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Introduction

The study of Multi-Agent Systems (MAS) has been considered by many researchers during the last decades, due to its important practical applications, such as formation of UAV, attitude synchronization of spacecraft or distributed sensor networks [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. MAS are usually characterized by a topology network which reflects the possible ways of communication among agents. A fundamental problem for MAS is to design protocols such that all the agents in the network reach a common value. This problem can be subdivided into two categories, the leaderless consensus and the leader-following consensus. In the leaderless consensus problem, the final common position of the agents cannot be selected. Then, it might be useful to consider a real or virtual leader whose prescribed trajectory has to be followed by all the agents [START_REF] Hu | Robust consensus tracking of a class of second-order multi-agent dynamic systems[END_REF]. Many results have been obtained for MAS whose dynamics are linear, see for instance [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF][START_REF] Zhou | Leader-following second-order consensus in multi-agent systems with sampled data via pinning control[END_REF]. However, in many practical cases, MAS are governed by more complex dynamics, namely nonlinear dynamics. These nonlinear dynamics usually cannot be neglected in order to obtain more accurate control procedures and objectives. Consensus protocols using the full state information have been considered in [START_REF] Li | Global hinfinity consensus of multi-agent systems with lipschitz non-linear dynamics[END_REF][START_REF] Defoort | Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics[END_REF] for a fixed topology, in [START_REF] Wen | Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies[END_REF] for time-varying topology or in [START_REF] Ma | Second-order group consensus for multi-agent systems via pinning leader-following approach[END_REF] for second order dynamics. When the state of the agents is only partially available, that is when only the measured output can be used, it is then necessary to use observers in order to reconstruct the state. Such a strategy has been used for example in [START_REF] Hu | Consensus of nonlinear multi-agent systems with observer-based protocols[END_REF] for a general class of nonlinear MAS and in [START_REF] Wan | Observer-based tracking control for heterogeneous dynamical systems under asynchronous attacks[END_REF] for heterogeneous agents. In the aforementioned nonlinear protocols, the considered signals are assumed to be available continuously in real time. But in most applications, it is more desirable or sometimes only possible to transmit the measurements in a discrete way. This may be due to technical constraints or for energy saving [START_REF] Ploennigs | Comparative study of energy-efficient sampling approaches for wireless control networks[END_REF][START_REF] Guo | A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems[END_REF]. It is then important to adapt the consensus protocol in order to deal with the sampled signals. A first idea has been to consider time-triggered sampling. Several protocols have been proposed when the state of the agents can be fully measured. Impulsive control for some specific kinds of systems has been considered in [START_REF] He | Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control[END_REF]. The delay input approach has been used in [START_REF] Wen | Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach[END_REF][START_REF] Wen | H∞ pinning synchronization of directed networks with aperiodic sampled-data communications[END_REF][START_REF] Ding | Sampled-data leader-following consensus for nonlinear multi-agent systems with markovian switching topologies and communication delay[END_REF] for deterministic sampling period and in [START_REF] Shen | Sampled-data synchronization control of dynamical networks with stochastic sampling[END_REF][START_REF] Wan | Distributed node-to-node consensus of multi-agent systems with stochastic sampling[END_REF][START_REF] He | Leader-following consensus of nonlinear multiagent systems with stochastic sampling[END_REF] for stochastic sampling. When only the output is available at discrete instants, then an observer must be designed. A distributed observer protocol with a zero order hold input control has been proposed in [START_REF] Wan | Distributed observer-based stabilization of nonlinear multi-agent systems with sampleddata control[END_REF]. In this work, the sampling periods have to be synchronized between the agents. Another approach, which allows aperiodic and asynchronous sampling periods, is event-triggering based consensus protocol. First-order integrators have been considered in [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF] and general linear systems in [START_REF] Yue | A delay system method for designing event-triggered controllers of networked control systems[END_REF][START_REF] Zhao | Observer-based adaptive sampled-data event-triggered distributed control for multi-agent systems[END_REF]. Some specific nonlinear classes of systems have also been considered in the literature. MAS with Lure's nonlinear dynamics have been investigated in [START_REF] Huang | Event-triggered consensus tracking of multi-agent systems with lur'e nonlinear dynamics[END_REF] and first order nonlinear systems in [START_REF] Xie | Event-triggered average consensus for multi-agent systems with nonlinear dynamics and switching topology[END_REF][START_REF] Liu | Distributed event-triggered fixed-time consensus for leader-follower multiagent systems with nonlinear dynamics and uncertain disturbances[END_REF][START_REF] Yang | Nns-based event-triggered consensus control of a class of uncertain nonlinear multi-agent systems[END_REF]. Other classes of nonlinear systems have been treated in [START_REF] Kaviarasan | Resilient control design for consensus of nonlinear multi-agent systems with switching topology and randomly varying communication delays[END_REF][START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems by distributed event-triggered control[END_REF]. Though providing interesting results, event-triggered schemes involve a more complicated set-up and additional parameters to tune. Indeed, a threshold function has to be considered which dictates the sampling instants for the data transmission. Furthermore, one has to be careful about the Zeno phenomenon which can occur for some schemes [START_REF] Ding | An overview of recent advances in event-triggered consensus of multiagent systems[END_REF]. Most works with discrete signal transmission hold the control input constant between sampling instants. One takes advantage here, of the fact that time-varying control input can be considered. Indeed, only the transmitted signals have to be sampled, not the input. Continuous-discrete time observers, which reconstruct the state in continuous time from discrete-time measurements, have been greatly developed these last years, as in [START_REF] Farza | Continuous-discrete time observers for a class of mimo nonlinear systems[END_REF][START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputs application to the estimation of kinetic rates in bioreactors[END_REF][START_REF] Hernández-González | A cascade observer for a class of MIMO non uniformly observable systems with delayed sampled outputs[END_REF] for different classes of nonlinear systems, and are then used here to tackle the problem of leader-following consensus where only discrete-time outputs are transmitted through the network. It should be noted that these works only consider the observer design, the convergence is obtained by assuming that the input belongs to a bounded set and then cannot be applied directly to the problem considered here. This idea has already been exploited in [START_REF] Li | Robust distributed estimation for linear systems under intermittent information[END_REF][START_REF] Phillips | A hybrid consensus protocol for pointwise exponential stability with intermittent information[END_REF][START_REF] Phillips | Robust distributed synchronization of networked linear systems with intermittent information[END_REF] for linear systems, following an hybrid approach, where sufficient conditions for convergence are obtained, based on LMIs. An high-gain approach has been followed in [START_REF] Ménard | Observer-based consensus for second-order multi-agent systems with arbitrary asynchronous and aperiodic sampling periods[END_REF][START_REF] Ajwad | Observer based leader-following consensus of second-order multiagent systems with nonuniform sampled position data[END_REF] for the leaderless and leader-following consensus of MAS with double integrator dynamics. The control part of this high-gain approach is mainly based on [START_REF] Bédoui | Robust nonlinear controllers for bioprocesses[END_REF], but where only state feedback is considered. These works are then extended here to the leader-following consensus for a class of systems with nonlinear and uncertain dynamics. The main novelty of the paper is the design of a leader-following consensus protocol for a multi agent system, whose agent dynamics belong to a class of uniformly observable multi-output nonlinear systems, where only a part of the state is measured, and each agent's output is transmitted at some discrete instants to its neighbors independently of the other agents. Several features of the proposed approach have to be emphasized. Firstly, only the sampled outputs have to be transmitted through the network, it is not necessary to transmit the inputs. Secondly, the data sent by the agents are not needed to be synchronized, each agent can send its measurements independently from its neighbors, provided that the maximum allowable sampling period is bounded. This allows to reduce the overall bandwidth of the network. Thirdly, the proposed protocol has only three tuning parameters, namely c, λ, θ, where c is the coupling force, λ > 0 represents the speed of convergence of the control part and θ > 0 represents the speed of convergence of the observer part. Then, the tuning of the proposed scheme is relatively simple and can be adapted easily by the practitioner since the effect of the modification of each parameter has a direct physical meaning. Fourth, the class of nonlinear systems considered here is challenging since it is quite large and it has not yet been considered in the literature for aperiodic and asynchronous sampling periods. A new protocol is thus proposed here to tackle this problem.

The paper is organized as follows. Some notations and existing results are recalled in Section 2. The class of considered MAS is depicted in section 3. The proposed protocol together with a convergence result is reported in Section 4. Section 5 contains an example illustrating the performances of the proposed protocol. Finally, Section 6 concludes the paper.

Preliminaries

In this paper, the following notations will be used. The symbol = means equal by definition. The set of n × n real matrices is denoted by R n×n . The transpose for real matrices is represented by the superscript T . I n is the identity matrix of dimension n, 0 m×n is the zero matrix of dimension m × n and 0 n = 0 n×n . The Kronecker product of matrices A and B is A ⊗ B. For a symmetric matrix M , ρ max (M ) and ρ min (M ) respectively denote the maximum and minimum eigenvalue of M . The notation diag(w 1 , . . . , w q ), with w i ∈ R m×m , i = 1, . . . , q, q, m ∈ N, is used for the diagonal by block matrix with w 1 , . . . , w q on its diagonal. The positive definiteness of a matrix M is denoted M > 0. The vector of dimension N ∈ N with all entries equal to 1 is denoted 1 N . A directed graph G is a pair (V, E), where V is a nonempty finite set of nodes and E ⊆ V × V is a set of edges, in which an edge is represented by an ordered pair of distinct nodes. For an edge (i, j), node i is called the parent node, node j the child node, and i is a neighbor of j. A graph with the property that (i, j) ∈ E implies (j, i) ∈ E is said to be undirected. A path on G from node i 1 to node i l is a sequence of ordered edges of the form (i k , i k+1 ), k = 1, . . . , l -1. A directed graph has or contains a directed spanning tree if there exists a node called the root, which has no parent node, such that there exists a directed path from this node to every other node in the graph. Suppose that there are N nodes in a graph. The adjacency matrix A = (a ij ) ∈ R N ×N is defined by a ii = 0 and a ij = 1 if (j, i) ∈ E and a ij = 0 otherwise. The Laplacian matrix L ∈ R N ×N is defined as

L ii = j =i a ij , L ij = -a ij for i = j.
Definition 1 [3, Def. 1.2 and Th. 2.3-G20 p.133-134] A non singular real matrix Q ∈ Z n×n is called an M -matrix if all its diagonal elements are positive, all of its off-diagonal elements are non positive, and each of its eigenvalues has positive real part.

Lemma 1 [3, Th. 2.3-H24 p.134] Suppose that Q ∈ Z n×n is an M -matrix. Then, there exists a positive vector

ω = ω 1 . . . ω n T , such that ΩQ + Q T Ω > 0, where Ω = diag(ω 1 , . . . , ω n ).
Lemma 2 Let n ∈ N and v i : R → R, i = 1, . . . , n be some functions C 1 on (0, +∞) and such that v i (t) = 0 for t < 0, verifying d dt

n i=1 γ i v 2 i (t) ≤ n i=1 -a i v 2 i (t) + b i t t-δ v 2 i (s)ds + k, (1) 
for all t ≥ 0, where

γ i > 0, a i > 0, b i ≥ 0, i = 1, . . . , n, k ≥ 0 and δ < min ( √ 2 -1) 2 min i=1,n a i b i , 1 √ 2 min i=1,n γ i a i . (2) 
Then, the following inequality holds true

n i=1 γ i v 2 i (t) ≤ ςe -ϑt + k ϑ , (3) 
with ϑ = 1 2 min i=1,...,n ai γi

and ς = n i=1 γ i v 2 i (0). Proof. Let us define β = min i=1,...,n ai √ 2γi , c i = bi ai e βδ -1
β , κ i = 1 -c i and κ = min i κ i . Using the inequality

e x ≤ 1 + √ 2x, ∀x ∈ 0, 1 2 , (4) 
leads to 0 < c i ≤ b i a i 1 + √ 2βδ -1 β , since βδ < 1 2 , (5) 
≤ b i a i √ 2δ, (6) 
≤ b i a i √ 2 √ 2 -1 2 
a i b i , using eq. (2), (7) 
≤1 - 1 √ 2 , (8) 
and

1 √ 2 ≤ κ ≤ 1. Consider the candidate Lyapunov functional W (v t ) = n i=1 γ i v 2 i (t) + b i δ 0 t t-s e κβ(ν-t+s) v 2 i (ν)dνds with v t (s) = v(t + s), s ∈ [-δ, 0] and v = v 1 . . . v n T
. Then, using the equality

W (v t ) -i γ i v 2 i (t) = i b i δ 0 t t-s e κβ(ν-t+s) v 2 i (ν)dνds , one gets Ẇ (v t ) = d dt n i=1 γ i v 2 i (t) -κβ W (v t ) - n i=1 γ i v 2 i (t) + δ 0 n i=1 e κβs b i v 2 i (t) -b i v 2 i (t -s) ds. (9) 
Using inequality (1) and the equality

δ 0 v 2 i (t -s)ds = t t-δ v 2 i (s)ds, one obtains Ẇ (v t ) ≤ - n i=1 a i v 2 i (t) -κβ W (v t ) - n i=1 γ i v 2 i (t) + e κβδ -1 κβ n i=1 b i v 2 i (t) + k, (10) 
≤ -κβW (v t ) + k + n i=1 a i -1 + κβγ i a i + b i a i e κβδ -1 κβ v 2 i (t), (11) 
≤ -κβW (v t ) + k + n i=1 a i -1 + κ √ 2 + c i v 2 i (t), (12) 
where the latter inequality is obtained by using the fact that βγ i /a i ≤ 1/ √ 2 by definition of β and the inequality bi ai e κβδ -1 κβ

≤ bi ai e βδ -1 β = c i since the function x → e xδ -1
x is increasing over (0, +∞) and κ ∈ (0, 1). Further using the inequality κ

≤ κ i = 1 -c i , i = 1, . . . , n, gives Ẇ (v t ) ≤ -κβW (v t ) + k - n i=1 1 - 1 √ 2 a i κv 2 i (t), ≤ -κβW (v t ) + k. (13) 
Finally, since κβ ≥ 1 2 min i ai γi = ϑ, using the comparison lemma [22, lemma 3.4 p. 102] gives

W (v t ) ≤W (v 0 )e -ϑt + k ϑ ≤ n i=1 γ i v 2 i (0) e -ϑt + k ϑ , (14) 
where the latter inequality is obtained by using the fact that

v 2 i (t) = 0 for t < 0, i = 1, . . . , n. Lemma 3 [1, Lemma 4] (i) Let M ∈ R n×n be a symmetric positive definite matrix. Then, one has x T M y ≤ √ x T M x y T M y for all x, y ∈ R n . (ii) Let M ∈ R n×n be a symmetric matrix. Then, one has ρ min (M )x T x ≤ x T M x ≤ ρ max (M )x T x for all x ∈ R n . (iii) One has n i=1 √ α i ≤ √ n n i=1 α i for all α i ≥ 0. (iv) Let A ∈ R n×n
be a symmetric positive definite matrix and B ∈ R m×m be a symmetric semi-definite matrix, then the following inequality holds

ρ min (A)I n ⊗ B ≤ A ⊗ B ≤ ρ max (A)I n ⊗ B. ( 15 
)
3 Problem statement

Dynamical model of the agents

One considers a group of N agents whose dynamics are nonlinear. More precisely, the i-th agent dynamics, i = 1, . . . , N , are given by ẋ( 1)

i (t) = x (2) i (t) + ϕ 1 t, x (1) 
i (t) + ε (1) i (t), (16) 
. . .

ẋ(q-1) i (t) = x (q) i (t) + ϕ q-1 t, x (1) 
i (t), . . . , x

(q-1) i (t) + ε (q-1) i (t), ẋ(q) i (t) = u i (t) + ϕ q t, x (1) 
i (t), . . . , x (q) 
i (t) + ε (q) i (t),

y i = x (1) i + w i , where x (k) i ∈ R m , k = 1, . . . , q, is the state, u i ∈ R m is the input, y i ∈ R m the output, ε (k) i 
: R → R m , k = 1, . . . , q, the dynamics uncertainties, w i : R → R m the noise and ϕ k : R × R km → R m , q, m ∈ N the nonlinearities. System ( 16) is then made up of q blocs, each one of size m.

Let us denote x

i = x (1) i T • • • x (q) i T T
∈ R n the state of the i-th agent, with n = qm, and

ε i = ε (1) i T . . . ε (q) i T T
. System ( 16) can be written in the following compact form

ẋi (t) = Ax i (t) + ϕ(t, x i (t)) + Bu i (t) + ε i (t), y i = Cx i + w i , (17) 
with

A ∈ R n×n , B ∈ R n×m and C ∈ R m×n the corresponding matrices and ϕ = ϕ T 1 . . . ϕ T q T .
Remark 1 The class of systems considered here is closely related to the class of uniformly observable systems, which has been introduced in [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF] for Single Input Single Output (SISO) systems. Indeed, the system is composed of a chain of integrator and the nonlinear part has a triangular structure. While there exists canonical form for SISO systems, no such canonical form exists for Multi Input Multi Output systems. Nevertheless, several classes of uniformly observable systems have been considered in the literature such as in [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF][START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF]. The class of systems considered here is the same as in [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF] (where more details are given about possible required change of coordinates) except that the input is supposed to act linearly and without zero dynamics.

The nonlinear function ϕ is supposed to verify the following assumption.

Assumption 1 The function ϕ is globally Lipschitz in x uniformly with respect to t, that is there exists

L ϕ > 0 such that ϕ(t, x 1 ) -ϕ(t, x 2 ) ≤ L ϕ x 1 -x 2 , ( 18 
)
for all t ∈ R and x 1 , x 2 ∈ R n .
The aim is to design a protocol such that all the agents converge toward a leader, denoted agent 0, whose dynamics are given by

ẋ0 (t) = Ax 0 (t) + ϕ(t, x 0 (t)) + ε 0 (t), (19) 
y 0 = Cx 0 + w 0 .
Remark 2 It should be noted that the uncertainties on the dynamics of the leader can also represent an unknown input. Indeed, given the structure of the dynamics (see equation ( 16)), the uncertainty on the dynamics of x (q) 0 can be decomposed as an unknown leader input u 0 on one part and some perturbations on the dynamics on the other part.

The dynamics uncertainties and noises of the agents and the leader are supposed to be uniformly bounded.

Assumption 2 There exist constants δ 1 ε , . . . , δ q ε ≥ 0 and δ w ≥ 0 such that

ε (k) i (t) ≤ δ k ε , ∀t ≥ 0, i = 0, . . . , N, k = 1, . . . , q, (20) w i (t) ≤ δ w , ∀t ≥ 0, i = 0, . . . , q. (21) 
Due to the uncertainties, the agents cannot converge exactly toward the leader but, instead, in some ball around the leader. The problem to be solved here is defined more precisely below.

Definition 2

The leader-following consensus problem is said to be exponentially practically solved if there exist α, β > 0 and γ ≥ 0 such that x i (t) -x 0 (t) ≤ αe -βt + γ, for all i = 1, . . . , N .

Communication constraints

The communication topology between followers i = 1, . . . , N is denoted G and its adjacency and Laplacian matrices A = (a ij ) and L respectively. The output of the leader is supposed to be transmitted only at some agents. More precisely, one defines D = diag(d 1 , . . . , d N ), where d i = 1 if agent i has access to the output of the leader and d i = 0 otherwise. One defines the general index ν ij for i = 1, . . . , N, j = 0, . . . , N as ν ij = 1 if agent i receives the output of agent j and 0 otherwise. This means that if ν ij = 1, then the output of agent j is transmitted to agent i at time instants

t i,j k k∈N
. These sampling instants are supposed to verify

t i,j 0 < t i,j 1 < • • • < t i,j k < . . . and τ m < t i,j k+1 -t i,j k < τ M , (22) 
for all k ∈ N and τ m , τ M > 0. Note that the lower bound τ m is just considered in order to explicitly avoid the Zeno phenomena. It is not a restrictive bound since it can be taken as small as desired.

Example 1 Consider a MAS composed of a leader (denoted 0) and two agents (denoted 1 and 2) such as depicted on Figure 1. Agent 1 receives the transmitted output y 0 of the leader at time instants t 1,0 k for k ∈ N. This is used to reconstruct the state of the leader in continuous time. Agent 1 also uses its own output at time instants t 1,1 k for k ∈ N, to reconstruct its own state in continuous time. Similarly, Agent 2 receives the output of agent 1 at time instants t 2,1 k and uses its own output at time instants t 2,2 k . Note that the time sequences t 1,0

k k∈N , t 1,1 k k∈N , t 2,1 k k∈N , t 2,2
k k∈N can be chosen freely, and in particular independently from each other, as long as they verify [START_REF] Khalil | Nonlinear systems[END_REF]. One denotes G the digraph corresponding to all the agents i = 1, . . . , N together with the leader. The Laplacian matrix L of G is given by Lemma 4 [START_REF] Song | Pinning-controllability analysis of complex networks: an m-matrix approach[END_REF]Lemma 9] The matrix H is a non-singular M-matrix if and only if the communication topology G has a directed spanning tree.

0 1 2 y0 t 1,0 k y1 t 2,1 k y1 t 1,1 k y2 t 2,2 k
L = 0 0 1×N -d L + D = 0 0 1×N -d H , (23) 

Assumption 3

The communication topology G between the agents and the leader contains a directed spanning tree.

Remark 3 If assumption 3 holds true, then according to lemma 4 and lemma 1, there exists a positive vector ω = ω 1 . . . ω N such that ΩH + H T Ω > 0 where Ω = diag(ω 1 , . . . , ω N ). Then, in the rest of the paper, one denotes

= ρ min ΩH + H T Ω , (24) 
ω min = min(ω 1 , . . . , ω N ), (25) 
ω max = max(ω 1 , . . . , ω N ). ( 26 
)
4 Main result

Consensus protocol

The proposed protocol is given, for i = 1, . . . , N , by

u i (t) = d i cK c Γ λ (x i,0 (t) -xi,i (t)) + cK c Γ λ N j=1 a ij (x i,j (t) -xi,i (t)), ∀t ≥ 0, (27) 
where xi,j is the estimate of x j by agent i and is given, for t

∈ t i,j k , t i,j k+1 , k ∈ N, by ẋi,j (t) = Ax i,j (t) + ϕ(t, xi,j (t)) -θ∆ -1 θ K o z i,j (t), (28) 
with z i,j (t) = e -θK o 1 (t-t i,j k ) C xi,j t i,j k -y j t i,j k , (29) 
where c, λ, θ > 0 are the tuning parameters, and

Γ λ = diag λ q I m , λ q-1 I m , . . . , λI m , (30) 
∆ θ = diag I m , 1 θ I m , . . . , 1 θ q-1 I m , (31) 
K o = P -1 C T , K c = B T Q, ( 32 
)
where q is the number of blocs of system ( 16), P, Q ∈ R n×n are the symmetric positive definite solutions of the following matrix equalities

P + P A + A T P = C T C, (33) 
Q + QA + A T Q = QBB T Q, (34) 
(see [START_REF] Bédoui | Robust nonlinear controllers for bioprocesses[END_REF] for more details).

Remark 4 Given the structure by block of A, B, C, one can show directly (see [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF] section 2.2 and [2] section 3 for more details) that K o and K c can be written as follows

K o = K o 1 I m . . . K o q I m T , (35) 
K c = K c 1 I m . . . K c q I m , (36) 
where K o 1 , . . . , K o q , K c 1 , . . . , K c q ∈ R are equal to

K o i = q i , K c i = q q -i + 1 , i = 1, . . . , q, (37) 
and n k are the binomial coefficients.

Remark 5

The term z i,j (t), defined in (29) corresponds to a prediction of the output error (C xi,j (t) -y j (t)) on each interval t i,j k , t i,j k+1 (see [START_REF] Farza | Continuous-discrete time observers for a class of mimo nonlinear systems[END_REF] section III.B for more details).

Remark 6

The proposed structure presents some advantages when dealing with delays and dropouts. Indeed, each control input is fed by the corresponding local observers. Then, if the measurements are time-stamped, as soon as the measurement is received, even if delayed, the estimation of the current state can be provided by making the observer computation run faster to compensate.

Example 2 Consider the same topology as in Example 1 and assume that the dynamics of the agents are ruled by a second order system, more precisely ẋ(1

) i = x (2) i , ẋ (2) 
i = u i + ϕ 2 (x i ), y i = x (1) i ∈ R.
It means here that there are two blocks (q = 2) and the dimension of each agent is equal to n = 2. One further has d 1 = 1, d 2 = 0, a 11 = a 12 = a 22 = 0 and a 21 = 1.

Then, system (17) is characterized by

A = 0 1 0 0 , B = 0 
1
and C = 1 0 . Furthermore, the solution of equations ( 33) and ( 34) are equal to

P = 1 -1 -1 2 and Q = 1 1 1 2
and the gains are given by

K o = 2 1 , K c = 1 2 , Γ λ = λ 2 0 0 λ , ∆ θ = 1 0 0 1 θ .
Given the topology of the considered MAS:

• Agent 1 has to reconstruct the state of the leader and its own state. Then agent 1 has to run two observers:

ẋ1,0 (t) = Ax 1,0 (t) + 0 ϕ 2 (x 1,0 (t)) -θ∆ -1 θ K o e -2θ(t-t 1,0 k ) x(1) 1,0 t 1,0 k -y 0 t 1,0 k , for t ∈ t 1,0 k , t 1,0 k+1 , ẋ1,1 (t) = Ax 1,1 (t) + 0 ϕ 2 (x 1,1 (t)) -θ∆ -1 θ K o e -2θ(t-t 1,1 k ) x(1) 1,1 t 1,1 k -y 1 t 1,1 k , for t ∈ t 1,1 k , t 1,1 k+1 ,
where x1,0 and x1,1 are the estimates of x 0 and x 1 respectively. The input of agent 1 is then given by:

u 1 (t) = 2cλ 2 x(1) 1,0 (t) - x(1) 1,1 (t) + cλ x(2) 1,0 (t) - x(2) 1,1 (t) .
• Agent 2 has to reconstruct the state of agent 1 and its own state. Similarly as for agent 1, agent 2 has to run two observers: one whose state x2,1 is an estimate of x 1 and one whose state x2,2 is an estimate of x 2 .The input of agent 2 is then given by:

u 2 (t) = 2cλ 2 x(1) 2,1 (t) - x(1) 2,2 (t) + cλ x(2) 2,1 (t) - x(2) 2,2 (t) .
It should be noted that the only parameters which must be tuned are c, λ and θ since it is clear from ( 35)-( 37) that K o and K c only depend on the structure of the system (i.e. the number of blocks q and the size of each block m).

Convergence result

The convergence of the proposed consensus protocol is now analyzed.

Theorem 1 Consider the MAS ( 16)-( 19) subject to Assumptions 1, 2 and 3 and the consensus protocol ( 27)-( 28)- [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. If the tuning parameters λ, θ, c ≥ 1 are chosen such that

c ≥ c * = max ω max , 1 , λ ≥ λ * = 24L ϕ √ n max   ρ Qω M ρ Qω m , ρ P M ρ P m   , θ ≥ λc 2 ξ * , with ξ * = 36 K c 2 (N + 1) 3 h 2 max max √ ρ P M √ ρ P m , ρ P M ρ Qω m , ρ Qω M ρ P m , ρ P m = ρ min (P ), ρ P M = ρ max (P ), ρ Qω m = ω min ρ min (Q), ρ Qω M = ω max ρ max (Q), h max = max ij |H ij |,
, ω min , ω max respectively defined by ( 24)-( 25)-( 26), and the upper bound on the sampling periods τ M verifies

τ M < σ * c(θ + L ϕ ) , ( 38 
)
with σ * = √ 2-1 8 min( √ ωmin, √ ρ P m ) K o (N +1) 3 2 hmax √ ρ P M , then the consensus error x i -x 0 verifies x i -x 0 ≤χ 1 θ q-1 e -λ 8 t + χ 2 λ -1 θ q δ w + τ M δ 1 ε + χ 3 λ -1 q k=1 θ q-k δ k ε , (39) 
where χ 1 , χ 2 , χ 3 ≥ 0 are independent of the tuning parameters λ, θ, c and given by

χ 1 = ρ Qω M ρ Qω m N i=1
x i (0) -x 0 (0) +

ρ P M ρ Qω m N i=1 N j=0 xi,j (0) -x j (0) , χ 2 = 8 ρ P M (N + 1) K o ρ Qω m , χ 3 = 8 2N ρ Qω M + (N + 1) ρ P M ρ Qω m .
Remark 7 Equation (39) states that even if the exponential practical consensus is reached, not all the uncertainties effect on the tracking error can be lowered through the tuning of λ and θ. Indeed, it is only possible for the uncertainties appearing on the last block of system (16) (that is only ε (q) i are non zero) and if q ≥ 2. This is done by increasing λ and θ, since the corresponding term χ 3 λ -1 δ q ε goes to zero as λ increases. In particular, if the leader has an unknown but bounded non zero input, then this input can be seen as a dynamic uncertainty on the last block dynamics x (q) 0 . Therefore, the tracking error can be set as low as desired by increasing λ and θ.

Remark 8 Theorem 1 only provides sufficient conditions for the proposed consensus scheme ( 27)- [START_REF] Ménard | Observer-based consensus for second-order multi-agent systems with arbitrary asynchronous and aperiodic sampling periods[END_REF]. Indeed, the consensus may be obtained even if the bounds given by Theorem 1 are not respected. Conservativeness is a general drawback when considering general classes of nonlinear systems with a Lyapunov approach. Nevertheless, the convergence analysis gives some useful hints for the tuning of the control parameters. In fact, the bounds σ * , c * , λ * , ξ * only depend on the structure of the system (number of blocks q and size of each block m) and the topology of the network G. Given the inequalities in Theorem 1, the coupling force should be tuned first as for a classical consensus protocol. Then, λ (representing the speed of convergence of the control part) should be chosen high enough to dominate the nonlinear Lipschitz term. The parameter θ of the observer part should be higher than the parameter of the control part λ. This is due to the fact that the input is not transmitted through the network, only the output is transmitted. Finally, the maximum bound on the sampling periods will have to be chosen small if the Lipschitz constant or if θ takes high values. This corresponds to a kind of Shannon condition: if the system is fast, the sampling periods have to be small. Furthermore, given the bounds on the consensus error given by equation [START_REF] Wen | Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies[END_REF], it can be seen that increasing λ and θ will decrease the effect of some uncertainties (those on the dynamics of x (q) i ) but it will increase the effect of the noise, then a trade-off has to be considered between lowering the effect of some uncertainties and amplifying the noise.

Proof. The proof of Theorem 1 is split into three steps. First, new coordinates are considered in Step 1. Then, in

Step 2, some candidate Lyapunov functions are defined and over-valuations of their derivatives are obtained. Finally, it is shown in Step 3, that, if the different inequalities of Theorem 1 are verified, then Lemma 2 can be applied and the leader-following consensus problem is solved.

Step 1. Let us define e i = Γ λ (x i -x 0 ) and ēi,j = ∆ θ (x i,j -x j ). Then, using the equalities

Γ λ AΓ -1 λ = λA, Γ λ B = λB, ∆ θ A∆ -1 θ = θA, ∆ θ B = 1 θ q-1 B, C∆ -1 θ = C and the notation φ(t, x, y) = ϕ(t, x) -ϕ(t, y), one gets ėi = λAe i + Γ λ ( φ(t, x i , x 0 ) + ε i -ε 0 ) + λBu i , (40) 
ėi,j = θAē i,j + ∆ θ φ(t, xi,j , x j ) -

1 θ q-1 Bu j -θK o z i,j -∆ θ ε j , (41) 
= θ(A -K o C)ē i,j + ∆ θ φ(t, xi,j , x j ) - 1 θ q-1 Bu j -θK o (z i,j -C ēi,j ) -∆ θ ε j , (42) 
for i = 1, . . . , N and j = 0, . . . , N , where z i,j is defined by ( 29) and the inputs are given by , the dynamics of the e i can be written in compact form as follows ηc = λ(

u 0 = 0 m×1 , (43) 
u j = cK c d j Γ λ ∆ -1 θ ēj,0 - N k=1 H jk (e k + Γ λ ∆ -1 θ ēj,k ) ,
I N ⊗ A)η c -cλ[H ⊗ (BK c )]η c + Φ λ + Ψ λ,ε + Θ, with Φ λ =      Γ λ φ(t, x 1 , x 0 ) . . . Γ λ φ(t, x N , x 0 )      , Ψ λ,ε =      Γ λ (ε 1 -ε 0 ) . . . Γ λ (ε N -ε 0 )      , and Θ =      cλBK c Γ λ ∆ -1 θ d 1 ē1,0 - N k=1 H 1k ē1,k . . . cλBK c Γ λ ∆ -1 θ d N ēN,0 - N k=1 H N k ēN,k      .
Step 2. One now introduces the candidate Lyapunov functions, one that depends on the control error η c and one that depends on the observer errors ēi,j . One thus define first

Vc (η c ) = (η c ) T [Ω ⊗ Q]η c
, where Ω is defined in remark 3. Then, for the observer error part, one considers

Vo (η o ) = N i=1 N j=0 ν ij V o (ē i,j ), with V o (ē i,j ) = ēT
i,j P ēi,j , where the vector η o contains all the ēi,j such that ν ij = 1.

One has

Vc (η c ) = λ(η c ) T (Ω ⊗ [A T Q + QA])η c -cλ(η c ) T [(H T Ω) ⊗ ((BK c ) T Q)]η c -cλ(η c ) T [(ΩH) ⊗ (QBK c )](η c ) + 2(η c ) T [Ω ⊗ Q]Φ λ + 2(η c ) T [Ω ⊗ Q]Θ + 2(η c ) T [Ω ⊗ Q]Ψ λ,ε , (44) Vo (ē i,j ) = θē T i,j [(A -K o C) T P + P (A -K o C)]ē i,j , +2ē T i,j P ∆ θ φ(t, xi,j , x j ) - 2 θ q-1 ēT i,j P Bu j + 2θē T i,j P K o (C ēi,j -z i,j ) -2ē T i,j P ∆ θ ε j ( 45 
)
for all i, j such that ν ij = 1.

Step 2.1 Over-valuation of Vc (η c ) Using the equality (BK c ) T Q = QBK c = QBB T Q (obtained with the definition of Q in ( 34)) and Lemma 3 (iv), one gets

(H T Ω) ⊗ ((BK c ) T Q) + (ΩH) ⊗ (QBK c ) = [H T Ω + ΩH] ⊗ [QBB T Q], (46) 
≥ ω max Ω ⊗ [QBB T Q], (47) 
with and ω max defined by ( 24) and ( 26) respectively. Taking c ≥ c * = max{ω max / , 1} and using Lemma 3 (i) and (ii) leads to

Vc ≤ -λ Vc + 2 ω max ρ max (Q) Vc ( Φ λ + Ψ λ,ε + Θ ) . ( 48 
)
One now derives over-valuations of the terms Θ , Φ λ and Ψ λ,ε . Using the definition of d i , H and ν ij , and the fact that B = 1 yields

Θ ≤ cλ K c Γ λ ∆ -1 θ h max N i=1,j=0 ν ij ēi,j , (49) 
where h max = max i,j |H ij |. Further using Lemma 3 (ii) and (iii), one obtains

Θ ≤ cλ K c Γ λ ∆ -1 θ (N + 1)h max ρ min (P ) Vo . (50) 
High-gain techniques, such as in [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF], with λ ≥ 1 gives

Φ λ ≤ √ nL ϕ ω min ρ min (Q) Vc . ( 51 
)
For the over-valuation of Ψ λ,ε , one has

Ψ λ,ε ≤ N i=1 Γ λ (ε i -ε 0 ) ≤ N i=1 ( Γ λ ε i + Γ λ ε 0 ) , ≤ N i=1 q k=1 λ q-k+1 ε (k) i + ε (k) 0 , (52) 
≤ N i=1 q k=1 2δ k ε λ q-k+1 (53) ≤ 2N q k=1 δ k ε λ q-k+1 . ( 54 
)
Finally, using inequalities (48), (50), ( 51) and (54), one gets

Vc ≤ -λ Vc + 2k 1 Vc + 2ck 2 λ Γ λ ∆ -1 θ Vc Vo + 2k 3 Vc q k=1 λ q-k+1 δ k ε , (55) 
with

k 1 =L ϕ √ n ω max ρ max (Q) ω min ρ min (Q) , (56) 
k 2 =(N + 1) K c h max ω max ρ max (Q) ρ min (P ) , (57) 
k 3 =2N ω max ρ max (Q). (58) 
Step 2.2 Over-valuation of Vo (ē i,j ) Using the definition of P in equation [START_REF] Shen | Sampled-data synchronization control of dynamical networks with stochastic sampling[END_REF], Lemma 3 (i) and (ii) and the fact that B = 1 give

Vo ≤ -θV o + 2 ρ max (P ) V o ∆ θ φ(t, xi,j , x j ) + 2 ρ max (P ) V o u j θ q-1 + θ K o C ēi,j -z i,j + 2 ρ max (P ) V o ( ∆ θ ε j ) . (59) 
One now derives over-valuations of the terms u j , ∆ θ φ(t, xi,j , x j ) , C ēi,j -z i,j and ∆ θ ε j .

Using the definition of ν ij and H, one gets

u j ≤ c K c h max N k=1 e k + Γ λ ∆ -1 θ N k=0 ν jk ēj,k . (60) 
Further applying Lemma 3 (ii) and (iii) gives

u j ≤ c K c √ N + 1h max Vc ρ min (Q)ω min + Γ λ ∆ -1 θ Vo ρ min (P ) . (61) 
Using high-gain techniques such as in [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF], with θ ≥ 1, yields

∆ θ φ(t, xi,j , x j ) ≤ √ nL ϕ ρ min (P ) V o (ē i,j ). (62) 
Concerning the over-valuation of C ēi,j -z i,j , using equations ( 29) and (41) yields

d dt (C ēi,j (t) -z i,j (t)) = θē (2) i,j -θK o 1 z i,j -ε (1) 
j + ϕ 1 t, x (1) i 
,j -ϕ 1 t, x (1) j 
-(-θK o 1 z i,j ) , if q ≥ 2, (63) 
d dt (C ēi,j (t) -z i,j (t)) = -θK o 1 z i,j -u j -ε (1) 
j + ϕ 1 t, x (1) i 
,j -ϕ 1 t, x (1) j 
-(-θK o 1 z i,j ) , if q = 1. (64) 
for all t ∈ R, t = t i,j k , k ∈ N. Then, denoting κ i,j (t) = max t i,j k t i,j k < t, k ∈ N the last instant when agent j transmitted its measurement to agent i at time t and using the fact that C ēi,j (κ i,j (t)) -z i,j (κ i,j (t)) = -w j (κ i,j (t)) for all t ≥ 0, integrating (63) from κ i,j (t) to t gives, for q ≥ 2:

C ēi,j (t) -z i,j (t) = -w j (κ i,j (t)) + t κi,j (t) θē (2) i,j (s) + ϕ 1 t, x (1) 
i,j (s) -ϕ 1 t, x (1) 
j (s) -ε (1) 
j (s)ds, (65) 
and integrating (64) from κ i,j (t) to t gives, for q = 1:

C ēi,j (t) -z i,j (t) = -w j (κ i,j (t)) + t κi,j (t) u j (s) + ϕ 1 t, x (1) 
i,j (s) -ϕ 1 t, x (1) 
j (s) -ε (1) 
j (s)ds. (66) 
Further using Assumptions 1 and 2, one obtains, if q ≥ 2:

C ēi,j -z i,j ≤δ w + (θ + L ϕ ) t κi,j (t) ēi,j (s) ds + (t -κ i,j (t))δ 1 ε , (67) 
and, if q = 1, using (61) and the fact that

Γ λ ∆ -1 θ = λ give C ēi,j -z i,j ≤ δ w + c K c √ N + 1h max t κi,j (t) 
Vc (s)

ω min ρ min (Q) ds + c K c √ N + 1h max t κi,j (t) λ Vo (s) 
ρ min (P ) ds

+ L ϕ t κi,j (t) ēi,j (s) ds + (t -κ i,j (t))δ 1 ε . (68) 
Applying Lemma 3 (ii) and the fact that t -κ i,j (t) ≤ τ M , by definition of κ i,j and since t i,j k+1 -t i,j k < τ M for all k ∈ N, one gets, if q ≥ 2:

C ēi,j -z i,j ≤δ w + τ M δ 1 ε + (θ + L ϕ ) ρ min (P ) t t-τ M Vo (η o (s))ds, (69) 
and if q = 1:

C ēi,j -z i,j ≤ δ w + τ M δ 1 ε + c K c √ N + 1h max λ + L ϕ ρ min (P ) t t-τ M V o (s)ds + c K c √ N + 1h max ω min ρ min (Q) t t-τ M V c (s)ds. (70) 
Furthermore, similarly to the over-valuation of Ψ λ,ε , one gets

∆ θ ε j ≤ q k=1 1 θ k-1 δ k ε . (71) 
Finally, using inequalities (59), ( 61), ( 62), ( 69), ( 70) and (71) yields

Vo (ē i,j ) ≤ -θV o (ē i,j ) + 2k 4 V o (ē i,j ) + 2k 5 (N + 1) V o (ē i,j ) t t-τ M Vo (η o (s))ds + 2k 6 (N + 1) V o (ē i,j ) t t-τ M Vc (η c (s))ds + 2c V o (ē i,j ) θ q-1 (N + 1) k 7 Vc + k 8 Γ λ ∆ -1 θ Vo + 2k 9 (N + 1) V o (ē i,j ) q k=1 δ k ε θ k-1 + 2θk 10 (N + 1) V o (ē i,j ) δ w + τ M δ 1 ε , (72) 
with

k 4 =L ϕ √ n ρ max (P ) ρ min (P ) , (73) 
k 5 =θ(N + 1) K o (L ϕ + θ) ρ max (P ) ρ min (P ) , if q ≥ 2, =θ(N + 1) K o c√ N + 1h max λ + L ϕ ρ max (P ) ρ min (P ) , if q = 1, (74) 
k 6 =0, if q ≥ 2, = cθ(N + 1) 3 2 h max √ ω min , if q = 1, (75) 
k 7 = K c (N + 1) 3 2 h max ρ max (P ) ρ min (Q)ω min , (76) 
k 8 = K c (N + 1) 3 2 h max ρ max (P ) ρ min (P ) , (77) 
k 9 = ρ max (P )(N + 1), (78) 
k 10 = ρ max (P ) K o (N + 1). ( 79 
)
Step 2.3 Over-valuation of Vo (η o ) Using the definition of Vo , inequality (72) and Lemma 3 (iii) give

Vo (η o ) ≤ -θ Vo (η o ) + 2k 4 Vo (η o ) + 2k 5 Vo (η o ) t t-τ M Vo (η o (s))ds + 2k 6 Vo (η o ) t t-τ M Vc (η c (s))ds (80) 
+ 2ck 7 θ q-1 Vo (η o ) Vc (η c ) + 2ck 8 Γ λ ∆ -1 θ θ q-1 Vo (η o ) + 2k 9 Vo (η o ) q k=1 δ k ε θ k-1 + 2θk 10 Vo (η o ) δ w + τ M δ 1 ε .
Step 3. From inequalities (55) and (80), one directly obtains Vc + θ q Vo ≤ -ξ

d dt Vc ≤ - λ 2 Vc + k 1 Vc + ck 2 λ Γ λ ∆ -1 θ Vo + k 3 q k=1 δ k ε λ q-k+1 , d dt Vo ≤ - θ 2 Vo + k 4 Vo + ck 7 θ q-1 Vc + ck 8 Γ λ ∆ -1 θ θ q-1 Vo + k 5 t t-τ M Vo ds + k 6 t t-τ M Vc ds + k 9 q k=1 δ k ε θ k-1 + θk 10 δ w + τ M δ 1 ε . Taking θ = ξλ with ξ ≥ 1 leads to Γ λ ∆ -1 θ = θ q ξ and d dt ξ 3 2 Vc + θ q Vo ≤ - ξ 3 2 λ 4 Vc - θ q+1 4 Vo - ξ 3 2 λ 4 1 - 4k 1 λ - 4ck 7 ξ 1 2 Vc - θ q+1 4 1 - 4ck 2 ξ 1 2 - 4k 4 θ - 4ck 8 ξ Vo + θ q k 5 t t-τ M Vo ds + θ q k 6 t t-τ M Vc ds + k 3 q k=1 ξ 3 2 λ q-k+1 δ k ε + k 9 q k=1 θ q-k+1 δ k ε + θ q+1 k 10 δ w + τ M δ 1 ε . (81) 
3 2 λ 4 Vc - θ q+1 4 Vo + k 5 θ q t t-τ M Vo ds + k 6 θ q t t-τ M Vc ds + k 3 q k=1 ξ 3 2 λ q-k+1 δ k ε + k 9 q k=1 θ q-k+1 δ k ε + θ q+1 k 10 δ w + τ M δ 1 ε . ( 82 
) since ξ * ≥ max (6k 2 ) 2 , (5k 7 ) 2 , 24k 8 and λ * ≥ max {20k 1 , 24k 4 } . Applying Lemma 2 with v 2 1 = Vc (η c ), v 2 2 = Vo (η o ), γ 1 = ξ 3 2 , γ 2 = θ q , a 1 = ξ 3 2 λ 4 , a 2 = θ q+1 4 , b 1 = θ q k 6 , b 2 = θ q k 5 and k = θ q+1 k 10 δ w + τ M δ 1 ε + k 3 q k=1 ξ 3 2 λ q-k+1 δ k ε + k 9 q
k=1 θ q-k+1 δ k ε , ensures that the following inequality holds true

ξ 3 2 Vc + θ q Vo ≤ ςe -λ 8 t + θ q+1 λ 8k 10 δ w + τ M δ 1 ε + 8 λ k 3 q k=1 ξ 3 2 λ q-k+1 δ k ε + 8 λ k 9 q k=1 θ q-k+1 δ k ε , (83) 
≤ ςe -λ 8 t + ξθ q 8k 10 δ w + τ M δ 1 ε + 8k 3

q k=1 ξ 3 2 λ q-k δ k ε + 8ξk 9 q k=1 θ q-k δ k ε , (84) 
with ς = ξ 3 2 Vc (η c (0)) + θ q Vo (η o (0)), (85) 
provided that 

τ M < min ( √ 2 -1)ξ 3 2 λ 8θ q k 6 , ( √ 2 -1)θ 8k 5 , 2 √ 2 λ , 2 √ 2 θ , which is verified if τ M < ( √ 2 
since

(L ϕ + θ) ≥ θ ≥ λ.
Then, using the inequalities

x i -x 0 ≤ 1 λ e i ≤ 1 λ      e 1 . . . e N      ≤ 1 λ η c , ≤ 1 
λ ω min ρ min (Q) Vc (η c ), (87) 
Vc (η c ) ≤ λ q ω max ρ max (Q) N i=1 x i -x 0 , (88) 
Vo (η o ) ≤ ρ max (P ) N i=1 N j=0 xi,j , (89) 
leads to

x i -x 0 ≤ θ q-1 χ 1 e -λ 8 t + λ -1 θ q χ 2 δ w + τ M δ 1 ε + λ -1 χ 3 q k=1 θ q-k δ k ε , ( 90 
) since θ ≥ λ ≥ 1 with χ 1 = √ ωmaxρmax(Q) √ ωminρmin(Q) N i=1 x i (0) -x 0 (0) + √ ρmax(P ) √ ωminρmin(Q) N i=1 N j=0 xi,j (0) -x j (0) , χ 2 = 8k10 √ ωminρmin(Q) , χ 3 = 8(k3+k9) √ ωminρmin(Q)
.

Example

In this section, we present a numerical example, consisting of systems whose dynamics are the same as a Chua's oscillator, in order to illustrate the performances of the proposed protocol. Indeed, as in [START_REF] Song | Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[END_REF], let us consider the MAS where each agent's dynamics are given by

       ẋ(1) i (t) = x (2) i (t), ẋ(2) i (t) = f t, x (1) 
i (t), x (2) 
i (t) + u i (t) + ε (2) i (t), y i = x (1) i + w i , i = 1, . . . , 10, (91) where x 
(1) i = x (1,1) i x (1,2) i x (1,3) i T ∈ R 3 , x (2) i = x (2,1) i x (2,2) i x (2,3) i T ∈ R 3 are the position and velocity of agent i, respectively, u i , y i , ε (2) 
i , w i ∈ R 3 are the input, output, uncertainty and noise of each agent, and the nonlinear function f is given by

f t, x (1) i , x (2) i =     α x (2,2) i -x (2,1) i -h x (2,1) i x (2,1) i -x (2,2) i + x (2,3) i -βx (2,2) i -γx (2,3) i -β sin ωx (1,1) i     ,
where α = 10, β = 19.53, γ = 0.1636, = 0.2, ω = 0.5 and h is a piece-wise linear function given by h x

(2,1) i = a-b 2 x (2,1) i + 1 -x (2,1) i 
-1 with parameters a = -1.4325 and b = -0.7831. The communication graph of the MAS system (91) is described on Figure 2 and one assumes that only agents 3 and 5 receive the measured position of the leader which is referenced as agent 0. The leader-following consensus protocol A first simulation has been conducted with no uncertainty on the dynamics and no noise on the outputs, that is ε

(2) i = 0 and w i = 0. The position of the different agents are reported on Figure 5a)c)e). Furthermore, the estimation error of agent 2 by agent 1 is depicted in Figure 6a)c). The position tracking mean error 1

N N i=1 x (1) 
i (t) -x is reported on figure 7a). As expected by the theory, both the tracking errors and the observation errors go to zero exponentially.

It is worth to be noted that only the outputs, namely the position of the agents, are transmitted through the network and according to the topology described on Figure 2. The velocities and inputs are not transmitted and then unknown by neighbors agents. Furthermore, each agent transmits its output at time instants independently from its neighbors. Another simulation has been conducted, in the same conditions but with a non zero uncertainty only on the leader's dynamics, corresponding to an unknown leader input (that is ε

(2) 0 ≡ 0 and ε

(2) i ≡ 0 for i = 1, . . . , 10) and noise on the transmitted outputs. More precisely, the uncertainty on the leader is given by ε The position tracking mean error 1

N N i=1 x (1) 
i (t) -x

(1) 0 (t) is reported on figure 7b). While the position tracking error does not converge exactly to zero, the effect of the uncertainties has been lowered by taking θ and λ sufficiently high. It should be noted that in the case of noisy measurements, very high values of θ will lead to an amplification of the noise in the reconstructed state. Thus, a trade-off on the value of θ and λ has to be done. Indeed, sufficiently high values of these parameters have to be considered to attenuate the effect of the uncertainties but not too high such that the noise is not amplified too much. Nevertheless, despite uncertainties and noise, the proposed leader following consensus protocol still performs well as illustrated in the simulation.

Conclusion

The problem of leader-following consensus for a class of nonlinear systems which can only transmit their outputs at discrete aperiodic and asynchronous instants has been considered in this paper. A consensus protocol has been proposed based on a continuous-discrete time observer that reconstruct the states of the neighbors in continuous time, from sampled measurements only, and a continuous control law. It has been shown theoretically that if the tuning parameters fulfill some sufficient conditions then the convergence of the MAS with the proposed protocol is ensured under directed topology. Furthermore, in case of bounded uncertainties on the dynamics and bounded noise on the output, an exponential practical consensus is guaranteed. The performances of the approach have been illustrated with simulations on a MAS whose agents dynamics are given by a Chua's oscillator. x
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 2 Fig. 2. Communication graph of the MAS (27)-(28) has been implemented in Matlab for minimum and maximum bound on the sampling periods equal to τ m = 0.02s and τ M = 0.04s respectively. The sampling periods have been set following a uniform distribution on [τ m , τ M ] independently for each edge. The first sampling periods corresponding to the transmission of the output of agent 2 to agent 1 are reported on figure3. The tuning parameters c, θ, λ have been chosen by trial and error and taken equal as c = 1, θ = 20 and λ = 2. A first simulation has been conducted with no uncertainty on the dynamics and no noise on the outputs, that is ε

Fig. 3 .

 3 Fig. 3. Sampling periods for the transmission from agent 2 to agent 1.

Fig. 4 .

 4 Fig. 4. Second component of y0 with noise (red) and without noise (blue)

  ) = cos(t) cos(2t) cos(3t) T and the noise on the outputs of the agents and the leader w i are centered white noise with variance equal to 0.1. The second component of the noisy and non noisy outputs of the leader are reported on figure4. The positions of the agents are reported on figure5b)d)f). The estimation error of agent 2 by agent 1 is reported on Figure6b)d).
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 105267 Fig. 5. Positions of the agents for τm = 20ms, τM = 40ms, θ = 20 and λ = 2