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Abstract

This paper is concerned with the leader-following consensus problem for a class of Lipschitz nonlinear multi-agent systems
with uncertain dynamics, where each agent only transmits its noisy output, at discrete instants and independently from its
neighbors. The proposed consensus protocol is based on a continuous-discrete time observer, which provides a continuous time
estimation of the state of the neighbors from their discrete-time output measurements, together with a continuous control
law. The stability of the multi-agent system is analyzed with a Lyapunov approach and the exponential practical convergence
is ensured provided that the tuning parameters and the maximum allowable sampling period satisfy some inequalities. The
proposed protocol is simulated on a multi-agent system whose dynamics are ruled by a Chua’s oscillator.

Key words: Leader-following consensus, directed graph, sampled data, continuous-discrete time observer

1 Introduction

The study of Multi-Agent Systems (MAS) has been considered by many researchers during the last decades, due to
its important practical applications, such as formation of UAV, attitude synchronization of spacecraft or distributed
sensor networks [29]. MAS are usually characterized by a topology network which reflects the possible ways of com-
munication among agents. A fundamental problem for MAS is to design protocols such that all the agents in the
network reach a common value. This problem can be subdivided into two categories, the leaderless consensus and the
leader-following consensus. In the leaderless consensus problem, the final common position of the agents cannot be
selected. Then, it might be useful to consider a real or virtual leader whose prescribed trajectory has to be followed
by all the agents [18].
Many results have been obtained for MAS whose dynamics are linear, see for instance [17,46]. However, in many
practical cases, MAS are governed by more complex dynamics, namely nonlinear dynamics. These nonlinear dy-
namics usually cannot be neglected in order to obtain more accurate control procedures and objectives. Consensus
protocols using the full state information have been considered in [24,5] for a fixed topology, in [39] for time-varying
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topology or in [27] for second order dynamics. When the state of the agents is only partially available, that is when
only the measured output can be used, it is then necessary to use observers in order to reconstruct the state. Such a
strategy has been used for example in [19] for a general class of nonlinear MAS and in [36] for heterogeneous agents.
In the aforementioned nonlinear protocols, the considered signals are assumed to be available continuously in real
time. But in most applications, it is more desirable or sometimes only possible to transmit the measurements in a
discrete way. This may be due to technical constraints or for energy saving [32,13]. It is then important to adapt
the consensus protocol in order to deal with the sampled signals. A first idea has been to consider time-triggered
sampling. Several protocols have been proposed when the state of the agents can be fully measured. Impulsive control
for some specific kinds of systems has been considered in [14]. The delay input approach has been used in [40,41,7]
for deterministic sampling period and in [33,38,15] for stochastic sampling. When only the output is available at
discrete instants, then an observer must be designed. A distributed observer protocol with a zero order hold input
control has been proposed in [37]. In this work, the sampling periods have to be synchronized between the agents.
Another approach, which allows aperiodic and asynchronous sampling periods, is event-triggering based consensus
protocol. First-order integrators have been considered in [6] and general linear systems in [44,45]. Some specific
nonlinear classes of systems have also been considered in the literature. MAS with Lure’s nonlinear dynamics have
been investigated in [20] and first order nonlinear systems in [42,25,43]. Other classes of nonlinear systems have been
treated in [21,26]. Though providing interesting results, event-triggered schemes involve a more complicated set-up
and additional parameters to tune. Indeed, a threshold function has to be considered which dictates the sampling
instants for the data transmission. Furthermore, one has to be careful about the Zeno phenomenon which can occur
for some schemes [8].
Most works with discrete signal transmission hold the control input constant between sampling instants. One takes
advantage here, of the fact that time-varying control input can be considered. Indeed, only the transmitted signals
have to be sampled, not the input. Continuous-discrete time observers, which reconstruct the state in continuous
time from discrete-time measurements, have been greatly developed these last years, as in [9,4,16] for different
classes of nonlinear systems, and are then used here to tackle the problem of leader-following consensus where only
discrete-time outputs are transmitted through the network. It should be noted that these works only consider the
observer design, the convergence is obtained by assuming that the input belongs to a bounded set and then cannot
be applied directly to the problem considered here. This idea has already been exploited in [23,30,31] for linear
systems, following an hybrid approach, where sufficient conditions for convergence are obtained, based on LMIs.
An high-gain approach has been followed in [28,1] for the leaderless and leader-following consensus of MAS with
double integrator dynamics. The control part of this high-gain approach is mainly based on [2], but where only state
feedback is considered. These works are then extended here to the leader-following consensus for a class of systems
with nonlinear and uncertain dynamics. The main novelty of the paper is the design of a leader-following consensus
protocol for a multi agent system, whose agent dynamics belong to a class of uniformly observable multi-output
nonlinear systems, where only a part of the state is measured, and each agent’s output is transmitted at some
discrete instants to its neighbors independently of the other agents. Several features of the proposed approach have
to be emphasized. Firstly, only the sampled outputs have to be transmitted through the network, it is not necessary
to transmit the inputs. Secondly, the data sent by the agents are not needed to be synchronized, each agent can
send its measurements independently from its neighbors, provided that the maximum allowable sampling period is
bounded. This allows to reduce the overall bandwidth of the network. Thirdly, the proposed protocol has only three
tuning parameters, namely c̄, λ, θ, where c̄ is the coupling force, λ > 0 represents the speed of convergence of the
control part and θ > 0 represents the speed of convergence of the observer part. Then, the tuning of the proposed
scheme is relatively simple and can be adapted easily by the practitioner since the effect of the modification of each
parameter has a direct physical meaning. Fourth, the class of nonlinear systems considered here is challenging since
it is quite large and it has not yet been considered in the literature for aperiodic and asynchronous sampling periods.
A new protocol is thus proposed here to tackle this problem.

The paper is organized as follows. Some notations and existing results are recalled in Section 2. The class of considered
MAS is depicted in section 3. The proposed protocol together with a convergence result is reported in Section 4.
Section 5 contains an example illustrating the performances of the proposed protocol. Finally, Section 6 concludes
the paper.

2 Preliminaries

In this paper, the following notations will be used. The symbol 4= means equal by definition. The set of n × n real
matrices is denoted by Rn×n. The transpose for real matrices is represented by the superscript T . In is the identity
matrix of dimension n, 0m×n is the zero matrix of dimension m × n and 0n

4
= 0n×n. The Kronecker product of
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matrices A and B is A ⊗ B. For a symmetric matrix M , ρmax(M) and ρmin(M) respectively denote the maximum
and minimum eigenvalue of M . The notation diag(w1, . . . , wq), with wi ∈ Rm×m, i = 1, . . . , q, q,m ∈ N, is used for
the diagonal by block matrix with w1, . . . , wq on its diagonal. The positive definiteness of a matrix M is denoted
M > 0. The vector of dimension N ∈ N with all entries equal to 1 is denoted 1N .
A directed graph G is a pair (V, E), where V is a nonempty finite set of nodes and E ⊆ V × V is a set of edges,
in which an edge is represented by an ordered pair of distinct nodes. For an edge (i, j), node i is called the parent
node, node j the child node, and i is a neighbor of j. A graph with the property that (i, j) ∈ E implies (j, i) ∈ E
is said to be undirected. A path on G from node i1 to node il is a sequence of ordered edges of the form (ik, ik+1),
k = 1, . . . , l − 1. A directed graph has or contains a directed spanning tree if there exists a node called the root,
which has no parent node, such that there exists a directed path from this node to every other node in the graph.
Suppose that there are N nodes in a graph. The adjacency matrix A = (aij) ∈ RN×N is defined by aii = 0 and
aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix L ∈ RN×N is defined as Lii =

∑
j 6=i aij , Lij = −aij

for i 6= j.

Definition 1 [3, Def. 1.2 and Th. 2.3-G20 p.133-134] A non singular real matrix Q ∈ Zn×n is called an M -matrix
if all its diagonal elements are positive, all of its off-diagonal elements are non positive, and each of its eigenvalues
has positive real part.

Lemma 1 [3, Th. 2.3-H24 p.134] Suppose that Q ∈ Zn×n is an M -matrix. Then, there exists a positive vector

ω =
[
ω1 . . . ωn

]T
, such that ΩQ+QTΩ > 0, where Ω = diag(ω1, . . . , ωn).

Lemma 2 Let n ∈ N and vi : R → R, i = 1, . . . , n be some functions C1 on (0,+∞) and such that vi(t) = 0 for
t < 0, verifying

d

dt

(
n∑
i=1

γiv
2
i (t)

)
≤

n∑
i=1

(
−aiv2i (t) + bi

∫ t

t−δ
v2i (s)ds

)
+ k, (1)

for all t ≥ 0, where γi > 0, ai > 0, bi ≥ 0, i = 1, . . . , n, k ≥ 0 and

δ < min

(
(
√

2− 1)

2
min
i=1,n

(
ai
bi

)
,

1√
2

min
i=1,n

(
γi
ai

))
. (2)

Then, the following inequality holds true
n∑
i=1

γiv
2
i (t) ≤ ςe−ϑt +

k

ϑ
, (3)

with ϑ = 1
2 mini=1,...,n

(
ai
γi

)
and ς =

∑n
i=1 γiv

2
i (0).

Proof. Let us define β = mini=1,...,n

(
ai√
2γi

)
, ci = bi

ai
eβδ−1
β , κi = 1− ci and κ = mini κi. Using the inequality

ex ≤ 1 +
√

2x, ∀x ∈
[
0,

1

2

]
, (4)

leads to

0 < ci ≤
bi
ai

(
1 +
√

2βδ − 1

β

)
, since βδ <

1

2
, (5)

≤ bi
ai

√
2δ, (6)

≤ bi
ai

√
2

(√
2− 1

2

ai
bi

)
, using eq. (2), (7)

≤1− 1√
2
, (8)
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and 1√
2
≤ κ ≤ 1.

Consider the candidate Lyapunov functional

W (vt) =

n∑
i=1

(
γiv

2
i (t) + bi

∫ δ

0

∫ t

t−s
eκβ(ν−t+s)v2i (ν)dνds

)

with vt(s) = v(t + s), s ∈ [−δ, 0] and v =
[
v1 . . . vn

]T
. Then, using the equality

[
W (vt)−

∑
i

(
γiv

2
i (t)

)]
=∑

i

(
bi
∫ δ
0

∫ t
t−s e

κβ(ν−t+s)v2i (ν)dνds
)
, one gets

Ẇ (vt) =
d

dt

(
n∑
i=1

γiv
2
i (t)

)
− κβ

[
W (vt)−

(
n∑
i=1

γiv
2
i (t)

)]
+

∫ δ

0

n∑
i=1

(
eκβsbiv

2
i (t)− biv2i (t− s)

)
ds. (9)

Using inequality (1) and the equality
∫ δ
0
v2i (t− s)ds =

∫ t
t−δ v

2
i (s)ds, one obtains

Ẇ (vt) ≤−

(
n∑
i=1

aiv
2
i (t)

)
− κβ

[
W (vt)−

(
n∑
i=1

γiv
2
i (t)

)]
+

(
eκβδ − 1

κβ

)( n∑
i=1

biv
2
i (t)

)
+ k, (10)

≤− κβW (vt) + k +

n∑
i=1

ai

(
−1 +

κβγi
ai

+
bi
ai

(
eκβδ − 1

κβ

))
v2i (t), (11)

≤− κβW (vt) + k +

n∑
i=1

ai

(
−1 +

κ√
2

+ ci

)
v2i (t), (12)

where the latter inequality is obtained by using the fact that βγi/ai ≤ 1/
√

2 by definition of β and the inequality
bi
ai

(
eκβδ−1
κβ

)
≤ bi

ai

(
eβδ−1
β

)
= ci since the function x 7→

(
exδ−1
x

)
is increasing over (0,+∞) and κ ∈ (0, 1). Further

using the inequality κ ≤ κi = 1− ci, i = 1, . . . , n, gives

Ẇ (vt) ≤− κβW (vt) + k −
n∑
i=1

(
1− 1√

2

)
aiκv

2
i (t),

≤− κβW (vt) + k. (13)

Finally, since κβ ≥ 1
2 mini

(
ai
γi

)
4
= ϑ, using the comparison lemma [22, lemma 3.4 p. 102] gives

W (vt) ≤W (v0)e−ϑt +
k

ϑ
≤

(
n∑
i=1

γiv
2
i (0)

)
e−ϑt +

k

ϑ
, (14)

where the latter inequality is obtained by using the fact that v2i (t) = 0 for t < 0, i = 1, . . . , n.

Lemma 3 [1, Lemma 4]

(i) Let M ∈ Rn×n be a symmetric positive definite matrix. Then, one has xTMy ≤
√
xTMx

√
yTMy for all

x, y ∈ Rn.
(ii) Let M ∈ Rn×n be a symmetric matrix. Then, one has ρmin(M)xTx ≤ xTMx ≤ ρmax(M)xTx for all x ∈ Rn.
(iii) One has

∑n
i=1

√
αi ≤

√
n
√∑n

i=1 αi for all αi ≥ 0.
(iv) Let A ∈ Rn×n be a symmetric positive definite matrix and B ∈ Rm×m be a symmetric semi-definite matrix,

then the following inequality holds

ρmin(A)In ⊗B ≤ A⊗B ≤ ρmax(A)In ⊗B. (15)
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3 Problem statement

3.1 Dynamical model of the agents

One considers a group of N agents whose dynamics are nonlinear. More precisely, the i-th agent dynamics, i =
1, . . . , N , are given by

ẋ
(1)
i (t) = x

(2)
i (t) + ϕ1

(
t, x

(1)
i (t)

)
+ ε

(1)
i (t), (16)

...

ẋ
(q−1)
i (t) = x

(q)
i (t) + ϕq−1

(
t, x

(1)
i (t), . . . , x

(q−1)
i (t)

)
+ ε

(q−1)
i (t),

ẋ
(q)
i (t) = ui(t) + ϕq

(
t, x

(1)
i (t), . . . , x

(q)
i (t)

)
+ ε

(q)
i (t),

yi = x
(1)
i + wi,

where x(k)i ∈ Rm, k = 1, . . . , q, is the state, ui ∈ Rm is the input, yi ∈ Rm the output, ε(k)i : R→ Rm, k = 1, . . . , q,
the dynamics uncertainties, wi : R→ Rm the noise and ϕk : R× Rkm → Rm, q,m ∈ N the nonlinearities.
System (16) is then made up of q blocs, each one of size m.

Let us denote xi =

((
x
(1)
i

)T
· · ·
(
x
(q)
i

)T)T
∈ Rn the state of the i-th agent, with n = qm, and εi =

((
ε
(1)
i

)T
. . .
(
ε
(q)
i

)T)T
.

System (16) can be written in the following compact form{
ẋi(t) = Axi(t) + ϕ(t, xi(t)) +Bui(t) + εi(t),

yi = Cxi + wi,
(17)

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n the corresponding matrices and ϕ =
(
ϕT1 . . . ϕTq

)T
.

Remark 1 The class of systems considered here is closely related to the class of uniformly observable systems,
which has been introduced in [12] for Single Input Single Output (SISO) systems. Indeed, the system is composed
of a chain of integrator and the nonlinear part has a triangular structure. While there exists canonical form for
SISO systems, no such canonical form exists for Multi Input Multi Output systems. Nevertheless, several classes of
uniformly observable systems have been considered in the literature such as in [10,11]. The class of systems considered
here is the same as in [10] (where more details are given about possible required change of coordinates) except that
the input is supposed to act linearly and without zero dynamics.

The nonlinear function ϕ is supposed to verify the following assumption.

Assumption 1 The function ϕ is globally Lipschitz in x uniformly with respect to t, that is there exists Lϕ > 0
such that

‖ϕ(t, x1)− ϕ(t, x2)‖ ≤ Lϕ‖x1 − x2‖, (18)
for all t ∈ R and x1, x2 ∈ Rn.

The aim is to design a protocol such that all the agents converge toward a leader, denoted agent 0, whose dynamics
are given by

ẋ0(t) = Ax0(t) + ϕ(t, x0(t)) + ε0(t), (19)
y0 = Cx0 + w0.

Remark 2 It should be noted that the uncertainties on the dynamics of the leader can also represent an unknown
input. Indeed, given the structure of the dynamics (see equation (16)), the uncertainty on the dynamics of x(q)0 can
be decomposed as an unknown leader input u0 on one part and some perturbations on the dynamics on the other
part.
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The dynamics uncertainties and noises of the agents and the leader are supposed to be uniformly bounded.

Assumption 2 There exist constants δ1ε , . . . , δqε ≥ 0 and δw ≥ 0 such that

‖ε(k)i (t)‖ ≤ δkε , ∀t ≥ 0, i = 0, . . . , N, k = 1, . . . , q, (20)
‖wi(t)‖ ≤ δw, ∀t ≥ 0, i = 0, . . . , q. (21)

Due to the uncertainties, the agents cannot converge exactly toward the leader but, instead, in some ball around the
leader. The problem to be solved here is defined more precisely below.

Definition 2 The leader-following consensus problem is said to be exponentially practically solved if there exist
α, β > 0 and γ ≥ 0 such that ‖xi(t)− x0(t)‖ ≤ αe−βt + γ, for all i = 1, . . . , N .

3.2 Communication constraints

The communication topology between followers i = 1, . . . , N is denoted G and its adjacency and Laplacian matrices
A = (aij) and L respectively.
The output of the leader is supposed to be transmitted only at some agents. More precisely, one defines D =
diag(d1, . . . , dN ), where di = 1 if agent i has access to the output of the leader and di = 0 otherwise.
One defines the general index νij for i = 1, . . . , N, j = 0, . . . , N as νij = 1 if agent i receives the output of agent j
and 0 otherwise. This means that if νij = 1, then the output of agent j is transmitted to agent i at time instants(
ti,jk

)
k∈N

. These sampling instants are supposed to verify

ti,j0 < ti,j1 < · · · < ti,jk < . . . and τm <
∣∣∣ti,jk+1 − t

i,j
k

∣∣∣ < τM , (22)

for all k ∈ N and τm, τM > 0. Note that the lower bound τm is just considered in order to explicitly avoid the Zeno
phenomena. It is not a restrictive bound since it can be taken as small as desired.

Example 1 Consider a MAS composed of a leader (denoted 0) and two agents (denoted 1 and 2) such as depicted
on Figure 1.
Agent 1 receives the transmitted output y0 of the leader at time instants t1,0k for k ∈ N. This is used to reconstruct the
state of the leader in continuous time. Agent 1 also uses its own output at time instants t1,1k for k ∈ N, to reconstruct
its own state in continuous time. Similarly, Agent 2 receives the output of agent 1 at time instants t2,1k and uses its
own output at time instants t2,2k .
Note that the time sequences

(
t1,0k

)
k∈N

,
(
t1,1k

)
k∈N

,
(
t2,1k

)
k∈N

,
(
t2,2k

)
k∈N

can be chosen freely, and in particular

independently from each other, as long as they verify (22).

0 1

2

y0
(
t1,0k

)

y1
(
t2,1k

)
y1

(
t1,1k

)

y2
(
t2,2k

)
Fig. 1. Data transmission along the directed graph G

One denotes G̃ the digraph corresponding to all the agents i = 1, . . . , N together with the leader. The Laplacian
matrix L̃ of G̃ is given by

L̃ =

(
0 01×N

−d̃ L+D

)
4
=

(
0 01×N

−d̃ H

)
, (23)

6



where d̃ =
(
d1 . . . dN

)T
.

One needs the following result.

Lemma 4 [35, Lemma 9] The matrix H is a non-singular M-matrix if and only if the communication topology G̃
has a directed spanning tree.

Assumption 3 The communication topology G̃ between the agents and the leader contains a directed spanning tree.

Remark 3 If assumption 3 holds true, then according to lemma 4 and lemma 1, there exists a positive vector
ω =

(
ω1 . . . ωN

)
such that ΩH+HTΩ > 0 where Ω = diag(ω1, . . . , ωN ). Then, in the rest of the paper, one denotes

% = ρmin

(
ΩH+HTΩ

)
, (24)

ωmin = min(ω1, . . . , ωN ), (25)
ωmax = max(ω1, . . . , ωN ). (26)

4 Main result

4.1 Consensus protocol

The proposed protocol is given, for i = 1, . . . , N , by

ui(t) = dic̄K
cΓλ(x̂i,0(t)− x̂i,i(t)) + c̄KcΓλ

N∑
j=1

aij(x̂i,j(t)− x̂i,i(t)), ∀t ≥ 0, (27)

where x̂i,j is the estimate of xj by agent i and is given, for t ∈
[
ti,jk , t

i,j
k+1

)
, k ∈ N, by

˙̂xi,j(t) = Ax̂i,j(t) + ϕ(t, x̂i,j(t))− θ∆−1θ Kozi,j(t), (28)

with
zi,j(t) = e−θK

o
1 (t−t

i,j
k

)
(
Cx̂i,j

(
ti,jk

)
− yj

(
ti,jk

))
, (29)

where c̄, λ, θ > 0 are the tuning parameters, and

Γλ = diag
(
λqIm, λ

q−1Im, . . . , λIm
)
, (30)

∆θ = diag
(
Im,

1

θ
Im, . . . ,

1

θq−1
Im

)
, (31)

Ko = P−1CT , Kc = BTQ, (32)

where q is the number of blocs of system (16), P,Q ∈ Rn×n are the symmetric positive definite solutions of the
following matrix equalities

P + PA+ATP = CTC, (33)
Q+QA+ATQ = QBBTQ, (34)

(see [2] for more details).

Remark 4 Given the structure by block of A,B,C, one can show directly (see [11] section 2.2 and [2] section 3 for
more details) that Ko and Kc can be written as follows

Ko =
(
Ko

1Im . . .K
o
q Im

)T
, (35)

Kc =
(
Kc

1Im . . .K
c
qIm

)
, (36)
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where Ko
1 , . . . ,K

o
q ,K

c
1, . . . ,K

c
q ∈ R are equal to

Ko
i =

(
q

i

)
, Kc

i =

(
q

q − i+ 1

)
, i = 1, . . . , q, (37)

and

(
n

k

)
are the binomial coefficients.

Remark 5 The term zi,j(t), defined in (29) corresponds to a prediction of the output error (Cx̂i,j(t)− yj(t)) on
each interval

[
ti,jk , t

i,j
k+1

)
(see [9] section III.B for more details).

Remark 6 The proposed structure presents some advantages when dealing with delays and dropouts. Indeed, each
control input is fed by the corresponding local observers. Then, if the measurements are time-stamped, as soon as the
measurement is received, even if delayed, the estimation of the current state can be provided by making the observer
computation run faster to compensate.

Example 2 Consider the same topology as in Example 1 and assume that the dynamics of the agents are ruled by a
second order system, more precisely ẋ(1)i = x

(2)
i , ẋ(2)i = ui + ϕ2(xi), yi = x

(1)
i ∈ R. It means here that there are two

blocks (q = 2) and the dimension of each agent is equal to n = 2. One further has d1 = 1, d2 = 0, a11 = a12 = a22 = 0
and a21 = 1.

Then, system (17) is characterized by A =

(
0 1

0 0

)
, B =

(
0

1

)
and C =

(
1 0
)
. Furthermore, the solution of equations

(33) and (34) are equal to P =

(
1 −1

−1 2

)
and Q =

(
1 1

1 2

)
and the gains are given by Ko =

(
2

1

)
, Kc =

(
1 2
)
,

Γλ =

(
λ2 0

0 λ

)
, ∆θ =

(
1 0

0 1
θ

)
.

Given the topology of the considered MAS:

• Agent 1 has to reconstruct the state of the leader and its own state. Then agent 1 has to run two observers:

˙̂x1,0(t) = Ax̂1,0(t) +

(
0

ϕ2(x̂1,0(t))

)
− θ∆−1θ Koe−2θ(t−t

1,0
k )
(
x̂
(1)
1,0

(
t1,0k

)
− y0

(
t1,0k

))
, for t ∈

[
t1,0k , t1,0k+1

)
,

˙̂x1,1(t) = Ax̂1,1(t) +

(
0

ϕ2(x̂1,1(t))

)
− θ∆−1θ Koe−2θ(t−t

1,1
k )
(
x̂
(1)
1,1

(
t1,1k

)
− y1

(
t1,1k

))
, for t ∈

[
t1,1k , t1,1k+1

)
,

where x̂1,0 and x̂1,1 are the estimates of x0 and x1 respectively. The input of agent 1 is then given by:

u1(t) = 2c̄λ2
(
x̂
(1)
1,0(t)− x̂(1)1,1(t)

)
+ c̄λ

(
x̂
(2)
1,0(t)− x̂(2)1,1(t)

)
.

• Agent 2 has to reconstruct the state of agent 1 and its own state. Similarly as for agent 1, agent 2 has to run two
observers: one whose state x̂2,1 is an estimate of x1 and one whose state x̂2,2 is an estimate of x2.The input of
agent 2 is then given by:

u2(t) = 2c̄λ2
(
x̂
(1)
2,1(t)− x̂(1)2,2(t)

)
+ c̄λ

(
x̂
(2)
2,1(t)− x̂(2)2,2(t)

)
.

It should be noted that the only parameters which must be tuned are c̄, λ and θ since it is clear from (35)-(37) that
Ko and Kc only depend on the structure of the system (i.e. the number of blocks q and the size of each block m).
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4.2 Convergence result

The convergence of the proposed consensus protocol is now analyzed.

Theorem 1 Consider the MAS (16)-(19) subject to Assumptions 1, 2 and 3 and the consensus protocol (27)-(28)-
(29). If the tuning parameters λ, θ, c̄ ≥ 1 are chosen such that

c̄ ≥ c∗ = max

(
ωmax

%
, 1

)
,

λ ≥ λ∗ = 24Lϕ
√
nmax


√
ρQωM√
ρQωm

,

√
ρPM√
ρPm

 ,

θ ≥ λc̄2ξ∗,

with ξ∗
4
= 36‖Kc‖2(N + 1)3h2max max

(√
ρP
M√
ρPm
,
ρPM
ρQωm

,
ρQω
M

ρPm

)
, ρPm = ρmin(P ), ρPM = ρmax(P ), ρQωm = ωminρmin(Q),

ρQωM = ωmaxρmax(Q), hmax = maxij |Hij |, %, ωmin, ωmax respectively defined by (24)-(25)-(26), and the upper bound
on the sampling periods τM verifies

τM <
σ∗

c̄(θ + Lϕ)
, (38)

with σ∗ =
(√

2−1
8

)
min(

√
ωmin,
√
ρPm)

‖Ko‖(N+1)
3
2 hmax

√
ρP
M

, then the consensus error ‖xi − x0‖ verifies

‖xi − x0‖ ≤χ1θ
q−1e−

λ
8 t + χ2λ

−1θq
(
δw + τMδ

1
ε

)
+ χ3λ

−1

(
q∑

k=1

θq−kδkε

)
, (39)

where χ1, χ2, χ3 ≥ 0 are independent of the tuning parameters λ, θ, c̄ and given by

χ1 =

√
ρQωM√
ρQωm

N∑
i=1

‖xi(0)− x0(0)‖+

√
ρPM√
ρQωm

N∑
i=1

N∑
j=0

‖x̂i,j(0)− xj(0)‖,

χ2 =
8
√
ρPM (N + 1)‖Ko‖√

ρQωm

,

χ3 =

8

(
2N
√
ρQωM + (N + 1)

√
ρPM

)
√
ρQωm

.

Remark 7 Equation (39) states that even if the exponential practical consensus is reached, not all the uncertainties
effect on the tracking error can be lowered through the tuning of λ and θ. Indeed, it is only possible for the uncertainties
appearing on the last block of system (16) (that is only ε(q)i are non zero) and if q ≥ 2. This is done by increasing λ
and θ, since the corresponding term χ3λ

−1δqε goes to zero as λ increases.
In particular, if the leader has an unknown but bounded non zero input, then this input can be seen as a dynamic
uncertainty on the last block dynamics x(q)0 . Therefore, the tracking error can be set as low as desired by increasing
λ and θ.

Remark 8 Theorem 1 only provides sufficient conditions for the proposed consensus scheme (27)-(28). Indeed,
the consensus may be obtained even if the bounds given by Theorem 1 are not respected. Conservativeness is a
general drawback when considering general classes of nonlinear systems with a Lyapunov approach. Nevertheless, the
convergence analysis gives some useful hints for the tuning of the control parameters. In fact, the bounds σ∗, c∗, λ∗, ξ∗
only depend on the structure of the system (number of blocks q and size of each block m) and the topology of the
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network G̃. Given the inequalities in Theorem 1, the coupling force should be tuned first as for a classical consensus
protocol. Then, λ (representing the speed of convergence of the control part) should be chosen high enough to dominate
the nonlinear Lipschitz term. The parameter θ of the observer part should be higher than the parameter of the control
part λ. This is due to the fact that the input is not transmitted through the network, only the output is transmitted.
Finally, the maximum bound on the sampling periods will have to be chosen small if the Lipschitz constant or if θ
takes high values. This corresponds to a kind of Shannon condition: if the system is fast, the sampling periods have
to be small.
Furthermore, given the bounds on the consensus error given by equation (39), it can be seen that increasing λ and
θ will decrease the effect of some uncertainties (those on the dynamics of x(q)i ) but it will increase the effect of the
noise, then a trade-off has to be considered between lowering the effect of some uncertainties and amplifying the
noise.

Proof. The proof of Theorem 1 is split into three steps. First, new coordinates are considered in Step 1. Then, in
Step 2, some candidate Lyapunov functions are defined and over-valuations of their derivatives are obtained. Finally,
it is shown in Step 3, that, if the different inequalities of Theorem 1 are verified, then Lemma 2 can be applied and
the leader-following consensus problem is solved.
Step 1. Let us define ei = Γλ(xi−x0) and ēi,j = ∆θ(x̂i,j−xj). Then, using the equalities ΓλAΓ−1λ = λA, ΓλB = λB,

∆θA∆−1θ = θA, ∆θB = 1
θq−1B, C∆−1θ = C and the notation ϕ̃(t, x, y)

4
= ϕ(t, x)− ϕ(t, y), one gets

ėi = λAei + Γλ (ϕ̃(t, xi, x0) + εi − ε0) + λBui, (40)

˙̄ei,j = θAēi,j + ∆θϕ̃(t, x̂i,j , xj)−
1

θq−1
Buj − θKozi,j −∆θεj , (41)

= θ(A−KoC)ēi,j + ∆θϕ̃(t, x̂i,j , xj)−
1

θq−1
Buj − θKo(zi,j − Cēi,j)−∆θεj , (42)

for i = 1, . . . , N and j = 0, . . . , N , where zi,j is defined by (29) and the inputs are given by

u0 = 0m×1, (43)

uj = c̄Kc

(
djΓλ∆−1θ ēj,0 −

N∑
k=1

Hjk(ek + Γλ∆−1θ ēj,k)

)
,

for j = 1, . . . , N . Further denoting ηc =
[
eT1 . . . eTN

]T
, the dynamics of the ei can be written in compact form as

follows
η̇c = λ(IN ⊗A)ηc − c̄λ[H⊗ (BKc)]ηc + Φλ + Ψλ,ε + Θ,

with Φλ =


Γλϕ̃(t, x1, x0)

...

Γλϕ̃(t, xN , x0)

 ,Ψλ,ε =


Γλ(ε1 − ε0)

...

Γλ(εN − ε0)

 , and Θ =


c̄λBKcΓλ∆−1θ

(
d1ē1,0 −

∑N
k=1H1kē1,k

)
...

c̄λBKcΓλ∆−1θ

(
dN ēN,0 −

∑N
k=1HNkēN,k

)
 .

Step 2. One now introduces the candidate Lyapunov functions, one that depends on the control error ηc and one
that depends on the observer errors ēi,j .
One thus define first V̄c(ηc) = (ηc)T [Ω⊗Q]ηc, where Ω is defined in remark 3.
Then, for the observer error part, one considers V̄o(ηo) =

∑N
i=1

∑N
j=0 νijVo(ēi,j), with Vo(ēi,j) = ēTi,jP ēi,j , where the

vector ηo contains all the ēi,j such that νij = 1.
One has

˙̄Vc(η
c) = λ(ηc)T (Ω⊗ [ATQ+QA])ηc − c̄λ(ηc)T [(HTΩ)⊗ ((BKc)TQ)]ηc − c̄λ(ηc)T [(ΩH)⊗ (QBKc)](ηc)

+ 2(ηc)T [Ω⊗Q]Φλ + 2(ηc)T [Ω⊗Q]Θ + 2(ηc)T [Ω⊗Q]Ψλ,ε, (44)
V̇o(ēi,j) = θēTi,j [(A−KoC)TP + P (A−KoC)]ēi,j ,+2ēTi,jP∆θϕ̃(t, x̂i,j , xj)

− 2

θq−1
ēTi,jPBuj + 2θēTi,jPK

o(Cēi,j − zi,j)− 2ēTi,jP∆θεj (45)

10



for all i, j such that νij = 1.
Step 2.1 Over-valuation of ˙̄Vc(η

c)
Using the equality (BKc)TQ = QBKc = QBBTQ (obtained with the definition of Q in (34)) and Lemma 3 (iv),
one gets

(HTΩ)⊗ ((BKc)TQ) + (ΩH)⊗ (QBKc) = [HTΩ + ΩH]⊗ [QBBTQ], (46)

≥ %

ωmax
Ω⊗ [QBBTQ], (47)

with % and ωmax defined by (24) and (26) respectively. Taking c̄ ≥ c∗ 4= max{ωmax/%, 1} and using Lemma 3 (i) and
(ii) leads to

˙̄Vc ≤ −λV̄c + 2
√
ωmaxρmax(Q)

√
V̄c (‖Φλ‖+ ‖Ψλ,ε‖+ ‖Θ‖) . (48)

One now derives over-valuations of the terms ‖Θ‖, ‖Φλ‖ and ‖Ψλ,ε‖.
Using the definition of di,H and νij , and the fact that ‖B‖ = 1 yields

‖Θ‖ ≤ c̄λ‖Kc‖‖Γλ∆−1θ ‖hmax

N∑
i=1,j=0

νij‖ēi,j‖, (49)

where hmax = maxi,j |Hij |. Further using Lemma 3 (ii) and (iii), one obtains

‖Θ‖ ≤
c̄λ‖Kc‖ ‖Γλ∆−1θ ‖(N + 1)hmax√

ρmin(P )

√
V̄o. (50)

High-gain techniques, such as in [10], with λ ≥ 1 gives

‖Φλ‖ ≤
√
nLϕ√

ωminρmin(Q)

√
V̄c. (51)

For the over-valuation of ‖Ψλ,ε‖, one has

‖Ψλ,ε‖ ≤
N∑
i=1

‖Γλ(εi − ε0)‖ ≤
N∑
i=1

(‖Γλεi‖+ ‖Γλε0‖) ,

≤
N∑
i=1

q∑
k=1

λq−k+1
(
‖ε(k)i ‖+ ‖ε(k)0 ‖

)
, (52)

≤
N∑
i=1

q∑
k=1

2δkελ
q−k+1 (53)

≤ 2N

q∑
k=1

δkελ
q−k+1. (54)

Finally, using inequalities (48), (50), (51) and (54), one gets

˙̄Vc ≤ −λV̄c + 2k1V̄c + 2c̄k2λ‖Γλ∆−1θ ‖
√
V̄c
√
V̄o + 2k3

√
V̄c

(
q∑

k=1

λq−k+1δkε

)
, (55)

11



with

k1 =Lϕ
√
n

√
ωmaxρmax(Q)

ωminρmin(Q)
, (56)

k2 =(N + 1)‖Kc‖hmax

√
ωmaxρmax(Q)

ρmin(P )
, (57)

k3 =2N
√
ωmaxρmax(Q). (58)

Step 2.2 Over-valuation of V̇o(ēi,j)
Using the definition of P in equation (33), Lemma 3 (i) and (ii) and the fact that ‖B‖ = 1 give

V̇o ≤− θVo + 2
√
ρmax(P )

√
Vo‖∆θϕ̃(t, x̂i,j , xj)‖+ 2

√
ρmax(P )

√
Vo

(
‖uj‖
θq−1

+ θ‖Ko‖‖Cēi,j − zi,j‖
)

+ 2
√
ρmax(P )

√
Vo (‖∆θεj‖) . (59)

One now derives over-valuations of the terms ‖uj‖, ‖∆θϕ̃(t, x̂i,j , xj)‖, ‖Cēi,j − zi,j‖ and ‖∆θεj‖ .
Using the definition of νij and H, one gets

‖uj‖ ≤ c̄‖Kc‖hmax

(
N∑
k=1

‖ek‖+ ‖Γλ∆−1θ ‖
N∑
k=0

νjk ‖ēj,k‖

)
. (60)

Further applying Lemma 3 (ii) and (iii) gives

‖uj‖ ≤ c̄‖Kc‖
√
N + 1hmax

( √
V̄c√

ρmin(Q)ωmin

+
‖Γλ∆−1θ ‖

√
V̄o√

ρmin(P )

)
. (61)

Using high-gain techniques such as in [10], with θ ≥ 1, yields

‖∆θϕ̃(t, x̂i,j , xj)‖ ≤
√
nLϕ√

ρmin(P )

√
Vo(ēi,j). (62)

Concerning the over-valuation of ‖Cēi,j − zi,j‖, using equations (29) and (41) yields

d

dt
(Cēi,j(t)− zi,j(t)) =

(
θē

(2)
i,j − θK

o
1zi,j − ε

(1)
j + ϕ1

(
t, x̂

(1)
i,j

)
− ϕ1

(
t, x

(1)
j

))
− (−θKo

1zi,j) , if q ≥ 2, (63)

d

dt
(Cēi,j(t)− zi,j(t)) =

(
− θKo

1zi,j − uj − ε
(1)
j + ϕ1

(
t, x̂

(1)
i,j

)
− ϕ1

(
t, x

(1)
j

))
− (−θKo

1zi,j) , if q = 1. (64)

for all t ∈ R, t 6= ti,jk , k ∈ N.

Then, denoting κi,j(t) = max

{
ti,jk

∣∣∣∣ti,jk < t, k ∈ N
}

the last instant when agent j transmitted its measurement to

agent i at time t and using the fact that Cēi,j(κi,j(t)) − zi,j(κi,j(t)) = −wj(κi,j(t)) for all t ≥ 0, integrating (63)
from κi,j(t) to t gives, for q ≥ 2:

Cēi,j(t)− zi,j(t) = −wj(κi,j(t)) +

∫ t

κi,j(t)

θē
(2)
i,j (s) + ϕ1

(
t, x̂

(1)
i,j (s)

)
− ϕ1

(
t, x

(1)
j (s)

)
− ε(1)j (s)ds, (65)

and integrating (64) from κi,j(t) to t gives, for q = 1:

Cēi,j(t)− zi,j(t) = −wj(κi,j(t)) +

∫ t

κi,j(t)

uj(s) + ϕ1

(
t, x̂

(1)
i,j (s)

)
− ϕ1

(
t, x

(1)
j (s)

)
− ε(1)j (s)ds. (66)
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Further using Assumptions 1 and 2, one obtains, if q ≥ 2:

‖Cēi,j − zi,j‖ ≤δw + (θ + Lϕ)

∫ t

κi,j(t)

‖ēi,j(s)‖ds+ (t− κi,j(t))δ1ε , (67)

and, if q = 1, using (61) and the fact that ‖Γλ∆−1θ ‖ = λ give

‖Cēi,j − zi,j‖ ≤ δw + c̄‖Kc‖
√
N + 1hmax

∫ t

κi,j(t)

V̄c(s)√
ωminρmin(Q)

ds+ c̄‖Kc‖
√
N + 1hmax

∫ t

κi,j(t)

λ

√
V̄o(s)√
ρmin(P )

ds

+ Lϕ

∫ t

κi,j(t)

‖ēi,j(s)‖ds+ (t− κi,j(t))δ1ε . (68)

Applying Lemma 3 (ii) and the fact that t − κi,j(t) ≤ τM , by definition of κi,j and since
∣∣∣ti,jk+1 − t

i,j
k

∣∣∣ < τM for all
k ∈ N, one gets, if q ≥ 2:

‖Cēi,j − zi,j‖ ≤δw + τMδ
1
ε +

(θ + Lϕ)√
ρmin(P )

∫ t

t−τM

√
V̄o(ηo(s))ds, (69)

and if q = 1:

‖Cēi,j − zi,j‖ ≤ δw + τMδ
1
ε +

(
c̄‖Kc‖

√
N + 1hmaxλ+ Lϕ√
ρmin(P )

)∫ t

t−τM

√
V̄ o(s)ds

+

(
c̄‖Kc‖

√
N + 1hmax√

ωminρmin(Q)

)∫ t

t−τM

√
V̄ c(s)ds. (70)

Furthermore, similarly to the over-valuation of ‖Ψλ,ε‖, one gets

‖∆θεj‖ ≤
q∑

k=1

1

θk−1
δkε . (71)

Finally, using inequalities (59), (61), (62), (69), (70) and (71) yields

V̇o(ēi,j) ≤ −θVo(ēi,j) + 2k4Vo(ēi,j) +
2k5

(N + 1)

√
Vo(ēi,j)

∫ t

t−τM

√
V̄o(ηo(s))ds

+
2k6

(N + 1)

√
Vo(ēi,j)

∫ t

t−τM

√
V̄c(ηc(s))ds+

2c̄
√
Vo(ēi,j)

θq−1(N + 1)

(
k7
√
V̄c + k8‖Γλ∆−1θ ‖

√
V̄o

)
+

2k9
(N + 1)

√
Vo(ēi,j)

(
q∑

k=1

δkε
θk−1

)
+

2θk10
(N + 1)

√
Vo(ēi,j)

(
δw + τMδ

1
ε

)
, (72)
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with

k4 =Lϕ
√
n

√
ρmax(P )

ρmin(P )
, (73)

k5 =θ(N + 1)‖Ko‖(Lϕ + θ)

√
ρmax(P )

ρmin(P )
, if q ≥ 2,

=θ(N + 1)‖Ko‖
(
c̄
√
N + 1hmaxλ+ Lϕ

)√ρmax(P )

ρmin(P )
, if q = 1, (74)

k6 =0, if q ≥ 2,

=
c̄θ(N + 1)

3
2hmax√

ωmin
, if q = 1, (75)

k7 =‖Kc‖(N + 1)
3
2hmax

√
ρmax(P )

ρmin(Q)ωmin
, (76)

k8 =‖Kc‖(N + 1)
3
2hmax

√
ρmax(P )

ρmin(P )
, (77)

k9 =
√
ρmax(P )(N + 1), (78)

k10 =
√
ρmax(P )‖Ko‖(N + 1). (79)

Step 2.3 Over-valuation of ˙̄Vo(η
o)

Using the definition of V̄o, inequality (72) and Lemma 3 (iii) give

˙̄Vo(η
o) ≤− θV̄o(ηo) + 2k4V̄o(η

o) + 2k5

√
V̄o(ηo)

∫ t

t−τM

√
V̄o(ηo(s))ds+ 2k6

√
V̄o(ηo)

∫ t

t−τM

√
V̄c(ηc(s))ds (80)

+
2c̄k7
θq−1

√
V̄o(ηo)

√
V̄c(ηc) +

2c̄k8‖Γλ∆−1θ ‖
θq−1

V̄o(η
o) + 2k9

√
V̄o(ηo)

(
q∑

k=1

δkε
θk−1

)
+ 2θk10

√
V̄o(ηo)

(
δw + τMδ

1
ε

)
.

Step 3. From inequalities (55) and (80), one directly obtains

d

dt

(√
V̄c

)
≤ −λ

2

√
V̄c + k1

√
V̄c + c̄k2λ‖Γλ∆−1θ ‖

√
V̄o + k3

(
q∑

k=1

δkελ
q−k+1

)
,

d

dt

(√
V̄o

)
≤ −θ

2

√
V̄o + k4

√
V̄o +

c̄k7
θq−1

√
V̄c +

c̄k8‖Γλ∆−1θ ‖
θq−1

√
V̄o + k5

∫ t

t−τM

√
V̄ods

+ k6

∫ t

t−τM

√
V̄cds+ k9

(
q∑

k=1

δkε
θk−1

)
+ θk10

(
δw + τMδ

1
ε

)
.

Taking θ = ξλ with ξ ≥ 1 leads to ‖Γλ∆−1θ ‖ = θq

ξ and

d

dt

(
ξ

3
2

√
V̄c + θq

√
V̄o

)
≤ −ξ

3
2λ

4

√
V̄c −

θq+1

4

√
V̄o −

ξ
3
2λ

4

(
1− 4k1

λ
− 4c̄k7

ξ
1
2

)√
V̄c

− θq+1

4

(
1− 4c̄k2

ξ
1
2

− 4k4
θ
− 4c̄k8

ξ

)√
V̄o

+ θqk5

∫ t

t−τM

√
V̄ods+ θqk6

∫ t

t−τM

√
V̄cds

+ k3

(
q∑

k=1

ξ
3
2λq−k+1δkε

)
+ k9

(
q∑

k=1

θq−k+1δkε

)
+ θq+1k10

(
δw + τMδ

1
ε

)
. (81)
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Then, since c̄ ≥ c∗ ≥ 1, if the inequalities λ ≥ λ∗ and ξ ≥ c̄2ξ∗ hold true, with λ∗ 4= 24Lϕ
√
nmax

(√
ρQω
M√
ρQωm

,

√
ρP
M√
ρPm

)
and ξ∗ 4= 36‖Kc‖2(N + 1)3h2max max

(√
ρP
M√
ρPm
,
ρPM
ρQωm

,
ρQω
M

ρPm

)
, we obtain

d

dt

(
ξ

3
2

√
V̄c + θq

√
V̄o

)
≤ −ξ

3
2λ

4

√
V̄c −

θq+1

4

√
V̄o + k5θ

q

∫ t

t−τM

√
V̄ods+ k6θ

q

∫ t

t−τM

√
V̄cds

+ k3

(
q∑

k=1

ξ
3
2λq−k+1δkε

)
+ k9

(
q∑

k=1

θq−k+1δkε

)
+ θq+1k10

(
δw + τMδ

1
ε

)
. (82)

since ξ∗ ≥ max
{

(6k2)2, (5k7)2, 24k8
}
and λ∗ ≥ max {20k1, 24k4} .

Applying Lemma 2 with v21 =
√
V̄c(ηc), v22 =

√
V̄o(ηo), γ1 = ξ

3
2 , γ2 = θq, a1 = ξ

3
2 λ
4 , a2 = θq+1

4 , b1 = θqk6, b2 = θqk5

and k = θq+1k10
(
δw + τMδ

1
ε

)
+ k3

(∑q
k=1 ξ

3
2λq−k+1δkε

)
+ k9

(∑q
k=1 θ

q−k+1δkε
)
, ensures that the following inequality

holds true

ξ
3
2

√
V̄c + θq

√
V̄o ≤ ςe−

λ
8 t +

θq+1

λ
8k10

(
δw + τMδ

1
ε

)
+

8

λ
k3

(
q∑

k=1

ξ
3
2λq−k+1δkε

)
+

8

λ
k9

(
q∑

k=1

θq−k+1δkε

)
, (83)

≤ ςe−λ8 t + ξθq8k10
(
δw + τMδ

1
ε

)
+ 8k3

(
q∑

k=1

ξ
3
2λq−kδkε

)
+ 8ξk9

(
q∑

k=1

θq−kδkε

)
, (84)

with
ς = ξ

3
2

√
V̄c(ηc(0)) + θq

√
V̄o(ηo(0)), (85)

provided that

τM < min

(
(
√

2− 1)ξ
3
2λ

8θqk6
,

(
√

2− 1)θ

8k5
,

2
√

2

λ
,

2
√

2

θ

)
,

which is verified if

τM <
(
√

2− 1) min(
√
ωmin,

√
ρmin(P ))

8‖Ko‖(N + 1)
3
2hmax

√
ρmax(P )c̄(Lϕ + θ)

(86)

since (Lϕ + θ) ≥ θ ≥ λ.
Then, using the inequalities

‖xi − x0‖ ≤
1

λ
‖ei‖ ≤

1

λ

∥∥∥∥∥∥∥∥∥


e1
...

eN


∥∥∥∥∥∥∥∥∥ ≤

1

λ
‖ηc‖,≤

1

λ
√
ωminρmin(Q)

√
V̄c(ηc), (87)

√
V̄c(ηc) ≤ λq

√
ωmaxρmax(Q)

N∑
i=1

‖xi − x0‖, (88)

√
V̄o(ηo) ≤

√
ρmax(P )

N∑
i=1

N∑
j=0

‖x̃i,j‖, (89)

leads to

‖xi − x0‖ ≤ θq−1χ1e
−λ8 t + λ−1θqχ2

(
δw + τMδ

1
ε

)
+ λ−1χ3

(
q∑

k=1

θq−kδkε

)
, (90)
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since θ ≥ λ ≥ 1 with χ1 =

√
ωmaxρmax(Q)√
ωminρmin(Q)

∑N
i=1 ‖xi(0) − x0(0)‖ +

√
ρmax(P )√

ωminρmin(Q)

∑N
i=1

∑N
j=0 ‖x̂i,j(0) − xj(0)‖, χ2 =

8k10√
ωminρmin(Q)

, χ3 = 8(k3+k9)√
ωminρmin(Q)

.

5 Example

In this section, we present a numerical example, consisting of systems whose dynamics are the same as a Chua’s
oscillator, in order to illustrate the performances of the proposed protocol. Indeed, as in [34], let us consider the
MAS where each agent’s dynamics are given by

ẋ
(1)
i (t) = x

(2)
i (t),

ẋ
(2)
i (t) = f

(
t, x

(1)
i (t), x

(2)
i (t)

)
+ ui(t) + ε

(2)
i (t),

yi = x
(1)
i + wi, i = 1, . . . , 10,

(91)

where x(1)i
4
=
(
x
(1,1)
i x

(1,2)
i x

(1,3)
i

)T
∈ R3, x

(2)
i

4
=
(
x
(2,1)
i x

(2,2)
i x

(2,3)
i

)T
∈ R3 are the position and velocity of agent

i, respectively, ui, yi, ε
(2)
i , wi ∈ R3 are the input, output, uncertainty and noise of each agent, and the nonlinear

function f is given by

f
(
t, x

(1)
i , x

(2)
i

)
=


α
(
x
(2,2)
i − x(2,1)i − h

(
x
(2,1)
i

))
x
(2,1)
i − x(2,2)i + x

(2,3)
i

−βx(2,2)i − γx(2,3)i − βε sin
(
ωx

(1,1)
i

)
 ,

where α = 10, β = 19.53, γ = 0.1636, ε = 0.2, ω = 0.5 and h is a piece-wise linear function given by h
(
x
(2,1)
i

)
=

a−b
2

(∣∣∣x(2,1)i + 1
∣∣∣− ∣∣∣x(2,1)i − 1

∣∣∣) with parameters a = −1.4325 and b = −0.7831.
The communication graph of the MAS system (91) is described on Figure 2 and one assumes that only agents 3 and
5 receive the measured position of the leader which is referenced as agent 0. The leader-following consensus protocol

1

2 3 4 5 6

10 9 8 7

0

Fig. 2. Communication graph of the MAS

(27)-(28) has been implemented in Matlab for minimum and maximum bound on the sampling periods equal to
τm = 0.02s and τM = 0.04s respectively. The sampling periods have been set following a uniform distribution on
[τm, τM ] independently for each edge. The first sampling periods corresponding to the transmission of the output of
agent 2 to agent 1 are reported on figure 3.
The tuning parameters c̄, θ, λ have been chosen by trial and error and taken equal as c̄ = 1, θ = 20 and λ = 2.
A first simulation has been conducted with no uncertainty on the dynamics and no noise on the outputs, that is
ε
(2)
i = 0 and wi = 0. The position of the different agents are reported on Figure 5a)c)e). Furthermore, the estimation
error of agent 2 by agent 1 is depicted in Figure 6a)c). The position tracking mean error 1

N

∑N
i=1

∥∥∥x(1)i (t)− x(1)0 (t)
∥∥∥
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Fig. 4. Second component of y0 with noise (red) and without noise (blue)

is reported on figure 7a). As expected by the theory, both the tracking errors and the observation errors go to zero
exponentially.
It is worth to be noted that only the outputs, namely the position of the agents, are transmitted through the
network and according to the topology described on Figure 2. The velocities and inputs are not transmitted and
then unknown by neighbors agents. Furthermore, each agent transmits its output at time instants independently
from its neighbors.
Another simulation has been conducted, in the same conditions but with a non zero uncertainty only on the leader’s
dynamics, corresponding to an unknown leader input (that is ε(2)0 6≡ 0 and ε(2)i ≡ 0 for i = 1, . . . , 10) and noise on

the transmitted outputs. More precisely, the uncertainty on the leader is given by ε(2)0 (t) =
(

cos(t) cos(2t) cos(3t)
)T

and the noise on the outputs of the agents and the leader wi are centered white noise with variance equal to 0.1.
The second component of the noisy and non noisy outputs of the leader are reported on figure 4. The positions of
the agents are reported on figure 5b)d)f). The estimation error of agent 2 by agent 1 is reported on Figure 6b)d).
The position tracking mean error 1

N

∑N
i=1

∥∥∥x(1)i (t)− x(1)0 (t)
∥∥∥ is reported on figure 7b). While the position tracking

error does not converge exactly to zero, the effect of the uncertainties has been lowered by taking θ and λ sufficiently
high. It should be noted that in the case of noisy measurements, very high values of θ will lead to an amplification
of the noise in the reconstructed state. Thus, a trade-off on the value of θ and λ has to be done. Indeed, sufficiently
high values of these parameters have to be considered to attenuate the effect of the uncertainties but not too high
such that the noise is not amplified too much. Nevertheless, despite uncertainties and noise, the proposed leader
following consensus protocol still performs well as illustrated in the simulation.

6 Conclusion

The problem of leader-following consensus for a class of nonlinear systems which can only transmit their outputs
at discrete aperiodic and asynchronous instants has been considered in this paper. A consensus protocol has been
proposed based on a continuous-discrete time observer that reconstruct the states of the neighbors in continuous
time, from sampled measurements only, and a continuous control law. It has been shown theoretically that if the
tuning parameters fulfill some sufficient conditions then the convergence of the MAS with the proposed protocol
is ensured under directed topology. Furthermore, in case of bounded uncertainties on the dynamics and bounded
noise on the output, an exponential practical consensus is guaranteed. The performances of the approach have been
illustrated with simulations on a MAS whose agents dynamics are given by a Chua’s oscillator.
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Fig. 5. Positions of the agents for τm = 20ms, τM = 40ms, θ = 20 and λ = 2
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