𝑘 → +∞ at the point (𝑥 𝑗 , 𝑦 𝑗 ) = (0, 0). Let 𝜒 : R2→ R
be a smooth cut-off function equal to 1 near 0 and with small support. Then

𝜒(𝑥 𝑗 , 𝑦 𝑗 ) 𝑓 𝑗 ,𝑘 (𝑥 𝑗 , 𝑦 𝑗 )

can be seen as a function on the 𝑗-th copy of H. Up to multiplying 𝜒 𝑓 𝑗 ,𝑘 by a constant
(depending on 𝑗 , 𝑘) we can assume that its 𝐿2-norm is equal to 1. Then

𝐵𝛼𝑗,𝑘
(
𝜒 𝑓 𝑗 ,𝑘

)
= 𝛼 𝑗 ,𝑘 𝜒 𝑓 𝑗 ,𝑘 + 𝑜𝐿2 (1)

since 𝐵𝛼𝑗,𝑘 = −𝜕2𝑥 𝑗 − (𝜕𝑦 𝑗 − 𝑖𝛼 𝑗 ,𝑘 )2 locally.
We denote by 𝜙 𝑗 ,𝑘 the projection of 𝜒 𝑓 𝑗 ,𝑘 on the 𝛼 𝑗 ,𝑘 -eigenspace of 𝐵𝛼𝑗,𝑘 . Our goal

is to prove that
𝜙 𝑗 ,𝑘 = 𝜒 𝑓 𝑗 ,𝑘 + 𝑜𝐿2 (1) (5.15)

as 𝑘 → +∞. We can decompose

𝜒 𝑓 𝑗 ,𝑘 = 𝜙 𝑗 ,𝑘 + 𝑟 𝑗 ,𝑘 (5.16)

with 𝑟 𝑗 ,𝑘 orthogonal to 𝜙 𝑗 ,𝑘 . Applying 𝐵𝛼𝑗,𝑘 to (5.16), we obtain

𝐵𝛼𝑗,𝑘 𝑟 𝑗 ,𝑘 = 𝛼 𝑗 ,𝑘𝑟 𝑗 ,𝑘 + 𝑜𝐿2 (1). (5.17)

We know that 𝐵𝛼𝑗,𝑘 has eigenvalues (2𝑛 + 1)𝛼 𝑗 ,𝑘 , 𝑛 ∈ N, hence its lowest eigenvalue 𝛼 𝑗 ,𝑘
is well separated from the rest of the spectrum. This implies that

(𝐵𝛼𝑗,𝑘 𝑟 𝑗 ,𝑘 , 𝑟 𝑗 ,𝑘 ) ≥ (𝛼 𝑗 ,𝑘 + 𝜖)‖𝑟 𝑗 ,𝑘 ‖2𝐿2

for some 𝜖 > 0. Combined with (5.17), we obtain that 𝑟 𝑗 ,𝑘 = 𝑜𝐿2 (1), which proves (5.15).
For the above choice of 𝜙 𝑗 ,𝑘 , we consider 𝜑𝑘 given by (5.12). Setting

𝑓𝑘 =

𝐽∏
𝑗=1

𝜒(𝑥 𝑗 , 𝑦 𝑗 ) 𝑓 𝑗 ,𝑘 (𝑥 𝑗 , 𝑦 𝑗 )𝑒𝑖𝛼𝑗,𝑘 𝑧 𝑗

we deduce from (5.15) that
𝜑𝑘 = 𝑓𝑘 + 𝑜𝐿2 (1) (5.18)

as 𝑘 → +∞.
Let 𝜈 be a QL of (𝜑𝑘 )𝑘∈N∗ . We are going to prove that necessarily 𝜈 = ℋ

J
0, 𝑝 . Firstly,

𝜈 is supported where 𝑥 𝑗 = 𝑦 𝑗 = 0 for any 𝑗 ∈ J ; (5.19)
𝜈 is of the form 𝜈 = 𝑚J ⊗ ℓ∉J (5.20)
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where ℓ∉J has been introduced in Section 1.3.3 and𝑚J is a probability measure on 𝑆∗HJ .
The first line comes from the fact that | 𝑓 𝑗 ,𝑘 | concentrates as 𝑘 → +∞ on 𝑥 𝑗 = 𝑦 𝑗 = 0. The
second line comes from the fact that 𝜑𝑘 does not depend on 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 for 𝑖 ∉ J .
Also, let us justify that for any 𝑛 ∈ N∗,

𝑃J
𝑛 𝜑𝑘 = 𝜑𝑘 (5.21)

for 𝑘 sufficiently large (see (2.2) for the definition of 𝑃J
𝑛 , here 𝑍𝑖 = 𝜕𝑧𝑖 ). For this, we notice

that

( Id − ΔsR
𝐸

)
𝜑𝑘 =

:=𝜀𝑘︷                               ︸︸                               ︷( 1 +∑
𝑗∈J |𝛼 𝑗 ,𝑘 |

1 +∑
𝑗∈J |𝛼 𝑗 ,𝑘 | + |𝛼 𝑗 ,𝑘 |2

)
𝜑𝑘 ,( 𝑍∗

𝑖
𝑍𝑖

𝐸

)
𝜑𝑘 = 0 when 𝑖 ∉ J ,( 𝑍∗

𝑗
𝑍 𝑗

𝐸

)
𝜑𝑘 =

( |𝛼 𝑗 ,𝑘 |2

1 +∑
𝑗′∈J |𝛼 𝑗′,𝑘 | + |𝛼 𝑗′,𝑘 |2

)
︸                                 ︷︷                                 ︸

:=𝜂 𝑗,𝑘

𝜑𝑘 when 𝑗 ∈ J .

Using (5.11), we see that 𝜀𝑘 converges to 0 as 𝑘 → +∞, and 𝜂 𝑗 ,𝑘 converges for any 𝑗 ∈ J
to a non-zero limit as 𝑘 → +∞. This is sufficient to deduce (5.21).
From (5.21), we conclude that the mass of any QL of (𝜑𝑘 )𝑘∈N∗ is contained in 𝑆ΣJ

according to Lemma 14 (see also Lemma 13). Applying then Lemma 33, for any 1 ≤ 𝑖, 𝑗 ≤
𝐽, to the operator 𝜕𝑧𝑖

𝜕𝑧 𝑗
− 𝑝𝑖
𝑝 𝑗
, and using (5.11), we obtain that

𝜈 is supported in H𝑚 ⊗ 𝛿𝑝 . (5.22)

Together with the fact that |𝜑𝑘 |2 does not depend on 𝑧1, . . . , 𝑧𝐽 , this yields that

𝜈 is invariant under 𝜕𝑧1 , . . . , 𝜕𝑧𝐽 . (5.23)

Combining (5.19), (5.20), (5.22) and (5.23), we obtain that 𝜈 =ℋ
J
0, 𝑝 , which concludes the

proof of Fact 31.

Proof of Fact 28. . We consider 𝜈 ∈ 𝒞
J , and we write

𝜈 =
∑︁
𝑖∈F

𝛽𝑖 ℋ
J
𝑞𝑖 , 𝑝𝑖

where F is a finite set, ∑𝑖∈F 𝛽𝑖 = 1, and for any 𝑖 ∈ F , 𝛽𝑖 ≥ 0, (𝑞𝑖 , 𝑝𝑖) ∈ 𝑆ΣJ . Note
that if 𝑖 ≠ 𝑖′, eitherℋJ

𝑞𝑖 , 𝑝𝑖 = ℋ
J
𝑞′
𝑖
, 𝑝′
𝑖

, or the supports (in 𝑇∗H𝑚) ofℋJ
𝑞𝑖 , 𝑝𝑖 andℋ

J
𝑞′
𝑖
, 𝑝′
𝑖

are
disjoint. Therefore, possibly grouping terms in the above sum, we assume that the supports
ofℋJ

𝑞𝑖 , 𝑝𝑖 andℋ
J
𝑞′
𝑖
, 𝑝′
𝑖

are disjoint as soon as 𝑖 ≠ 𝑖′.
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For 𝑖 ∈ F , using Fact 31, we consider a sequence of eigenfunctions (𝜑𝑖
𝑘
)𝑘∈N∗ with

eigenvalues (𝜆𝑖
𝑘
)𝑘∈N∗ and whose unique QL isℋJ

𝑞𝑖 , 𝑝𝑖 . According to Fact 31, we can also
assume that 𝜑𝑖

𝑘
∈ H J

(0) , (𝛼𝑖
𝑗,𝑘

) for some 𝐽-tuples (𝛼
𝑖
𝑗 ,𝑘

) 𝑗∈J . For the moment, the only con-

dition imposed on the integers 𝛼𝑖
𝑗 ,𝑘
is that they satisfy (5.11). For any fixed 𝑖 ∈ F and any

fixed 𝑘 ∈ N∗, we can multiply all the 𝛼𝑖
𝑗 ,𝑘
by a common factor 𝑐𝑖,𝑘 , this does not change

(5.11). Choosing these factors adequately, we can hence assume that

𝜆𝑖𝑘 :=
∑︁
𝑗∈J

|𝛼𝑖𝑗 ,𝑘 |

does not depend on 𝑖 ∈ F (but it depends on 𝑘). In other words,
• for any 1 ≤ 𝑗 ≤ 𝐽, 𝜑𝑖

𝑘
is also an eigenvalue of Ω 𝑗 with eigenvalue 1;

• for any 𝑖, 𝑖′ ∈ F , 𝜆𝑖
𝑘
= 𝜆𝑖

′

𝑘
and we denote this common value by 𝜆𝑘 . This means that for

any 𝑖 ∈ F , 𝜑𝑖
𝑘
belongs to the eigenspace of −Δ corrresponding to the eigenvalue 𝜆𝑘 .

Since ℋJ
𝑞𝑖 , 𝑝𝑖 and ℋ

J
𝑞′
𝑖
, 𝑝′
𝑖

have disjoint supports, it follows by Lemma 15 that the eigen-
function of −Δ with eigenvalue 𝜆𝑘

𝜑𝑘 :=
∑︁
𝑖∈F

𝛽𝑖𝜑
𝑖
𝑘

admits 𝜈J as unique QL in the limit 𝑘 → +∞.

5.2.5. Step 3. Let us now finish the proof of Theorem 2. Let

𝜈∞ =
∑︁

J∈P\{∅}
𝑐J𝜈

J

be a probability measure with 𝜈J ∈ 𝒟
J and 𝑐J ≥ 0 for any J ∈ P \ {∅}.

Let (𝜑J
𝑘
)𝑘∈N∗ be a sequence of eigenfunctions of −Δ whose unique microlocal defect

measure is 𝑐J𝜈J . The fact that in the proof of Lemma 26 we only impose the condition
(5.11) on the integers 𝛼 𝑗 ,𝑘 guarantees that, for any 𝑘 ∈ N∗, one may choose all 𝜑J

𝑘
, for J

running over P \ {∅}, to have the same eigenvalue with respect to −Δ. Therefore,

𝜑𝑘 =
∑︁

J∈P\{∅}
𝜑
J
𝑘

is also an eigenfunction of −Δ. Moreover, since 𝑆ΣJ and 𝑆ΣJ′ are disjoint for any distinct
J , J ′ ∈ P \ {∅}, computing (𝐴𝜑𝑘 , 𝜑𝑘 ) for any 𝐴 ∈ Ψ0 (H𝑚) in the limit 𝑘 → +∞, we
obtain by Lemma 15 that the unique QL of (𝜑𝑘 )𝑘∈N∗ is 𝜈∞. This concludes the proof of
Theorem 2.

6. Proof of Theorem 3

In this Section, we finally prove Theorem 3. Precisely, we prove that there exists a QL 𝜈
such that the equation ®𝜌J𝑠 𝜈 = 0 is satisfied only for J = {1, 2} and 𝑠 = ( 12 ,

1
2 ) ∈ S{1,2}. For
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this, we keep the notation (5.13). For 𝑘 ∈ N∗, we set

𝜑𝑘 = 𝐶𝑘
(
𝑒𝑖𝑘𝑧1𝜙1,𝑘 (𝑥1, 𝑦1)𝑒𝑖𝑘𝑧2𝜙2,𝑘 (𝑥2, 𝑦2) + 𝑒𝑖 (𝑘+1)𝑧1𝜙1,𝑘 (𝑥1, 𝑦1)𝑒𝑖 (𝑘−1)𝑧2𝜙2,𝑘 (𝑥2, 𝑦2)

)
.

where 𝐶𝑘 > 0 is a normalizing constant, so that ‖𝜑𝑘 ‖𝐿2 (H𝑚) = 1. Here 𝜙1,𝑘 and 𝜙2,𝑘 are
eigenfunctions of 𝐵𝑘 (see (5.14)) with eigenvalue 𝑘 . Theorem 3 will be a consequence of
the following proposition:

Proposition 32. (𝜑𝑘 )𝑘∈N∗ has a unique QL, which is

𝜈 = 𝐶
[
(1 + cos(𝑧1 − 𝑧2))𝛿𝑥1 ,𝑥2 ,𝑦1 ,𝑦2

]
⊗ 𝛿𝑝0 (6.1)

where 𝐶 > 0 is a normalizing constant so that 𝜈 is a probability measure, 𝛿𝑥1 ,𝑥2 ,𝑦1 ,𝑦2
stands for the Dirac mass on 𝑥1 = 𝑥2 = 𝑦1 = 𝑦2 = 0, and the only non-null coordinates of
𝑝0 = (𝑝0𝑥1 , 𝑝

0
𝑦1 , 𝑝

0
𝑧1 , . . . , 𝑝

0
𝑥𝑚
, 𝑝0𝑦𝑚 , 𝑝

0
𝑧𝑚
) are 𝑝0𝑧1 = 𝑝

0
𝑧2 ≠ 0.

Proof of Proposition 32. Both

𝜇1𝑘 = 𝑒
𝑖𝑘𝑧1𝜙1,𝑘 (𝑥1, 𝑦1)𝑒𝑖𝑘𝑧2𝜙2,𝑘 (𝑥2, 𝑦2)

and
𝜇2𝑘 = 𝑒

𝑖 (𝑘+1)𝑧1𝜙1,𝑘 (𝑥1, 𝑦1)𝑒𝑖 (𝑘−1)𝑧2𝜙2,𝑘 (𝑥2, 𝑦2)

are eigenfunctions of −Δ, hence 𝜑𝑘 is an eigenfunction of −Δ (with associated eigenvalue
2𝑘). Let 𝜈 be a QL of (𝜑𝑘 )𝑘∈N∗ .
Firstly, we compute

|𝜑𝑘 |2 = 𝐶2𝑘 |𝜙1,𝑘 (𝑥1, 𝑦1) |
2 |𝜙2,𝑘 (𝑥2, 𝑦2) |2 (1 + cos(𝑧1 − 𝑧2)).

Denote by 𝜋 : 𝑆∗H𝑚 → H𝑚 the canonical projection, and recall that 𝜋∗𝜈 is a weak-* limit
of the sequence of functions |𝜑𝑘 |2 on H𝑚 (this follows by taking 𝐴 to run over the multi-
plication operators by continuous functions on H𝑚 in Definition 1). Using that the mass
of 𝜙1,𝑘 (resp. 𝜙2,𝑘 ) concentrates at 𝑥1 = 𝑦1 = 0 (resp. 𝑥2 = 𝑦2 = 0) as justified in the proof
of Fact 31, we obtain that

𝜋∗𝜈 = 𝐶
[
(1 + cos(𝑧1 − 𝑧2))𝛿𝑥1 ,𝑥2 ,𝑦1 ,𝑦2

]
(6.2)

for some 𝐶 > 0.
We set J = {1,2}. We notice that 𝑍∗

1𝑍1 = |𝜕𝑧1 |2 and 𝑍∗
2𝑍2 = |𝜕𝑧2 |2 act as multiplication

by |𝑘 |2 on 𝜇1
𝑘
, and 𝑍∗

𝑗
𝑍 𝑗 = |𝜕𝑧 𝑗 |2 acts as 0 on 𝜇1𝑘 for 𝑗 ∉ J . Since −Δ acts as 2𝑘 , we have

for any fixed 𝑛 ∈ N
𝑃J
𝑛 𝜇

𝑘
1 = 𝜇

𝑘
1

when 𝑘 is sufficiently large (see definition of 𝑃J
𝑛 in (2.2)). The same is true for 𝜇𝑘2 . Hence,

𝜈 gives no mass to 𝑆∗H𝑚 \ 𝑆ΣJ according to Lemma 14.
Applying Lemma 33 to the operator 𝜕𝑧1

𝜕𝑧2
− 1 and the sequence of functions 𝜑𝑘 , we

obtain that 𝜈 is supported where 𝑝𝑧1 = 𝑝𝑧2 . Due to (6.2), this implies (6.1).
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We now conclude the proof of Theorem 3. We already know that 𝜈 is concentrated on
𝑆ΣJ for J = {1, 2}. We want now to know for which 𝑠 ∈ SJ there holds ®𝜌J𝑠 𝜈 = 0. Setting
𝑠 = (𝑠1, 𝑠2, 0, . . . , 0), according to (6.1) we have

®𝜌J𝑠 𝜈 = 0⇔ (𝑠1𝜕𝑧1 + 𝑠2𝜕𝑧2 ) cos(𝑧1 − 𝑧2) = 0⇔ 𝑠1 = 𝑠2.

Hence 𝜈 is invariant under ®𝜌J𝑠 only for 𝑠 = ( 12 ,
1
2 ) ∈ S{1,2}.

A. Appendix

A.1. Classical pseudodifferential calculus

We briefly gather some basic facts of pseudodifferential calculus used along this paper
(see also [21, Chapter XVIII]).
Following our notations of Section 1, we denote by 𝑀 a smooth compact manifold of

dimension 𝑛. We write𝒮𝑘hom (𝑀) for the set of positively homogeneous degree 𝑘 functions
on the cone 𝑇∗𝑀 \ {0}., i.e., 𝑎 ∈𝒮𝑘hom (𝑀) if 𝑎 ∈𝐶∞ (𝑇∗𝑀) and there exists 𝑅 > 0 such that
for any (𝑞, 𝑝) ∈ 𝑇∗𝑀 with |𝑝 | ≥ 𝑅, and any 𝜆 ≥ 1, we have 𝑎(𝑞, 𝜆𝑝) = 𝜆𝑘𝑎(𝑞, 𝑝). We also
denote by 𝒮𝑘 (𝑀) the set of polyhomogeneous symbols of degree 𝑘 . Hence, 𝑎 ∈ 𝒮

𝑘 (𝑀)
if 𝑎 ∈ 𝐶∞ (𝑇∗𝑀), and for any 𝑗 ∈ N there exists 𝑎 𝑗 ∈ 𝒮

𝑘− 𝑗
hom (𝑀) such that for any 𝑁 ∈ N,

𝑎 −∑𝑁
𝑗=0 𝑎 𝑗 ∈ 𝒮

𝑘−𝑁−1 (𝑀).
We denote by Ψ𝑘 (𝑀) the space of classical (polyhomogeneous) pseudodifferential

operators of order 𝑘 on 𝑀 . The algebra Ψ(𝑀) of classical (polyhomogeneous) pseudodif-
ferential operators on 𝑀 is graded according to the chain of inclusions Ψ−∞ (𝑀) ⊂ · · · ⊂
Ψ𝑘 (𝑀) ⊂ Ψ𝑘+1 (𝑀) ⊂ · · · .
To a pseudodifferential operator 𝐴 ∈ Ψ𝑚 (𝑀), we can associate its principal symbol

𝜎𝑃 (𝐴), and the map 𝜎𝑃 : Ψ𝑘 (𝑀)/Ψ𝑘−1 (𝑀) → 𝒮
𝑘
hom (𝑀) is bijective. A quantization is a

continuous linear mapping
O𝑝 : 𝒮0 (𝑀) → Ψ0 (𝑀)

with 𝜎𝑃 (O𝑝(𝑎)) = 𝑎. An example is obtained using partitions of unity and the standard
quantization which is given in local coordinates by

O𝑝st (𝑎) 𝑓 (𝑞) = (2𝜋)−𝑛
∫
R𝑛×R𝑛

𝑒𝑖 〈𝑞−𝑞
′, 𝑝〉𝑎(𝑞, 𝑝) 𝑓 (𝑞′)𝑑𝑞′𝑑𝑝. (A.1)

This is the quantization we used by default in this paper. In H𝑚, choosing local coordi-
nates adapted to the product structure, we see that this quantization preserves the product
structure: if J ⊂ {1, . . . , 𝑚}, and 𝑎 (resp. 𝑎′) depends only on the coordinates (𝑞 𝑗 , 𝑝 𝑗 ) 𝑗∈J
(resp. on the coordinates (𝑞 𝑗 , 𝑝 𝑗 ) 𝑗∉J), then [O𝑝st (𝑎),O𝑝st (𝑎′)] = 0.
We have the following properties:

• If 𝐴 ∈ Ψ𝑘 (𝑀) and 𝐵 ∈ Ψℓ (𝑀), then 𝐴𝐵 ∈ Ψ𝑘+ℓ (𝑀) and 𝜎𝑃 (𝐴𝐵) = 𝜎𝑃 (𝐴)𝜎𝑃 (𝐵).
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• If 𝐴 ∈ Ψ𝑘 (𝑀) and 𝐵 ∈ Ψℓ (𝑀), then [𝐴, 𝐵] ∈ Ψ𝑘+ℓ−1 (𝑀) and

𝜎𝑃 ( [𝐴, 𝐵]) =
1
𝑖
{𝜎𝑃 (𝐴), 𝜎𝑃 (𝐵)},

where the Poisson bracket is taken with respect to the canonical symplectic structure
of 𝑇∗𝑀 .

Lemma 33. Let us assume that ℓ ∈ N and 𝑃 ∈ Ψℓ (𝑀) is elliptic in any cone contained
in the complement of a closed conic set 𝐹 ⊂ 𝑇∗𝑀 . Assume that (𝑢𝑘 )𝑘∈N∗ is a bounded
sequence in 𝐿2 (𝑀) weakly converging to 0 and such that 𝑃𝑢𝑘 → 0 strongly in 𝐿2 (𝑀).
Then any microlocal defect measure of (𝑢𝑘 )𝑘∈N∗ is supported in 𝐹.

Proof. Let 𝜇 be a microlocal defect measure of (𝑢𝑘 )𝑘∈N∗ , i.e.,

(O𝑝(𝑎)𝑢𝜎 (𝑘) , 𝑢𝜎 (𝑘) ) −→
𝑘→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜇

for any 𝑎 ∈ 𝒮
0 (𝑀), where 𝜎 is an extraction. Let 𝑎 ∈ 𝒮

0 (𝑀) be supported outside 𝐹. Let
𝑄 ∈Ψ−ℓ (𝑀) be such that 𝑃𝑄 − 𝐼 ∈Ψ−1 (𝑀) on the support of 𝑎. Then𝑄O𝑝(𝑎)𝑃 ∈Ψ0 (𝑀)
has principal symbol 𝑎, and therefore

(𝑄O𝑝(𝑎)𝑃𝑢𝜎 (𝑘) , 𝑢𝜎 (𝑘) ) −→
𝑘→+∞

∫
𝑆∗𝑀

𝑎𝑑𝜇.

Using that 𝑃𝑢𝜎 (𝑘) → 0, we get (𝑄O𝑝(𝑎)𝑃𝑢𝜎 (𝑘) , 𝑢𝜎 (𝑘) ) → 0 as 𝑘 → +∞, and therefore∫
𝑆∗𝑀

𝑎𝑑𝜇 = 0. Hence, 𝜇 is supported in 𝐹.

A.2. The Martinet sub-Laplacian

In this section, we provide an example of a sub-Laplacian on a compact manifold which
satisfies Assumption 6 but which is not step 2, meaning that brackets of length ≥ 3 of the
𝑋𝑖 are required to generate the whole tangent bundle, see (1.1).
To this end, we consider 𝑀 = (R/2𝜋Z)3 with coordinates 𝑥, 𝑦, 𝑧, endowed with the

Lebesgue measure 𝑑𝜇 = 𝑑𝑥𝑑𝑦𝑑𝑧. Let 𝐴 be a smooth 1-form 𝐴 = 𝐴𝑥𝑑𝑥 + 𝐴𝑦𝑑𝑦, where
𝐴𝑥 and 𝐴𝑦 depend only on 𝑥 and 𝑦. The 2-form 𝐵 = 𝑑𝐴 = (𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥)𝑑𝑥 ∧ 𝑑𝑦 is the
“magnetic field” and 𝑏 = 𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥 is its “strength”. We consider the vector fields
𝑋1 = 𝜕𝑥 + 𝐴𝑥𝜕𝑧 and 𝑋2 = 𝜕𝑦 + 𝐴𝑦𝜕𝑧 . Then, [𝑋1, 𝑋2] = 𝑏𝜕𝑧 . Now, we choose 𝐴 so that
𝑏 vanishes along a closed curve in (R/2𝜋Z)2𝑥,𝑦 , and (𝜕𝑥𝑏, 𝜕𝑦𝑏) ≠ 0 along this curve.
This construction is classical, see [28]. When adding the 𝑧-variable, this yields a surface
𝒮 ⊂ 𝑀 , called Martinet surface, on which [𝑋1, 𝑋2] = 0 but some bracket of length 3 of
𝑋1, 𝑋2 generates the missing direction of the tangent bundle thanks to (𝜕𝑥𝑏, 𝜕𝑦𝑏) ≠ 0. In
other words, the sub-Laplacian has step 3 on 𝒮. Nevertheless, Assumption 6 is satisfied
with 𝑍1 = 𝜕𝑧 .
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A.3. Quantum Limits of flat contact manifolds

The study of QLs of higher dimensional contact manifolds is also an interesting problem.
In this section, we prove that for the natural sub-Laplacian defined on the quotient of the
Heisenberg groupH𝑑 of dimension 2𝑑 + 1 by one of its discrete cocompact subgroups, the
invariance properties of QLs are much simpler than those described in Theorem 1, even
though “frequencies” show up: the part of the QL which lies in 𝑆Σ is invariant under the
lift of the Reeb flow, as in the three-dimensional case.
We first define the Heisenberg group in any odd dimension and the associated sub-

Laplacian. For 𝑑 ≥ 1, we consider the group law on R2𝑑+1 given by

(𝑥, 𝑦, 𝑧) ★ (𝑥 ′, 𝑦′, 𝑧′) = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ − 𝑥 · 𝑦′)

where 𝑥, 𝑥 ′, 𝑦, 𝑦′ ∈R𝑑 and 𝑧, 𝑧′ ∈R. The Heisenberg group H̃𝑑 is the group H̃𝑑 = (R2𝑑+1,★).
We consider the subgroup Γ𝑑 = (

√
2𝜋Z)2𝑑 × 2𝜋Z of H̃𝑑 , and the left quotientH𝑑 = Γ𝑑\H̃𝑑 .

We also define the 2𝑑 left invariant vector fields on H𝑑 given by

𝑋 𝑗 = 𝜕𝑥 𝑗 , 𝑌 𝑗 = 𝜕𝑦 𝑗 − 𝑥 𝑗𝜕𝑧

for 1 ≤ 𝑗 ≤ 𝑑. We fix 𝛽1, . . . , 𝛽𝑑 > 0 satisfying
∏𝑑
𝑗=1 𝛽 𝑗 = 1, we set 𝛽 = (𝛽1, . . . , 𝛽𝑑) and

we consider the sub-Laplacian

Δ𝛽 =

𝑑∑︁
𝑗=1

𝛽 𝑗 (𝑋2𝑗 + 𝑌2𝑗 ) (A.2)

which is an operator acting on functions on H𝑑 . The positive real numbers 𝛽 𝑗 are some-
times called frequencies, see [1].
We set 𝜌 = ℎ𝑍 |Σ, which is the Hamiltonian lift of the Reeb vector field 𝑍 = 𝜕𝑧 to Σ

(see [10, Section 2.3] for properties of the Reeb vector field).

Proposition 34. Let (𝜑𝑘 )𝑘∈N∗ be a sequence of 𝐿2 (H𝑑) consisting of normalized eigen-
functions of −Δ𝛽 . Then, any QL 𝜈∞ associated to (𝜑𝑘 )𝑘∈N∗ and supported in 𝑆Σ is invari-
ant under 𝑒𝑡 ®𝜌, the lift of the Reeb flow.

Remark 35. This result follows from [13, Theorem 2.10(ii)(2)], but we provide here a
simple self-contained proof which illustrates the averaging techniques used in Section 4.

Remark 36. We do not expect such a result to be true when the frequencies 𝛽 𝑗 are not
constant on the manifold.

Proof of Proposition 34. Denoting by (𝑞, 𝑝) the canonical coordinates in 𝑇∗H𝑑 , i.e., 𝑞 =

(𝑥1, . . . , 𝑥𝑑 , 𝑦1, . . . , 𝑦𝑑 , 𝑧) and 𝑝 = (𝑝𝑥1 , . . . , 𝑝𝑥𝑑 , 𝑝𝑦1 , . . . , 𝑝𝑦𝑑 , 𝑝𝑧), we know that

Σ = {(𝑞, 𝑝) ∈ 𝑇∗H𝑑 , 𝑝𝑥 𝑗 = 𝑝𝑦 𝑗 − 𝑥 𝑗 𝑝𝑧 = 0}

is isomorphic to H𝑑 × R.
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Up to extraction of a subsequence, we may assume that (𝜑𝑘 )𝑘∈N∗ has a unique QL 𝜈∞,
which is supported in 𝑆Σ. We set 𝑅 =

√︁
𝜕∗𝑧𝜕𝑧 and, on its eigenspaces corresponding to

non-zero eigenvalues, we define Ω 𝑗 = −𝑅−1 (𝑋2
𝑗
+𝑌2

𝑗
) = −(𝑋2

𝑗
+𝑌2

𝑗
)𝑅−1 for 1 ≤ 𝑗 ≤ 𝑑. On

these eigenspaces, the sub-Laplacian acts as

−Δ𝛽 = 𝑅Ω = Ω𝑅 with Ω =

𝑑∑︁
𝑗=1

𝛽 𝑗Ω 𝑗

and [𝑅,Ω] = 0.
Replacing 𝜑𝑘 by 𝜒( 𝑅2

Id−Δ𝛽+𝑅2
)𝜑𝑘 for some smooth function 𝜒 ∈ 𝐶∞ (R) vanishing near

0 and equal to 1 near in a neighborhood of 1 does not change the QL since 𝜈∞ is supported
in 𝑆Σ. In the sequel, an operator 𝑇 is said microlocally supported in the 𝜒-neighborhood
of Σ if it verifies 𝑇 = 𝜒( 𝑅2

Id−Δ𝛽+𝑅2
)𝑇 𝜒( 𝑅2

Id−Δ𝛽+𝑅2
).

If 𝐵 ∈ Ψ0 (H𝑑) is microlocally supported in the 𝜒-neighborhood of Σ and commutes
with Ω, then

( [𝐵, 𝑅]𝜑𝑘 , 𝜑𝑘 ) =
1
𝜆𝑘

(𝐵𝑅𝜑𝑘 ,−Δ𝛽𝜑𝑘 ) −
1
𝜆𝑘

(𝑅𝐵(−Δ𝛽)𝜑𝑘 , 𝜑𝑘 )

=
1
𝜆𝑘

(𝐵𝑅𝜑𝑘 , 𝑅Ω𝜑𝑘 ) −
1
𝜆𝑘

(𝑅𝐵𝑅Ω𝜑𝑘 , 𝜑𝑘 )

=
1
𝜆𝑘

( [Ω, 𝑅𝐵𝑅]𝜑𝑘 , 𝜑𝑘 )

= 0. (A.3)

Let𝑈 (𝑡) =𝑈 (𝑡1, . . . , 𝑡𝑑) = 𝑒𝑖 (𝑡1Ω1+···+𝑡𝑑Ω𝑑) for 𝑡 = (𝑡1, . . . , 𝑡𝑑) ∈ (R/2𝜋Z)𝑑 . For 𝐴 ∈Ψ0 (H𝑑)
microlocally supported in the 𝜒-neighborhood of Σ, we consider

𝐴 =

∫
(R/2𝜋Z)𝑑

𝑈 (−𝑡)𝐴𝑈 (𝑡)𝑑𝑡

which is also microlocally supported in the 𝜒-neighborhood of Σ. We argue as in Section
3.3: due to the definition of Σ,

𝜎𝑃 (Ω 𝑗 ) = ℎ−1𝑅 (ℎ2𝑋 𝑗 + ℎ
2
𝑌𝑗
)

vanishes at order 2 on Σ. Thus the Hamiltonian vector field associated to 𝜎𝑃 (Ω 𝑗 ) vanishes
on Σ, and the associated Hamiltonian flow is stationary on Σ.
Using Egorov’s theorem as in the proof of Lemma 19, we deduce that 𝜎𝑃 (𝐴) and

𝜎𝑃 (𝐴) coincide on Σ. Moreover, as in the proof of Lemma 19, [𝐴,Ω] = 0. Therefore,
using the computation (A.3) with 𝐵 = 𝐴, we obtain∫

Σ

®𝜌(𝜎𝑃 (𝐴))𝑑𝜈∞ =

∫
Σ

®𝜌(𝜎𝑃 (𝐴))𝑑𝜈∞ = lim
𝑘→+∞

1
𝑖
( [𝐴, 𝑅]𝜑𝑘 , 𝜑𝑘 ) = 0.

Combining the facts that it is true for any 𝐴microlocally supported in the 𝜒-neighborhood
of Σ and that 𝜈∞ is supported in 𝑆Σ, this implies that 𝜈∞ is invariant under the flow 𝑒𝑡 ®𝜌.
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