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Abstract: The current paper presents a method for the computation of fractionally flat
outputs for linear fractionally flat systems based on the notion of unimodular completion. This
calculation method, which already exists for integer order non-linear flat systems, is extended for
the class of fractionally linear flat systems by employing some fractional calculation properties.
Two examples are used to validate the proposed extension.
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1. INTRODUCTION

Liouville (1832) and Riemann (1892) introduced fractional
calculus as a generalization of the traditionally used ordi-
nary calculus. However, it has been regarded solely as a
theoretical notion until the discovery of physical systems
that can be modelled by fractional differential equations,
such as thermal systems (Battaglia et al. (2000)), nuclear
magnetic resonance systems (Magin et al. (2008)) and
viscoelastic systems (Moreau et al. (2002)). In this context,
studies have shown that this notion of fractional calcula-
tion is also useful for a system’s robust control, such as in
the CRONE command (Oustaloup (1995)).

Additionally, a method based on the flatness property
has also proven its efficiency in robust system control.
Initially, this property of flatness has been introduced
and developped for the class of non-linear integer systems
(Martin et al. (1992); Levine (2009)) of the form

ẋ = f(x, u) (1)

where x is the state variable and u is the input variable.
Later, this has been extended to include the class of
fractional linear systems (Melchior et al. (2007)) of the
form:

x(ν) = Ax+Bu (2)

where (ν) is the fractional derivative and A and B are
constant matrices. Roughly speaking, a system is said
to be flat (resp. fractionally flat in the case of linear
fractional systems (2)) if and only if all the system’s
variables can be expressed as functions of a new variable
y and its successive derivatives called flat output (resp.
fractionally flat output). A reference trajectory of the
system is constructed using y: the reference trajectories
of x and u are deduced from the reference trajectory
of y without it being necessary to solve any differential
equation.

Therefore, the main purpose of the flatness concept is the
calculation of flat outputs. This has been implemented
for both non-linear integer systems and linear fractional
systems. On one hand, for the class of non-linear integer
systems (1), two computational algorithms have been de-
veloped to compute flat outputs. The first one is based
on the Smith Diagonal Decomposition of d

dt -polynomial

matrices 1 , where d
dt is the time derivative operator, and

for which a formal calculation tool has been developed by
(Verhoeven (2016)). The second one is based on the no-
tion of unimodular completion of d

dt -polynomial matrices
(Fritzsche et al. (2016a); Franke and Röbenack (2013)).
Both methods have proven to be effective in calculating
flat outputs. However, the second provides, in some par-
ticular cases, a direct representation of flat outputs (i.e.
without the need to make calculations) called direct flat
representation (see Fritzsche et al. (2016b)). On the other
hand, for the class of fractional linear systems (2), the
computation algorithm of the fractionally flat outputs,
developed by (Victor et al. (2015)), is also based on the
Smith Diagonal Decomposition of Dγ-polynomial matrices
where Dγ is the fractional operator.

In the present work, we show that the method of calcu-
lating flat outputs using unimodular completion can be
extended for the class of fractional linear systems, using
some properties of fractional calculus. We will also show
that such systems admit, in particular cases, a fraction-
ally direct flat representation, which allows calculating
fractionally flat outputs without the need for intensive
computations.

In this context, the paper is organized as follows: Section
2 presents some fractional calculus basic properties and
the notion of linear fractionally flat systems. Section 3
introduces the unimodular completion algorithm for the

1 The entries of such matrices are polynomials in the operator d
dt

with coefficients meromorphic functions (Levine (2009)).



computation of fractionally flat output. Afterwards, sec-
tion 4 represents the particular case of fractionally direct
flat representation. Finally, two examples emphasizing po-
tential applications of the proposed method are developed
in section 5.

2. FRACTIONAL LINEAR FLATNESS

2.1 Fractional Calculus

Let γ ∈ R+ be a positive real number, n = min{k ∈ N |
k > γ} the smallest integer greater than γ and ν = n −
γ ∈ [0, 1[. Let a ∈ R, and C∞([a,+∞[) the set of infinitely
continuously differentiable functions.

The fractional derivative, or Riemann-Liouville derivative,
of order γ = n− ν of a function f ∈ C∞([a,+∞[) at time
t, denoted by Dγ

af , is defined by (Miller and Ross (1993)):

Dγ
af(t) = Dn

(
Iνaf(t)

)
,
( d
dt

)n( 1

Γ(ν)

∫ t

a

f(τ)

(t− τ)1−ν
dτ
)

(3)

where Iνaf(t) is the Cauchy integral of order ν of f and the
Euler’s function defined by

Γ(x) =

∫ ∞
0

e−ttx−1dt, ∀x ∈ R∗ \ N− (4)

is the generalized factorial (∀n ∈ N, Γ(n+ 1) = n!).

Note that for all ν ∈ R+, νΓ(ν) = Γ(ν + 1). If γ = n ∈
N, the fractional derivative coincides with the ordinary
derivative (Dγ

af(t) = Dn
af(t)). If γ < 0, the fractional

derivative is in fact the fractional integral (Dγ
af(t) =

I−γa f(t)).

Moreover, it is straightforward to show that the operator
Dγ
a is linear as follows:

Proposition 1. Let f and g ∈ C∞([a,+∞[) and α and
β ∈ R, we have:

Dγ
a(αf(t) + βg(t)) = αDγ

af(t) + βDγ
ag(t). (5)

In systems theory, the signal space is defined as the space
of causal functions Ha given by:

Ha , {f : R 7→ R | f ∈ C∞([a,+∞[),

f(t) = 0,∀t ≤ a}. (6)

The operator Dγ
a is an endomorphism from Ha to Ha (see

Podlubny (1999)).

For more properties on fractional derivatives see (Victor
and Melchior (2015)).

Let R[Dγ
a] be the set of Dγ

a-polynomials with real coeffi-

cients of the form

K∑
k=0

ckD
kγ
a . One can easily verify that

such set, endowed with the usual addition and multi-
plication of polynomials (R[Dγ

a],+,×), is a commutative
principal ideal domain.

Let p and q ∈ N, we denote by R[Dγ
a]p×q the set of Dγ

a-
polynomial matrices of size p × q. An invertible square
matrix of R[Dγ

a]p×p whose inverse is also in R[Dγ
a]p×p is

called unimodular matrix. The set of unimodulare matri-
ces is denoted by GLp(R[Dγ

a]). Dγ
a-polynomial matrices

admit the following property (Antritter et al. (2014)):

Theorem 1. A matrix M ∈ R[Dγ
a]p×q with p ≤ q (resp.

p ≥ q) is said to be hyper-regular if, and only if, there
exists a matrix U ∈ GLp(R[Dγ

a]) (resp. V ∈ GLq(R[Dγ
a]))

such that:

MU =
(
Ip 0p×(q−p)

) (
resp. VM =

(
Iq

0(p−q)×q

))
. (7)

The decomposition (7) of the matrix M is called Smith
Diagonal Decomposition.

2.2 Linear Fractionally Flat System

The linear fractional systems are defined, in an algebraic
framework of module theory, as a non-integer finite R-
module (see Victor (2010)). The controllability and ob-
servability properties of such systems can be found in
(Fliess and Hotzel (1997)).

Consider the following pseudo-representation 2 of a linear
fractional system

Ax = Bu (8)

where x ∈ (Ha)n represents the n-dimensional pseudo-
state vector, u ∈ (Ha)m is the m-dimensional control
vector, A ∈ R[Dγ

a]n×n and B ∈ R[Dγ
a]n×m. The matrix

B is supposed to be of rank m and m ≤ n. The system (8)
can be written in the form:

F

(
x
u

)
= 0 (9)

where F , (A −B) ∈ R[Dγ
a]n×(n+m) is assumed to be of

full row rank.

Inspired by the work of (Antritter et al. (2014)) on
the flatness of integer linear systems, the definition of
fractional linear flatness is then introduced by (Victor
et al. (2015)) as follows:

Definition 1. The system (9) is said to be fractionally flat if,
and only if, there exist two matrices P ∈ R[Dγ

a]m×(n+m)

and Q ∈ R[Dγ
a](n+m)×m and a variable y ∈ (Ha)m such

that

(1) PQ = Im;

(2) For all (x, u)T satisfying (9), we have y = P

(
x
u

)
and

conversely

(
x
u

)
= Qy.

The variable y is called fractionally flat output and the
matrices P and Q are called defining matrices.

The main property of fractional linear flatness is given by
the following theorem (Victor et al. (2015)):

Theorem 2. The system (9) is fractionally flat if, and only
if, the matrix F is hyper-regular over R[Dγ

a].

In some cases, the system (9) admits an implicit form as
follows:

Definition 2. (Implicit Form). If B ∈ R[Dγ
a]n×m is hyper-

regular, i.e. if there exists M ∈ GLn(R[Dγ
a]) such that

MB =

(
Im

0(n−m)×m

)
, then there exist two matrices F̃ ∈

2 This notation is specified for the class of fractional system and it
refers to (Oustaloup (1995)).



R[Dγ
a](n−m)×n and R ∈ R[Dγ

a]m×n such that the system

(9) is equivalent to Rx = u, F̃ x = 0.

In practice, the fractionally flat output may depends only
on the state variable x. More precisely, the defining matrix
P of the Definition 1 may be of the form P = [P1 0m]
with P1 ∈ R[Dγ

a]m×n and the fractionally flat output is
then given by y = P1x. In this case we say that the system
is fractionally (-1)-flat.

Theorem 3. Let the matrix B of the system (9) be hyper-
regular, then the system (9) is fractionally (-1)-flat if, and

only if, the matrix F̃ of the implicit form is hyper-regular
over R[Dγ

a].

An algorithm of computation of defining matrices P and
Q and of a fractionally flat output y is based on the Smith
decomposition of the matrix F (Victor (2010), Victor et al.
(2015)): suppose that F is hyper-regular, then there exists
W ∈ GLn+m(R[Dγ

a]) such that:

FW = (In 0n×m) . (10)

The defining matrices Q and P are given by Q =

W

(
0n×m
Im

)
and P = (0m×n Im)W−1 respectively. Then,

a fractionally flat output vector is given by y = P

(
x
u

)
and conversely we have

(
x
u

)
= Qy. In the case of a

fractionally (-1)-flat system, the same algorithm is applied

to the matrix F̃ and returns P1 and Q1 such that y = P1x
and x = Q1y.

As mentioned in the section 1, a method of calculation
of flat outputs, based on the notion of unimodular com-
pletion, has been developed in (Fritzsche et al. (2016a))
for the class of non-linear integer flat system. In the next
section, we will extend this method to the class of linear
fractionally flat system.

3. UNIMODULAR COMPLETION ALGORITHM

3.1 Preliminary Definitions

Definition 3. Given a hyper-regular matrix M ∈ R[Dγ
a]p×q

with p ≤ q, we say that N ∈ R[Dγ
a](q−p)×q is a unimodular

completion of M if and only if(
M
N

)
∈ GLq(R[Dγ

a]).

Proposition 2. Let F defined by (9) be hyper-regular.
Then, the vector y is a fractionally flat output of (9),
if and only if, the matrix P ∈ R[Dγ

a]m×(n+m) such that

y = P

(
x
u

)
, is a unimodular completion of F .

Proof. The matrix F ∈ R[Dγ
a]n×(n+m) is hyper-regular,

then, by the Smith decomposition of F , there exists a
matrix W ∈ GLn+m(R[Dγ

a]) such that:

FW = (In 0n×m) (11)

which implies that F = (In 0n×m)W−1, and F constitutes
the first n rows of W−1.

In addition, the defining matrix P given by P =
(0m×n Im)W−1 constitutes the last m rows of W−1, then
we get:

W−1 =

(
F
P

)
∈ GLn+m(R[Dγ

a])

and P is a unimodular completion of F . �

3.2 The Computation Procedure

The notations used in the following are the same adapted
in (Fritzsche et al. (2016a)). The algorithm is iterative and
consists of three steps: Reduction, Zero-space Decomposi-
tion and Elimination. The starting point is the system (9)
which can be decomposed into the form(

F0,[0] + F1,[0] D
γ
a

)
v[0] = 0 (12)

where F0,[0] and F1,[0] in Rn×(n+m) are two coefficient ma-

trices and v[0] = (x, u)T . The index in brackets indicates
the iteration number.

Reduction: Starting from(
F0,[i] + F1,[i] D

γ
a

)
v[i] = 0, (13)

we consider the change of coordinates

v[i] = F †R1,[i] v[i+1] + F⊥R1,[i] w[i+1] (14)

with F †R1,[i] the right pseudo-inverse (i.e. F1,[i]F
†R
1,[i] = In)

and F⊥R1,[i] is such that F1,[i]F
⊥R
1,[i] = 0.

By injecting equation (14) in (13) and using the property
(5), we get

v
(γ)
[i+1] +A[i]v[i+1] +B[i]w[i+1] = 0 (15)

with

A[i] = F0,[i]F
†R
1,[i] (15a)

B[i] = F0,[i]F
⊥R
1,[i]. (15b)

The matrix B[i], being in Rni×mi , two cases can be
distinguished: if rank(B[i]) = ri < mi then a zero-
space decomposition is needed to reduce the dimension.
If rank(B[i]) = mi, i.e. B[i] is of full column rank, we move
on to the Elimination step.

Remark 1. In (15b) the case where B[i] ≡ 0 is not con-
sidered because it contradicts the controllability condi-
tion and consequently the system is not flat (Franke and
Röbenack (2013)).

Zero-space Decomposition: As mentioned above, if
rank(B[i]) = ri < mi, it is necessary to decompose the

matrix F⊥R1,[i] into the form

F⊥R1,[i] =
(
F̃⊥R1,[i] Z[i]

)
(16)

such that

B[i] = F0,[i]

(
F̃⊥R1,[i] Z[i]

)
=
(
B̃[i] 0

)
(17)

with rank(B̃[i]) = ri. To do this, we introduce the matrices:

Z[i] := F⊥R1,[i]B
⊥R
[i] (18)

F̃⊥R1,[i] := F⊥R1,[i]

((
B⊥R[i]

)⊥L)T
(19)



In this case the change of coordinates (14) is replaced by

v[i] = F †R1,[i] v[i+1] + F̃⊥R1,[i] w[i+1] + Z[i] z[i+1] (20)

and the equation (15) becomes:

v
(γ)
[i+1] +A[i]v[i+1] + B̃[i]w[i+1] = 0. (21)

Elimination: Returning to the Reduction step, if the
matrix B[i] is not of full row rank, i.e. rank(B[i]) < ni
then the dimension of the system (13) must be reduced.
For this purpose, the variables w[i+1] are eliminated from

equation (15) by multiplying it by B⊥L[i] , which leads to:(
F0,[i+1] + Dγ

a F1,[i+1]

)
v[i+1] = 0, (22)

with F0,[i+1] = B⊥L[i] A[i] and F1,[i+1] = B⊥L[i] . Here the

system (22) is a reduced dimension of the system (13) and
then the same procedure is repeated for the iteration i+ 1
on (22).

The calculations stop at iteration k when a full row rank
of B[k] is reached.

Remark 2. In the case where the zero-space decomposition
is considered, the process of the Elimination step is applied

to the equation (21) by replacing B⊥L[i] by B̃⊥L[i] .

Construction of the unimodular completion: In each
iteration i, a relation between v[i] and v[i+1] can be
deduced from (14) by left multiplying it by F1,[i]:

v[i+1] = F1,[i]v[i]. (23)

After a finite number k+1 of iterations, a relation between
v[k+1] and v[0] is determined as follows:

v[k+1] = F1,[k]F1,[k−1] . . . F1,[0]v[0] := P v[0] (24)

and the matrix P is then a unimodular completion of the
matrix F of the system (9).

Remark 3. If the case where the zero-space decomposition
is considered, the inverse of the equation (20) is given by:

z[i+1] = Z†L[i] F1,[i−1] . . . F1,[0]v[0] = P̂[i]v[0] (25)

where Z†L[i] is obtained by the unique following conditions:

Z†L[i] Z[i] = I, Z†L[i] F
⊥R
1,[i] = 0 and Z†L[i] F̃

⊥R
1,[i] = 0. (26)

Finally, equations (24) and (25) constitute the fractionally
flat output. Calculations in this algorithm can be per-
formed using Maple’s LinearAlgebra package.

4. FRACTIONALLY DIRECT FLAT
REPRESENTATION

Inspired by the work presented in (Fritzsche et al.
(2016b)), the algorithm for calculating the unimodular
completion can be reduced under the following condition:

Proposition 3. Let F ∈ R[Dγ
a]n×(n+m) of the system (9) be

hyper-regular. If there exists a column permutation matrix
Π such that

F̂ , FΠ =
(
S[Dγ

a] T [Dγ
a]
)

(27)

with S[Dγ
a] ∈ GLn(R[Dγ

a]) is unimodular, then a unimod-

ular completion of F̂ is given by P̂ =
(

0m×(n−m) Im

)
and a unimodular completion of F is given by

P = P̂ ΠT (28)

By this way, the vector y such that y = P

(
x
u

)
is a

fractionally flat output.

From the expression of P in (28), we can see that the m
components of y are simply a permutation of m elements
of the state and the input vectors. From here, expression
(28) is called fractionally direct flat representation and y
is a fractionally direct flat output.

Remark 4. Proposition 3 is also applicable on the matrix

F̃ in the case of fractionally (-1)-flat system.

5. APPLICATIONS

5.1 Academic Example

Consider the following system{
x
(2ν)
1 + x1 − x2 = u

x
(2ν)
2 + x2 − x1 = 0

(29)

where x = (x1, x2)T is the pseudo-state vector and u
the input vector. The system (29) can be represented by

F

(
x
u

)
= 0 with

F =

(
D(2ν) + 1 −1 −1

−1 D(2ν) + 1 0

)
∈ R[D2ν

a ]2×3 (30)

Using (13), the matrix F is decomposed into the form

F = F0,[0] + F1,[0]D
(2ν) (31)

with F0,[0] =

(
1 −1 −1
−1 1 0

)
and F1,[0] =

(
1 0 0
0 1 0

)
.

By following the algorithm, first we calculate

F †R1,[0] =

(
1 0
0 1
0 0

)
and F⊥R1,[0] =

(
0
0
1

)
(32)

which leads to (see (15a) and (15b))

A[0] =

(
1 −1
−1 1

)
and B[0] =

(
1
0

)
. (33)

The matrix B[0] is of full column rank but not of full
row rank, then we need to reduce the dimension by the
elimination step, so we calculate

F1,[1] = B⊥L[0] = (0 1) and F0,[1] = B⊥L[0] A[0] = (−1 1) .

(34)
We continue to the step i = 1:

F †R1,[1] =

(
0
1

)
and F⊥R1,[1] =

(
1
0

)
, (35)

which gives A[1] = 1 and B[1] = −1. Here B[1] reaches a
full row rank and the algorithm ends at this step.

Using (24), the unimodular completion of the matrix F is
then given by

P = F1,[1]F1,[0] = (0 1 0) (36)

and the system (29) is fractionally flat with y = P

(
x
u

)
=

x2 is a fractionally flat output. Then, we can found x1 =
y(2ν) + y and u = y(4ν) + 2y(2ν).



Remark 5. The same algorithm can be applied on the
implicit form of (29), because of the hyper-regularity of

the matrix B =

(
1
0

)
.

5.2 Thermal Bi-dimensional System

The following example has already been processed in
(Victor et al. (2015)). The defining matrices P and Q are
calculated using the Smith decomposition of the implicit

system’s matrix F̃ . Here, we will show that this system has
a fractionally direct flat representation, which allow us to
compute the fractionally flat output without the need to
make calculations.

The thermal bi-dimensional system is about a 2D metallic
sheet which is isolated and without heat losses (see Fig. 1).
The variable T (x0, y0, t)) represents the temperature at a
point (x0, y0) at time t and it is controlled by the heat flux
ϕ(y, t) for y ≥ 0.

Fig. 1. Thermal bi-dimensional System, Source: Victor
et al. (2015)

The heated metallic model is represented by the following
system:( ∂2

∂x2
+

∂2

∂y2
− 1

α

∂

∂t

)
T (x, y, t) = 0 (37)

− λ∂T (x, y, t)

∂x

∣∣∣
x=0

= ϕ(y, t) ∀y > 0, ∀t > 0 (38)

lim
x→+∞

T (x, y, t) = 0, ∀y > 0, ∀t > 0 (39)

lim
y→+∞

T (x, y, t) = 0, ∀x > 0, ∀t > 0 (40)

T (x, y, 0) = 0 ∀x > 0, ∀y > 0 (41)

where α and λ are the coefficients of diffusivity and
conductivity respectively and ϕ is the control variable.
Equation (37) is the heat equation, (38) is the boundary
condition, (39) and (40) represent the limit conditions and
(41) is the initial condition known as Cauchy condition.

The Laplace transformation of the equation (37) is given
by:

s

α
T̂ (x, y, s) =

∂2T̂ (x, y, s)

∂x2
+
∂2T̂ (x, y, s)

∂y2
(42)

where s ∈ C is the Laplace variable and T̂ (x, y, s) =∫ +∞

0

T (x, y, t)e−stdt.

Let T̂ (x, y, s) =

∞∑
i=0

T̂i(x, y, s) with

T̂i(x, y, s) = Hi(x, y, s) ϕ̂i(s), (43)

where

Hi(x, y, s) ,
(i+ 1)e

−
√
s

(
x
i+1+y

√
1
α−

1
(i+1)2

)
λ
√
s

(44)

is thermal impedance and

ϕ̂i(s) ,
λ
√
s

i+ 1
Lx,i(s)Ly,i(s). (45)

Lx,i(s) and Ly,i(s) are arbitrary functions of the complex
variable s.

It may be seen that T̂ (x, y, s) verifies the equation (42).
For more details see Victor et al. (2015).

Applying the Padé approximation of e−x at the order K
at a point (x0, y0) gives

Hi(x0, y0, s) ≈
∑K
k=0

(i+1)
λ ai,ks

k
2∑K

k=0 |ai,k|s
(k+1)

2

, Hi,K(x0, y0, s) (46)

with ai,k = (−1)k(2K−k)!K!
2K!k!(K−k)!

(
x0

i+1 + y0
√

1
α −

1
(i+1)2

)k
.

Hi,K converges to Hi when K tends to infinity. Similarly,

for a finite number I, we truncate T̂ (x0, y0, s) into

T̂I,K(x0, y0, s) ,
I∑
i=0

HI,K(x0, y0, s)ϕ̂i(s) (47)

and T̂I,K(x0, y0, s) converges to T̂ (x0, y0, s) as I tends to
infinity.

From here, the fractional linear system is given by:

AX = BU (48)

where A = diag{Ai}, B = diag{Bi}, X =

X0

...
XI

 and

U =

ϕ0

...
ϕI

, with for i = 0, . . . , I we have

Ai =



D
1
2
a + |a′i,K−1| |a′i,K−2| · · · |a′i,0| 0

−1 D
1
2
a 0 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 D
1
2
a


,

Xi =

Xi,K

...
Xi,0

, Bi =

(
1

0K×1

)
and for all k = 0, . . . ,K

and i = 0, . . . , I we have a′i,k =
ai,k
|ai,k|

. The state vector

X is of dimension n× 1 with n = (I + 1)(K + 1) and the
control vector U is of dimension m× 1 with m = I + 1.

Using the unimodular completion algorithm, we can prove
that the system (48) is fractionally flat. For i = 0, . . . , I,
the matrix Bi, being in its Smith form, is hyper-regular

and according to Definition 2, there exist two matrices F̃i

and Ri such that Ai =

(
Ri
F̃i

)
with



Ri =
(
D

1
2
a + |a′i,K−1| |a′i,K−2| · · · |a′i,0| 0

)
(49)

and F̃i =


−1 D

1
2
a 0 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 D
1
2
a

 . (50)

The matrix F̃ = diag{F̃i, i = 0, . . . , I} of the system (48)
is hyper-regular, then the system is fractionally (-1)-flat.

To calculate the fractionally flat output, one can easily
follow the steps of the algorithm and compute the uni-
modular completion matrix. But here, it is clear that the

matrix F̃i ∈ R[D
1
2
a ]K×(K+1) is of the form F̃i = (Si Ti)

with

Si =



−1 D
1
2
a 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . D

1
2
a

0 · · · · · · 0 −1


∈ GLK(R[D

1
2
a ])

is unimodular and Ti =

(
OK−1

D
1
2
a

)
∈ R[D

1
2
a ]K×1, then, ac-

cording to Proposition 3, the system admits a fractionally
direct flat representation and a unimodular completion of

F̃i is given by

Pi = (01×K 1) . (51)

Finally, a unimodular completion of F̃ is P = diag{Pi, i =
0, . . . , I} and a fractionally flat output is then given by

Y = PX =

X0,0

...
XI,0

 . (52)

6. CONCLUSION

The current work extends the method for calculating
flat outputs by unimodular completion to the class of
fractional linear systems. Particularly, the coefficient ma-
trices are used instead of the Dγ

a-polynomial matrices
which makes the calculation easier. In addition, this al-
gorithm provides a fractionally direct flat representation.
The method was then validated using two examples. Ac-
tually, the flatness property was introduced to deal with
the control of nonlinear systems. However, for the class
of fractional nonlinear systems, to the knowledge of the
authors, mathematical tools must be developed first in
order to show the flatness of these systems, which can be
an interesting perspective for future works.
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