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Quantum limits of products of Heisenberg manifolds

Cyril LETROUIT∗†

July 1, 2020

Abstract

We study the spectral theory of a family of sub-Laplacians, defined on products of com-
pact quotients of the Heisenberg group, which are examples of completely integrable sub-
Riemannian manifolds. We classify all Quantum Limits of these sub-Laplacians, expressing
them through a disintegration of measure result. This disintegration follows from a natural
spectral decomposition of the sub-Laplacian in which harmonic oscillators appear.

Our results illustrate the fact that, because of the possibly high degeneracy of the spec-
trum, the spectral theory of general sub-Riemannian (or subelliptic) Laplacians can be very
rich: the invariance properties of the Quantum Limits which we study are related to the
classical dynamics of infinitely many vector fields on the cotangent bundle of the manifold.
These phenomena contrast with what happens for Riemannian Laplacians, for which any
Quantum Limit is simply invariant under the geodesic flow.
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1 Introduction and main results

1.1 Motivation

The main goal of this paper is to establish some properties of the eigenfunctions of a family
of hypoelliptic operators in the high-frequency limit. A typical problem is the description
of the Quantum Limits (QL) of the operator, i.e., the measures which are weak limits of a
subsequence of squares of eigenfunctions.

The study of Quantum Limits for hypoelliptic operators started recently, with the paper
[CdVHT18]. The authors proved Weyl laws (i.e., results “in average” on eigenfunctions), a
result of decomposition of Quantum Limits, and also Quantum Ergodicity properties (i.e.,
equidistribution of Quantum Limits under an ergodicity assumption) for 3D contact sub-
Laplacians.

We briefly recall the general definition of a sub-Laplacian. Let n ∈ N∗ and let M be
a smooth connected compact manifold of dimension n without boundary. We consider a
smooth vector distribution D on M (possibly with non-constant rank), and a Riemannian
metric g on D. We also assume that D satisfies the Hörmander condition

Lie(D) = TM (1)

(see [Mon02]). Let µ be a smooth volume form on M and let ∆g,µ be the selfadjoint sub-
Laplacian associated with the metric g and with the volume form µ. If D is locally spanned
by N vector fields X1, . . . , XN that are g-orthonormal, then we set

∆g,µ = −
N∑
i=1

X∗i Xi =

N∑
i=1

(X2
i + divµ(Xi)Xi)

where the star designates the transpose in L2(M,µ). This definition does not depend on the
choice of the g-orthonormal frame X1, . . . , XN . We can also note that if D = TM , g is a
Riemannian metric on TM and µ is the canonical volume on (M, g), then ∆g,µ is the usual
Laplace-Beltrami operator.

Under the assumption (1), ∆g,µ is hypoelliptic (see [Hör67]), has a compact resolvent,
and there exists a sequence of (real-valued) eigenfunctions (ϕk)k∈N∗ of −∆g,µ associated
to the eigenvalues in increasing order 0 = λ1 < λ2 ≤ ... (with λk → +∞ as k → +∞)
which is orthonormal for the L2(M,µ) scalar product. The main purpose of this paper is to
understand the behaviour of the probability measure |ϕk|2dµ when k → +∞ for a particular
family of sub-Laplacians, typically by describing its weak limits (in the sense of duality with
continuous functions).

There is a phase-space extension of these weak limits whose behaviour is also of interest.
Let us recall the following definition (see [Gér91b]):

Definition 1. Let (uk)k∈N∗ be a bounded sequence in L2(M) and weakly converging to 0.
We call microlocal defect measure of (uk)k∈N∗ any Radon measure ν on S∗M such that for
any a ∈ S 0(M), there holds

(Op(a)uσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adν

for some extraction σ. Here, (·, ·) denotes the L2(M,µ) scalar product, S 0(M) is the space
of classical symbols of order 0, and Op(a) is the Weyl quantization of a (see Appendix A).

Microlocal defect measures are useful tools for studying the (asymptotic) concentration
and oscillation properties of sequences, and they are necessarily non-negative.

Definition 2. We call Quantum Limit (QL) associated with an orthonormal basis (ϕk)k∈N∗

of eigenfunctions of −∆ any microlocal defect measure of (ϕk)k∈N∗ .

Remark 3. Since (ϕk)k∈N∗ is orthonormal, any of its QLs is a probability measure on S∗M .
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For any Riemannian manifold (M, g), it is well known that any Quantum Limit ν of

the Laplace-Beltrami operator ∆g is invariant under the geodesic flow exp(t ~H): there holds

exp(t ~H)ν = 0 for any t ∈ R. To see it, we note that for any orthonormal basis (ϕk)k∈N∗

consisting of eigenfunctions of −∆g, there holds

(exp(−it
√
−∆g)Op(a) exp(it

√
−∆g)ϕk, ϕk)L2 = (Op(a)ϕk, ϕk)L2

for any t ∈ R, any k ∈ N∗ and any classical symbol a ∈ S 0(M). It follows from Egorov’s
theorem that exp(−it

√
−∆g)Op(a) exp(it

√
−∆g) is a pseudodifferential operator of order

0 with principal symbol a ◦ exp(t ~H), which in turn implies exp(t ~H)ν = 0. As we will see,
such a simple invariance property of Quantum Limits does not hold anymore for general
sub-Laplacians ∆g,µ. Indeed, the above computation does not work anymore since

√
−∆g,µ

is not a pseudodifferential operator near its characteristic manifold, and therefore Egorov’s
theorem does not apply.

1.2 The sub-Laplacian ∆

A first example of a sub-Laplacian which is not Riemannian can be defined on some ap-
propriate quotient of the 3D Heisenberg group, and its Quantum Limits were studied in
[CdVHT18]. Endow R3 with the product law

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − xy′).

With this law, H̃ = (R3, ?) is a Lie group, which is isomorphic to the group of matrices
1 x −z

0 1 y
0 0 1

 , x, y, z ∈ R


endowed with the standard product law on matrices.

We consider the left quotient H = Γ\H̃ where Γ = (
√

2πZ)2 × 2πZ is a cocompact
subgroup of H̃ (meaning that H is compact). The vector fields on H

X = ∂x and Y = ∂y − x∂z

are left invariant, and we consider ∆H = X2 + Y 2 the associated sub-Laplacian (here µ is
the Lebesgue measure µ = dxdydz and (X,Y ) is orthonormal for g).

In this paper, we are interested in the product manifold Hm and the associated sub-
Laplacian ∆ for some integer m ≥ 2, that is

∆ = ∆H ⊗ (Id)⊗m−1 + Id⊗∆H ⊗ (Id)m−2 + . . .+ (Id)⊗m−1 ⊗∆H, (2)

which is a second-order pseudodifferential operator. Below, we give an expression (4) for ∆
which is more tractable. In all the sequel, we fix once for all an integer m ≥ 2. Also, in what
follows, ∆ denotes this sub-Laplacian, while ∆g,µ denotes any arbitrary sub-Laplacian.

Remark 4. If (ϕk)k∈N∗ denotes an orthonormal Hilbert basis of L2(H) consisting of eigen-
functions of −∆H, then

{ϕk1 ⊗ . . .⊗ ϕkm | k1, . . . , km ∈ N∗}

is an orthonormal Hilbert basis of L2(Hm) consisting of eigenfunctions of −∆. However,
there exist orthonormal Hilbert bases of L2(Hm) which cannot be put in this tensorized form.

The structure and the invariance properties of the Quantum Limits of sub-Laplacians is
more complicated than that of Riemannian Laplacians (recalled above), and it is important
to note in particular that the Quantum Limits of sub-Laplacians are not necessarily invariant
under the (sub-Riemannian) geodesic flow. In [CdVHT18, Theorem B], it was proved that
for any sub-Laplacian ∆g,µ, any of its Quantum Limit ν may be decomposed as a sum
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ν = ν0 + ν∞ of mutually singular measures, where ν0 is supported in the “elliptic part” of
the principal symbol g∗ = σP (−∆g,µ) and is invariant under the sub-Riemannian geodesic
flow ~g∗, and ν∞ is supported in (g∗)−1(0) (and its invariance properties are far more difficult
to establish, as will be seen below). It was also proved that for “most” QLs, ν0 = 0, and
therefore most our efforts in this paper are devoted to understand ν∞. The precise statement
of [CdVHT18, Theorem B] is recalled in Proposition 1 below.

Let us introduce a few notations. If ∆g,µ is a sub-Laplacian, we set g∗ = σP (−∆g,µ) where
σP denotes the principal symbol (see Appendix A), and we denote by Σ = (g∗)−1(0) = D⊥ ⊂
T ∗M the characteristic cone (where ⊥ is in the sense of duality). This is the region of the
phase-space where ∆g,µ is not elliptic: in some sense, it is the region which is of most interest
in the study of sub-Laplacians, in contrast with usual Riemannian Laplacians. We make the
identification

S∗M = U∗M ∪ SΣ (3)

where S∗M is the cosphere bundle (i.e., the sphere bundle of T ∗M), U∗M = {g∗ = 1}
is a cylinder bundle and SΣ is a sphere bundle consisting of the points at infinity of the
compactification of U∗M .

In this introductory section, the sub-Laplacian we consider is either ∆H, or ∆, or an
arbitrary sub-Laplacian ∆g,µ on a general sub-Riemannian manifold (M,D, g). In all cases,
we keep the same notations g∗, Σ and SΣ to denote the objects we have just introduced,
without any reference in the notation to the underlying manifold even for the particular
sub-Laplacians ∆H and ∆. It should not lead to any confusion since the context is precisely
stated when necessary.

We denote by ω the canonical symplectic form on the cotangent bundle T ∗M of M . In
local coordinates (q, p) of T ∗M , we have ω = dq ∧ dp. Given a smooth Hamiltonian function
p : T ∗M → R, we denote by ~p the corresponding Hamiltonian vector field on T ∗M , defined
by ι~pω = dp. Given any smooth vector field V on M , we denote by pV the Hamiltonian
function (momentum map) on T ∗M associated with V , defined in local coordinates, by
pV (q, p) = p(V (q)). The Hamiltonian flow exp(t~pV ) of pV projects onto the integral curves
of V .

1.3 Main results

In order to give a precise statement of our main results, it is necessary to introduce a
decomposition of the sub-Laplacian ∆ defined by (2). Taking coordinates (xj , yj , zj) on the
j-th copy of H, we may write

∆ =

m∑
j=1

(X2
j + Y 2

j ) (4)

with Xj = ∂xj and Yj = ∂yj − xj∂zj .
Let us briefly describe Σ for the sub-Laplacian ∆. Denoting by (q, p) the canonical coordi-

nates in T ∗Hm, i.e., q = (x1, y1, z1, . . . , xm, ym, zm) and p = (px1
, py1

, pz1 , . . . , pxm , pym , pzm),
we obtain that

Σ =
{

(q, p) ∈ T ∗Hm | pxj = pyj − xjpzj = 0 for any 1 ≤ j ≤ m
}
,

which is isomorphic to Hm × Rm. Above any point q ∈ Hm, the fiber of Σ is of dimension
m, and therefore, above any point q ∈ Hm, SΣ consists of an (m− 1)-dimensional sphere.

For 1 ≤ j ≤ m, we consider the operator Rj =
√
∂∗zj∂zj and we make a Fourier expansion

with respect to the zj-variable in the j-th copy of H. On the eigenspaces corresponding to
non-zero modes of this Fourier decomposition, we define the operator Ωj = −R−1

j (X2
j +Y 2

j ) =

−(X2
j + Y 2

j )R−1
j . For example, −∆ acts as

−∆ =

m∑
j=1

RjΩj (5)
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on any eigenspace of −∆ on which Rj 6= 0 for any 1 ≤ j ≤ m. Moreover, Rj and Ωj are
pseudodifferential operators of order 1 in any cone of T ∗Hm whose intersection with some
conic neighborhood of the set {pzj = 0} is reduced to 0.

The operator Ωj , seen as an operator on the j-th copy of H, is an harmonic oscillator,
having in particular eigenvalues 2n+ 1, n ∈ N (see [CdVHT18, Section 3.1]). Moreover, the
operators Ωi (considered this time as operators on Hm) commute with each other and with
the operators Rj .

For our purpose, it is important to understand the precise structure of Σ. Indeed, it can
be decomposed as a disjoint union

Σ =
⋃
J∈P

ΣJ (6)

where P is the set of all subsets of {1, . . . ,m}, and, for J ∈ P, ΣJ is defined as the set of
points (q, p) ∈ Σ with p = (px1

, py1
, pz1 , . . . , pxm , pym , pzm) such that(
pzj 6= 0

)
⇔ (j ∈ J ) .

For J ∈ P \ {∅}, we consider the simplex

SJ =

s = (sj) ∈ RJ+ ,
∑
j∈J

sj = 1


and, for s = (sj) ∈ SJ and (q, p) ∈ ΣJ , we set

ρJs (q, p) =
∑
j∈J

sj |pzj |.

The Hamiltonian vector field ~ρJs is well-defined on ΣJ and smooth. Note that we have

ρJs (q, p) = (σP (Rs))|ΣJ where Rs =
∑
j∈J

sjRj (7)

where σP denotes the principal symbol (see Appendix A).

Finally, denoting by M+(E) (respectively P(E)) the set of non-negative Radon measures
(respectively Radon probability measures) on a given separated space E, we set1

PSΣ =

{
ν∞ =

∑
J∈P\{∅}

νJ ∈P(S∗Hm), νJ =

∫
SJ

νJs dQ
J (s),

where QJ ∈M+(SJ ), νJs ∈P(S∗Hm),

νJs (S∗Hm \ SΣJ ) = 0 and, for QJ -almost any s ∈ SJ , ~ρJs ν
J
s = 0

}
.

(8)

This last definition means that for any continuous function a : SΣ→ R, there holds∫
SΣ

adν∞ =
∑

J∈P\{∅}

∫
SJ

(∫
SΣJ

adνJs

)
dQJ (s).

In a few words, (8) means that any measure ν∞ ∈ PSΣ is supported in SΣ, and that its
invariance properties are given separately on each set SΣJ (for J ∈ P \ {∅}). Its restriction
to any of these sets, denoted by νJ , can be disintegrated with respect to SJ , and for any

s ∈ SJ , there is a corresponding measure νJs which is invariant by the flow et~ρ
J
s .

Our first main result is the following:

1The notation SΣJ which appears for example in (8) designates in all the sequel the set of points (q, p) of SΣ
which have null (homogeneous) coordinate pzi for any i /∈ J and non-null pzj for j ∈ J . Note that this set is, in
general, neither open nor closed.
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Theorem 1. Let (ϕk)k∈N∗ be an orthonormal Hilbert basis of L2(Hm) consisting of eigen-
functions of −∆ associated with the eigenvalues (λk)k∈N∗ labeled in increasing order. Let ν
be a Quantum Limit associated to the sequence (ϕk)k∈N∗ . Then, using the identification (3),
we can write ν as the sum of two mutually singular measures ν = βν0 + (1 − β)ν∞, with
ν0, ν∞ ∈P(S∗Hm), β ∈ [0, 1] and

(1) ν0(SΣ) = 0 and ν0 is invariant under the sub-Riemannian geodesic flow et~g
∗
;

(2) ν∞ ∈PSΣ.

Moreover, there exists a density-one sequence (k`)`∈N of positive integers such that, if ν is a
QL associated with a subsequence of (k`)`∈N, then the support of ν is contained in SΣ, i.e.,
β = 0 in the previous decomposition.

Note that Theorem 1 holds for any orthonormal Hilbert basis of L2(Hm) consisting of
eigenfunctions of −∆, and not only for the bases described in Remark 4. In case (ϕk)k∈N∗

is of the form described in Remark 4, we can say much more about the associated QLs (see
Proposition 13 in Appendix C): if an orthonormal Hilbert basis of eigenfunctions is in a
“tensor form”, then all associated QLs can be decomposed as tensorial products.

Note that the sub-Riemannian geodesic flow et~g
∗

involved in Theorem 1 is completely
integrable, see [ABB19, Chapter 18].

The converse of Theorem 1 also holds, in the following sense:

Theorem 2. Let ν∞ ∈PSΣ. Then ν∞ is a Quantum Limit (associated to some orthonormal
basis consisting of eigenfunctions of −∆).

Together, Theorem 1 and Theorem 2 yield a classification of (nearly) all Quantum Limits
of ∆.2

1.4 Comments on the main results

In order to explain the contents of Theorem 1 and Theorem 2, we recall the following result,
which is valid for any sub-Laplacian ∆g,µ.

Proposition 1. [CdVHT18, Theorem B] Let (ϕk)k∈N∗ be an orthonormal Hilbert basis of
L2(M,µ) consisting of eigenfunctions of −∆g,µ associated with the eigenvalues (λk)k∈N∗

labeled in increasing order. Let ν be a QL associated with (ϕk)k∈N∗ . Using the identification
S∗M = U∗M ∪ SΣ (see (3)), the probability measure ν can be written as the sum ν =
βν0 + (1− β)ν∞ of two mutually singular measures with ν0, ν∞ ∈P(S∗M), β ∈ [0, 1] and

(1) ν0(SΣ) = 0 and ν0 is invariant under the sub-Riemannian geodesic flow ~g∗;

(2) ν∞ is supported on SΣ. Moreover, in the 3D contact case, ν∞ is invariant under
the lift to SΣ of the Reeb flow.3

Moreover, there exists a density-one sequence (k`)`∈N of positive integers such that, if ν is a
QL associated with a subsequence of (k`)`∈N, then the support of ν is contained in SΣ, i.e.,
β = 0 in the previous decomposition.4

The last part of Proposition 1 shows that ν∞ is the “main part” of the QL, but, according
to Point (2), its invariance properties were known only in the 3D contact case. Theorem 2

2The exact converse of Theorem 1 would guarantee that all measures ν ∈ P(S∗Hm) of the form ν = βν0 +
(1− β)ν∞ with the same assumptions on β, ν0 and ν∞ as in Theorem 1 are Quantum Limits. Our statement is
weaker since it does not say anything about the measures ν for which β 6= 0 (which are rare, as stated in Theorem
1), but we do not think that a stronger converse statement for Theorem 1 holds.

3See [CdVHT18] for a definition of the Reeb flow, or Appendix D.
4The proof of this last fact follows from the results in [CdVHT18], although it is not explicitely stated there.

Let us sketch the proof. By [CdVHT18, Proposition 4.3], we know that the microlocal Weyl measure of ∆g,µ

is supported in SΣ. It then follows from [CdVHT18, Corollary 4.1] that for every A ∈ Ψ0(M) whose principal
symbol vanishes on Σ, there holds V (A) = 0, where V (A) is the variance introduced in [CdVHT18, Definition
4.1]. Finally, following the proof of Theorem B(2) in [CdVHT18], we get the result.
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and Point (2) of Theorem 1 are the main novelties of this paper and they serve as substitutes
to Point (2) of Proposition 1 for the sub-Laplacians ∆ on Hm.

Compared to the invariance properties of the QLs of 3D contact sub-Laplacians described
in Proposition 1, the invariance property described by Point (2) of Theorem 1 involves an
infinite number of different Hamiltonian vector fields ~ρJs on SΣ.

Spectrum of −∆. The particularly rich structure of the Quantum Limits of the sub-
Laplacian −∆ described in Theorem 1 is due to the high degeneracy of its spectrum. To
make an analogy with the Riemannian case, the QLs of the usual flat Riemannian torus
T2 = R2/Z2 have a rich structure (see [Jak97]), whereas the QLs of irrational Riemannian
tori are much simpler to describe.

Recall that the spectrum sp(−∆H) is given by

sp(−∆H) = {λ`,α = (2`+ 1)|α| | ` ∈ N, α ∈ Z \ {0}}
∪ {µk1,k2

= 2π(k2
1 + k2

2) | (k1, k2) ∈ Z2}

where λ`,α is of multiplicity |α|, multiplied by the number of decompositions of λ`,α into the
form (2`′+1)|α′| (see [CdVHT18, Proposition 3.1]). Therefore, using a tensorial orthonormal
Hilbert basis of L2(Hm) consisting of eigenfunctions of −∆, we get that

sp(−∆) =


J∑
j=1

(2nj + 1) |αj |+ 2π

2(m−J)∑
i=1

k2
i with 0 ≤ J ≤ m, ki ∈ Z, nj ∈ N, αj ∈ (Z \ {0})


(see Section 2.1 for a detailed proof) and the multiplicities in sp(−∆) can be deduced from
those in sp(−∆H).

Note that the eigenvalues for which J = m form a density-one subsequence of all eigen-
values labeled in increasing order.

Remark 5. Contrarily to those of flat tori (see [Jak97]), the Quantum Limits of Hm (or,
more precisely, their pushforward under the canonical projection onto Hm) are not necessarily
absolutely continuous. It was already remarked in the case m = 1 in [CdVHT18, Proposition
3.2(2)].

A first illustration of Point (2) of Theorem 1. A way to get an intuition of Point
(2) of Theorem 1 is to fix (n1, . . . , nm) ∈ Nm, and to consider an orthonormal sequence of
eigenfunctions (ψk)k∈N∗ of −∆ given in a tensor form as in Remark 4, such that, for any
k ∈ N∗, ψk is also, for any 1 ≤ j ≤ m, a sequence of eigenfunctions of Rj with eigenvalue
tending to +∞, and of Ωj with eigenvalue 2nj + 1. Such a sequence of eigenfunctions exists,
and can be completed to an orthonormal basis of L2(Hm) consisting of eigenfunctions of
−∆. We notice that any associated Quantum Limit ν is supported in SΣ.5

Let J = {1, . . . ,m} ∈ P. Then, ν is necessarily invariant under the Hamiltonian vector

field ~ρJs , where s = (s1, . . . , sm) ∈ SJ is defined by sj =
2nj+1

2n1+1+...+2nm+1 for j = 1, . . . ,m.
To see it, we set

R =

∑m
j=1(2nj + 1)Rj∑m
j=1 2nj + 1

and we note that for any A ∈ Ψ0(Hm), we have

([A,R]ψk, ψk) = (ARψk, ψk)− (Aψk, Rψk) = 0

5It follows from the classical Lemma 10 in Appendix A, using the fact that Pψk = 0 for sufficiently large
k ∈ N∗, with P = −∆ −

∑m
j=1(2nj + 1)f(Rj) which is elliptic outside Σ. Here, f ∈ C∞(R) vanishes in a

neighborhood of 0 and is equal to 1 for sufficiently large x ∈ R: since Rj is not a pseudodifferential operator in
a neighborhood of pzj = 0, P is not necessarily a pseudodifferential operator for f ≡ 1, thus leading us to this
non-constant choice for f .
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since ψk is an eigenfunction of R. In the limit k → +∞, taking the principal symbol, we
obtain

∫
SΣ
{a, ρJs }dν = 0 where a = σP (A). Since it is true for any a ∈ S 0(Hm), this implies

~ρJs ν = 0. Hence, for such sequences (ψk)k∈N∗ , any QL verifies ν = νJs (which is invariant
under ~ρJs ), QJ is a Dirac mass on s and QJ

′
= 0 for P 3 J ′ 6= J .

In some sense, any QL supported on SΣ is a linear combination of sequences as in the
above example, for different J ∈ P \ {∅} and different s ∈ SJ .

Roles of Rj and Ωj. The operators Rj and Ωj play a key role in the proofs of Theorem
1 and Theorem 2. As illustrated in the previous paragraph, the operators Ωj are linked
with the parameters s ∈ SJ : in some sense, once the eigenfunctions have been orthogonally
decomposed with respect to operators Rj and Ωj (as explained in Section 2.1), the ratios be-
tween the Ωj-s determines the invariance property of the associated Quantum Limits through
the parameter s and the Hamiltonian vector field ~ρJs . On the other side, the operators Rj
‘determine’ the microlocal support of the associated Quantum Limits, for example the ele-
ment J ∈ P \ {∅} (such that the QL concentrates on SΣJ ). The next paragraph, which is
devoted to a sketch of proof of Theorem 1, will make these intuitions more precise.

Sketch of proof of Theorem 1. The last part of Theorem 1 is an immediate conse-
quence of the last part of Proposition 1. Then, the proof of Points (1) and (2) in Theorem
1 is split into two steps which we now describe.

Step 1. First, in Lemma 2, extracting if necessary a subsequence, we split each eigenfunc-
tion ϕk into ϕk = ϕ0

k +ϕ∞k , where ϕ0
k and ϕ∞k are both eigenfunctions of −∆ with the same

eigenvalue as ϕk, and with the property that, in the limit k → +∞, ϕ∞k has ν∞ for unique
microlocal defect measure (and therefore microlocally concentrates on SΣ), while ϕ0

k admits
ν0 as unique microlocal defect measure. This proves that one can study independently Point
(1) and Point (2) of Theorem 1. Since Point (1) is a consequence of Proposition 1, we focus
on Point (2). In the next paragraphs, we omit the index ∞ in order to simplify notations.

In the proof of Lemma 2, we identify a decomposition of ϕk as a sum

ϕk =
∑

J∈P\{∅}

ϕJk

with the property that for any J ∈ P \{∅}, ϕJk is a sequence of eigenfunctions of −∆ whose
(unique) microlocal defect measure has all its mass contained in SΣJ . Using a “gluing
lemma” for microlocal defect measures (Lemma 3), we obtain that it is sufficient to prove
Point (2) of Theorem 1 for (ϕJk )k∈N∗ , separately for each J ∈ P \ {∅}. Therefore, we focus
on one of the sequences (ϕJk )k∈N∗ for some J ∈ P \ {∅}. In other words, in Step 2, we
prove that the (unique) microlocal defect measure ν = νJ of the sequence (ϕJk )k∈N∗ may be
decomposed as

νJ =

∫
SJ

νJs dQ
J (s).

In order to simplify the presentation, in the next paragraphs, we assume that J =
{1, . . . ,m} and we omit this notation (writing for example S instead of SJ ), but the proof
is similar for any J ∈ P \ {∅}.

Step 2. With this assumption, we can use the decomposition (5) to write each ϕk as a sum
of eigenfunctions of operators of the form

∑m
j=1 (2nj + 1)Rj for some integers n1, . . . , nm:

ϕk =
∑

(n1,...,nm)∈Nm
ϕk,n1,...,nm . (9)

We will see in Section 2.1 that the decomposition (9) is orthogonal, and therefore each
eigenfunction ϕk,n1,...,nm has the same eigenvalue λk as ϕk. Then, we do a careful analysis
of this decomposition into modes, which, in the limit k → +∞, gives the disintegration
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ν =
∫
S
νsdQ(s). This analysis builds upon a partition of the lattice Nm into positive cones,

each of them gathering together the modes ϕk,n1,...,nm for which the m-tuples(
2n1 + 1

2n1 + 1 + . . .+ 2nm + 1
, . . . ,

2nm + 1

2n1 + 1 + . . .+ 2nm + 1

)
are approximately the same: each of these positive cones accounts for a small region of the
simplex S. If Nm is partitioned into 2N positive cones CN` (with 0 ≤ ` ≤ 2N − 1), this
gathering defines eigenfunctions

ϕNk,` =
∑

(n1,...,nm)∈CN`

ϕk,n1,...,nm

of −∆ such that

ϕk =

2N−1∑
`=0

ϕNk,` (10)

for any N ∈ N∗.
Taking a microlocal defect measure νN` in each sequence (ϕNk,`)k∈N∗ and making N → +∞

(i.e., taking the limit where the positive cones degenerate to half-lines parametrized by s ∈ S),
we obtain from (10) the disintegration ν =

∫
S
νsdQ(s).

Given a certain s = (s1, . . . , sm) ∈ S, dQ(s) accounts for the relative importance, in the
limit N → +∞, of the eigenfunction ϕNk,`(N) in the sum (10), where `(N) is chosen so that

the positive cone CN`(N) converges to the half-line with parameter s as N → +∞.

The invariance property ~ρsνs = 0 can be seen from the fact that, for any large N and
any 0 ≤ ` ≤ 2N − 1, each eigenfunction ϕk,n1,...,nm with (n1, . . . , nm) ∈ CN` is indeed an
eigenfunction of the operator

m∑
i=1

(
2ni + 1

2n1 + 1 + . . .+ 2nm + 1

)
Ri

which, by definition of ϕNk,`, is approximately equal to Rs = s1R1 + . . . + smRm if s =

(s1, . . . , sm) ∈ S denotes the parameter of the limiting half-line of the positive cones CN`
as N → +∞. Hence, ϕNk,` is an approximate eigenfunction of Rs, from which it follows
by a classical argument that νs is invariant under the Hamiltonian vector field ~ρs of ρs =
(σP (Rs))|Σ.

Remark 6. There is no clear link of our result with the concept of “second microlocalization”,
although such a link may seem possible at first sight. Focusing on a Quantum Limit supported
in SΣ, our study builds upon a spectral decomposition of it, and not upon a second direction
of microlocalization as is usually done while studying fine properties of sequences of solutions
of an operator (see for example [FK00]).

Remark 7. Two generalizations of Theorem 1 may be considered. The first one consists in
adding a potential V to −∆ and to look for the invariance properties of the associated QLs
in the spirit, for example, of [MR19]. A second generalization consists in studying the QLs
of products of general 3D contact manifolds, thus replacing the quotient Heisenberg manifold
H by an arbitrary 3D contact manifold. Both generalizations are open issues.

Bibliographical comments. The study of Quantum Limits for Riemannian Laplacians
is a long-standing question. Over the years, a particular attention has been drawn towards
Riemannian manifolds whose geodesic flow is ergodic since in this case, up to extraction
of a density-one subsequence, the set of Quantum Limits is reduced to the Liouville mea-
sure, a phenomenon which is called Quantum Ergodicity (see for example [Shn74], [CdV85],
[Zel87]). For compact arithmetic surfaces, a detailed study of invariant measures lead to the
resolution of the Quantum Unique Ergodicity conjecture for these manifolds, meaning that
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the extraction of a density-one subsequence in the previous result is even not necessary for
these particular manifolds ([Lin06]). In manifolds which have more integrability properties,
the set of Quantum Limits is generally richer: see for example [Jak97] for the description
of Quantum Limits on flat tori (which are product manifolds, as the ones we consider) or
[ALM16] for the case of the disk.

An important literature is also devoted to the study of semiclassical measures, which are
analog to Quantum Limits in a time-dependent and semiclassical setting, and which are a
natural tool used for understanding the Schrödinger flow (see for example [AM12]). With
this in mind, in [FKF19], the authors developed a notion of semiclassical measures adapted to
“Heisenberg type” sub-Laplacians, with the aim of studying the Schrödinger equation with a
sub-Laplacian replacing the usual Laplace-Beltrami operator (see also [FKL] for application
to the study of controllability of the Schrödinger equation in Heisenberg type groups).

The study of Quantum Limits of general sub-Laplacians was undertaken in the work
[CdVHT18], which was mainly devoted to the 3D contact case - encompassing for example
the case of the manifold H - although some results are valid for any sub-Laplacian (see
Proposition 1 of the present paper). The understanding of Quantum Limits of general sub-
Laplacians remains a largely unexplored question.

Structure of the paper. In Section 2.1, we explain the spectral decomposition of
L2(Hm) according to the eigenspaces of the harmonic oscillators Ωj which gives the possi-
bility to write any eigenfunction ϕk of −∆ as a sum of the form (9). It replaces, in some
sense, the Fourier decomposition of eigenfunctions usually done in Riemannian tori.

This decomposition plays a key role in the proof of Point (2) of Theorem 1, which is
divided into two steps, as explained previously.

Section 2.2 is devoted to the first step: using a pseudodifferential cut-off procedure, we
show how to deduce Point (1) of Theorem 1 from Proposition 1, and to reduce the proof of
Theorem 1 to the case where (ϕk)k∈N∗ has a unique microlocal defect measure, with all its
mass contained in SΣJ for some J ∈ P \ {∅}.

Building upon this reduction and the spectral decomposition of Section 2.1, we establish
in Section 2.3 the second and final step of the proof of Point (2) of Theorem 1.

In Section 3, we prove Theorem 2 by constructing explicitely a sequence of eigenfunctions
with prescribed Quantum Limit.

In Appendix A, we recall some basic facts of pseudodifferential calculus and two related
elementary lemmas. In Appendix B, we provide another way for obtaining the measures
QJ and νJs (but without proving the invariance properties), which relies on pure functional
analysis arguments and sheds a different light on Theorem 1. In Appendix C, we show that
the Quantum Limits of a Hilbert basis of eigenfunctions of Hm given in a “tensor form”
can themselves be expressed in a tensor form. Finally, in Appendix D, we prove a result
concerning Quantum Limits of flat contact manifolds in any dimension: for such manifolds,
the invariance properties of Quantum Limits are essentially the same as in the 3D case. This
gives further motivation for our main results, since the Quantum Limits on the manifold Hm

reveal a more interesting behaviour than those on flat contact manifolds.

Acknowledgments. I am very grateful to Emmanuel Trélat and Yves Colin de Verdière,
who taught me so much about the subject and answered countless questions I asked in Paris
and in Grenoble, and to Luc Hillairet for numerous remarks and suggestions. I also thank
Richard Montgomery, Nicolas Lerner, Gabriel Rivière and Clotilde Fermanian Kammerer
for very interesting discussions, and the kind hospitality of Luigi Ambrosio and the Scuola
Normale Superiore in Pisa, where part of this work was done. I was partially supported by
the grant ANR-15-CE40-0018 of the ANR (project SRGI).
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2 Proof of Theorem 1

2.1 Spectral decomposition of −∆

In this section, we study in detail the action of −∆ on L2(Hm): the existence of orthonormal
Hilbert bases of L2(Hm) constituted of eigenfunctions of −∆ in a tensor form (see Remark
4) allows to write a decomposition of −∆ and also an orthogonal decomposition of L2(Hm).

Let us recall that, for 1 ≤ j ≤ m, we have set Rj =
√
∂∗zj∂zj and we made a Fourier

expansion with respect to the zj-variable. On the eigenspaces corresponding to non-zero
modes of this Fourier decomposition, we defined the operator Ωj = −R−1

j (X2
j + Y 2

j ) =

−(X2
j + Y 2

j )R−1
j . For example, −∆ acts as

−∆ =

m∑
j=1

RjΩj

on any eigenspace of −∆ on which Rj 6= 0 for any 1 ≤ j ≤ m. Moreover, Rj and Ωj
are pseudodifferential operators of order 1 in any cone of T ∗Hm whose intersection with
some conic neighborhood of the set {pzj = 0} is reduced to 0 (for example in small conic
neighborhoods of ΣJ for J containing j).

The operator Ωj , seen as an operator on the j-th copy of H, is an harmonic oscillator,
having in particular eigenvalues 2n+ 1, n ∈ N (see [CdVHT18, Section 3.1]). Moreover, the
operators Ωi (considered this time as operators on Hm) commute with each other and with
the operators Rj .

Recall that P stands for the set of all subsets of {1, . . . ,m}. We fix J ∈ P. In the
sequel, we think of J as the set of j for which Rj 6= 0. For j ∈ J and n ∈ N, we denote by
Ejn ⊂ L2(H) the eigenspace of Ωj corresponding to the eigenvalue 2n + 1. For (nj) ∈ NJ ,
we set

HJ(nj) = F 1 ⊗ . . .⊗ Fm ⊂ L2(Hm)

where F j = Ejnj for j ∈ J and F j = L2(H) otherwise.
We have the orthogonal decomposition

L2(Hm) =
⊕
J∈P

⊕
(nj)∈NJ

HJ(nj). (11)

We can also write the associated decomposition of −∆:

−∆ =
⊕
J∈P

⊕
(nj)∈NJ

HJ(nj)

with HJ(nj) =
∑
j∈J

(2nj + 1)Rj −
∑
i/∈J

(∂2
xi + ∂2

yi).

From this, we deduce

sp(−∆) =
⋃
J∈P

⋃
(nj)∈NJ

sp(HJ(nj))

=

{∑
j∈J

(2nj + 1) |αj |+ 2π
∑
i/∈J

(k2
i + `2i ),

with ki, `i ∈ Z, J ∈ P, nj ∈ N, αj ∈ (Z \ {0})

}

where sp denotes the spectrum.
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2.2 Step 1: Identification of ν0 and ν∞

In all the sequel, we fix (ϕk)k∈N∗ an orthonormal basis of eigenfunctions of −∆ associated
with the eigenvalues (λk)k∈N∗ with λk → +∞, and we consider ν, a Quantum Limit associ-
ated to the sequence (ϕk)k∈N∗ .

In this section, we identify different parts in the Quantum Limit ν: our goal is to provide
an adequate decomposition which is preliminary to the detailed analysis performed in Section
2.3. This corresponds to Step 1 in the sketch of proof given in Section 1.4.

Lemma 2. Let us assume that (ϕk)k∈N∗ is an orthonormal sequence of eigenfunctions6 of
−∆ with associated eigenvalues λk → +∞. Then, up to extraction of a subsequence, one can
decompose

ϕk = ϕ0
k +

∑
J∈P\{∅}

ϕJk ,

with the following properties:

• The sequence (ϕk)k∈N∗ has a unique Quantum Limit ν;

• ϕ0
k and all ϕJk , for k ∈ N∗ and J ∈ P \ {∅}, are eigenfunctions of −∆ with eigenvalue

λk;

• Using the identification S∗Hm = U∗Hm∪SΣ (see (3)), the sequence (ϕ0
k)k∈N∗ admits a

unique microlocal defect measure βν0, where β ∈ [0, 1], ν0 ∈P(S∗Hm) and ν0(SΣ) =
0, and, for any J ∈ P \ {∅}, the sequence (ϕJk )k∈N∗ also admits a unique microlocal
defect measure νJ , having all its mass contained in SΣJ ;

• There holds
ν = βν0 +

∑
J∈P\{∅}

νJ (12)

and the sum in (12) is supported in SΣ.

Let us first give an intuition of how the proof goes. Using the spectral decomposition of
Section 2.1, for fixed k ∈ N, we decompose ϕk as a sum of functions which are eigenfunctions
of Rj for any 1 ≤ j ≤ m, and simultaneously eigenfunctions either of Ωj (if the corresponding
eigenvalue of Rj is non-null) or of ∂xj and ∂yj (if the corresponding eigenvalue of Rj is zero).
Each of these functions is an eigenfunction of −∆ with same eigenvalue λk as ϕk, and also
an eigenfunction of −(X2

j + Y 2
j ) for any j. Then, roughly speaking, we gather some of these

functions into ϕ0
k or into ϕJk for some J ∈ P \ {∅}, depending on their eigenvalues with

respect to the operators −∆, Rj and −(X2
j + Y 2

j ) for 1 ≤ j ≤ m. More precisely, the

functions which we select (asymptotically as k → +∞) to be in ϕJk are those such that:

• For any j /∈ J , the corresponding eigenvalue of −(X2
j +Y 2

j ) is negligible in comparison
to λk, as k → +∞;

• For any j ∈ J , the corresponding eigenvalue of −(X2
j + Y 2

j ) is not negligible in com-
parison to λk, but the corresponding eigenvalue of Rj is much larger than that of Ωj
as k → +∞.

It corresponds to the intuition that ΣJ is the set of points (q, p) of T ∗Hm for which, for
any j /∈ J , pxj = pyj = pzj = 0, and for any j ∈ J , |pzj | is much larger than |pxj | and
|pyj − xjpzj | (which are indeed equal to 0 on Σ).

Proof of Lemma 2. For n ∈ N∗, let χn ∈ C∞c (R, [0, 1]) such that χn(x) = 1 for |x| ≤ 1
2n and

χn(x) = 0 for |x| ≥ 1
n . We set ∆j = X2

j + Y 2
j for 1 ≤ j ≤ m, and we have

σP (−∆j) = p2
xj + (pyj − xjpzj )2.

We also introduce

E = −∆ +

m∑
j=1

R2
j ∈ Ψ2(Hm),

6Note that (ϕk)k∈N∗ is not supposed to be a basis of L2(Hm).

12



which is elliptic, with principal symbol

σP (E) =

m∑
j=1

(
p2
xj + (pyj − xjpzj )2

)
+ p2

zj .

For J ∈ P \ {∅}, we consider the operator

PJn =
∏
i/∈J

χn

(
−∆i +R2

i

E

) ∏
j∈J

(
(1− χn)

(
−∆j +R2

j

E

)
χn

(
−∆j

−∆j +R2
j

))
(13)

defined thanks to functional calculus. As we will see, PJn ∈ Ψ0(Hm) and, as n → +∞, its
principal symbol tends to the characteristic function 1ΣJ : T ∗Hm → R, where ΣJ has been
defined in (6).

For any J ∈ P \ {∅}, the following properties hold:

(1) PJn ∈ Ψ0(Hm);

(2) [PJn ,∆] = 0;

(3) σP (PJn )→ 1ΣJ pointwise as n→ +∞.

Let us prove Point (1). Since E is elliptic, it is invertible, and since −∆i, R
2
i ∈ Ψ0(Hm),

by [HV00], χn

(
−∆i+R

2
i

E

)
∈ Ψ0(Hm) with principal symbol

χn

(
σP (−∆i) + p2

zi

σP (E)

)
.

Similarly, the operator (1 − χn)
(
−∆j+R

2
j

E

)
belongs to Ψ0(Hm) and its principal symbol is

supported in the cone of T ∗Hm given by

S̃jn =

{
σP (−∆j) + p2

zj

σP (E)
≥ 1

2n

}
.

In this cone, −∆j +R2
j is elliptic, hence invertible. Therefore, χn

(
−∆j

−∆j+R2
j

)
is a 0-th order

pseudodifferential operator in S̃jn, from which we conclude that

(1− χn)

(
−∆j +R2

j

E

)
χn

(
−∆j

−∆j +R2
j

)
∈ Ψ0(Hm).

Finally, both products in the definition of PJn belong to Ψ0(Hm). Hence, PJn ∈ Ψ0(Hm).

Point (2) is an immediate consequence of functional calculus, since all operators −∆i and
Rj for 1 ≤ i, j ≤ m commute one with each other.

Let us prove Point (3). The support of σP (PJn ) is contained in the intersection of several
conic subsets of T ∗Hm: it is contained in the cone

Sin :=

{
σP (−∆i) + p2

zi

σP (E)
≤ 1

n

}
for any i /∈ J , and, for any j ∈ J , in the cone S̃jn intersected with the cone

T jn :=

{
σP (−∆j)

σP (−∆j) + p2
zj

≤ 1

n

}
=

{
σP (−∆j) ≤

p2
zj

n− 1

}
.
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It follows that, in the limit n → +∞, σP (PJn ) vanishes everywhere outside the set defined
by the relations

σP (−∆i) = pzi = 0, ∀i /∈ J
σP (−∆j) = 0 and pzj 6= 0, ∀j ∈ J .

We note that these relations exactly define the set ΣJ .
Let (q, p) ∈ ΣJ with p = (px1

, py1
, pz1 , . . . , pxm , pym , pzm) and p 6= 0. Our goal is to show

that σP (PJn )(q, p) = 1. It follows from a separate analysis of the principal symbol of each
factor in the product (13):

• For i /∈ J , since (q, p) ∈ Σ and pzi = 0, we have pxi = pyi = 0. Hence, at (q, p),

χn

(
σP (−∆i) + p2

zi

σP (E)

)
= 1.

• For j ∈ J , we know that pzj 6= 0. Hence, for n sufficiently large, at (q, p),

(1− χn)

(
σP (−∆j) + p2

zj

σP (E)

)
= 1.

• For j ∈ J , using that pzj 6= 0 and σP (−∆j) = 0, we get, at (q, p),

χn

(
σP (−∆j)

σP (−∆j) + p2
zj

)
= 1.

All in all, σP (PJn )(q, p) = 1 for sufficiently large n, which finally proves Point (3).

We now conclude the proof of Lemma 2. We consider, for fixed n ∈ N and J ∈ P \
{∅}, the sequence (PJn ϕk)k∈N∗ , which, thanks to Points (1) and (2), is also a sequence of
eigenfunctions of −∆ with same eigenvalues as ϕk. We denote by νJn a microlocal defect
measure of (PJn ϕk)k∈N∗ and by ν0

n a microlocal defect measure of the sequence given by the
eigenfunctions

ϕk −
∑

J∈P\{0}

PJn ϕk.

Furthermore, we may assume thanks to the diagonal extraction process that the extraction
used to obtain all these microlocal defect measures is the same for any n ∈ N∗ and any
J ∈ P \ {∅}.

Finally, we take νJ a weak-star limit of (νJn )n∈N and βν0 a weak-star limit of (ν0
n)n∈N,

with ν ∈P(S∗Hm) and β ∈ [0, 1]. Thanks to the analysis done while proving Point (3), we
know that νJ gives no mass to the complementary of SΣJ in S∗Hm, and that ν0(SΣ) = 0.
Again, thanks to the diagonal extraction process, up to extraction of a subsequence in k ∈ N∗,
we can write

ϕk = ϕ0
k +

∑
J∈P\{∅}

ϕJk (14)

where the unique microlocal defect measure of (ϕ0
k)k∈N∗ is βν0, and ϕJk = PJr(k)ϕk (for some

function r tending (slowly) to +∞ as k → +∞) has a unique microlocal defect measure as
k → +∞, which is νJ .

Let us prove that (14) implies (12). For that, we first recall a definition and an elementary
lemma concerning joint microlocal defect measures.

Definition 8. Let (uk)k∈N∗ , (vk)k∈N∗ be bounded sequences in L2(M) such that uk and vk
weakly converge to 0 as k → +∞. We call joint microlocal defect measure of (uk)k∈N∗ and
(vk)k∈N∗ any Radon measure νjoint on S∗M such that for any a ∈ S 0(M), there holds

(Op(a)uσ(k), vσ(k)) −→
k→+∞

∫
S∗M

adνjoint

for some extraction σ.
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Note that joint microlocal defect measures are not necessarily non-negative, and that
joint Quantum Limits (similarly defined) are not necessarily invariant by the geodesic flow,
even in the Riemannian case. However, the following lemma, proved in Appendix A, shows
a regularity property for these joint microlocal defect measures.

Lemma 3. Let (uk), (vk) be two sequences of functions weakly converging to 0, each with a
unique microlocal defect measure, which we denote respectively by µ11 and µ22. Then, any
joint microlocal defect measures µ12 (resp. µ21) of (uk)k∈N∗ and (vk)k∈N∗ (resp. of (vk)k∈N∗

and (uk)k∈N∗) is absolutely continuous with respect to both µ11 and µ22.

Using Lemma 3, we then notice that if J ,J ′ ∈ P \ {∅} are distinct, the joint microlocal

defect measures of (ϕJk )k∈N∗ and (ϕJ
′

k )k∈N∗ vanish. Similarly, the joint microlocal defect
measure of (ϕ0

k)k∈N∗ with the sequence (ϕJk )k∈N∗ vanishes for any J ∈ P \ {∅}. Therefore,
evaluating (Op(a)ϕk, ϕk) and using (14), we obtain (12), which finishes the proof of Lemma
2.

Remark 9. The above proof is inspired by the proof of a slightly different fact (see [Gér91a,
Proposition 3.3]): if θ is the unique microlocal defect measure of a sequence (ψk)k∈N∗ of
functions over a manifold M , A (resp. B) is a closed (resp. open) subset of S∗M , and
A and B form a partition of S∗M , then we can write θ = θA + θB, with θA (resp. θB)
supported in A (resp. θB(A) = 0) and ψk = ψAk +ψBk such that θA (resp. θB) is a microlocal
defect measure of (ψAk )k∈N∗ (resp. of (ψBk )k∈N∗). The proof just consists in choosing symbols
pn ∈ S 0(M) concentrating on A and taking ψAk = Op(pn)ψk as in the proof above.

In the proof of Lemma 2, we had to choose particular symbols pn in order to ensure that
ϕJk and ϕ0

k are still eigenfunctions of −∆.

Restriction to a fixed J ∈ P\{∅}. Combining Lemma 2 with Point (1) of Proposition
1, we see that it is enough to prove Point (2) of Theorem 1, and that it is possible to assume
that (ϕk)k∈N∗ is a sequence of eigenfunctions with eigenvalue tending to +∞, and with a
unique microlocal defect measure ν, which can be assumed to be supported in SΣ. Indeed,
thanks to Lemma 2, we can even assume that all the mass of ν is contained in SΣJ for some
J ∈ P \ {∅}, i.e., ν = νJ : once we have established the decomposition

νJ =

∫
SJ

νJs dQ
J (s),

Point (2) of Theorem 1 follows by just gluing all pieces of ν together thanks to Lemma 2.

Therefore, in order to establish Point (2) of Theorem 1, we assume that the unique
microlocal defect measure of (ϕk)k∈N∗ has no mass outside SΣJ for some J ∈ P \ {∅}. By
symmetry, we may even assume that J = {1, . . . , J} with J = Card(J ).

To sum up, the sequence (ϕk)k∈N∗ that we consider is no more an orthonormal Hilbert
basis as stated in Theorem 1, but it satisfies the following assumption:

Assumption 1. (ϕk)k∈N∗ is a bounded sequence of eigenfunctions of −∆ labeled with in-
creasing eigenvalues tending to +∞, and with unique microlocal defect measure ν. Moreover,
there exist J ≤ m and r(k)→ +∞ as k → +∞ such that

ϕk = PJr(k)ϕk (15)

for J = {1, . . . , J} and for any k ∈ N∗, where PJn is defined in (13). In particular, ν has
no mass outside SΣJ .

2.3 Step 2: End of the proof of Point (2) of Theorem 1

In the sequel, the notation (·, ·) stands for the L2(Hm) scalar product, and the associated
norm is denoted by ‖ · ‖L2 .
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Positive cones. We set V =
(
− 1

2 , . . . ,−
1
2

)
∈ RJ and we consider the quadrant

V + RJ+ =

{
(x1, . . . , xJ) ∈ RJ | xj ≥ −

1

2
for any 1 ≤ j ≤ J

}
.

We now define a series of partitions of V + RJ+ into positive cones with vertex at V , each of
these partitions (indexed by N) being composed of 2N thin positive cones, with the property
that each partition is a refinement of the preceding one.

More precisely, these positive cones CN` ⊂ V + RJ+, for N ∈ N∗ and 0 ≤ ` ≤ 2N − 1,
satisfy the following properties, some of which are illustrated on Figure 1 below:

(1) For any N ∈ N∗ and any 0 ≤ ` ≤ 2N − 1, CN` is a positive cone with vertex at V , i.e.,

V + λ(W − V ) ∈ CN` , ∀λ > 0, ∀W ∈ CN` ;

(2) For any N ∈ N∗, (CN` )0≤`≤2N−1 is a partition of V + RJ+, i.e.,

2N−1⋃
`=0

CN` = V + RJ+ and CN` ∩ CN`′ = ∅, ∀` 6= `′;

(3) Each partition is a refinement of the preceding one: for any N ≥ 2 and any 0 ≤ ` ≤
2N − 1, there exists a unique 0 ≤ `′ ≤ 2N−1 − 1 such that CN` ⊂ C

N−1
`′ .

Denote by L the set of half-lines issued from V and contained in V + RJ+. Note that L is
parametrized by s ∈ SJ . We also assume the following property:

(4) For any L ∈ L parametrized by s ∈ SJ , there exists a subsequence (CN`(s,N))N∈N∗

which converges to L , in the following sense. There exists d : N→ R+ with d→ 0 as
N → +∞, such that, for any s′ ∈ SJ parametrizing a half-line L′ ∈ L contained in
SN`(s,N), we have

‖s′ − s‖1 ≤ d(N). (16)

This last property is equivalent to saying that the size of the positive cones tends uniformly
to 0 as N → +∞.

Figure 1: The positive cones CN
` , for J = 2, N = 3.
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Spectral decomposition. Decomposing ϕk on the spaces HJ(nj) defined in Section 2.1,

we write

ϕk =

2N−1∑
`=0

ϕNk,` (17)

where
ϕNk,` =

∑
(n1,...,nJ )∈CN`

ϕk,n1,...,nJ

and, for any (nj) ∈ NJ , k ∈ N∗ and j ∈ J ,

Ωjϕk,n1,...,nJ = (2nj + 1)ϕk,n1,...,nJ .

For any N ∈ N∗ and any 0 ≤ ` ≤ 2N − 1, we take νN` to be a microlocal defect measure of
the sequence (ϕNk,`)k∈N∗ . By diagonal extraction in k ∈ N∗ (which we omit in the notations),
we can assume that any of these microlocal defect measures is obtained with respect to the
same subsequence.

Lemma 4. The following properties hold:

(1) All the mass of νN` is contained in SΣJ for any N ∈ N∗ and any 0 ≤ ` ≤ 2N − 1;

(2) For N ∈ N∗ and ` 6= `′ with 0 ≤ `, `′ ≤ 2N − 1, the joint microlocal defect measure (see
Definition 8) of (ϕNk,`)k∈N∗ and (ϕNk,`′)k∈N∗ vanishes. In particular, for any N ∈ N∗,

ν =

2N−1∑
`=0

νN` . (18)

Proof. We first prove Point (1). Using (15), (17) and the fact that PJn ∈ Ψ0(Hm) commutes
with the operators Ωj and Rj , we get that

ϕNk,` = PJr(k)ϕ
N
k,`.

Point (1) now follows from the fact that σP (PJr(k)) → 1ΣJ as k → +∞ (see the proof of

Lemma 2).

We now turn to the proof of Point (2). Let N, `, `′ be as in the statement. By Point (1)
and Lemma 3, we know that the joint microlocal defect measure of (ϕNk,`)k∈N∗ and (ϕNk,`′)k∈N∗

has no mass outside SΣJ .
Let b ∈ S 0(Hm) which is microlocally supported in a conic set in which Rj ,Ωj act as first-

order pseudodifferential operators for any j ∈ J . A typical example of microlocal support
for b is given by any conic subset of T ∗Hm whose intersection with some conic neighborhood
of the set {pzj = 0} is reduced to 0, for any j ∈ J . We set U(t) = U(t1, . . . , tJ) =

ei(t1Ω1+...+tJΩJ ) for t = (t1, . . . , tJ) ∈ (R/2πZ)J .
The average of Op(b) is then defined by

A =

∫
(R/2πZ)J

U(−t)Op(b)U(t)dt

(see [Wei77]). For 1 ≤ j ≤ J , since

d

dtj
U(−t)Op(b)U(t) = U(−t)[Op(b),Ωj ]U(t),

integrating in the tj variable, using that all Ωi commute together, and that exp(2iπΩj) = Id
(since the eigenvalues of Ωj belong to N), we get that [A,Ωj ] = 0 for any 1 ≤ j ≤ J .

By a bracket computation, A has principal symbol

a := σP (A) =

∫
(R/2πZ)J

b ◦ θ1(t1) ◦ . . . ◦ θJ(tJ) dt.

Here, θj(·) denotes, for 1 ≤ j ≤ J , the 2π-periodic flow of the Hamiltonian vector field of
σP (Ωj) (see [CdVHT18, Lemma 6.1] for similar arguments).
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Remark 10. If D is a 0th-order pseudodifferential operator on Hm which satisfies [D,Ωj ] =
0 for any j ∈ J , then D leaves HJ(nj) invariant for any (nj) = (n1, . . . , nJ) ∈ N. It follows

that for any f ∈ HJ(nj) and any g ∈ HJ(n′j) such that (n1, . . . , nJ) 6= (n′1, . . . , n
′
J), we have

(Df, g) = 0.

We know that σP (A) = b on SΣJ . Therefore,

(Op(b)ϕNk,`, ϕ
N
k,`′)− (AϕNk,`, ϕ

N
k,`′) −→

k→+∞
0.

Since A commutes with Ωj for any 1 ≤ j ≤ J , by Remark 10, we know that (AϕNk,`, ϕ
N
k,`′) = 0.

Hence, (Op(b)ϕNk,`, ϕ
N
k,`′) tends to 0 as k → +∞. Using this result for all possible b with

microlocal support satisfying the property recalled at the beginning of the proof, we obtain
that the joint microlocal defect measure of (ϕNk,`)k∈N∗ and of (ϕNk,`′)k∈N∗ vanishes. Evaluating
(Op(b)ϕk, ϕk) in the limit k → +∞ and using (17), we conclude the proof of Point (2).

Approximate invariance. We fix N ∈ N∗ and 0 ≤ ` ≤ 2N − 1 and we consider s ∈ SJ
such that the half-line issued from V and defined by the J equations

2xj+1
2x1+1+...+2xJ+1 = sj

(and xj ≥ −1/2) lies in CN` .
Let A be a 0-th order pseudodifferential operator microlocally supported in a conic set

where Rj ,Ωj act as first-order pseudodifferential operators for any j ∈ J . Assume moreover
that A commutes with Ω1, . . . ,ΩJ and ∆J+1, . . . ,∆m. Recall that Rs was defined in (7).
Using that [A,Rs] commutes with Ω1, . . . ,ΩJ in order to kill crossed terms (see Remark 10),
we have

([A,Rs]ϕ
N
k,`, ϕ

N
k,`) = ([A,Rs]

∑
(n1,...,nJ )∈CN`

ϕk,n1,...,nJ ,
∑

(n1,...,nJ )∈CN`

ϕk,n1,...,nJ )

=
∑

(n1,...,nJ )∈CN`

([A,Rs]ϕk,n1,...,nJ , ϕk,n1,...,nJ ) (19)

Let us fix (n1, . . . , nJ) ∈ CN` and prove that

([A,Rs]ϕk,n1,...,nJ , ϕk,n1,...,nJ )

=

J∑
j=1

(
sj −

2nj + 1∑J
i=1 2ni + 1

)
([A,Rj ]ϕk,n1,...,nJ , ϕk,n1,...,nJ ) (20)

We set

R =

∑J
j=1(2nj + 1)Rj −

∑m
i=J+1 ∆i∑J

j=1 2nj + 1
.

and, for the sake of simplicity of notations, ϕ = ϕk,n1,...,nJ . Using that R is selfadjoint (since
Rj is selfadjoint for any j) and that ϕ is an eigenfunction of R, we get

([A,R]ϕ,ϕ) = (ARϕ,ϕ)− (Aϕ,Rϕ) = 0

and therefore, since A commutes with ∆J+1, . . . ,∆m, we get

([A,Rs]ϕ,ϕ) = ([A,Rs −R]ϕ,ϕ) =

J∑
j=1

(
sj −

2nj + 1∑J
i=1 2ni + 1

)
([A,Rj ]ϕ,ϕ)

which is exactly (20).
Thanks to our choice of microlocal support for A, we know that [A,Rj ] ∈ Ψ0(Hm) for

1 ≤ j ≤ J . Combining (19) and (20), we obtain

∣∣([A,Rs]ϕNk,`, ϕNk,`)∣∣ ≤ C ∑
(n1,...,nJ )∈CN`

J∑
j=1

∣∣∣∣∣sj − 2nj + 1∑J
i=1 2ni + 1

∣∣∣∣∣ ‖ϕk,n1,...,nJ‖2L2

≤ Cd(N)‖ϕNk,`‖2L2

(21)
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where in the last line, we used (16) and the fact that the decomposition (11) is orthogonal.
In order to pass to the limit k → +∞ in these last inequalities, we note that

σP ([A,Rs])|ΣJ = {a|ΣJ , ρs}ω|ΣJ (22)

(see [CdVHT18, Lemma 6.2] for a similar identity). Here, the Poisson bracket {·, ·}ω|ΣJ
is the Poisson bracket on the manifold (ΣJ , ω|ΣJ ) which is symplectic as it is defined as
a product of symplectic manifolds (recall that for m = 1, the 4-dimensional manifold Σ is
symplectic, see for example [CdVHT18]).

Since all the mass of νN` is contained in SΣJ by Lemma 4, we finally deduce from (21)
the upper bound ∫

SΣJ

{a|ΣJ , ρs}ω|ΣJ dνN` ≤ Cd(N)νN` (SΣJ ). (23)

The upper bound (23) has been established only for a|ΣJ the restriction to ΣJ of the
symbol of an operator A of order 0 which commutes with Ω1, . . . ,ΩJ and ∆J+1, . . . ,∆m, and
we would like to remove this commutation assumption. Let b ∈ S 0(H) of the form

b(q, p) = bJ (q1, . . . , qJ , p1, . . . , pJ)

where (q, p) denote the coordinates in T ∗Hm, (qj , pj) the coordinates in the cotangent bundle
of the j-th copy of H, and bJ ∈ S 0(HJ ) is an arbitrary 0-th order symbol supported in a
subset of T ∗HJ where Rj ,Ωj act as first-order pseudodifferential operators for any j ∈ J .
We consider the operator

A =

∫
(R/2πZ)J

U(−t)Op(b)U(t)dt ∈ Ψ0(Hm)

where U(t) = U(t1, . . . , tJ) = ei(t1Ω1+...+tJΩJ ) for t = (t1, . . . , tJ) ∈ (R/2πZ)J . By an
argument that we have already in the proof of Point (2) of Lemma (4), A commutes with
Ωj for any 1 ≤ j ≤ J , and it also commutes with ∆J+1, . . . ,∆m. Moreover, the principal
symbol of A on SΣJ coincides with bJ by the Egorov theorem. Using (23) for A, this proves
that (23) is valid for any symbol a of order 0 on Hm supported far from the sets {pzj = 0}
for j ∈ J , without any assumption of commutation on A.

Disintegration of measures. From the equality (18) taken in the limit N → +∞, we
will deduce that νJ =

∫
SJ

νJs dQ
J (s). Note that a simple Fubini argument does not suffice

since QJ is not the Lebesgue measure in general (it may contain Dirac masses, see Section
1.4). Instead, we have to adapt the proof of the classical disintegration of measure theorem
(see [Roh62]).

First of all, we define a measure QJ over SJ as follows. It was explained at the begin-
ning of Section 2.3 that the set L of half-lines issued from V and contained in V + RJ+ is
parametrized by s ∈ SJ . For N ∈ N∗ and 0 ≤ ` ≤ 2N − 1, we consider the subset of SJ
given by

SN` =
{
s ∈ SJ , s parametrizes a half-line of L contained in CN`

}
. (24)

Then we define
QJ (SN` ) = νN` (SΣ). (25)

This definition is consistent thanks to the partition of V +RJ+ into nested positive cones:
QJ is well-defined on any SN` and it is also additive. By the properties of the positive cones
CN` , for any s ∈ SJ , there exists a sequence (`(s,N))N∈N∗ such that SN`(s,N) ⊂ SJ converges

to s, in the sense that any sequence (sN )N∈N∗ such that sN ∈ SN`(s,N) for any N ∈ N∗

converges to s as N → +∞. Therefore, by extension, (25) defines a (unique) non-negative
Radon measure QJ on SJ .
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Given N ≥ 1, 0 ≤ ` ≤ 2N − 1 and a continuous function f : SΣJ → R, we set

fN` =
1

νN` (SΣJ )

∫
SΣJ

fdνN` (26)

if νN` (SΣJ ) 6= 0, and fN` = 0 otherwise.

Proposition 5. Given any continuous function f : SΣ → R, for QJ -almost all s ∈ SJ ,
there exists a real number e(f)(s) such that

fN`(s,N) −→
N→+∞

e(f)(s),

where, for any N ∈ N∗, `(s,N) is the unique integer 0 ≤ `(s,N) ≤ 2N − 1 such that
s ∈ SN`(s,N).

In the sequel, we call `(s,N) the approximation at order N of s.

Proof. By linearity of formula (26), it is sufficient to prove the statement for f ≥ 0. There-
fore, in the sequel, we fix f ≥ 0. For N ≥ 1, we define the function fN : SJ → R by
fN (s) = fN`(s,N), where `(s,N) is the approximation at order N of s. Note that fN is

constant on SN` for 0 ≤ ` ≤ 2N − 1.
For 0 ≤ α < β ≤ 1, we define S(α, β) as the set of s ∈ SJ such that

lim inf
N→+∞

fN (s) < α < β < lim sup
N→+∞

fN (s).

To prove Proposition 5, it is sufficient to prove that S(α, β) has QJ -measure 0 for any

0 ≤ α < β ≤ 1. Fix such α, β. For s ∈ S(α, β), take a sequence 1 ≤ Nα
1 (s) < Nβ

1 (s) <

Nα
2 (s) < Nβ

2 (s) < ... < Nα
k (s) < Nβ

k (s) < ... of integers such that fN
α
k (s)(s) < α and

fN
β
k (s)(s) > β for any k ≥ 1. We finally define the following sets:

Ak =
⋃

s∈S(α,β)

S
Nαk (s)

`(s,Nαk (s))

Bk =
⋃

s∈S(α,β)

S
Nβk (s)

`(s,Nβk (s))

We have S(α, β) ⊂ Ak+1 ⊂ Bk ⊂ Ak for every k ≥ 1. In particular,

S(α, β) ⊂ S̃(α, β) :=
⋂
k∈N∗

Ak =
⋂
k∈N∗

Bk. (27)

Given any two of the sets S
Nαk (s)

`(s,Nαk (s)) that form Ak, either they are disjoint or one is

contained in the other. Consequently, Ak may be written as a disjoint union of such sets,
denoted by Ak

′

k . Therefore,∫
Ak

fdQJ =
∑
k′

∫
Ak
′
k

fdQJ <
∑
k′

αQJ (Ak
′

k ) = αQJ (Ak)

and analogously, with similar notations,∫
Bk

fdQJ =
∑
k′

∫
Bk
′
k

fdQJ >
∑
k′

βQJ (Bk
′

k ) = βQJ (Bk).

Since Bk ⊂ Ak, we get αQJ (Ak) > βQJ (Bk). Taking the limit k → +∞, it yields
αQJ (S̃(α, β)) > βQJ (S̃(α, β)), which is possible only if QJ (S̃) = 0. Therefore, using
(27), we get QJ (S) = 0, which concludes the proof of the proposition.
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From (18) and (26), we infer that for any N ≥ 1,

∫
SΣJ

fdνJ =

2N−1∑
`=0

∫
SΣJ

fdνN` =

2N−1∑
`=0

fN` ν
N
` (SΣJ ),

and the dominated convergence theorem together with the definition of QJ and Proposition
5 yield ∫

SΣJ

fdνJ =

∫
SJ

e(f)(s)dQJ (s). (28)

We see that for a fixed s ∈ SJ ,

C0(SΣJ ,R) 3 f 7→ e(f)(s) ∈ R

is a non-negative linear functional on C0(SΣJ ,R). By the Riesz-Markov theorem, there
exists a unique Radon probability measure νJs on SΣJ such that

e(f)(s) =

∫
SΣJ

fdνJs . (29)

Putting (28) and (29) together, we get∫
SΣJ

fdνJ =

∫
SJ

(∫
SΣJ

fdνJs

)
dQJ (s)

which is the desired disintegration of measures formula.

Conclusion of the proof. There remains to show that νJs is invariant by ~ρJs . Let a ∈
S 0(Hm) be supported in cone of T ∗Hm whose intersection with some conic neighborhood
of the set {pzj = 0} is reduced to 0, for any j ∈ J . For QJ -almost every s ∈ SJ , we have∫

SΣJ

{a, ρJs }dνJs = e({a, ρJs })(s) (by (29))

= lim
N→+∞

1

νN`(s,N)(SΣJ )

∫
SΣJ

{a, ρJs }dνN`(s,N) (30)

≤ lim
N→+∞

Cd(N) (by (23))

= 0

with the convention that if the denominator in (30) is null, then the whole expression is
null. For an arbitrary a ∈ S 0(Hm), taking a sequence an ∈ S 0(Hm) whose support has
the above property and such that an → a in SΣJ (in the space of symbols) as n→ +∞, we
see that the above quantity also vanishes since νJs has finite mass and {an, ρJs } → {a, ρJs }
in SΣJ as n→ +∞. This implies that νJs is invariant by the flow et~ρ

J
s , which concludes the

proof of Theorem 1.

3 Proof of Theorem 2

In this section, we prove Theorem 2. The four steps are the following:

1. In Lemma 6 and Lemma 7, we prove the result for a fixed J ∈ P \ {∅}, QJ the Dirac
mass at some s ∈ SJ , and νJs ∈P(S∗Hm)

(i) has no mass outside SΣJ ,

(ii) is invariant under the flow of ~ρJs ,

(iii) and is in a simple tensor form that we make precise below.
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In other words, if ν∞ = νJs with νJs satisfying (i), (ii) and (iii), then it is a QL.

2. In Lemma 8, we extend the result of Step 1 to the case where (iii) is not necessarily
satisfied, i.e., ν∞ = νJs satisfies only (i) and (ii).

3. In Lemma 9, we extend the result of Steps 1 and 2 to the case where ν∞ ∈ PSΣ has
no mass outside SΣJ for some J ∈ P \ {∅}, i.e., ν∞ = νJ .

4. Finally, using the previous result for all J ∈ P \ {∅}, we prove Theorem 2 in full
generality (i.e., for arbitrary ν∞ ∈PSΣ).

The map Σ → Hm × Rm, (q, p) 7→ (q, pz1 , . . . , pzm) is an isomorphism, and thus, in the
sequel, we consider the coordinates (q, pz1 , . . . , pzm) on Σ and in the coordinates (q, pz1 : · · · :
pzm) on SΣ, where the notation pz1 : · · · : pzm stands for homogeneous coordinates.

Let us summarize the proof. We fix J ∈ P \ {∅}. Since any two of the operators Rj and
Ωj′ for j, j′ ∈ J commute, the orthogonal decomposition (11) can be refined: more precisely,
given (nj) ∈ NJ and (αj) ∈ (Z\{0})J , we consider the joint eigenspace HJ(nj),(αj) ⊂ L

2(Hm)

on which the operator 1
i ∂zj acts as αj and Ωj acts as 2nj + 1.

ν∞ is obtained as a QL of an orthonormal sequence of eigenfunctions (ϕk)k∈N∗ which is
described through its components in these eigenspaces. Moreover, each of the four steps is
achieved by taking linear combinations of eigenfunctions (with same eigenvalues) used in the
previous step. Therefore, the number of eigenspaces HJ(nj),(αj) used for building (ϕk)k∈N∗

increases at each step.
In order to achieve Step 1, we focus on the eigenspaces HJ(nj),(αj) corrreponding to

2nj + 1∑
i∈J (2ni + 1)

≈ sj and
αj
αj′
≈

pzj
pzj′

for any j, j′ ∈ J .
For Step 2, we add the results of the previous step for different p ∈ SΣJ , and we take

care that each term in the sum corresponds to the same value of −∆. Hence, (nj) ∈ NJ is
the same as in Step 1, but we use various (αj) ∈ (Z \ {0})J to reach all p.

For Step 3, we add the results of Step 2 for different s ∈ SJ . Therefore, we use the
eigenspaces HJ(nj),(αj) also for different (nj) ∈ NJ . Finally, in Step 4, we sum the sequences

obtained at Step 3 for J ranging over P \ {0}.

In order to describe the measures in a “tensor form” which we consider for Step 1, we
need to introduce a few notations.

Notations. For the first three steps, we fix J ∈ P \{∅}. Any s ∈ SJ can be identified to
some homogeneous coordinate pz1 : · · · : pzm (with pzi = 0 for i /∈ J ), in a way which does
not depend on q ∈ Hm. Thus, for any q ∈ Hm, t ∈ R and s ∈ SJ , it makes sense to consider
the point q + ts ∈ Hm, which has the same coordinates xj and yj as q for any 1 ≤ j ≤ m
(only the coordinates zj for j ∈ J change).

Let us consider the set
Ms
q = {q + ts, t ∈ R} ⊂ Hm

where the bar denotes the closure in Hm. The set Ms
q is a submanifold of Hm of dimension

dsq ≤ m, and we denote by H s
q the Hausdorff measure of dimension dsq on Ms

q .
For any (q, p) ∈ SΣ and any q′ ∈ Hm, it makes sense to consider the point (q′, p) ∈ SΣ,

which is the point in the fiber of SΣ over q that has the same homogeneous coordinates
pz1 : · · · : pzm as p.

Lemma 6. Let (q, p) ∈ SΣJ and s ∈ SJ be such that there exists a J-tuple (nj) ∈ NJ with

sj =
2nj + 1∑

i∈J
(2ni + 1)

(31)
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for any j ∈ J . Then, the measure H s
q ⊗ δp is a Quantum Limit.7

Proof. Since the sj are pairwise rationally related, the mapping t 7→ q + ts is periodic and
dsq = 1. Without loss of generality, we assume that J = {1, . . . , J} for some 1 ≤ J ≤ m.

We construct a sequence of eigenfunctions (ϕk)k∈N∗ of −∆ which admits µsq,p as unique

Quantum Limit. In our construction, for any k ∈ N∗, ϕk belongs to the eigenspace HJ(nj),(αj)
for some (nj) ∈ NJ and some (αj) ∈ (Z \ {0})J , and it does not depend on the variables in
the i-th copy of H for i /∈ J . Our goal is to choose adequately the J-tuples (nj) and (αj).
Note that a similar argument for m = 1 is done in the proof of Point 2 of Proposition 3.2 in
[CdVHT18].

We fix a sequence of J-tuples (α1,k, . . . , αJ,k) ∈ (Z \ {0})J , for k ∈ N∗, such that:

• For any 1 ≤ j ≤ J , αj,k → +∞ as k → +∞, so that for any 1 ≤ j, j′ ≤ J , there holds

nj′

αj,k
−→
k→+∞

0; (32)

• For any 1 ≤ j, j′ ≤ J ,
αj,k
αj′,k

−→
k→+∞

pzj
pzj′

, (33)

where pz1 : · · · : pzm are the homogeneous coordinates of p in SΣ.

Now, for any k ∈ N∗, denoting by 1 the constant function equal to 1 (on some copy of
H), we define

ϕk = Φ1
k ⊗ . . .⊗ ΦJk ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

m−J times

, (34)

where, for 1 ≤ j ≤ J ,
Φjk(xj , yj , zj) = φj,k(xj , yj)e

iαj,kzj

is an eigenfunction of −∆j (on the j-th copy of H) with eigenvalue (2nj + 1)|αj,k|. The
precise form of φj,k will be given below.

Using (32) and the proof of Lemma 2, notably the pseudodifferential operators PJn in-
troduced in (13), we obtain that the mass of any Quantum Limit of (ϕk)k∈N∗ is contained
in SΣJ . Moreover, from the decomposition into cones done in Section 2.3 and the equality
(31), we infer that any Quantum Limit of (ϕk)k∈N∗ is invariant under ~ρJs .

In the next paragraphs, we explain how to choose φj,k with eigenvalue 2nj +1 in order to
ensure that (ϕk)k∈N∗ has a unique QL, which is µs0,p. For the sake of simplicity of notations,
we set α = αj,k. The eigenspace of −∆j corresponding to the eigenvalue (2nj + 1)|α| is
of the form (A∗α)nj (ker(Aα))eiαz, where Aα = ∂xj + i∂yj + iαxj locally, and, accordingly,
A∗α = −∂xj + i∂yj + iαxj locally (see for example [CdV84, Section 2]). This follows from a
Fourier expansion in the zj variable, which gives

−∆j =
⊕
γ∈Z

Bγ , where Bγ = A∗γAγ + γ for γ ∈ Z.

We note that the function fj,k(xj , yj) = ck exp(−αx
2
j

2 + α
4 (xj + iyj)

2) (normalized to 1
thanks to ck) is a quasimode of Aα, as α → +∞, for the eigenvalue 0. Moreover, a well-
known computation on coherent states (see Example 1 of Chapter 5 in [Zwo12]) guarantees
that for any a ∈ S 0(R2m),

(Op(a)(A∗α)njfj,k, (A
∗
α)njfj,k) −→

k→+∞
a(0, 0).

In other words, (A∗α)njfj,k, seen as a sequence of functions of R2m, has a unique Quantum
Limit, which is δ0,0.

7The associated orthonormal sequence of eigenfunctions is specified in the proof, see also Remark 11.
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Now, using that the spectrum of Bα has gaps that are uniformly bounded below, this
property is preserved when we consider eigenfunctions of −∆j : when α varies, the projection

Φjk of (A∗α)njfj,ke
iαz onto the eigenspace of −∆j corresponding to the eigenvalue (2nj+1)|α|

has a unique QL, which is H s
0 ⊗ δp. The Dirac mass at p comes from (33) and from Lemma

10 applied, for any 1 ≤ i, j ≤ J , to the operator Ri
Rj
− pi

pj
. Note that the point q = 0 plays

no specific role, and therefore any measure H s
q ⊗ δp can be obtained as a QL, when dsq = 1

and under (31).

Lemma 7. Let (q, p) ∈ SΣJ and s ∈ SJ be arbitrary. Then, the measure H s
q ⊗ δp is a

Quantum Limit.8

Proof. We still assume that J = {1, . . . , J}. Using Lemma 6, we can assume that q ∈ Hm

and s ∈ Sj verify either dsq ≥ 2, or dsq = 1 but (31) is not satisfied. In both cases, the
following fact holds:

Fact 1. The measure H s
q is in the weak-star closure of the set of measures H s′

q′ for which

ds
′

q′ = 1 and (31) is satisfied.

Let us denote by TJ = (R/2πZ)J the Riemannian torus of dimension #J equipped
with the flat metric. Due to the structure of ΣJ , proving Fact 1 is equivalent to proving the
following fact, called Fact 2 in the sequel: if γ is a geodesic of TJ and Hγ is the Hausdorff
measure on γ, then Hγ is in the weak-star closure of the set of measures Hγ′ with γ′ a
periodic geodesic of TJ of slope (s1, . . . , sJ) verifying (31) for some J-tuple (n1, . . . , nJ).
Let us prove Fact 2.

In case dsq ≥ 2, possibly restricting to the flat torus given by the closure of γ, we can

assume that γ is a dense geodesic in TJ . To prove Fact 2 in this elementary case, we take
a sequence of geodesics (γ′n)n∈N∗ contained in TJ , with rational slopes given by J-tuples
(sn1 , . . . , s

n
J) of the form (31), and which become dense in TJ as n→ +∞.

For the case dsq = 1 where (31) is not satisfied, similarly, we take a sequence of geodesics
with rational slopes which converges to γ. This proves Fact 2 and hence Fact 1 follows.

Since the set of QLs is closed, Fact 1 implies Lemma 7.

Remark 11. Note that, following the proofs of Lemma 6 and Lemma 7, any measure H s
q ⊗δp

is a Quantum Limit associated to an orthonormal sequence of eigenfunctions (ϕk)k∈N∗ such
that, for any k ∈ N∗, ϕk belongs to some eigenspace HJ(nj,k),(αj,k). In particular, ϕk is an

eigenfunction of Ωj for any j ∈ J .
Note also that to guarantee this last property, it is not sufficient to invoke, at the end of

the proof of Lemma 7, the closedness of the set of QLs: it is necessary to follow the proof of
this fact, which consists in a simple extraction argument.

Lemma 8. Let s ∈ SJ and νJs ∈ P(S∗Hm) having no mass outside SΣJ and being
invariant under ~ρJs . Then νJs is a Quantum Limit.9

Proof. Let us consider the set PJ
s ⊂P(S∗Hm) of probability measures

νJs =
∑

(qi,pi)∈E

βiH
s
qi ⊗ δpi (35)

where i ranges over some finite set F , E is a set of pairs (qi, pi) ∈ SΣ, and βi ∈ R.
We consider νJs ∈PJ

s defined by (35). Note that if i 6= i′, either H s
qi ⊗ δpi = H s

q′i
⊗ δp′i ,

or the supports of H s
qi ⊗ δpi and H s

q′i
⊗ δp′i are disjoint. Therefore, possibly gathering terms

in the above sum, we assume that the supports of H s
qi ⊗ δpi and H s

q′i
⊗ δp′i are disjoint as

soon as i 6= i′.
For i ∈ F , using Lemma 6 and Lemma 7, we consider a sequence of eigenfunctions

(ϕik)k∈N∗ with eigenvalues (λik)k∈N∗ and whose unique QL is H s
qi ⊗ δpi . According to the

8See Remark 11 for the description of the associated orthonormal basis of eigenfunctions.
9See Remark 12 for the description of the associated orthonormal basis of eigenfunctions.
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proof of these lemmas (see also Remark 11), we can also assume that ϕik ∈ H
J
(nj,k),(αij,k)

for

some J-tuples such that

λik :=
∑
j∈J

(2nj,k + 1)|αij,k|

does not depend on i ∈ F . In other words,

• for any 1 ≤ j ≤ J , ϕik is also an eigenvalue of Ωj with eigenvalue nj,k which does not
depend on i ∈ F ;

• for any i, i′ ∈ F , λik = λi
′

k and we denote this common value by λk. This means that
for any i ∈ F , ϕik belongs to the eigenspace of −∆ corrresponding to the eigenvalue λk.

Since H s
qi ⊗ δpi and H s

q′i
⊗ δp′i have disjoint supports, the joint microlocal defect measure of

(ϕik)k∈N∗ and (ϕi
′

k )k∈N∗ vanishes for i 6= i′ by Lemma 3. It follows that

ϕk :=
∑
i∈F

βiϕ
i
k

is an eigenfunction of −∆ with eigenvalue λk, and that in the limit k → +∞, it admits νJs
as unique Quantum Limit.

Finally, we note that any νJs ∈ P(S∗Hm) having all its mass contained in SΣJ and
being invariant under ~ρJs is in the closure of PJ

s . Since the set of QLs is closed, Lemma 8
is proved.

Remark 12. The above proof shows that ν∞ = νJs is a QL for an orthonormal sequence
(ϕk)k∈N∗ such that ϕk belongs to ⊕

(αj)∈(Z∗)J
HJ(nj′,k′ ),(αj)

for some J-tuple (nj′,k′) ∈ NJ which depends only on k ∈ N∗.
Lemma 9. Let J ∈ P \ {∅}, and

νJ =

∫
SJ

νJs dQ
J (s)

for some QJ ∈ P(SJ ) and νJs ∈ P(S∗Hm) having no mass outside SΣJ and such that,
for QJ -almost any s ∈ SJ , ~ρJs ν

J
s = 0. Then νJ is a Quantum Limit.10

Proof. As in the previous proofs, we assume without loss of generality that J = {1, . . . , J}
for some 1 ≤ J ≤ m. Let (s`)`∈L be a finite family of distinct elements of SJ indexed by L,
and let γ` ∈ R for ` ∈ L. For any ` ∈ L, let also νs` , with mass only in SΣJ , be invariant
under the flow of ~ρJ

s`
. Let us prove that

νJ =
∑
`∈L

γ`νs` (36)

is a Quantum Limit. This corresponds to the case where the measure QJ on SJ is given by

QJ =
∑
`∈L

γ`δs` .

For any ` ∈ L, we take (ϕ`k)k∈N∗ to be a sequence of eigenfunctions of −∆ whose unique
QL is νs` . As emphasized in the proof of Lemma 8, it is possible to assume that ϕ`k is an
eigenfunction of Ωj for any 1 ≤ j ≤ J , with eigenvalue 2n`j,k + 1 such that

2n`j,k + 1

J∑
i=1

(2n`i,k) + 1

−→
k→+∞

s`j (37)

10See Remark 13 for the description of the associated orthonormal basis of eigenfunctions.
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where s` = (s`1, . . . , s
`
J).

Let us prove that the joint microlocal defect measure ν`,`′ of (ϕ`k)k∈N∗ and (ϕ`
′

k )k∈N∗

vanishes for ` 6= `′: we note that for Op(a) commuting with Ω1, . . . ,Ωm, with a ∈ S 0(Hm),

(2n`j,k + 1)(Op(a)ϕ`k, ϕ
`′

k ) = (Op(a)Ωjϕ
`
k, ϕ

`′

k )

= (Op(a)ϕ`k,Ωjϕ
`′

k )

= (2n`
′

j,k + 1)(Op(a)ϕ`k, ϕ
`′

k )

From (37) and the fact that s` 6= s`
′
, we deduce that, for any sufficiently large k ∈ N∗,

there exists 1 ≤ j ≤ J such that n`j,k 6= n`
′

j,k. Hence, the above computation shows that

(Op(a)ϕ`k, ϕ
`′

k ) = 0 for sufficiently large k ∈ N∗. Therefore,∫
S∗Hm

adν`,`′ = 0.

Since νs` and νs`′ give no mass to the complementary set of SΣJ in S∗Hm, we know that it
is also the case for ν`,`′ by Lemma 3. Therefore, if b ∈ S 0(Hm) is arbitrary, averaging Op(b)
with respect to the operators Ω1, . . . ,ΩJ as in Lemma 4, we obtain an operator A ∈ Ψ0(Hm)
such that σP (A) coincides with b on ΣJ , and A commutes with Ω1, . . . ,ΩJ . Therefore,∫

S∗Hm

bdν`,`′ =

∫
SΣJ

bdν`,`′ =

∫
SΣJ

σP (A)dν`,`′ = 0,

and since this is true for any b ∈ S 0(Hm), we conclude that ν`,`′ = 0.
This implies that the sequence given by

ϕJk =
∑
`∈L

γ`ϕ`k

admits νJ as unique QL, where νJ is defined by (36). Note that to ensure that ϕJk is still
an eigenfunction of −∆, it is necessary, as in the proof of Lemma 8, to adjust the sequences
(n`j,k) and (α`j,k) in order to guarantee that all ϕ`k (for ` ∈ L) are eigenfunctions of −∆ with
same eigenvalue.

We notice that the closure of the set of Radon measures on SΣJ which may be written
as a finite linear combination (36) is exactly the subset of PSΣ for which QJ

′
= 0 for any

J ′ 6= J . Using that the set of QLs is closed, Lemma 9 is proved.

Remark 13. The above proof shows that ν∞ = νJ is a QL for an orthonormal sequence
(ϕk)k∈N∗ such that ϕk belongs to ⊕

(nj)∈NJ

⊕
(αj)∈(Z∗)J

HJ(nj),(αj).

Let us now finish the proof of Theorem 2. Let ν∞ ∈PSΣ,

ν∞ =
∑

J∈P\{∅}

νJ .

Note that the measures νJ are non-negative, but are not necessarily probability measures.
Let (ϕJk )k∈N∗ be a sequence of eigenfunctions of −∆ whose unique microlocal defect

measure is νJ . The proof of Lemma 9 guarantees that, for any k ∈ N∗, one may choose all
ϕJk , for J running over P \{∅}, to have the same eigenvalue with respect to −∆. Therefore,

ϕk =
∑

J∈P\{∅}

ϕJk
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is also an eigenfunction of −∆. Moreover, for any distinct J ,J ′ ∈ P \ {∅}, the joint

microlocal defect measure of (ϕJk )k∈N∗ and (ϕJ
′

k )k∈N∗ vanishes (see Lemma 3). Computing
(Op(a)ϕk, ϕk) for any a ∈ S 0(Hm) in the limit k → +∞, we obtain that the unique
Quantum Limit of (ϕk)k∈N∗ is ν∞. Note that, as already explained in Remarks 11, 12 and
13, the orthonormal sequence (ϕk)k∈N∗ is fully explicit in our construction.

Finally, we note that the invariance properties of ν∞ may be established separately on
each SΣJ since ([A,Rs]ϕ

J
k , ϕ

J ′
k ) → 0 as k → +∞ for J 6= J ′ (the bracket [A,Rs] is the

natural operator to consider for establishing invariance properties, see Section 2.3). This
concludes the proof of Theorem 2.

A Classical pseudodifferential calculus

We briefly gather some basic facts of pseudodifferential calculus used along this paper (see
also [Hör85, Chapter XVIII]).

Following our notations of Section 1, we denote by M a smooth compact manifold of
dimension n. We denote by S k(M) the space of smooth homogeneous functions of order k
on the cone T ∗M \ {0}. They are the classical symbols of order k.

The algebra Ψ(M) of classical pseudodifferential operators on M is graded according to
the chain of inclusions Ψ−∞(M) ⊂ . . . ⊂ Ψk(M) ⊂ Ψk+1(M) ⊂ . . . where k ∈ Z ∪ {−∞} is
called the order.

To a pseudodifferential operator A ∈ Ψm(M), we can associate its principal symbol
σP (A), and the map σP : Ψk(M)/Ψk−1(M) → S k(M) is bijective. A quantization is a
continuous linear mapping

Op : S 0(M)→ Ψ0(M)

with σP (Op(a)) = a. An example is obtained using partitions of unity and the Weyl quan-
tization which is given in local coordinates by

OpW (a)f(q) = (2π)−n
∫
Rn×Rn

ei〈q−q
′,p〉a

(
q + q′

2
, p

)
f(q′)dq′dp.

Although we omitted the upper W index in the paper, this is the quantization we used by
default in this paper.

We have the following properties:

• If A ∈ Ψk(M) and B ∈ Ψ`(M), then AB ∈ Ψk+`(M) and σP (AB) = σP (A)σP (B).

• If A ∈ Ψk(M) and B ∈ Ψ`(M), then [A,B] ∈ Ψk+`−1(M) and

σP ([A,B]) =
1

i
{σP (A), σP (B)},

where the Poisson bracket is taken with respect to the canonical symplectic structure
of T ∗M .

Let us prove Lemma 3 of Section 2.2.

Proof of Lemma 3. If a ∈ S 0(M) is such that a ≥ 0 and a is supported in a set where
µ11 = 0, then, setting aε = a+ ε for any ε > 0, we get

(Op(aε)uk, vk) = (Op(a1/2
ε )uk,Op(a1/2

ε )vk) + o(1) ≤ ‖Op(a1/2
ε )uk‖L2‖Op(a1/2

ε )vk‖L2 + o(1)

where a
1/2
ε ∈ S 0(M). We know that

‖Op(a1/2
ε )uk‖2L2 = (Op(aε)uk, uk) + o(1) = (Op(a)uk, uk) + ε‖uk‖22 + o(1) = ε‖uk‖2 + o(1)

and that ‖Op(a
1/2
ε )vk‖2L2 ≤ (C + ε)‖vk‖2 where C does not depend on ε. Therefore

(Op(aε)uk, vk) . ε. Hence (Op(a)uk, vk) → 0. The same result holds for a ≤ 0 supported
in a set where µ11 = 0. Therefore, decomposing any symbol as a = a+ + a− + r, where
a+, a−, r ∈ S 0(M), a+ ≥ 0, a− ≤ 0, and |r| ≤ δ for some small δ > 0, we get that µ12 is
absolutely continuous with respect to µ11. The rest of the lemma follows by symmetry.
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Lemma 10. Let us assume that ` ∈ N and P ∈ Ψ`(M) is elliptic in any cone contained
in the complementary of a closed conic set F ⊂ T ∗M . Assume that (uk)k∈N∗ is a bounded
sequence in L2(M) weakly converging to 0 and such that Puk → 0 strongly in L2(M). Then
any microlocal defect measure of (uk)k∈N∗ is supported in F .

Proof. Let µ be a microlocal defect measure of (uk)k∈N∗ , i.e.,

(Op(a)uσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adµ

for any a ∈ S 0(M), where σ is an extraction. Let a ∈ S 0(M) be supported outside F . Let
Q ∈ Ψ−`(M) be such that PQ− I ∈ Ψ−1(M) on the support of a. Then QOp(a)P ∈ Ψ0(M)
has principal symbol a, and therefore

(QOp(a)Puσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adµ.

Using that Puσ(k) → 0, we get (QOp(a)Puσ(k), uσ(k)) → 0 as k → +∞, and therefore∫
S∗M

adµ = 0. Hence, µ is supported in F .

B Another view on the measures QJ and νJs

We explain an alternative way to obtain the measure QJ on SJ and the family of mea-
sures (νJs )s∈SJ on SΣJ , based on pure functional analysis. This way of obtaining QJ and
(νJs )s∈SJ does not allow to prove easily that ~ρJs ν

J
s = 0, thus we did not use it in the core

of the proof of Theorem 1. However, it sheds a different light on Point (2) of Theorem 1,
therefore we decided to include it here.

In this Section, as in Section 2.3, we work under Assumption 1. In particular, J =
{1, . . . , J} is fixed.

For f ∈ C0(SJ ) (the set of continuous functions on SJ ), we define Πf the operator

Πf = f

(
Ω1

Ω1 + . . .+ ΩJ
, . . . ,

ΩJ
Ω1 + . . .+ ΩJ

)
(38)

defined through functional calculus. For any k ∈ N∗ and any f ∈ C0(SJ ), there holds
‖Πfϕk‖L2 ≤ ‖f‖L∞‖ϕk‖L2 .

Let us denote by M+(SJ ,M (SΣJ )) the set of non-negative measures on SJ which are
valued in the set M (SΣJ ) of Radon measures on SΣJ . More precisely, µ ∈M+(SJ ,M (SΣJ ))
is defined as a family of Radon measures µf on SΣJ (for any f ∈ C0(SJ )), which we also
denote by

∫
SJ

f dµ, such that f 7→ µf is linear and continuous, and µf is non-negative if f

is non-negative. Here and in the sequel, C0(SJ ) is equipped with the topology of uniform
convergence and M (SΣJ ) is equipped with the weak-star topology.

Lemma 11. There exists µ ∈M+(SJ ,M (SΣJ )) and an extraction σ : N∗ → N∗ such that,
for any symbol a ∈ S 0(Hm) and any f ∈ C0(SJ ),

(Op(a)Πfϕσ(k), ϕσ(k))L2 −→
k→+∞

∫
SΣJ

a d

(∫
SJ

f dµ

)
. (39)

Proof. Let f ∈ C0(SJ ) be non-negative. For any symbol a ∈ S 0(Hm), we denote by
ã ∈ S 0(Hm) the symbol satisfying

Op(ã) =

∫
(R/2πZ)J

U(−t)Op(a)U(t)dt

where U(t) = U(t1, . . . , tJ) = ei(t1Ω1+...+tJΩJ ) for t = (t1, . . . , tJ) ∈ (R/2πZ)J . Then, Op(ã)
commutes with ΩJ for any 1 ≤ j ≤ J . Therefore, for any k ∈ N∗, since all Ωj are selfadjoint,

(Op(ã)Πfϕk, ϕk)L2 = (Op(ã)Π√fϕk,Π
√
fϕk)L2 .
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By [Gér91b], we know that there exists a non-negative Radon measure µ
√
f on S∗Hm and

an extraction σ : N∗ → N∗ such that

(Op(ã)Π√fϕσ(k),Π√fϕσ(k))L2 −→
k→+∞

∫
S∗Hm

ã dµ
√
f .

Note that µ
√
f has no mass outside SΣJ . Moreover, σP (ã) and σP (a) coincide on SΣJ .

Therefore, for any a ∈ S 0(Hm),

(Op(a)Π√fϕσ(k),Π√fϕσ(k))L2 −→
k→+∞

∫
SΣJ

a dµ
√
f .

We can do the same argument for non-positive f ∈ C0(SJ ), and, finally writing the decom-
position of an arbitrary f ∈ C0(SJ ) into its positive and its negative part, we get (39). Note
that using a classical separability argument, linearity and diagonal extraction, the extraction
σ may be chosen to be the same for any f ∈ C0(SJ ).

Lemma 12. For any µ ∈ M+(SJ ,M (SΣJ )), there exist QJ ∈ M+(SJ ), and, for QJ -
almost every s ∈ SJ , νJs ∈P(S∗Hm) having no mass outside SΣJ such that the equality∫

SΣJ

a d

(∫
SJ

f dµ

)
=

∫
SJ

f(s)

(∫
SΣJ

a dνJs

)
dQJ (s) (40)

holds for any f ∈ C0(SJ ) and any a ∈ S 0(Hm).

Proof. Since both parts of (40) depend only on the part of a which lies in SΣJ , we call
“symbol on SΣJ ” any restriction to SΣJ of some a ∈ S 0(Hm). It follows from the usual
Riesz representation theorem that for any symbol a on SΣJ , the functional

C0(SJ )→ R, f 7→
∫
SΣJ

a d

(∫
SJ

fdµ

)
,

which is linear and continuous, may be written as∫
SΣJ

a d

(∫
SJ

fdµ

)
=

∫
SJ

f(s) dQJa (s) (41)

for some Radon measure QJa on SJ (which is unique for each symbol a on SΣ). In particular,
for a ≡ 1, this formula defines a measure QJ1 on SJ which we denote by QJ . Note also that
if a is non-negative, then QJa is non-negative.

For any symbol a on SΣJ , QJa is absolutely continuous with respect to QJ . To prove
it, assume that QJ (E) = 0 for some measurable set E ⊂ SJ . Then, for any f ∈ C0(SJ )
supported in E,

∫
SJ

f(s) dQJ (s) = 0, which in turn implies that
∫
SJ

fdµ = 0 thanks to (41).

Therefore, for any symbol a on SΣJ , the left-hand side of (41) vanishes, hence the right-
hand side also vanishes. From this, it follows that QJa (E) = 0, and that QJa is absolutely
continuous with respect to QJ .

By the Radon-Nikodym theorem, for any symbol a on SΣJ , there exists a measurable
function θa on SJ such that

dQJa (s) = θa(s)dQJ (s) (42)

for QJ -almost every s ∈ SJ . Moreover, if a is non-negative, then θa(s) is non-negative.
We note that, for QJ -almost every s ∈ SJ , a 7→ θa(s) is linear. Let us prove that it is

also continuous for QJ -almost every s ∈ SJ . Let (an)n∈N∗ be a sequence of non-negative
symbols on SΣJ tending to 0. Taking f ≡ 1 and using (42) and (41), we have∫

SJ

θan(s) dQJ (s) =

∫
SΣJ

an d

(∫
SJ

1 dµ

)
−→

n→+∞
0.
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Since QJ is a non-negative measure and θan(s) ≥ 0 for QJ -almost every s (because QJan
is non-negative), by Lebesgue’s dominated convergence theorem, it implies that θJan(s)→ 0
for QJ -almost every s ∈ SJ . Similarly, if (an)n∈N∗ is a sequence of non-positive symbols on
SΣJ tending to 0, then θan(s) → 0 for QJ -almost every s ∈ SJ . Altogether, this implies
that a 7→ θa(s) is continuous for QJ -almost every s ∈ SJ .

Using Riesz representation theorem, we get that for QJ -almost every s ∈ SJ (by a
classical separability argument, this “QJ -almost every” does not depend on a), there exists
a non-negative Radon measure νJs on SΣJ such that

θa(s) =

∫
SΣJ

a dνJs (43)

for any symbol a on SΣJ . Combining (41), (42) and (43), we obtain (40).

Finally, combining Lemma 11 and Lemma 12, we get that for any symbol a ∈ S 0(Hm)
and any f ∈ C0(SJ ),

(Op(a)Πfϕσ(k), ϕσ(k))L2 −→
k→+∞

∫
SΣJ

a d

(∫
SJ

f dµ

)
=

∫
SJ

f(s)

(∫
SΣJ

a dνJs

)
dQJ (s).

Taking f ≡ 1, since νJ is the unique microlocal defect measure of (ϕk)k∈N∗ (see Assumption
1), we get that

νJ =

∫
SJ

νJs dQJ (s).

Remark 14. Approaching the characteristic function f(s) = 1s∈SN` for some fixed N ∈ N∗

and 0 ≤ ` ≤ 2N − 1 (see (24) for notations) by continuous functions, and considering (38)
and (39), we see that the disintegration of ν provided by the above argument coincides with
the disintegration done in Section 2.3, i.e., the measures QJ and νJs are the same.

C Quantum Limits for tensorial bases

This section consists in a short remark concerning Quantum Limits in a tensor form. It says
that if an orthonormal Hilbert basis of eigenfunctions is in a tensor form, then all associated
QLs can also be written as tensorial products.

Proposition 13. Let B = {ψ`, ` ∈ N∗} be an orthonormal Hilbert basis of L2(H) of eigen-
functions of −∆H, and let B⊗m be the orthonormal Hilbert basis of L2(Hm) consisting of
all tensorial products of m elements of B. Then any Quantum Limit associated to B⊗m is a
tensorial product of Quantum Limits of (ψ`)`∈N∗ .

Proof. We denote by (ϕk)k∈N∗ a subsequence of B⊗m (with increasing eigenvalues) having a
unique Quantum Limit ν. We write

ϕk = ψ1
k ⊗ . . .⊗ ψmk

with ψjk ∈ B for any 1 ≤ j ≤ m and any k ∈ N∗. Then, for any sequence (ψjk)k∈N∗ , we denote
by νj one of its Quantum Limits. Note that the linear combinations of tensorial products
(with m components in the tensorial product) of symbols in S 0(H) are dense in the set
S 0(Hm). Therefore, ν = ν1 ⊗ . . .⊗ νm, which concludes the proof.
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D Quantum Limits of flat contact manifolds

The study of Quantum Limits of higher dimensional contact manifolds is also an interesting
problem. In this section, we prove that for “flat” contact manifolds, typically a quotient of
the Heisenberg group HN of dimension 2N+1 by one of its discrete cocompact subgroups, the
invariance properties of Quantum Limits are much simpler than those described in Theorem
1, even though “frequencies” show up: the part of the QL which lies in SΣ is invariant under
the lift of the Reeb flow, as in the 3D case.

For N ≥ 1, we consider the group law on R2N+1 given by

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − x · y′)

where x, x′, y, y′ ∈ RN and z, z′ ∈ R. The Heisenberg group H̃N is the group H̃N =
(R2N+1, ?). We consider the subgroup ΓN = (

√
2πZ)2N × 2πZ of H̃N , and the left quotient

HN = ΓN\H̃N . We also define the 2N left invariant vector fields on HN given by

Xj = ∂xj , Yj = ∂yj − xj∂z

for 1 ≤ j ≤ N . We fix β1, . . . , βN > 0 satisfying
∏N
j=1 βj = 1, we set β = (β1, . . . , βN ) and

we consider the sub-Laplacian

∆β =

N∑
j=1

βj(X
2
j + Y 2

j )

which is an operator acting on functions on HN . The positive real numbers βj are sometimes
called frequencies, see [Agr96].

We set ρ = pz|Σ, which is the Hamiltonian lift of the Reeb vector field Z = ∂z to Σ (see
[CdVHT18, Section 2.3] for properties of the Reeb vector field).

Proposition 14. Let (ϕk)k∈N∗ be an orthonormal sequence of L2(HN ) consisting of eigen-
functions of −∆β. Then, any Quantum Limit ν∞ associated to (ϕk)k∈N∗ and supported in
SΣ is invariant under et~ρ, the lift of the Reeb flow.

Remark 15. We do not expect such a result to be true when the frequencies βj are not
constant on the manifold.

Proof of Proposition 14. Denoting by (q, p) the canonical coordinates in T ∗HN , i.e., q =
(x1, . . . , xN , y1, . . . , yN , z) and p = (px1

, . . . , pxN , py1
, . . . , pyN , pz), we know that

Σ = {(q, p) ∈ T ∗HN , pxj = pyj − xjpzj = 0}

is isomorphic to HN × R.
Up to extraction of a subsequence, we may assume that (ϕk)k∈N∗ has a unique QL ν∞,

which is supported in SΣ. We set R =
√
∂∗z∂z and, on its eigenspaces corresponding to

non-zero eigenvalues, we define Ωj = −R−1(X2
j +Y 2

j ) = −(X2
j +Y 2

j )R−1 for 1 ≤ j ≤ N . On
these eigenspaces, the sub-Laplacian acts as

−∆β = RΩ = ΩR with Ω =

N∑
j=1

βjΩj

and [R,Ω] = 0.
Let V be a (small) conic microlocal neighborhood of Σ, and let us consider R,Ω as acting

on functions microlocally supported in V (meaning that their wave-front set is contained in
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V ). If B ∈ Ψ0(HN ) is microlocally supported in V and commutes with Ω, then

([B,R]ϕk, ϕk) =
1

λk
(BRϕk,−∆βϕk)− 1

λk
(RB(−∆β)ϕk, ϕk)

=
1

λk
(BRϕk, RΩϕk)− 1

λk
(RBRΩϕk, ϕk)

=
1

λk
([Ω, RBR]ϕk, ϕk)

= 0.

Let U(t) = U(t1, . . . , tN ) = ei(t1Ω1+...+tNΩN ) for t = (t1, . . . , tN ) ∈ (R/2πZ)N . For A ∈
Ψ0(HN ) microlocally supported in V , we consider

Ã =

∫
(R/2πZ)N

U(−t)AU(t)dt

As in the proof of Lemma 4, we know that [Ã,Ω] = 0 and that σP (A) and σP (Ã) coincide
on Σ. Therefore, using the previous computation with B = Ã, we obtain∫

Σ

{σP (A), ρ}ω|Σdν∞ =

∫
Σ

{σP (Ã), ρ}ω|Σdν∞ = lim
k→+∞

([Ã, R]ϕk, ϕk) = 0.

Since it is true for any A microlocally supported in V , this implies that ν∞ is invariant under
the flow et~ρ.

References

[ABB19] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive intro-
duction to sub-Riemannian geometry, volume 181. Cambridge University Press,
2019.

[Agr96] Andrei Agrachev. Exponential mappings for contact sub-Riemannian struc-
tures. Journal of dynamical and control systems, 2(3):321–358, 1996.

[ALM16] Nalini Anantharaman, Matthieu Léautaud, and Fabricio Macià. Wigner mea-
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[CdV85] Yves Colin de Verdière. Ergodicité et fonctions propres du laplacien. Commu-
nications in Mathematical Physics, 102(3):497–502, 1985.

[CdVHT18] Yves Colin de Verdière, Luc Hillairet, and Emmanuel Trélat. Spectral asymp-
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