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Quantum limits of products of Heisenberg manifolds

Cyril LETROUIT*

July 1, 2020

Abstract

We study the spectral theory of a family of sub-Laplacians, defined on products of com-
pact quotients of the Heisenberg group, which are examples of completely integrable sub-
Riemannian manifolds. We classify all Quantum Limits of these sub-Laplacians, expressing
them through a disintegration of measure result. This disintegration follows from a natural
spectral decomposition of the sub-Laplacian in which harmonic oscillators appear.

Our results illustrate the fact that, because of the possibly high degeneracy of the spec-
trum, the spectral theory of general sub-Riemannian (or subelliptic) Laplacians can be very
rich: the invariance properties of the Quantum Limits which we study are related to the
classical dynamics of infinitely many vector fields on the cotangent bundle of the manifold.
These phenomena contrast with what happens for Riemannian Laplacians, for which any
Quantum Limit is simply invariant under the geodesic flow.
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1 Introduction and main results

1.1 Motivation

The main goal of this paper is to establish some properties of the eigenfunctions of a family
of hypoelliptic operators in the high-frequency limit. A typical problem is the description
of the Quantum Limits (QL) of the operator, i.e., the measures which are weak limits of a
subsequence of squares of eigenfunctions.

The study of Quantum Limits for hypoelliptic operators started recently, with the paper
[CAVHT18]. The authors proved Weyl laws (i.e., results “in average” on eigenfunctions), a
result of decomposition of Quantum Limits, and also Quantum Ergodicity properties (i.e.,
equidistribution of Quantum Limits under an ergodicity assumption) for 3D contact sub-
Laplacians.

We briefly recall the general definition of a sub-Laplacian. Let n € N* and let M be
a smooth connected compact manifold of dimension n without boundary. We consider a
smooth vector distribution D on M (possibly with non-constant rank), and a Riemannian
metric g on D. We also assume that D satisfies the Hérmander condition

Lie(D) = TM (1)

(see [Mon02]). Let p be a smooth volume form on M and let A, ,, be the selfadjoint sub-
Laplacian associated with the metric g and with the volume form p. If D is locally spanned
by N vector fields X, ..., X that are g-orthonormal, then we set

Agp=— ZXX Z 2 1 div, (X:)X,)

where the star designates the transpose in L?(M, u1). This definition does not depend on the
choice of the g-orthonormal frame X;,..., Xy. We can also note that if D = TM, g is a
Riemannian metric on 7'M and p is the canonical volume on (M, g), then A, , is the usual
Laplace-Beltrami operator.

Under the assumption , Ay, is hypoelliptic (see [Hor67]), has a compact resolvent,
and there exists a sequence of (real-valued) eigenfunctions (pg)ren+ of —A, , associated
to the eigenvalues in increasing order 0 = A\ < Ay < ... (with Ay — 400 as k — +00)
which is orthonormal for the L?(M, i) scalar product. The main purpose of this paper is to
understand the behaviour of the probability measure |y |?du when k — +oc for a particular
family of sub-Laplacians, typically by describing its weak limits (in the sense of duality with
continuous functions).

There is a phase-space extension of these weak limits whose behaviour is also of interest.
Let us recall the following definition (see [Gér91b)):

Definition 1. Let (ux)ren- be a bounded sequence in L?(M) and weakly converging to 0.
We call microlocal defect measure of (uk)ren+ any Radon measure v on S*M such that for
any a € SO(M), there holds

(Op(a)u, (k)» uo—(k)) k_>—+>oo s adv
for some extraction o. Here, (-,-) denotes the L*>(M, i) scalar product, .#°(M) is the space
of classical symbols of order 0, and Op(a) is the Weyl quantization of a (see Appendix .

Microlocal defect measures are useful tools for studying the (asymptotic) concentration
and oscillation properties of sequences, and they are necessarily non-negative.

Definition 2. We call Quantum Limit (QL) associated with an orthonormal basis (pr)ken
of eigenfunctions of —A any microlocal defect measure of (pr)kens -

Remark 3. Since (¢r)ken+ s orthonormal, any of its QLs is a probability measure on S* M.



For any Riemannian manifold (M,g), it is well known that any Quantum Limit v of
the Laplace-Beltrami operator A, is invariant under the geodesic flow exp(tﬁ ): there holds
exp(tﬁ)u = 0 for any ¢ € R. To see it, we note that for any orthonormal basis (¢x)ren-
consisting of eigenfunctions of —A,, there holds

(exp(—ity/—Ag)Op(a) exp(it\/—Ag) ok, k)2 = (Op(a)pr, ¢r) L2

for any t € R, any k € N* and any classical symbol a € .°(M). It follows from Egorov’s
theorem that exp(—it\/—A,)Op(a)exp(it\/—A,) is a pseudodifferential operator of order
0 with principal symbol a o exp(tﬁ ), which in turn implies exp(tﬁ Jv = 0. As we will see,
such a simple invariance property of Quantum Limits does not hold anymore for general
sub-Laplacians A ,,. Indeed, the above computation does not work anymore since /—A,
is not a pseudodifferential operator near its characteristic manifold, and therefore Egorov’s
theorem does not apply.

1.2 The sub-Laplacian A

A first example of a sub-Laplacian which is not Riemannian can be defined on some ap-
propriate quotient of the 3D Heisenberg group, and its Quantum Limits were studied in
[CAVHTIS]. Endow R? with the product law

(x,y,2)* (2,9, 7)) = (@ + 2",y + o, 2+ 2 —ay).
With this law, H = (R3, %) is a Lie group, which is isomorphic to the group of matrices
—z

y |, zy2€R

1
0
0 1

o =8

endowed with the standard product law on matrices.
We consider the left quotient H = I'\H where I' = (v 277)? x 277 is a cocompact
subgroup of H (meaning that H is compact). The vector fields on H

X=0, and Y =0, —20,

are left invariant, and we consider Ag = X2 + Y2 the associated sub-Laplacian (here p is
the Lebesgue measure 1 = dedydz and (X,Y) is orthonormal for g).

In this paper, we are interested in the product manifold H™ and the associated sub-
Laplacian A for some integer m > 2, that is

A=Ag® (I)*" ' +1de@ Ag @ 1d)™ 2 +...+ (1d)*" ' @ Ag, (2)

which is a second-order pseudodifferential operator. Below, we give an expression for A
which is more tractable. In all the sequel, we fix once for all an integer m > 2. Also, in what
follows, A denotes this sub-Laplacian, while A, ,, denotes any arbitrary sub-Laplacian.

Remark 4. If (¢p)ken denotes an orthonormal Hilbert basis of L?>(H) consisting of eigen-
functions of —Ay, then

{gak1®...®gakm | kl,...,kmEN*}

is an orthonormal Hilbert basis of L?*(H™) consisting of eigenfunctions of —A. However,
there exist orthonormal Hilbert bases of L?(H™) which cannot be put in this tensorized form.

The structure and the invariance properties of the Quantum Limits of sub-Laplacians is
more complicated than that of Riemannian Laplacians (recalled above), and it is important
to note in particular that the Quantum Limits of sub-Laplacians are not necessarily invariant
under the (sub-Riemannian) geodesic flow. In [CAVHTIS8| Theorem B], it was proved that

for any sub-Laplacian A, ,, any of its Quantum Limit v may be decomposed as a sum



v = 1y + Vs of mutually singular measures, where v is supported in the “elliptic part” of
the principal symbol g* = op(—Ay ) and is invariant under the sub-Riemannian geodesic
flow g*, and v, is supported in (g*)~1(0) (and its invariance properties are far more difficult
to establish, as will be seen below). It was also proved that for “most” QLs, vy = 0, and
therefore most our efforts in this paper are devoted to understand v,. The precise statement
of [CAVHT1S8, Theorem BJ is recalled in Proposition [1| below.

Let us introduce a few notations. If A, , is a sub-Laplacian, we set g* = op(—A ,,) where

o p denotes the principal symbol (see Appendix7 and we denote by ¥ = (¢*)71(0) = D+ C

T*M the characteristic cone (where L is in the sense of duality). This is the region of the

phase-space where A, , is not elliptic: in some sense, it is the region which is of most interest

in the study of sub-Laplacians, in contrast with usual Riemannian Laplacians. We make the
identification

S*M =U"MUSX (3)

where S*M is the cosphere bundle (i.e., the sphere bundle of T*M), U*M = {¢* = 1}
is a cylinder bundle and S¥ is a sphere bundle consisting of the points at infinity of the
compactification of U* M.

In this introductory section, the sub-Laplacian we consider is either Ay, or A, or an
arbitrary sub-Laplacian A, on a general sub-Riemannian manifold (M, D, g). In all cases,
we keep the same notations ¢g*, ¥ and S¥ to denote the objects we have just introduced,
without any reference in the notation to the underlying manifold even for the particular
sub-Laplacians Ag and A. It should not lead to any confusion since the context is precisely
stated when necessary.

We denote by w the canonical symplectic form on the cotangent bundle T*M of M. In
local coordinates (g, p) of T* M, we have w = dg A dp. Given a smooth Hamiltonian function
p:T*M — R, we denote by p the corresponding Hamiltonian vector field on T* M, defined
by (5w = dp. Given any smooth vector field V on M, we denote by py the Hamiltonian
function (momentum map) on T*M associated with V, defined in local coordinates, by
pv(q,p) = p(V(q)). The Hamiltonian flow exp(¢py) of py projects onto the integral curves
of V.

1.3 Main results

In order to give a precise statement of our main results, it is necessary to introduce a
decomposition of the sub-Laplacian A defined by . Taking coordinates (z;,y;, 2;) on the
j-th copy of H, we may write

A=Y (X2+VH) (4)
j=1
with X; = 0,, and Y; = 0,, — x;0,,.

Let us briefly describe ¥ for the sub-Laplacian A. Denoting by (g, p) the canonical coordi-

nates in T*Hma i'e‘v q= (‘rlayla Zly+ ey Tmy Ym, Zm) andp = (pz17py17p217 s 7pm’m7pymapzm)a
we obtain that

Y ={(g,p) € T*"H™ | ps, =py, —x;p., =0 forany 1 < j <m},

which is isomorphic to H™ x R™. Above any point ¢ € H™, the fiber of ¥ is of dimension
m, and therefore, above any point ¢ € H™, S consists of an (m — 1)-dimensional sphere.

For 1 < j < 'm, we consider the operator R; = , /a;j 0., and we make a Fourier expansion

with respect to the zj;-variable in the j-th copy of H. On the eigenspaces corresponding to
non-zero modes of this Fourier decomposition, we define the operator Q; = —R; ' (X7+Y7) =

,(XJZ + 1/;.2)ij1. For example, —A acts as

— A=) "R;Q, (5)
j=1

4



on any eigenspace of —A on which R; # 0 for any 1 < j < m. Moreover, R; and §); are
pseudodifferential operators of order 1 in any cone of T*H™ whose intersection with some
conic neighborhood of the set {p.; = 0} is reduced to 0.

The operator €);, seen as an operator on the j-th copy of H, is an harmonic oscillator,
having in particular eigenvalues 2n 4+ 1, n € N (see [CAVHTIS| Section 3.1]). Moreover, the
operators €; (considered this time as operators on H™) commute with each other and with
the operators R;.

For our purpose, it is important to understand the precise structure of ¥. Indeed, it can
be decomposed as a disjoint union

v=J =, (6)

JeP
where P is the set of all subsets of {1,...,m}, and, for 7 € P, X7 is defined as the set of
points (g, p) € X with p = (Pzy, Py1sPa1s -« > Pwn s Py » P2, ) Such that

(p, #0) & (j€J).

For J € P\ {0}, we consider the simplex

Sy = S:(Sj)ER‘_Z, s5;=1
JjET
and, for s = (s;) € Sy and (¢,p) € X7, we set
pd(q.p) = sjlps, .
€T
The Hamiltonian vector field o is well-defined on ¥ and smooth. Note that we have
pl(@.p) = (op(R.)z, where Ry=) s;R; (7)
JjeET
where op denotes the principal symbol (see Appendix |A]).

Finally, denoting by .Z, (E) (respectively &2(E)) the set of non-negative Radon measures
(respectively Radon probability measures) on a given separated space E, we setﬂ

TEP\(0} S7

where Q7 € .4, (Sz), v € P2(S*H™), (8)
vJ (S*H™\ S 7) = 0 and, for Q7-almost any s € S, , j7vd = O}.

This last definition means that for any continuous function a : S — R, there holds

/Szadyoo = Y /SJ </SEJ ady;7> dQ7 (s).

JeP\{0}

In a few words, means that any measure v, € Pgx is supported in SX, and that its
invariance properties are given separately on each set S¥ 7 (for 7 € P\ {0}). Its restriction
to any of these sets, denoted by v7, can be disintegrated with respect to S, and for any
s € S, there is a corresponding measure vy which is invariant by the flow eth? .

Our first main result is the following:

!The notation S¥; which appears for example in designates in all the sequel the set of points (g, p) of ST
which have null (homogeneous) coordinate p., for any ¢ ¢ J and non-null pz; for j € J. Note that this set is, in
general, neither open nor closed.



Theorem 1. Let (pr)ren= be an orthonormal Hilbert basis of L?(H™) consisting of eigen-
functions of —A associated with the eigenvalues (Ag)ren labeled in increasing order. Let v
be a Quantum Limit associated to the sequence (o )ren+- Then, using the identification ,
we can write v as the sum of two mutually singular measures v = Bry + (1 — B)Veo, with

Vo, Voo € Z(S*H™), B € [0,1] and
(1) vo(SE) =0 and vy is invariant under the sub-Riemannian geodesic flow '3 ;
(2) Voo € Py

Moreover, there exists a density-one sequence (k¢)een of positive integers such that, if v is a
QL associated with a subsequence of (k¢)een, then the support of v is contained in SY, i.e.,
B =0 in the previous decomposition.

Note that Theorem 1| holds for any orthonormal Hilbert basis of L?(H™) consisting of
eigenfunctions of —A, and not only for the bases described in Remark [4] In case (¢r)ren-
is of the form described in Remark we can say much more about the associated QLs (see
Proposition in Appendix : if an orthonormal Hilbert basis of eigenfunctions is in a
“tensor form”, then all associated QLs can be decomposed as tensorial products.

Note that the sub-Riemannian geodesic flow e'¥" involved in Theorem [1] is completely
integrable, see [ABB19, Chapter 18].

The converse of Theorem [1| also holds, in the following sense:
Theorem 2. Let vy, € Psx. Then vo is a Quantum Limit (associated to some orthonormal
basis consisting of eigenfunctions of —A).

Together, Theorem [1|and Theorem [2| yield a classification of (nearly) all Quantum Limits
of AP

1.4 Comments on the main results

In order to explain the contents of Theorem [T] and Theorem [2] we recall the following result,
which is valid for any sub-Laplacian Ay .

Proposition 1. [CdVHTIS, Theorem B] Let (og)ren+ be an orthonormal Hilbert basis of
L*(M,p) consisting of eigenfunctions of —A,,, associated with the eigenvalues (A)gen-
labeled in increasing order. Let v be a QL associated with (¢r)ken+. Using the identification
S*M = U*M U SY (see ), the probability measure v can be written as the sum v =
Bro + (1 — B)veo of two mutually singular measures with vy, Ve € P(S*M), B € [0,1] and

(1) 1(SE) =0 and vy is invariant under the sub-Riemannian geodesic flow §*;

(2) Voo is supported on S¥. Moreover, in the 3D contact case, vy, is invariant under
the lift to S of the Reeb ﬂowﬂ

Moreover, there exists a density-one sequence (k¢)een of positive integers such that, if v is a
QL associated with a subsequence of (k¢)een, then the support of v is contained in SX, i.e.,
B =0 in the previous decomposition

The last part of Proposition [[|shows that vo is the “main part” of the QL, but, according
to Point (2), its invariance properties were known only in the 3D contact case. Theorem

2The exact converse of Theorem [1] would guarantee that all measures v € Z(S*H™) of the form v = fvy +
(1 — B)veo with the same assumptions on 3, 1o and v as in Theorem [l are Quantum Limits. Our statement is
weaker since it does not say anything about the measures v for which 8 # 0 (which are rare, as stated in Theorem
1), but we do not think that a stronger converse statement for Theorem (1| holds.

3See [CAVHATIS]| for a definition of the Reeb flow, or Appendixq

4The proof of this last fact follows from the results in [CAVHTIS], although it is not explicitely stated there.
Let us sketch the proof. By [CAVHTIS| Proposition 4.3], we know that the microlocal Weyl measure of Ay,
is supported in S¥. Tt then follows from [CAVHTIS, Corollary 4.1] that for every A € ¥°(M) whose principal
symbol vanishes on X, there holds V(A) = 0, where V(A) is the variance introduced in [CdAVHT18, Definition
4.1]. Finally, following the proof of Theorem B(2) in [CAVHTIS]|, we get the result.



and Point (2) of Theorem (1] are the main novelties of this paper and they serve as substitutes
to Point (2) of Proposition (1| for the sub-Laplacians A on H™.

Compared to the invariance properties of the QLs of 3D contact sub-Laplacians described
in Proposition |1} the invariance property described by Point (2) of Theorem [l involves an
infinite number of different Hamiltonian vector fields g7 on S¥.

Spectrum of —A. The particularly rich structure of the Quantum Limits of the sub-
Laplacian —A described in Theorem [I] is due to the high degeneracy of its spectrum. To
make an analogy with the Riemannian case, the QLs of the usual flat Riemannian torus
T? = R?/Z? have a rich structure (see [Jak97]), whereas the QLs of irrational Riemannian
tori are much simpler to describe.

Recall that the spectrum sp(—Ay) is given by

sp(—An) = {Aa =20+ 1)|a| | LN, acZ\{0}}
U {thy e, = 2m(kF +K3) | (k1. k2) € 2%}
where A o is of multiplicity ||, multiplied by the number of decompositions of Ay, into the

form (2¢'+1)|c’| (see [CAVHTIS, Proposition 3.1]). Therefore, using a tensorial orthonormal
Hilbert basis of L?(H™) consisting of eigenfunctions of —A, we get that

J 2(m—J)
sp(—A) = Z(an +1) |a;| + 27 Z k? with 0 < J <m, k; € Z, n; €N, a; € (Z\ {0})
j=1 i=1

(see Section for a detailed proof) and the multiplicities in sp(—A) can be deduced from
those in sp(—Ag).

Note that the eigenvalues for which J = m form a density-one subsequence of all eigen-
values labeled in increasing order.

Remark 5. Contrarily to those of flat tori (see [Jak97]), the Quantum Limits of H™ (or,
more precisely, their pushforward under the canonical projection onto H™ ) are not necessarily
absolutely continuous. It was already remarked in the case m =1 in [CAVHTIS, Proposition

3.2(2)].

A first illustration of Point (2) of Theorem A way to get an intuition of Point
(2) of Theorem [1|is to fix (n1,...,ny,) € N™, and to consider an orthonormal sequence of
eigenfunctions (1g)gen+ of —A given in a tensor form as in Remark [4] such that, for any
k € N*, 9y, is also, for any 1 < j < m, a sequence of eigenfunctions of R; with eigenvalue
tending to +oo, and of Q; with eigenvalue 2n; 4 1. Such a sequence of eigenfunctions exists,
and can be completed to an orthonormal basis of L?(H™) consisting of eigenfunctions of
—A. We notice that any associated Quantum Limit v is supported in SEE

Let 7 = {1,...,m} € P. Then, v is necessarily invariant under the Hamiltonian vector
field 5¥, where s = (s1,...,8m) € Sz is defined by s; = %
To see it, we set
2 jm1(2n; + DR,

Z;n:l QTLj +1

and we note that for any A € W°(H™), we have

([A, Rl ¥x) = (ARw, Yr) — (Ahg, Rapy,) = 0

5Tt follows from the classical Lemma in Appendix using the fact that P, = 0 for sufficiently large
k € N*, with P = —A —>7" (2n; + 1)f(R;) which is elliptic outside ¥. Here, f € C*°(R) vanishes in a
neighborhood of 0 and is equal to 1 for sufficiently large x € R: since R; is not a pseudodifferential operator in
a neighborhood of p,; = 0, P is not necessarily a pseudodifferential operator for f = 1, thus leading us to this
non-constant choice for f.

forj=1,...,m.

R=




since ¢ is an eigenfunction of R. In the limit k¥ — +oo, taking the principal symbol, we
obtain [¢{a, pJ }dv = 0 where a = op(A). Since it is true for any a € .#’°(H™), this implies
p7v = 0. Hence, for such sequences (11 )ren+, any QL verifies v = v7 (which is invariant
under 57), Q7 is a Dirac mass on s and Q7" =0 for P 3 J' # J.

In some sense, any QL supported on SY is a linear combination of sequences as in the
above example, for different J € P\ {0} and different s € S7.

Roles of R; and ;. The operators R; and ©; play a key role in the proofs of Theorem
and Theorem As illustrated in the previous paragraph, the operators €); are linked
with the parameters s € S7: in some sense, once the eigenfunctions have been orthogonally
decomposed with respect to operators R; and (2, (as explained in Section [2.1]), the ratios be-
tween the §2;-s determines the invariance property of the associated Quantum Limits through
the parameter s and the Hamiltonian vector field 57. On the other side, the operators R;
‘determine’ the microlocal support of the associated Quantum Limits, for example the ele-
ment J € P\ {#} (such that the QL concentrates on S% 7). The next paragraph, which is
devoted to a sketch of proof of Theorem [I] will make these intuitions more precise.

Sketch of proof of Theorem The last part of Theorem [1]is an immediate conse-
quence of the last part of Proposition |1l Then, the proof of Points (1) and (2) in Theorem
is split into two steps which we now describe.

Step 1. First, in Lemma 2] extracting if necessary a subsequence, we split each eigenfunc-
tion ¢y, into ¢ = @Y + @°, where ) and ¢° are both eigenfunctions of —A with the same
eigenvalue as ¢y, and with the property that, in the limit k& — 400, ¢7° has v, for unique
microlocal defect measure (and therefore microlocally concentrates on SY), while ¢ admits
v as unique microlocal defect measure. This proves that one can study independently Point
(1) and Point (2) of Theorem |1} Since Point (1) is a consequence of Proposition [1} we focus
on Point (2). In the next paragraphs, we omit the index oo in order to simplify notations.

In the proof of Lemma [2] we identify a decomposition of ¢ as a sum

Pk = Z %0127

JEeP\{0}

with the property that for any J € P\ {0}, gokj is a sequence of eigenfunctions of —A whose
(unique) microlocal defect measure has all its mass contained in S¥ 7. Using a “gluing
lemma” for microlocal defect measures (Lemma , we obtain that it is sufficient to prove
Point (2) of Theorem [1| for (¢} )xen-, separately for each J € P\ {0}. Therefore, we focus
on one of the sequences (¢y )gen- for some J € P\ {0}. In other words, in Step 2, we
prove that the (unique) microlocal defect measure v = v of the sequence (gpkj )ken+ may be

decomposed as
1/‘7:/ v dQ7 (s).
Sg

In order to simplify the presentation, in the next paragraphs, we assume that J =
{1,...,m} and we omit this notation (writing for example S instead of S7), but the proof
is similar for any J € P\ {0}.

Step 2. With this assumption, we can use the decomposition to write each yy as a sum
of eigenfunctions of operators of the form E;"Zl (2n; + 1) R; for some integers ni, ..., nNm,:

Pk = Z ka,nl,...,nmn (9)

(n1,...,nm)ENT

We will see in Section that the decomposition @ is orthogonal, and therefore each
eigenfunction ¢ p, ... n, has the same eigenvalue \; as ;. Then, we do a careful analysis
of this decomposition into modes, which, in the limit £k — 400, gives the disintegration



V= fs vsdQ(s). This analysis builds upon a partition of the lattice N™ into positive cones,
each of them gathering together the modes ¢ p,,... n,, for which the m-tuples

2n1 +1 2ng, + 1
2y +14+...+2n,+1" " "2 +14+...+2n,, +1

are approximately the same: each of these positive cones accounts for a small region of the
simplex S. If N™ is partitioned into 2V positive cones C}¥ (with 0 < ¢ < 2N — 1), this
gathering defines eigenfunctions

N _
Pre = E Ph,ni,..nm
(n1,...,nm)€CY

of —A such that
2N 1
Pr = Z Sﬁﬁe (10)
=0

for any N € N*.

Taking a microlocal defect measure I/éV in each sequence (QD{CV o) ken+ and making N — 400
(i.e., taking the limit where the positive cones degenerate to half-lines parametrized by s € S),
we obtain from the disintegration v = [g v,dQ(s).

Given a certain s = (s1,...,8m) € S, dQ(s) accounts for the relative importance, in the
limit N — 400, of the eigenfunction wﬁt’(N) in the sum (10)), where ¢(INV) is chosen so that

the positive cone Cé\(’ Ny converges to the half-line with parameter s as N — 4o0.

The invariance property psvs = 0 can be seen from the fact that, for any large N and
any 0 < ¢ < 2NV — 1, each eigenfunction Ohng,onm With (n1,...,nm) € C’év is indeed an
eigenfunction of the operator

i om; + 1
> R;
2ny +14+...+2n,, +1

=1

m

which, by definition of gpkj\{e, is approximately equal to Ry = s1R1 + ... + sp Ry if s =
($1,-.-,8m) € S denotes the parameter of the limiting half-line of the positive cones C’év
as N — +oo. Hence, @i\f , is an approximate eigenfunction of R, from which it follows
by a classical argument that v, is invariant under the Hamiltonian vector field ps of ps =

(op(Rs))s-

Remark 6. There is no clear link of our result with the concept of “second microlocalization”,
although such a link may seem possible at first sight. Focusing on a Quantum Limit supported
in S, our study builds upon a spectral decomposition of it, and not upon a second direction
of microlocalization as is usually done while studying fine properties of sequences of solutions
of an operator (see for example [FKO0]).

Remark 7. Two generalizations of Theorem[1] may be considered. The first one consists in
adding a potential V' to —A and to look for the invariance properties of the associated QLs
in the spirit, for example, of [MR19]. A second generalization consists in studying the QLs
of products of general 3D contact manifolds, thus replacing the quotient Heisenberg manifold
H by an arbitrary 3D contact manifold. Both generalizations are open issues.

Bibliographical comments. The study of Quantum Limits for Riemannian Laplacians
is a long-standing question. Over the years, a particular attention has been drawn towards
Riemannian manifolds whose geodesic flow is ergodic since in this case, up to extraction
of a density-one subsequence, the set of Quantum Limits is reduced to the Liouville mea-
sure, a phenomenon which is called Quantum Ergodicity (see for example [Shn74], [CdV85],
[Zel87)). For compact arithmetic surfaces, a detailed study of invariant measures lead to the
resolution of the Quantum Unique Ergodicity conjecture for these manifolds, meaning that



the extraction of a density-one subsequence in the previous result is even not necessary for
these particular manifolds (JLin06]). In manifolds which have more integrability properties,
the set of Quantum Limits is generally richer: see for example [Jak97] for the description
of Quantum Limits on flat tori (which are product manifolds, as the ones we consider) or
[ALMI6] for the case of the disk.

An important literature is also devoted to the study of semiclassical measures, which are
analog to Quantum Limits in a time-dependent and semiclassical setting, and which are a
natural tool used for understanding the Schrodinger flow (see for example [AMI2]). With
this in mind, in [FKF19], the authors developed a notion of semiclassical measures adapted to
“Heisenberg type” sub-Laplacians, with the aim of studying the Schrédinger equation with a
sub-Laplacian replacing the usual Laplace-Beltrami operator (see also [FKI] for application
to the study of controllability of the Schrodinger equation in Heisenberg type groups).

The study of Quantum Limits of general sub-Laplacians was undertaken in the work
[CAVHT18], which was mainly devoted to the 3D contact case - encompassing for example
the case of the manifold H - although some results are valid for any sub-Laplacian (see
Proposition |1 of the present paper). The understanding of Quantum Limits of general sub-
Laplacians remains a largely unexplored question.

Structure of the paper. In Section we explain the spectral decomposition of
L?*(H™) according to the eigenspaces of the harmonic oscillators ; which gives the possi-
bility to write any eigenfunction ¢y of —A as a sum of the form @ It replaces, in some
sense, the Fourier decomposition of eigenfunctions usually done in Riemannian tori.

This decomposition plays a key role in the proof of Point (2) of Theorem [1} which is
divided into two steps, as explained previously.

Section 2.2] is devoted to the first step: using a pseudodifferential cut-off procedure, we
show how to deduce Point (1) of Theorem (1| from Proposition |1} and to reduce the proof of
Theorem [I| to the case where (¢k)ren+ has a unique microlocal defect measure, with all its
mass contained in S¥ 7 for some J € P\ {0}.

Building upon this reduction and the spectral decomposition of Section we establish
in Section the second and final step of the proof of Point (2) of Theorem

In Section 3] we prove Theorem [2] by constructing explicitely a sequence of eigenfunctions
with prescribed Quantum Limit.

In Appendix [A] we recall some basic facts of pseudodifferential calculus and two related
elementary lemmas. In Appendix we provide another way for obtaining the measures
Q7 and V;7 (but without proving the invariance properties), which relies on pure functional
analysis arguments and sheds a different light on Theorem [I] In Appendix [C] we show that
the Quantum Limits of a Hilbert basis of eigenfunctions of H™ given in a “tensor form”
can themselves be expressed in a tensor form. Finally, in Appendix we prove a result
concerning Quantum Limits of flat contact manifolds in any dimension: for such manifolds,
the invariance properties of Quantum Limits are essentially the same as in the 3D case. This
gives further motivation for our main results, since the Quantum Limits on the manifold H™
reveal a more interesting behaviour than those on flat contact manifolds.

Acknowledgments. Iam very grateful to Emmanuel Trélat and Yves Colin de Verdiere,
who taught me so much about the subject and answered countless questions I asked in Paris
and in Grenoble, and to Luc Hillairet for numerous remarks and suggestions. I also thank
Richard Montgomery, Nicolas Lerner, Gabriel Riviere and Clotilde Fermanian Kammerer
for very interesting discussions, and the kind hospitality of Luigi Ambrosio and the Scuola
Normale Superiore in Pisa, where part of this work was done. I was partially supported by
the grant ANR-15-CE40-0018 of the ANR (project SRGI).
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2 Proof of Theorem (1

2.1 Spectral decomposition of —A

In this section, we study in detail the action of —A on L*(H™): the existence of orthonormal
Hilbert bases of L?(H™) constituted of eigenfunctions of —A in a tensor form (see Remark
allows to write a decomposition of —A and also an orthogonal decomposition of L2(H™).

Let us recall that, for 1 < j < m, we have set R; = ,/ 8;‘j82j and we made a Fourier

expansion with respect to the z;-variable. On the eigenspaces corresponding to non-zero

modes of this Fourier decomposition, we defined the operator Q; = —R;l(ij + Yf) =
— (X7 + Yf)R;l. For example, —A acts as
A=) "R;Q
j=1

on any eigenspace of —A on which R; # 0 for any 1 < j < m. Moreover, R; and ;
are pseudodifferential operators of order 1 in any cone of T*H™ whose intersection with
some conic neighborhood of the set {p., = 0} is reduced to 0 (for example in small conic
neighborhoods of ¥ ;7 for J containing j).

The operator €);, seen as an operator on the j-th copy of H, is an harmonic oscillator,
having in partlcular eigenvalues 2n + 1, n € N (see [CAVHT18|, Section 3.1]). Moreover, the
operators €; (considered this time as operators on H™) commute with each other and with
the operators R;.

Recall that P stands for the set of all subsets of {1,...,m}. We fix J € P. In the
sequel, we think of J as the set of j for which R; # 0. For j € J and n € N, we denote by
EJ C L*(H) the eigenspace of §); corresponding to the eigenvalue 2n + 1. For (n;) € N7,

we set
MY =F'©..oF"CL*H")

where FJ = EZLJ_ for j € J and FV = L?(H) otherwise.
We have the orthogonal decomposition

e - @ @ w, a
JEP (n;)eENT

We can also write the associated decomposition of —A:

A= D #,

JEP (n;)eNT

2 2
with H7 =" (2n;+1)R;— > (97, +03,)
Jj€ET ¢ T

From this, we deduce

=U U st

JEP (n])ENJ

- { > @ny 1) oy +2m Y (k] +£3),
JjeT i¢T

with k;, 0, € Z, J € P, n; €N, a; € (Z\{O})}

where sp denotes the spectrum.
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2.2 Step 1: Identification of vy and v

In all the sequel, we fix (¢g)ren+ an orthonormal basis of eigenfunctions of —A associated
with the eigenvalues (A;)ren+ with Ay — +o00, and we consider v, a Quantum Limit associ-
ated to the sequence (¢k)ren-

In this section, we identify different parts in the Quantum Limit v: our goal is to provide
an adequate decomposition which is preliminary to the detailed analysis performed in Section
[2:3] This corresponds to Step 1 in the sketch of proof given in Section

Lemma 2. Let us assume that (or)ken+ s an orthonormal sequence of eigenfunctiomﬁ of
—A with associated eigenvalues A\, — +00. Then, up to extraction of a subsequence, one can

decompose
or=vh+ Y. o,
JeP\{0}
with the following properties:
o The sequence (pk)ken+ has a unique Quantum Limit v;
o ¢} and all ¢/, for k € N* and J € P\ {0}, are eigenfunctions of —A with eigenvalue
)\k;
e Using the identification S*H™ = U*H™USY (see (3))), the sequence (¢))wen+ admits a
unique microlocal defect measure By, where B € [0,1], vp € L(S*H™) and 1p(SX) =
0, and, for any J € P\ {0}, the sequence (W}Z)keN* also admits a unique microlocal
defect measure v , having all its mass contained in SX7;
o There holds
v = 51/() + Z Vj (12)
JeP\{0}
and the sum in s supported in SX.

Let us first give an intuition of how the proof goes. Using the spectral decomposition of
Section 2.1} for fixed k € N, we decompose ¢, as a sum of functions which are eigenfunctions
of R; for any 1 < j < m, and simultaneously eigenfunctions either of ), (if the corresponding
eigenvalue of R; is non-null) or of 9., and 9,, (if the corresponding eigenvalue of R; is zero).
Each of these functions is an eigenfunction of —A with same eigenvalue \; as ¢, and also
an eigenfunction of —(X7 +Y}?) for any j. Then, roughly speaking, we gather some of these
functions into 502 or into <pk‘7 for some J € P\ {0}, depending on their eigenvalues with
respect to the operators —A, R; and —(ij + Yf) for 1 < j < m. More precisely, the
functions which we select (asymptotically as k — +00) to be in <p;€7 are those such that:

e For any j ¢ J, the corresponding eigenvalue of —(X]2 + sz) is negligible in comparison

to A, as k — +o0;

e For any j € J, the corresponding eigenvalue of —(X7 4 Y}?) is not negligible in com-
parison to Ay, but the corresponding eigenvalue of R; is much larger than that of €;
as k — 4o0.

It corresponds to the intuition that 37 is the set of points (g,p) of T*H™ for which, for
any j € J, pe; = py; = P=; = 0, and for any j € J, |p.,| is much larger than |p,,| and
|py; — xjp=,| (which are indeed equal to 0 on ¥).

Proof of Lemma[d For n € N*, let x,, € C°(R, [0,1]) such that x,(z) =1 for |z| < 5~ and
Xn(x) =0 for [z] > L. We set A; = XZ +7Y} for 1 < j <m, and we have

op(=A;) =p2, + (py, — ¥jp=;)*
We also introduce

E=-A+) R} U*H™),

j=1

5Note that (@k)ren+ is not supposed to be a basis of L?(H™).
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which is elliptic, with principal symbol

m

UP(E) = Z (pij + (pyj - xjpz_j)2> +p3j'
j=1
For J € P\ {0}, we consider the operator

AL R2 A 4 R2 AL
P’r‘?:HXTL <A1E+RZ) jl;[j ((I—Xn)< JE+ j)Xn (—Aj%rjR?>> (13)

g

defined thanks to functional calculus. As we will see, PY € WO(H™) and, as n — —+o0, its
principal symbol tends to the characteristic function 1y, : T*H™ — R, where X 7 has been
defined in @

For any J € P\ {0}, the following properties hold:
(1) P7 € wO(H™);
(2) [P, A]=0;
(3) op(PY) — 15, pointwise as n — ~+oo.
Let us prove Point (1). Since E is elliptic, it is invertible, and since —A;, R? € WO(H™),
by [HVO0], x» (7A'+R?> € WO(H™) with principal symbol

E
“ (aP(;f(i)E;' P2, > .

—Aj+R2
E
supported in the cone of T*H™ given by

AL 2
S%:{O-P( AJ)+ij > 1 }

Similarly, the operator (1 — x,) ( ) belongs to WO(H™) and its principal symbol is

op(E) = 2n

In this cone, —A; + R? is elliptic, hence invertible. Therefore, x, (ﬁ) is a 0-th order
AR

pseudodifferential operator in S7, from which we conclude that

n?

_AJ+RJ2 _Aj 0 m
(1—Xn)< B )Xn<—Aj+R? € U (H™).

Finally, both products in the definition of PY belong to W°(H™). Hence, Py € WO(H™).

Point (2) is an immediate consequence of functional calculus, since all operators —A; and
R; for 1 <4,j < m commute one with each other.

Let us prove Point (3). The support of op(Py) is contained in the intersection of several
conic subsets of T*H'™: it is contained in the cone

forioay  _ 3

Sn = op(E)  —n

n -

for any ¢ ¢ J, and, for any j € 7, in the cone Sﬁl intersected with the cone

2
J . op(—4)) < l _ A < Pz
Tn. {Up(—Aj)+p§j =5 O'P( A])_ n—1/("
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It follows that, in the limit n — 400, op(PY) vanishes everywhere outside the set defined
by the relations

op(=A;) =p., =0, Vig J
op(—A;)=0 and p., #0, VjeJ.

We note that these relations exactly define the set X ;.

Let (q,p) € L7 with p = D2y, Dyy» P21y - - - s P s Py s Pz ) a0d p # 0. Our goal is to show
that op(PJ)(q,p) = 1. Tt follows from a separate analysis of the principal symbol of each
factor in the product :

e For i ¢ 7, since (q,p) € ¥ and p,, = 0, we have p,, = p,, = 0. Hence, at (q,p),

w (o)

e For j € J, we know that p.; # 0. Hence, for n sufficiently large, at (q,p),

op(=4;) +pZ,
(1= xn) (‘M) =1

e For j € J, using that p., # 0 and op(—A;) = 0, we get, at (¢,p),

op(—4;) _
X <0P<Aj>+pzj> -

Allin all, op(PJ)(q,p) = 1 for sufficiently large n, which finally proves Point (3).

We now conclude the proof of Lemma We consider, for fixed n € N and J € P\
{0}, the sequence (PY ¢y )rens, which, thanks to Points (1) and (2), is also a sequence of
eigenfunctions of —A with same eigenvalues as ¢,. We denote by v/ a microlocal defect
measure of (PY ¢ )ren- and by 0 a microlocal defect measure of the sequence given by the

eigenfunctions
ok— > Pl
JeP\{0}
Furthermore, we may assume thanks to the diagonal extraction process that the extraction
used to obtain all these microlocal defect measures is the same for any n € N* and any
J e P\ {0}.

Finally, we take v/ a weak-star limit of (v ),en and Brg a weak-star limit of (10),en,
with v € Z(S*H™) and 8 € [0, 1]. Thanks to the analysis done while proving Point (3), we
know that 7 gives no mass to the complementary of S¥ 7 in S*H™, and that v(SX) = 0.
Again, thanks to the diagonal extraction process, up to extraction of a subsequence in k € N*|
we can write

k=9 > @ (14)
JeP\{0}

where the unique microlocal defect measure of (gog)keN* is Brg, and go;z = Pﬁk)gok (for some

function r tending (slowly) to +o00 as k — +00) has a unique microlocal defect measure as
k — +oo, which is vV

Let us prove that implies . For that, we first recall a definition and an elementary
lemma concerning joint microlocal defect measures.

Definition 8. Let (uy)ren<, (Vi)ren+ be bounded sequences in L2(M) such that uy and vy,
weakly converge to 0 as k — +o0o. We call joint microlocal defect measure of (uy)ren< and
(vk)ken+ any Radon measure Vjyints on S*M such that for any a € #°(M), there holds

d oin
(Op(a)te k), Vo (k)) C T ooy (Wioint

for some extraction o.
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Note that joint microlocal defect measures are not necessarily non-negative, and that
joint Quantum Limits (similarly defined) are not necessarily invariant by the geodesic flow,
even in the Riemannian case. However, the following lemma, proved in Appendix [A] shows
a regularity property for these joint microlocal defect measures.

Lemma 3. Let (ug), (vk) be two sequences of functions weakly converging to 0, each with a
unique microlocal defect measure, which we denote respectively by p11 and pes. Then, any
joint microlocal defect measures p1a (resp. p21) of (uk)ken+ and (vi)ren+ (resp. of (Vi)ken-
and (ug)gen+) is absolutely continuous with respect to both p11 and ps.

Using Lemma [3] we then notice that if 7, 7’ € P\ {0} are distinct, the joint microlocal
defect measures of ((pkj Jken+ and ((pkj /)keN* vanish. Similarly, the joint microlocal defect
measure of (¢))gen+ With the sequence (¢y )gen- vanishes for any J € P\ {0}. Therefore,
evaluating (Op(a)ex, ) and using (14), we obtain (12)), which finishes the proof of Lemma
2 O

Remark 9. The above proof is inspired by the proof of a slightly different fact (see [Gér91d,
Proposition 3.3]): if 0 is the unique microlocal defect measure of a sequence (Vr)ken+ of
functions over a manifold M, A (resp. B) is a closed (resp. open) subset of S*M, and
A and B form a partition of S*M, then we can write 6 = 04 + 0p, with 04 (resp. 0p)
supported in A (resp. O0p(A) =0) and 1y, = Pt + P such that 64 (resp. 0p) is a microlocal
defect measure of (Vi) ken= (resp. of (VP )ken+). The proof just consists in choosing symbols
pn € SO(M) concentrating on A and taking it = Op(pn)tx as in the proof above.

In the proof of Lemmal[3, we had to choose particular symbols p,, in order to ensure that

cpkj and @Y are still eigenfunctions of —A.

Restriction to a fixed 7 € P\{0}. Combining Lemmawith Point (1) of Proposition
we see that it is enough to prove Point (2) of Theorem [1} and that it is possible to assume
that (or)ken+ is a sequence of eigenfunctions with eigenvalue tending to +oo, and with a
unique microlocal defect measure v, which can be assumed to be supported in S¥. Indeed,
thanks to Lemmal[2] we can even assume that all the mass of v is contained in S¥ 7 for some
J € P\ {0}, i.e., v = v7: once we have established the decomposition

J_ 7407
v /SJVS Q7 (s),

Point (2) of Theorem [1| follows by just gluing all pieces of v together thanks to Lemma

Therefore, in order to establish Point (2) of Theorem [l we assume that the unique
microlocal defect measure of (¢ )ren+ has no mass outside SX 7 for some J € P\ {#}. By
symmetry, we may even assume that J = {1,...,J} with J = Card(7).

To sum up, the sequence (@ )gen+ that we consider is no more an orthonormal Hilbert
basis as stated in Theorem [1} but it satisfies the following assumption:

Assumption 1. (¢p)ren+ is a bounded sequence of eigenfunctions of —A labeled with in-
creasing eigenvalues tending to +00, and with unique microlocal defect measure v. Moreover,
there exist J < m and r(k) — 400 as k — +oo such that

Pk = PT{/C)SDIC (15)

for T ={1,...,J} and for any k € N*, where P is defined in . In particular, v has
no mass outside SY 7.

2.3 Step 2: End of the proof of Point (2) of Theorem

In the sequel, the notation (-,-) stands for the L?(H™) scalar product, and the associated
norm is denoted by || - || 2.
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Positive cones. Weset V = (—1,...,—1) € R’ and we consider the quadrant

1
V +RY :{(m,...#EJ)GRJWjZ_Q foranylSjSJ}~

We now define a series of partitions of V + Ri into positive cones with vertex at V', each of
these partitions (indexed by N) being composed of 2V thin positive cones, with the property

that each partition is a refinement of the preceding one.

More precisely, these positive cones C¥ C V + Ri, for N € N* and 0 < ¢ < 2N — 1,
satisfy the following properties, some of which are illustrated on Figure [1| below:

(1) For any N € N* and any 0 < ¢ <2V — 1, C} is a positive cone with vertex at V, i.e.,

VAW =V)ec), YA>0, VW € C);

(2) For any N € N*, (C})o<p<an_y is a partition of V +RZ, i.e.,

2N 1

U eV =Vv+R{ and c'nCy =0, Ve + 1,
£=0

(3) Each partition is a refinement of the preceding one: for any N > 2 and any 0 < £ <
2N _ 1, there exists a unique 0 < ¢ < 2¥=1 _ 1 such that C’év cohN-1L.
Denote by £ the set of half-lines issued from V' and contained in V + Ri. Note that .Z is
parametrized by s € S 7. We also assume the following property:
CN

(4) For any L € . parametrized by s € Sz, there exists a subsequence ( s N)) NeN~
which converges to .Z, in the following sense. There exists d : N — R with d — 0 as
N — +o0, such that, for any s’ € S parametrizing a half-line L' € % contained in

SZS,Ny we have
Is" = s[l1 < d(N). (16)

This last property is equivalent to saying that the size of the positive cones tends uniformly

to0as N — +oo.

]
i
i L i }
' 5é le . . . .
’ s
i ' ’ .
! ' ‘ .
! [ ’ / .
. ,
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Figure 1: The positive cones Cév, for J =2, N =3.
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Spectral decomposition. Decomposing ¢ on the spaces HEZL v) defined in Section [2.1
J
we write

k=Y Pr (17)

where

and, for any (n;) € N7, k € N* and j € J,
Qj(pkgnlwugnJ = (2nj + ]')Sok’nlw'wn(]'

For any N € N* and any 0 < £ < 2V — 1, we take v} to be a microlocal defect measure of
the sequence (¢¥,)ken+. By diagonal extraction in k € N* (which we omit in the notations),
we can assume that any of these microlocal defect measures is obtained with respect to the
same subsequence.

Lemma 4. The following properties hold:
(1) All the mass of v} is contained in SE7 for any N € N* and any 0 < ¢ < 2N —1;

(2) For N € N* and { # ¢ with 0 < £,¢' < 2N —1, the joint microlocal defect measure (see
Deﬁnition@) of (cpﬁé)keN* and (ap,iv,[,)ng* vanishes. In particular, for any N € N*,

2N 1
v= Z v, (18)
£=0

Proof. We first prove Point (1). Using (15)), and the fact that PY € WO(H™) commutes
with the operators §2; and R;, we get that

@{c\fé = P}{k)@{c\fé'

Point (1) now follows from the fact that ap(P;?k)) — 1y, as k = +oo (see the proof of
Lemma [2).

We now turn to the proof of Point (2). Let N, ¢, ¢ be as in the statement. By Point (1)
and Lemma , we know that the joint microlocal defect measure of (@i\{z)keN* and (gpﬁe,)kew
has no mass outside SX 7.

Let b € .°(H™) which is microlocally supported in a conic set in which R;, Q; act as first-
order pseudodifferential operators for any j € J. A typical example of microlocal support
for b is given by any conic subset of T*H™ whose intersection with some conic neighborhood
of the set {p., = 0} is reduced to 0, for any j € J. We set U(t) = U(ty,...,t5) =
et ttsQ) for t = (ty,...,t;) € (R/21Z)7.

The average of Op(b) is then defined by

A= / U (—t)Op(b)U (¢)dt
(R/277)7

(see [Weir7]). For 1 < j < J, since

d

%U(—t)op(b)U(t) = U(=t)[Op(b), ;]U(2),

integrating in the ¢; variable, using that all {2, commute together, and that exp(2in€Q;) = Id

(since the eigenvalues of ; belong to N), we get that [A,Q;] =0 for any 1 < j < J.
By a bracket computation, A has principal symbol

CLI:OP(A):/ bo@l(tl)o...oﬁj(t])dt.
(R/27Z)7

Here, 6,(-) denotes, for 1 < j < J, the 2m-periodic flow of the Hamiltonian vector field of
op(2;) (see [CAVHTIS, Lemma 6.1] for similar arguments).
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Remark 10. If D is a 0'"-order pseudodifferential operator on H™ which satisfies [D, Q] =
0 for any j € J, then D leaves ’HZZ”) invariant for any (n;) = (n1,...,ny) € N. It follows

that for any f € ng-) and any g € H‘({ﬂ) such that (n1,...,ny) # (n},...,n’;), we have
g j
(Df,g) =0.
We know that op(A) = b on SE 7. Therefore,

(Op(b)en e, one) — (App g one) — 0.

k—-+o0

Since A commutes with §2; for any 1 < 5 < J, by Remark we know that (Agojk\fe, @ﬁe,) =0.
Hence, (Op(b)¢yy, o) tends to 0 as k — +oo. Using this result for all possible b with
microlocal suppo%t satisfying the property recalled at the beginning of the proof, we obtain
that the joint microlocal defect measure of (goﬁe)keN* and of (SD{C\Z@/)ICGN* vanishes. Evaluating
(Op(b)¢k, ¢x) in the limit & — 400 and using (17), we conclude the proof of Point (2). [

Approximate invariance. We fix N € N* and 0 < £ < 2V —1 and we consider s € S 7
such that the half-line issued from V and defined by the J equations ﬁfmm = 55
(and z; > —1/2) lies in C}V.

Let A be a 0-th order pseudodifferential operator microlocally supported in a conic set
where R;, §2; act as first-order pseudodifferential operators for any j € J. Assume moreover
that A commutes with Qq,...,Q; and Ajiq,...,A,,. Recall that R; was defined in (7).
Using that [A, Rs] commutes with €4,...,8; in order to kill crossed terms (see Remark [10]),
we have

([A, Rs]@ﬁlv ‘Pﬁz) = ([A, R Z Phni,...ngs Z Phnien)
(n1,....,ng)ECN (n1,....,ng)ECN

= Z ([AaRs}‘ﬂk,nl,...,nﬁ@k,nl,...,nJ) (19)

Let us fix (n1,...,ny) € C} and prove that

J
2n; +1
= Z <Sj - z:‘]j> ([A, Rj]@k,’fbl,.“,n]? @k,nl,...,n‘]) (20)

We set

and, for the sake of simplicity of notations, ¢ = @k.n,...n,. Using that R is selfadjoint (since
R; is selfadjoint for any j) and that ¢ is an eigenfunction of R, we get

and therefore, since A commutes with Ay q,...,4A,,, we get
J
2n; +1
([A7RS]@790) = ([A,RS—R]QP,QD) = §j — = ————— ([A7R']907‘»0)
jgl ’ 21]:1 2n; +1 ’

which is exactly .
Thanks to our choice of microlocal support for A, we know that [4, R;] € WO(H™) for

1 < j < J. Combining and 7 we obtain

J
[ AEANEAR | ESc A S

(n1,...,ny)eCy j=1

< Cd(N) e,z

2n; + 1

= |Ierni,nsllZe
21:1 2n; +1

Sj —

(21)
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where in the last line, we used and the fact that the decomposition is orthogonal.
In order to pass to the limit k& — +o00 in these last inequalities, we note that

op([A Rz, = {G\EJ,Ps}w‘EJ (22)

(see [CAVHTI8, Lemma 6.2] for a similar identity). Here, the Poisson bracket {’v'}w\zj
is the Poisson bracket on the manifold (X 7,w|s ) which is symplectic as it is defined as
a product of symplectic manifolds (recall that for m = 1, the 4-dimensional manifold ¥ is
symplectic, see for example [CAVHT1S]).

Since all the mass of v/}¥ is contained in S¥ 7 by Lemma |4} we finally deduce from
the upper bound

[ s epidus, vl < CANWY (532, (23)
J

The upper bound has been established only for a|s,, the restriction to X7 of the
symbol of an operator A of order 0 which commutes with Q1,...,Q; and Aji1,...,A,, and
we would like to remove this commutation assumption. Let b € .#°(H) of the form

b(Qap> = bj(qlv"'anapla"pr)

where (g, p) denote the coordinates in T*H™, (g;, p;) the coordinates in the cotangent bundle
of the j-th copy of H, and by € .#°(HY) is an arbitrary 0-th order symbol supported in a
subset of T*HY where R;,Q; act as first-order pseudodifferential operators for any j € J.
We consider the operator

A= / U(—H)Op(B)U (t)dt € WO(H™)
(R/277)7

where U(t) = Ul(ty,...,t;) = ettty for t = (t,....t;) € (R/27Z)’. By an
argument that we have already in the proof of Point (2) of Lemma (4), A commutes with
; for any 1 < j < J, and it also commutes with Ajyq,...,A,,. Moreover, the principal
symbol of A on S 7 coincides with b by the Egorov theorem. Using for A, this proves
that is valid for any symbol a of order 0 on H™ supported far from the sets {p., = 0}
for j € J, without any assumption of commutation on A.

Disintegration of measures. From the equality (18] taken in the limit N — +oo, we

will deduce that v7 = fs v dQ7 (s). Note that a simple Fubini argument does not suffice
J

since @7 is not the Lebesgue measure in general (it may contain Dirac masses, see Section

11.4). Instead, we have to adapt the proof of the classical disintegration of measure theorem
(see [Roh62]).

First of all, we define a measure Q7 over S as follows. It was explained at the begin-
ning of Section that the set .Z of half-lines issued from V and contained in V + RJJF is
parametrized by s € S7. For N € N* and 0 < ¢ < 2N _ 1, we consider the subset of Ss
given by

Sy = {s € Sz, s parametrizes a half-line of . contained in Cé\'} . (24)

Then we define
Q7 (Sy) = v, (5%). (25)

This definition is consistent thanks to the partition of V' +Ri into nested positive cones:
Q7 is well-defined on any Sév and it is also additive. By the properties of the positive cones
C}, for any s € Sz, there exists a sequence (£(s, N)) yen- such that Sé\(fs N C S converges
to s, in the sense that any sequence (s)yen- such that sV € Sé\(I&N) for any N € N*

converges to s as N — 4o00. Therefore, by extension, (25)) defines a (unique) non-negative
Radon measure Q7 on S 7.
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Given N >1,0< ¢ <2V —1 and a continuous function f:9%7 = R, we set

1
JTAE R — fdvN 26
‘ VéV(SZJ) SY.7 ¢ (26)

if vV (SX7) # 0, and f¥ = 0 otherwise.

Proposition 5. Given any continuous function f : S¥ — R, for Q7 -almost all s € S,
there exists a real number e(f)(s) such that

fézgs,N) N~>—+>oo €(f)(8),

where, for any N € N*, {(s,N) is the unique integer 0 < £(s,N) < 2N — 1 such that
s € S%S7N).
In the sequel, we call £(s, N) the approximation at order N of s.

Proof. By linearity of formula (26)), it is sufficient to prove the statement for f > 0. There-
fore, in the sequel, we fix f > 0. For N > 1, we define the function fV : S; — R by
N(s) = fé}’s N) where /(s, N) is the approximation at order N of s. Note that fV is

constant on Sév for0<¢< 2N —1.
For 0 < a < 8 <1, we define S(«, 8) as the set of s € S7 such that

liminf fV(s) < a < B < limsup fV(s).
N—+o0 N—+o0

To prove Proposition |5} it is sufficient to prove that S(a,3) has Q7-measure 0 for any
0 <a< B <1. Fixsuch a, 5. For s € S(a, ), take a sequence 1 < N (s) < Nf(s) <
N§(s) < N2(s) < ... < Ni(s) < le(s) < ... of integers such that fV¢(9)(s) < o and
fof(S)(s) > [ for any k > 1. We finally define the following sets:

_ N (s)
Av= U SuNee
s€S(af)

_ N{(s)
By = U Se(E,N,g(s))
s€S(a,8)
We have S(a, 8) C Agq1 C By C Ay for every k > 1. In particular,
S(a,B) € S(a,B) == () Ax= [ B (27)
kEN* kEN*
Given any two of the sets SZ’E S\S/),g () that form Ay, either they are disjoint or one is

contained in the other. Consequently, A; may be written as a disjoint union of such sets,
denoted by AZ . Therefore,

[ 1407 =3 [ 7d07 <3 aQ7(4f) = a@” (40
Ak kAR K
and analogously, with similar notations,
1407 =3 [ 1407 > Y 507 (BY) = 5Q7 (B
By & Y BE k'

Since By C Ay, we get aQ7 (Ag) > BQY(By). Taking the limit k& — +oo, it yields
aQ7 (S(a,B)) > BQY(S(a,B)), which is possible only if Q7 (S) = 0. Therefore, using
, we get Q7 (S) = 0, which concludes the proof of the proposition. O
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From and , we infer that for any N > 1,
2N -1 2N _1
fdv? = Z fdyZ Z N(ST )

SX g =0

and the dominated convergence theorem together with the definition of Q7 and Proposition
yield

far? = [ e(r)(s)dQ7 (o). (28)
SY 7 Sy
We see that for a fixed s € Sz,
C%ST7,R) > frse(f)(s) €ER

is a non-negative linear functional on C’O(SE 7,R). By the Riesz-Markov theorem, there
exists a unique Radon probability measure v on S¥ s such that

e(f)(s) = favy. (29)

S

Putting and together, we get

Jo, 10 =, (L, )

which is the desired disintegration of measures formula.
Conclusion of the proof. There remains to show that v is invariant by 5¥. Let a €

ZY(H™) be supported in cone of T*H™ whose intersection with some conic neighborhood
of the set {p., = 0} is reduced to 0, for any j € J. For Q7 -almost every s € Sz, we have

/SE {a. 07} = e({ap?})(s)  (by (E9))

1

B / {a, p7 Y (30)
N—+o00 Vé(s N)(SEJ) SY s £(s:N)

<

< Jlm Cd(N)  (by (23))

—0

with the convention that if the denominator in is null, then the whole expression is
null. For an arbitrary a € .9(H™), taking a sequence a,, € .#°(H™) whose support has
the above property and such that a,, — a in SX 7 (in the space of symbols) as n — 400, we
see that the above quantity also vanishes since ¢ has finite mass and {an, p?} = {a,p?}

in S¥ 7 as n — +oc. This implies that v/ is invariant by the flow e/?s | which concludes the
proof of Theorem

3 Proof of Theorem [2

In this section, we prove Theorem [2] The four steps are the following:

1. In Lemma 6] and Lemma[7} we prove the result for a fixed 7 € P\ {0}, @7 the Dirac
mass at some s € Sz, and vJ € Z(S*H™)
(i) has no mass outside SX 7,
(ii) is invariant under the flow of 57,
(iii) and s in a simple tensor form that we make precise below.
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In other words, if v = v with vJ satisfying (i), (ii) and (iii), then it is a QL.

2. In Lemma [8] we extend the result of Step 1 to the case where (iii) is not necessarily
satisfied, i.e., Vo, = v satisfies only (i) and (ii).

3. In Lemma 9] we extend the result of Steps 1 and 2 to the case where vy, € Pgyx has
no mass outside SY 7 for some J € P\ {0}, i.e., voo = 7.

4. Finally, using the previous result for all J € P\ {0}, we prove Theorem [2] in full
generality (i.e., for arbitrary vy, € Pgy).

The map ¥ — H™ x R™, (¢,p) — (¢,pz2,---,Pz,,) is an isomorphism, and thus, in the
sequel, we consider the coordinates (¢, p.,, ..., ., ) on X and in the coordinates (¢, p,, : - - :
Pz, ) on S, where the notation p,, : ---: p, stands for homogeneous coordinates.

Let us summarize the proof. We fix 7 € P\ {0}. Since any two of the operators R; and
Qj for j,j € J commute, the orthogonal decomposition can be refined: more precisely,
given (n;) € N7 and (a;) € (Z\{0})7, we consider the joint eigenspace Hg”)‘aj) C L*(H™)
on which the operator 19, acts as a; and ; acts as 2n; + 1.

Voo 1s obtained as a QL of an orthonormal sequence of eigenfunctions (¢ )ren+ which is
described through its components in these eigenspaces. Moreover, each of the four steps is
achieved by taking linear combinations of eigenfunctions (with same eigenvalues) used in the
previous step. Therefore, the number of eigenspaces /ng Dh(as) used for building (¢ )ken=
increases at each step. l

In order to achieve Step 1, we focus on the eigenspaces /H‘(ij))(aj) corrreponding to

L B ~s; and G o P
2y (2ni+1) Pz

for any 7,5 € J.

For Step 2, we add the results of the previous step for different p € S¥ 7, and we take
care that each term in the sum corresponds to the same value of —A. Hence, (n;) € N7 is
the same as in Step 1, but we use various (a;) € (Z\ {0})7 to reach all p.

For Step 3, we add the results of Step 2 for different s € S7. Therefore, we use the
eigenspaces ngj),(aj) also for different (n;) € N7. Finally, in Step 4, we sum the sequences
obtained at Step 3 for J ranging over P \ {0}.

In order to describe the measures in a “tensor form” which we consider for Step 1, we
need to introduce a few notations.

Notations. For the first three steps, we fix 7 € P\ {0}. Any s € S can be identified to
some homogeneous coordinate p,, : --- : p,  (with p,, =0 for ¢ ¢ J), in a way which does
not depend on ¢ € H™. Thus, for any ¢ € H™, t € R and s € S 7, it makes sense to consider
the point g +ts € H™, which has the same coordinates x; and y; as ¢ for any 1 < j < m
(only the coordinates z; for j € J change).
Let us consider the set
M; ={q+ts, t e R} CH™

where the bar denotes the closure in H™. The set M is a submanifold of H™ of dimension
dy < m, and we denote by J° the Hausdorfl measure of dimension dj on M.

For any (¢,p) € SX and any ¢’ € H™, it makes sense to consider the point (¢’,p) € S,
which is the point in the fiber of S¥ over ¢ that has the same homogeneous coordinates

Doy it Dy, AS D
Lemma 6. Let (q,p) € SX7 and s € S be such that there exists a J-tuple (n;) € N7 with
2n; +1

> (2ni+1)

ieJ

(31)

Sj:
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for any j € J. Then, the measure H;° ® 0, is a Quantum Limitﬂ

Proof. Since the s; are pairwise rationally related, the mapping ¢ — ¢ + ts is periodic and
d; = 1. Without loss of generality, we assume that J = {1,...,J} for some 1 < J <m.

We construct a sequence of eigenfunctions (x)kens of —A which admits p; , as unique
glj)a(“j)
for some (n;) € N7 and some (a;) € (Z\ {0})7, and it does not depend on the variables in
the i-th copy of H for ¢ ¢ J. Our goal is to choose adequately the J-tuples (n;) and (o;).
Note that a similar argument for m = 1 is done in the proof of Point 2 of Proposition 3.2 in
[CAVHT1S].

We fix a sequence of J-tuples (a1 g, ..., k) € (Z\ {0})7, for k € N*, such that:
e Forany 1 <j<J, a;, — +oo as k — 400, so that for any 1 < j, 5/ < .J, there holds

Quantum Limit. In our construction, for any k € N*, ¢ belongs to the eigenspace H

EI (32)
Qg k—+4oo
e Forany 1 <j,5' < J, o »
ok ZE (33)

Qg k—4o00 pzj,
where p,, :---: p,, are the homogeneous coordinates of p in S¥.

Now, for any k € N*, denoting by 1 the constant function equal to 1 (on some copy of
H), we define
=P ®..00/01®...01, 34
Pk FQ...Q0P,01®...Q (34)

m—J times

where, for 1 < j < J, . '
(25,95, 25) = Gk (wj, y;)e ™

is an eigenfunction of —A; (on the j-th copy of H) with eigenvalue (2n; + 1)|c; |. The

precise form of ¢; . will be given below.

Using (32) and the proof of Lemma [2, notably the pseudodifferential operators P in-
troduced in (13)), we obtain that the mass of any Quantum Limit of (¢g)gen- is contained
in S¥ 7. Moreover, from the decomposition into cones done in Section and the equality
(31), we infer that any Quantum Limit of (¢ )ren~ is invariant under 57.

In the next paragraphs, we explain how to choose ¢; ; with eigenvalue 2n; 41 in order to
ensure that (pg)ren+ has a unique QL, which is Mo, For the sake of simplicity of notations,
we set @ = ;. The eigenspace of —A; corresponding to the eigenvalue (2n; + 1)|¢] is
of the form (A})" (ker(Aq))e™?, where A, = 0,, + i0,, + iax; locally, and, accordingly,
Al = —0,, + 10y, + iax; locally (see for example [CAV84, Section 2]). This follows from a
Fourier expansion in the z; variable, which gives

—A; = @By, where B, = AZA, + for v € Z.
YEZL

2
We note that the function f;r(x;,vy;) = c exp(—a% + %(z; + iy;)?) (normalized to 1
thanks to ¢i) is a quasimode of A,, as @« — +oo, for the eigenvalue 0. Moreover, a well-
known computation on coherent states (see Example 1 of Chapter 5 in [Zwo12]) guarantees

that for any a € .9 (R?™),

(OP(@)(AL)™ fis (A3)" fi0)  —_a(0,0).

In other words, (A%)™ f;k, seen as a sequence of functions of R*™, has a unique Quantum
Limit, which is d¢,0.

"The associated orthonormal sequence of eigenfunctions is specified in the proof, see also Remark
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Now, using that the spectrum of B, has gaps that are uniformly bounded below, this
property is preserved when we consider eigenfunctions of —A;: when o varies, the projection
@7 of (A%)"™ f; €' onto the eigenspace of —A; corresponding to the eigenvalue (2nj+1)|a]
has a unique QL, which is J#° ® §,. The Dlrac mass at p comes from (33) and from Lemma
applied, for any 1 < 4,5 < J, to the operator —; — Z’j—‘ Note that the point ¢ = 0 plays
no specific role and therefore any measure J° @ , can be obtained as a QL, when dj =

and under O

Lemma 7. Let (¢,p) € S¥7 and s € Sz be arbitrary. Then, the measure H;’ @ 0y is a
Quantum Limitﬂ

Proof. We still assume that 7 = {1,...,J}. Using Lemma |§|, we can assume that ¢ € H™
and s € S; verify either dy > 2, or dy = 1 but is not satisfied. In both cases, the
following fact holds:

Fact 1. The measure 77 is in the weak-star closure of the set of measures %’;‘?/ for which
df]j =1 and is satisfied.

Let us denote by TY = (R/27Z)7 the Riemannian torus of dimension #.J equipped
with the flat metric. Due to the structure of X 7, proving Fact 1 is equivalent to proving the
following fact, called Fact 2 in the sequel: if v is a geodesic of TY and 72, is the Hausdorff
measure on v, then JZ, is in the weak-star closure of the set of measures 2, with 7' a
periodic geodesic of T of slope (s1,...,sy) verifying for some J-tuple (ny,...,ny ).
Let us prove Fact 2.

In case dj > 2, possibly restricting to the flat torus given by the closure of v, we can
assume that v is a dense geodesic in TY. To prove Fact 2 in this elementary case, we take
a sequence of geodesics (7/,)nen- contained in TV, with rational slopes given by J-tuples
(st,...,s%) of the form , and which become dense in TV as n — 400.

For the case dj =1 where is not satisfied, similarly, we take a sequence of geodesics
with rational slopes which converges to . This proves Fact 2 and hence Fact 1 follows.

Since the set of QLs is closed, Fact 1 implies Lemma 7} O

Remark 11. Note that, following the proofs of Lemma and Lemmap any measure H,’ @0,
is a Quantum Limit associated to an orthonormal sequence of eigenfunctions (pg)ren+ such
that, for any k € N*, ¢ belongs to some eigenspace HEZL]’ (agn)” In particular, @i is an
eigenfunction of Q; for any j € J. ’ ’

Note also that to guarantee this last property, it is not sufficient to invoke, at the end of
the proof of Lemmal[7, the closedness of the set of QLs: it is necessary to follow the proof of
this fact, which consists in a simple extraction argument.

Lemma 8. Let s € Sy and vy € P (S*H™) having no mass outside SX7 and being
invariant under p¥ . Then vY is a Quantum Limit

Proof. Let us consider the set 227 C Z22(S*H™) of probability measures

> B, (35)

(qi,pi)€S

where 4 ranges over some finite set F, & is a set of pairs (q“pz) € S¥, and 5; € R.

We consider v7 € 227 defined by . Note that if 7 # 4', either J7° ® dp, jfs ® Opt s
or the supports of 7’ ® ¢, and ff 7 @ 0y are disjoint. Therefore posslbly gatherrng terms
in the above sum, we assume that the supports of H#° ® 6p, and %_ ® 4y, are disjoint as
soon as i # 1'. "

For i € F, using Lemma [f] and Lemma [7}, we consider a sequence of eigenfunctions
(¢ )ken+ with eigenvalues (A})ren- and whose unique QL is H @ 0p,. According to the

8See Remark [11] for the description of the associated orthonormal basis of eigenfunctions.
9See Remark [12| for the description of the associated orthonormal basis of eigenfunctions.
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proof of these lemmas (see also Remark , we can also assume that o} € HY for

(nj,1), (0 }.)
some J-tuples such that

k=) @ngr+ 1)lal
JjET
does not depend on i € F. In other words,

e for any 1 < j < J, ¢} is also an eigenvalue of ; with eigenvalue n;j which does not
depend on i € F;

e for any i, € F, )\}; = )\}: and we denote this common value by A;. This means that
for any ¢ € F, ¢}, belongs to the eigenspace of —A corrresponding to the eigenvalue Ay.

Since J} ® 6p, and %’jﬁ ® 0, have disjoint supports, the joint microlocal defect measure of
(¢4 )ken+ and (@Z)keN* vanishes for ¢ # i’ by Lemma It follows that
ok = Biph
i€F
is an eigenfunction of —A with eigenvalue )\, and that in the limit k¥ — +oo, it admits v
as unique Quantum Limit.
Finally, we note that any v € £2(S*H™) having all its mass contained in S¥ 7 and

being invariant under 57 is in the closure of 2. Since the set of QLs is closed, Lemma
is proved. O

Remark 12. The above proof shows that ve, = 1/;7 is a QL for an orthonormal sequence
(k) ken+ such that @ belongs to
J
D H e

(e5)€(Z)7
for some J-tuple (nj 1) € N7 which depends only on k € N*.
Lemma 9. Let J € P\ {0}, and

J_ 7407
v /sgyé Q7 (s)

for some Q7 € P(S7) and vy € P(S*H™) having no mass outside S¥7 and such that,
for Q7 -almost any s € Sz, p7 v = 0. Then v7 is a Quantum Limitm

Proof. As in the previous proofs, we assume without loss of generality that J = {1,...,J}
for some 1 < J < m. Let (s*)se, be a finite family of distinct elements of S7 indexed by L,
and let v, € R for £ € L. For any ¢ € L, let also v, with mass only in S¥ 7, be invariant
under the flow of ﬁi Let us prove that

vl = Z Vv (36)
lel
is a Quantum Limit. This corresponds to the case where the measure Q7 on S is given by
Q7 =) 70,
leLl

For any ¢ € L, we take (})ren+ to be a sequence of eigenfunctions of —A whose unique
QL is v,. As emphasized in the proof of Lemma |8] it is possible to assume that gaf; is an
eigenfunction of §2; for any 1 < j < J, with eigenvalue 271?]€ + 1 such that

2nt, +1
Jsk V4
J k~>—+>oo % (37)
> o@niy) +1
=1

10See Remark [13| for the description of the associated orthonormal basis of eigenfunctions.
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t=(sh,...,8%).

Let us prove that the joint microlocal defect measure vy of (¢f)gen+ and (@ﬁ,)keN*
vanishes for £ # ¢': we note that for Op(a) commuting with Qy,...,€,,, with a € Z°(H™),

where s

(2n% 1, + 1)(Op(a)pf, ¢f ) = (Op(a)Qek, ¢f )
:(O ( )Sﬁkv N’k)
= (2n% ), +1)(Op(a)p}, ¥} )

From and the fact that s® # s, we deduce that, for any sufficiently large k € N*|
there exists 1 < j < J such that n?k =+ nﬁk Hence, the above computation shows that

(Op(a)pt, goil) = 0 for sufficiently large k € N*. Therefore,

/ adz/“z =0.
S* H7n

Since vz and v give no mass to the complementary set of SX 7 in S*H™, we know that it
is also the case for vy ¢ by Lernma Therefore, if b € Y(H™) is arbitrary, averaging Op(b)
with respect to the operators Q4,...,Q; asin Lemma we obtain an operator A € W(H™)
such that op(A) coincides with b on ¥ 7, and A commutes with Q, ..., . Therefore,

/ bdl/g,@/ = / de/g,g/ = / O'p(A)dl/Ag/ = 07

and since this is true for any b € #°(H™), we conclude that vy, = 0.
This implies that the sequence given by

ol =Y 7ok

Lel

admits v7 as unique QL, where v7 is defined by . Note that to ensure that gokj is still
an eigenfunction of —A, it is necessary, as in the proof of Lemma 8] to adjust the sequences
(ngk) and (o £.)in order to guarantee that all ¢ (for £ € L) are eigenfunctions of —A with
same eigenvalue.

We notice that the closure of the set of Radon measures on S 7 which may be written
as a finite linear combination is exactly the subset of Pgx for which Q7 "= 0 for any
J' # J. Using that the set of QLs is closed, Lemma [9] is proved. O

Remark 13. The above proof shows that ves = v is a QL for an orthonormal sequence
(pr)ken= such that ¢y, belongs to

@ @ H(”J) (O‘])
(n;)ENT (a;)e(z*)7
Let us now finish the proof of Theorem [2] Let vy € Py,

Voo = Z v

JeP\{0}

Note that the measures 7 are non-negative, but are not necessarily probability measures.
Let (<pk )keN* be a sequence of eigenfunctions of —A whose unique microlocal defect

measure is 7. The proof of Lemma |§| guarantees that, for any £ € N*, one may choose all

¢y , for J running over P\ {}, to have the same elgenvalue with respect to —A. Therefore,

Pr = Z @kj

JeP\{0}
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is also an eigenfunction of —A. Moreover, for any distinct J,J’ € P \ {0}, the joint
microlocal defect measure of (¢7 )ren+ and (o ren+ vanishes (see Lemma. Computing
(Op(a)pg, pr) for any a € S°(H™) in the limit ¥ — 400, we obtain that the unique
Quantum Limit of (¢g)ren+ 1S Voo. Note that, as already explained in Remarks and
the orthonormal sequence (¢ )ren+ is fully explicit in our construction.

Finally, we note that the invariance properties of v, may be established separately on
each S¥ 7 since ([A,Rs]gokj,gokjl) — 0 as k — +oo for J # J’' (the bracket [A4, Ry] is the
natural operator to consider for establishing invariance properties, see Section . This
concludes the proof of Theorem

A Classical pseudodifferential calculus

We briefly gather some basic facts of pseudodifferential calculus used along this paper (see
also [Hor85, Chapter XVIII)).

Following our notations of Section [I we denote by M a smooth compact manifold of
dimension n. We denote by .#*(M) the space of smooth homogeneous functions of order k
on the cone T*M \ {0}. They are the classical symbols of order k.

The algebra W(M) of classical pseudodifferential operators on M is graded according to
the chain of inclusions ¥=°°(M) C ... C W*(M) C W1 (M) C ... where k € Z U {—o0} is
called the order.

To a pseudodifferential operator A € U™(M), we can associate its principal symbol
op(A), and the map op : UF(M)/UF1(M) — #*(M) is bijective. A quantization is a
continuous linear mapping

Op : (M) — ¥O(M)

with op(Op(a)) = a. An example is obtained using partitions of unity and the Weyl quan-
tization which is given in local coordinates by

Op" () f(q) = (27) " /

/
etlad'plg <q +a ,p> f(q")dq'dp.
R xR™

2

Although we omitted the upper W index in the paper, this is the quantization we used by
default in this paper.
We have the following properties:

o If Ac U*(M) and B € U*(M), then AB € U*+¥(M) and op(AB) = op(A)op(B).
o If Ac U*(M) and B € ¥*(M), then [A, B] € U*T*~1(M) and

1
op([4, Bl) = - {op(4),0p(B)},
where the Poisson bracket is taken with respect to the canonical symplectic structure
of T*M.
Let us prove Lemma [3] of Section

Proof of Lemma[3 1If a € .#°(M) is such that a > 0 and a is supported in a set where
11 = 0, then, setting a. = a + ¢ for any € > 0, we get

(Op(az)ur, vk) = (Op(at/?)ug, Op(al/?)vx) + o(1) < ||Op(al/*)up 2] Op(al/*)v 12 + (1)
where at/? € SO(M). We know that
10D(al/ k2 = (Op(az)ug, ) + o(1) = (Op(a)ur, ug) + elluel3 + o(1) = elJuel]? + of1)

and that ||Op(a§/2)fuk||2L2 < (C + ¢)||vg]|* where C does not depend on e. Therefore

(Op(ae)ug,vi) < e. Hence (Op(a)uk,vi) — 0. The same result holds for a < 0 supported
in a set where pu1; = 0. Therefore, decomposing any symbol as a = a* + a~ + 7, where
at,a=,r € SOYM), at >0,a" <0, and |r| < for some small § > 0, we get that ps is
absolutely continuous with respect to p11. The rest of the lemma follows by symmetry. O
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Lemma 10. Let us assume that £ € N and P € V(M) is elliptic in any cone contained
in the complementary of a closed conic set F C T*M. Assume that (ug)ren+ i a bounded
sequence in L?(M) weakly converging to 0 and such that Puy — 0 strongly in L?>(M). Then
any microlocal defect measure of (ug)gen+ is supported in F'.

Proof. Let u be a microlocal defect measure of (ux)gens, i-€.,

O o » Yo — d

(Op(@)uow), o)) | 52 o, O
for any a € .°(M), where o is an extraction. Let a € .#°(M) be supported outside F'. Let
Q € V(M) be such that PQ —1I € W~(M) on the support of a. Then QOp(a)P € ¥°(M)
has principal symbol a, and therefore

(QOp(a) Pug k), to(k)) S g Madﬂ~
Using that Pugp) — 0, we get (QOp(a)Pug k), usr)) — 0 as k — +o0o, and therefore
J-as adpe = 0. Hence, p is supported in F. O

B Another view on the measures ()Y and v/

We explain an alternative way to obtain the measure Q7 on S and the family of mea-
sures (1/;7)5653 on SY. 7, based on pure functional analysis. This way of obtaining Q7 and
(vY)ses, does not allow to prove easily that p¥ v = 0, thus we did not use it in the core
of the proof of Theorem [1] However, it sheds a different light on Point (2) of Theorem
therefore we decided to include it here.

In this Section, as in Section [2:3] we work under Assumption [I In particular, J =
{1,...,J} is fixed.

For f € C°(S7) (the set of continuous functions on S7), we define II; the operator

o Qy
I, = 38
/ f<£21+...+QJ’ ’Ql+...+QJ) (38)

defined through functional calculus. For any k € N* and any f € CY(Sy), there holds

IMTrerllze < N fllzesllorll2-

Let us denote by 4, (Sy, #(SX 7)) the set of non-negative measures on Sy which are
valued in the set .# (SX 7) of Radon measures on SX. 7. More precisely, u € #, (S, #(SX 7))
is defined as a family of Radon measures uf on S¥ (for any f € C°(S)), which we also
denote by ng f dpu, such that f — pf is linear and continuous, and p/ is non-negative if f

is non-negative. Here and in the sequel, C°(S) is equipped with the topology of uniform
convergence and . (SX 7) is equipped with the weak-star topology.

Lemma 11. There exists y € M1 (Sg,.#(SX 7)) and an extraction o : N* — N* such that,
for any symbol a € S°(H™) and any f € C°(Sy),

(Op(@)TL 1 0o Poc) e — /3 . ad( /S fdu>- (39)

k—+o00

Proof. Let f € C°(Sz) be non-negative. For any symbol a € .#°(H™), we denote by
a € .%(H™) the symbol satisfying

Op(a) = / U(—t)Op(a)U(t)dt
(R/27Z)7

where U(t) = U(ty,...,t;) = ettt for ¢ = (¢1,...,t;) € (R/27Z)’. Then, Op(a)
commutes with Q; for any 1 < j < J. Therefore, for any & € N*, since all §}; are selfadjoint,

(Op(a)ILyok, i) 2 = (Op(a)IL, 5ok, IL 70k ) 2.
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By [Gér91b], we know that there exists a non-negative Radon measure u\/? on S*H™ and
an extraction o : N* — N* such that
a d,u\/?.

(Op(@)IT /700 (k)s IL/700 (k) ) L2 o
—+00 Jgxpgm

Note that V7 has no mass outside S¥. 7. Moreover, op(a) and op(a) coincide on SX 7.
Therefore, for any a € °(H™),

Il II VT,
(Op(a)L /700 (), LI /700 (k) ) L2 FoThe ijad#

We can do the same argument for non-positive f € C°(S7), and, finally writing the decom-
position of an arbitrary f € C°(S) into its positive and its negative part, we get . Note
that using a classical separability argument, linearity and diagonal extraction, the extraction
o may be chosen to be the same for any f € C°(S7). O

Lemma 12. For any u € #y(Sy, #(SX7)), there evist Q7 € #(S7), and, for Q7 -
almost every s € Sz, vJ € P(S*H™) having no mass outside SY. 7 such that the equality

/Szjad</sjfdu>Z/ij(5)</szjadu;7>dcgj(s) (40)

holds for any f € C°(Sz) and any a € °(H™).

Proof. Since both parts of depend only on the part of a which lies in SX 7, we call
“symbol on S¥ 7" any restriction to S¥ 7 of some a € #Y(H™). It follows from the usual
Riesz representation theorem that for any symbol a on SX 7, the functional

C'Ss) =R, frr ad</ fd,u),
SE 7 ]

J

which is linear and continuous, may be written as

ad fdu) = (s) dQJ (s) (41)
Lo =L, ) =

for some Radon measure Q7 on S 7 (which is unique for each symbol @ on S¥). In particular,
for @ = 1, this formula defines a measure Qf on S which we denote by Q7. Note also that
if @ is non-negative, then Q7 is non-negative.

For any symbol @ on SY 7, Q7 is absolutely continuous with respect to Q7. To prove
it, assume that Q7 (E) = 0 for some measurable set £ C Sz. Then, for any f € C°(S7)
supported in E, fsj f(s) dQ7 (s) = 0, which in turn implies that fsj fdp = 0 thanks to (41)).
Therefore, for any symbol a on SY 7, the left-hand side of vanishes, hence the right-
hand side also vanishes. From this, it follows that Q7 (E) = 0, and that Q7 is absolutely
continuous with respect to Q7.

By the Radon-Nikodym theorem, for any symbol a on S¥ 7, there exists a measurable
function 6, on S such that

dQ7 (s) = ba(s)dQ7 (s) (42)

for Q7 -almost every s € S 7. Moreover, if a is non-negative, then 6,(s) is non-negative.

We note that, for Q7-almost every s € Sz, a + 0,(s) is linear. Let us prove that it is
also continuous for Q7-almost every s € S7. Let (a,)nen- be a sequence of non-negative
symbols on S¥ 7 tending to 0. Taking f =1 and using and , we have

J —
. 0, (8) dQY (s) = /SEJ an d (/SJ 1 du) W 0.
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Since @ is a non-negative measure and 0, (s) > 0 for Q7-almost every s (because QY
is non-negative), by Lebesgue’s dominated convergence theorem, it implies that 9;17, (s)—0
for Q7 -almost every s € S7. Similarly, if (a,)nen- is a sequence of non-positive symbols on
SY 7 tending to 0, then 6, (s) — 0 for Q7-almost every s € S7. Altogether, this implies
that a +— 6,(s) is continuous for Q7 -almost every s € S 7.

Using Riesz representation theorem, we get that for Q7-almost every s € Ss (by a
classical separability argument, this “Q7-almost every” does not depend on a), there exists
a non-negative Radon measure v7 on SY. 7 such that

0.(s) = / a dvy (43)
554
for any symbol a on S¥ 7. Combining , and 7 we obtain . O

Finally, combining Lemma [11| and Lemma we get that for any symbol a € .7°(H™)
and any f € C°(S7),

(Op(a)HﬂPa(k)a@a(k))Lz — ad (/ f dﬂ)
ST S

k——+oo

:/SJ £(s) (/Szjaduf) dQ7 (s).

Taking f = 1, since v7 is the unique microlocal defect measure of (¢ )ren+ (see Assumption
1)), we get that

J_ T 407 (s).
v /S Q7 (s)

Remark 14. Approaching the characteristic function f(s) = 1,cgy for some fived N € N*
and 0 < £ < 2N — 1 (see for notations) by continuous functions, and considering
and , we see that the disintegration of v provided by the above argument coincides with
the disintegration done in Section i.e., the measures Q7 and vJ are the same.

C Quantum Limits for tensorial bases

This section consists in a short remark concerning Quantum Limits in a tensor form. It says
that if an orthonormal Hilbert basis of eigenfunctions is in a tensor form, then all associated
QLs can also be written as tensorial products.

Proposition 13. Let B = {1y, ¢ € N*} be an orthonormal Hilbert basis of L*(H) of eigen-
functions of —Ag, and let B™ be the orthonormal Hilbert basis of L*(H™) consisting of
all tensorial products of m elements of B. Then any Quantum Limit associated to B®™ is a
tensorial product of Quantum Limits of (¥g)een+ -

Proof. We denote by (¢ )ken+ a subsequence of B®™ (with increasing eigenvalues) having a
unique Quantum Limit v. We write

k=10 QYL

with wi € Bforany 1 < j < m and any k € N*. Then, for any sequence (wi)keN*, we denote
by 7 one of its Quantum Limits. Note that the linear combinations of tensorial products
(with m components in the tensorial product) of symbols in .°(H) are dense in the set
SO(H™). Therefore, v = ! ® ... ® v™, which concludes the proof. O
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D Quantum Limits of flat contact manifolds

The study of Quantum Limits of higher dimensional contact manifolds is also an interesting
problem. In this section, we prove that for “flat” contact manifolds, typically a quotient of
the Heisenberg group Hy of dimension 2/N+1 by one of its discrete cocompact subgroups, the
invariance properties of Quantum Limits are much simpler than those described in Theorem
even though “frequencies” show up: the part of the QL which lies in S¥ is invariant under
the lift of the Reeb flow, as in the 3D case.

For N > 1, we consider the group law on R?2VN+1 given by

(@,y,2)x (@, y,2") = (@ + 2 y+y,2+2 —2y)

where z,2’,y,4 € RY and 2,2 € R. The Heisenberg group ETN is the group Hy =
(R2NF1 ). We consider the subgroup I'y = (vV27Z)?N x 27Z of Hy, and the left quotient
Hy =T n\Hy. We also define the 2N left invariant vector fields on Hy given by

X;=0,,, Y;=0,, —x,0.

for 1 < j < N. We fix f1,...,8n > 0 satisfying vazlﬁj =1, weset § = (f1,...,0n) and
we consider the sub-Laplacian

N
Dp =D Bi(X]+Y7)

j=1

which is an operator acting on functions on Hy. The positive real numbers 5; are sometimes
called frequencies, see [Agr9g].

We set p = p.|x, which is the Hamiltonian lift of the Reeb vector field Z = 9, to X (see
[CAVHT18| Section 2.3] for properties of the Reeb vector field).

Proposition 14. Let (¢r)ken+ be an orthonormal sequence of L?>(Hy) consisting of eigen-
functions of —Ag. Then, any Quantum Limit Vo, associated to (pg)ken- and supported in
SY is invariant under ', the lift of the Reeb flow.

Remark 15. We do not expect such a result to be true when the frequencies B; are not
constant on the manifold.

Proof of Proposition[Ij} Denoting by (g¢,p) the canonical coordinates in T*Hy, i.e., ¢ =
(xlv sy TN YLs e 7vaZ) and p= (pa:17' c 3Pz Pyrs- - apyNapz)v we know that

Y= {(qap) S T*HN7 p;cj =pyj _'ijzj = O}

is isomorphic to Hy x R.

Up to extraction of a subsequence, we may assume that (pg)ren~ has a unique QL Vo,
which is supported in S¥. We set R = /0;0, and, on its eigenspaces corresponding to
non-zero eigenvalues, we define Q; = fR’l(ij +YJ»2) = f(X]z JrYjQ)R*1 for1<j < N. On
these eigenspaces, the sub-Laplacian acts as

N
~Ag=RQ=QR  with Q=) B;Q

j=1

and [R, Q] = 0.
Let V be a (small) conic microlocal neighborhood of 3, and let us consider R, ) as acting
on functions microlocally supported in V' (meaning that their wave-front set is contained in
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V). If B € ¥°(Hy) is microlocally supported in V and commutes with 2, then

1 1
([B, Rlgk, o) = yk(BRthv —Appr) — E(RB(—Aﬁ)wywk)

1 1

= f(BRLp]w RQQDk) — f(RBRQ(pk, (pk)
Ak Ak
1

= Y([QaRBR]QOkv‘Pk)
k

=0.

Let U(t) = Ulty,...,ty) = e/t ttnOn) for ¢ = (t;,...,ty) € (R/27Z)N. For A €

WO (H ) microlocally supported in V', we consider

A= / U(—t) AU (t)dt
(R/27Z)N

As in the proof of Lemma we know that [A,Q] = 0 and that op(A) and op(A) coincide

on Y. Therefore, using the previous computation with B = A, we obtain

[Hor()phopwivne = [ op(A),phuppidve = Tim (1A Rlpr. o) =0.
Py Py

k——+oo

Since it is true for any A microlocally supported in V', this implies that v, is invariant under

the flow et?.
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