

Tuning the high temperature properties of PrSrCoO4 cathode with Cu2+ dopant for intermediate temperature solid oxide fuel cells

Jian-Wei Liu, Qiang Li, Li-Ping Sun, Li-Hua Huo, Hui Zhao, Jean-Marc. Bassat, Sébastien Fourcade, Jean-Claude Grenier

▶ To cite this version:

Jian-Wei Liu, Qiang Li, Li-Ping Sun, Li-Hua Huo, Hui Zhao, et al.. Tuning the high temperature properties of PrSrCoO4 cathode with Cu2+ dopant for intermediate temperature solid oxide fuel cells. Renewable Energy, 2020, 159, pp.486-493. 10.1016/j.renene.2020.06.032 . hal-02885979

HAL Id: hal-02885979 https://hal.science/hal-02885979

Submitted on 9 Jul2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Tuning the high temperature properties of PrSrCoO4 cathode with
2	Cu ²⁺ dopant for intermediate temperature solid oxide fuel cells
3	Liu Jian-Wei ^a , Li Qiang ^a , Sun Li-Ping ^{a,*} , Huo Li-Hua ^a , Zhao Hui ^{a,*} , Jean-Marc
4	Bassat ^b , Sébastien Fourcade ^b , Jean-Claude Grenier ^b
5	
6	^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education,
7	School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080
8	P. R. China
9	^b CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, F-33608
10	Pessac-Cedex, France
11	Abstract
12	PrSrCo _{1-x} Cu _x O _{4+δ} (x = 0.0, 0.1, 0.3, 0.5) are synthesized by solid-state reaction
13	method. The effects of Cu^{2+} doping on electrical conductivity, thermal expansion,
14	oxygen diffusion properties and oxygen reduction reaction (ORR) activity are
15	investigated. $PrSrCo_{1-x}Cu_xO_{4+\delta}$ oxides crystallize in a single-phase tetragonal
16	structure with $I4/mmm$ space group. Partial substitution Co^{3+} by Cu^{2+} results the
17	increase of electrical conductivity and decrease of thermal expansion coefficient.
18	Introducing Cu^{2+} promotes the formation of interstitial oxygen, accelerates the
19	kinetics of oxygen transport, and significantly improves the electrocatalytic activity of

Corresponding author. Tel.: +86 45186608426; fax: +86 45186608426.

E-mail address: sunliping@hlju.edu.cn (L-P. Sun), zhaohui98@hlju.edu.cn (H. Zhao)

ORR. The lowest area specific resistance (ASR) value of 0.08 Ω cm² is obtained for
the PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode at 700 °C in air. The ORR mechanism study
demonstrates that Cu-doping (30 %) promotes the charge transfer process. The
reaction rate control step on PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode is the dissociation and surface
diffusion process of adsorbed molecular oxygen.

Keywords: solid oxide fuel cells (SOFCs); K₂NiF₄ structure; cathode material;
electrochemical properties

8

9 1. Introduction

The A₂BO₄ oxides with K₂NiF₄-type structure have been considered as promising 10 cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), due 11 12 to their high oxygen diffusion and exchange coefficients, good electronic conductivity, suitable thermal expansion coefficient (TEC) for typical electrolytes and excellent 13 electrocatalytic activity towards oxygen reduction reaction (ORR) [1-4]. A₂BO₄ 14 15 oxides can be considered as a superstructure that composed by perovskite layer (ABO₃) and rock salt layer (AO) alternatively overlapped along c-axis direction. Due 16 17 to the insertion character of rock salt layer, these materials exhibit special structural 18 flexibility: they can withstand reducing conditions via loss of oxygen, usually from equatorial planes, and accommodate excess interstitial oxygen under oxidizing 19 conditions [5]. Studies have proved that the presence of rock salt block in T-phase 20 A₂BO₄ favors the high oxygen mobility in the bulk material [6]. Compared to the 21 22 traditional ABO₃ perovskite oxides, these A₂BO₄ materials show relatively large

1	oxygen ion conductivity and promising electrode performance. Therefore, Nickelate
2	and copper based A_2BO_4 oxides with mixed ionic-electronic conducting (MIEC)
3	properties have been thoroughly evaluated as cathode materials for IT-SOFCs [7-20].
4	In contrast to the wealth of data accumulated on nickelate and copper oxides, few
5	studies have been reported to date on the structure and electrochemical catalytic
6	activity of cobalt-based A2BO4 oxides. An early study in 2005 by Munnings et al.
7	found that the oxygen diffusion coefficient (D*) and oxygen exchange coefficient (k*)
8	of La ₂ CoO _{4+δ} were even higher than that of La ₂ NiO _{4+δ} at T < 700 °C [21]. Wang and
9	Nie reported that Ln_2CoO_4 (Ln=Pr and Sm) could be applied as cathodes for SOFC
10	via studying their thermal stability and conductive properties [22]. The
11	electrochemical properties of Co-based A2BO4 materials can be further optimized by
12	doping aliovalent elements in A and/or B site. For instance, the transport properties of
13	Sr^{2+} doped $La_{2\text{-}x}Sr_xCoO_{4\pm\delta}$ have been systematically investigated [23]. In another
14	study, the effects of Sb doping on the cathode property of $LaSrCo_{1-x}Sb_xO_4$ was
15	reported by Wang et al [24]. Recently, Cao Y et al. evaluated the cathode performance
16	of $Pr_{2\text{-}x}Sr_xCoO_{4+\delta}$ materials. They found that $Pr_{0.8}Sr_{1.2}CoO_{4+\delta}$ had the minimum
17	polarization resistance of 0.29 Ω . cm² at 700 °C [25]. It was reported that ABO ₃
18	perovskite with Cu^{2+} at B site always exhibited low TECs [26, 27], whereas Pr based
19	perovskite oxides are known to exhibit high electrochemical activity, due to the redox
20	cycles of Pr^{3+} cations in the lattice [28-30]. In this study, Cu^{2+} doped
21	$PrSrCo_{1\text{-}x}Cu_xO_{4+\delta}$ are synthesized and the effects of Cu^{2+} substitution on the crystal

structure, high-temperature electrical conductivity, thermal expansion behavior and the electrochemical properties of the compounds are investigated. We propose the PrSrCo_{1-x}Cu_xO_{4+ δ} material, which combine the merits of both Cu²⁺ dopants and Pr³⁺ cations, would be potential cathode candidate for IT-SOFCs.

5 **2. Experimental**

6 2.1 Materials synthesis

 $PrSrCo_{1-x}Cu_{x}O_{4+\delta}$ (x = 0.0, 0.1, 0.3, 0.5) oxides are synthesized by traditional 7 solid-state reaction method. The reactants are Pr₆O₁₁, SrCO₃, Co₃O₄ and CuO. All of 8 9 these materials are high purity (99.99, Aladdin industrial corporation, China), and used as received. According to the chemical formula, stoichiometric amount of above 10 mentioned materials are mixed with ethanol in a planetary ball-mill for 1 h. Then the 11 12 obtained mixtures are pressed into pellets under 100 MPa and reacted at 1000 °C for 12 h in air. The obtained pellets are ground, tableted and reacted again at 1000 °C for 13 additional 12 h. This operation is repeated three times until the target products are 14 obtained. For thermal expansion coefficient (TEC) and electrical conductivity 15 measurements, the product powders are pressed under 100 MPa and then sintered at 16 1050 °C for 12 h in air, to form rectangular bars with dimensions 15 mm \times 3 mm \times 1 17 mm. The relative bulk densities of the rectangular bars are over 95% of the theoretical 18 values that measured by Archimedes method (Sartorius balance with a density kit). 19 2.2 Cell fabrication 20

21 Ce_{0.9}Gd_{0.1}O_{1.95} (GDC) powder was obtained from Ningbo SuoFuRen Energy Co. Ltd.

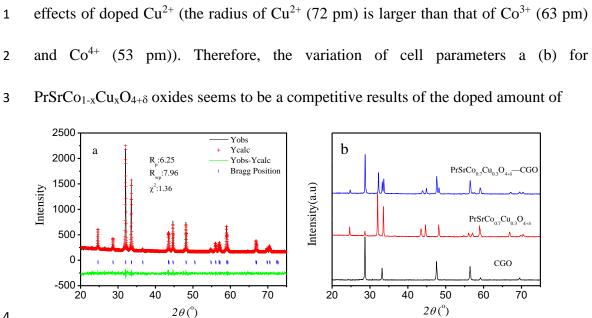
1	(China). The GDC powders are pressed uniaxially at 220 MPa and then sintered at
2	1400°C for 10 h to form dense pellet with 10 mm in diameter and 0.8mm in thickness.
3	The cathode ink is prepared by mixing 100 mg $PrSrCo_{1-x}Cu_xO_{4+\delta}$ powders with 4 mL
4	terpineol containing 4% ethyl cellulose. The symmetric cell $PrSrCo_{1-x}Cu_xO_{4+\delta}/GDC/$
5	$PrSrCo_{1-x}Cu_xO_{4+\delta}$ is fabricated by painting the cathode ink on both sides of GDC
6	pellet in symmetric configuration. The effective cathode area is 0.25 cm ² . The cells
7	are initially heated at 500 °C for 0.5 h to eliminate the organic binders, and then
8	followed by calcinations at 950 °C for 3 h with a heating/cooling rate of 5 °C min ⁻¹ .
9	The electrolyte-supported single cell Ni-GDC GDC $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ is prepared
10	for full cell performance test. NiO-GDC anode ink (NiO:GDC = 60:40 wt.%) is firstly
11	painted on one side of GDC pellet, followed by heat-treatment at 1250 °C for 4 h in
12	air to form anode with surface area of 0.25 cm ² . PrSrCo _{0.7} Cu _{0.3} O _{4+δ} cathode is then
13	prepared on the other side of GDC pellet in symmetrical configuration.
14	2.3 Characterization
15	The phase purity and chemical compatibility of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ with GDC are
16	characterized by powder X-ray diffraction method (XRD, Bruker AXS D8). The
17	measurements are conducted at 40 kV and 40 mA using Cu Ka radiation. The
18	diffraction data is collected in the 2θ range of 20° -75° with scanning speed 8°/min.
19	The unit cell parameters are analyzed by LeBail refinement method with the Fullprof
20	package. In the refinement procedure, the 6-coefficients polynomial function and
21	Pseudo-Voigt function are selected to fit the background and peak shape, respectively.

TG measurements are performed from 25 °C to 900 °C in air, with the heating rate of
10 °C/min using Setaram Setsys 16/18 thermoanalyser. The thermal expansion
behavior of the sample is monitored in air from 100 °C to 800 °C with the heating rate
of 5 °C/min (Setaram Setsys 16/18 dilatometer).

5 X-ray photoelectron spectroscopy (XPS) is recorded to study the surface oxygen 6 species of the material. The measurement is performed using a Kratos Axis Ultra Dld 7 photoelectron spectrometer equipped with Al K_{α} (1486.6 eV) radiation source. The 8 microstructure of the symmetrical cell is recorded using field-emission scanning 9 electron microscope (FE-SEM, S-4800, Hitachi).

The electrical conductivity and electrical conductivity relaxation (ECR) of the specimens are measured by standard four-probe DC method. The conductivities are measured in the temperature range of 100-800 °C in air. The ECR measurements are performed at 650°C, 700°C and 750°C. In order to obtain the transient curve at each temperature, the oxygen partial pressure of the measurement atmosphere is switched rapidly from 20% to 2%.

The EIS diagrams are collected with electrochemical workstation (AUTOLAB, PGStat 30) under open circuit voltage (OCV). The applied frequency is ranged from 1MHz to 0.01Hz, and the signal amplitude is 50 mV. The measurements are performed as a function of temperature (500 °C-700 °C) and oxygen partial pressure that controlled by N₂ (99.999%)/O₂ (99.999%) mixed atmosphere.


21 The power output performance of the electrolyte-supported single cell is tested with

the device of ProboStat30. Humidified H₂ (97% H₂/3% H₂O) is fed to the anode
chamber at a flow rate of 50 ml min⁻¹, while the cathode is exposed to ambient air. Ag
meshes are used as current collectors for both anode and cathode sides.

4 **3. Results and discussions**

5 3.1 Phase identification

The XRD patterns of PrSrCo_{0.7}Cu_{0.3}O_{4+ δ} are shown in Figure 1a. All the patterns are 6 similar to the reported PrSrCoO₄ material [31], indicating the sample is crystallized in 7 single-phase K₂NiF₄-type structure with SG I4/mmm. The refinement results of the 8 9 unit cell parameters are listed in Table 1. It is observed that the cell parameter c increases steadily with Cu^{2+} doping. This observation can be understood, considering 10 the Jahn-Teller effect of Cu^{2+} with electronic configuration of d9. Cu^{2+} cations tend to 11 12 form square planar coordination. In this sense, the apical Cu-O distance is much longer than that of equatorial Cu-O distance in [CuO6] octahedron. In addition, more 13 interstitial oxygen is generated in the rock-salt layer with Cu²⁺ doping, which also 14 15 causes the expansion of c-axis. The similar conclusions have been drawn in the other Cu^{2+} doped Ln₂NiO₄ materials [32-35]. On the other hand, the cell parameters a (b) 16 decrease first and then increase again with the Cu²⁺ doping, with an inflection point at 17 x = 0.3. In order to maintain the charge neutrality requirement, Cu^{2+} doping leads to 18 the partial oxidation of Co^{3+} to Co^{4+} . According to the valence bond theory, the 19 cobalt-oxygen bond is strengthened and the bond length along a(b)-axis direction 20 decreases with the Cu^{2+} doping. At the same time, we should also consider the size 21

4

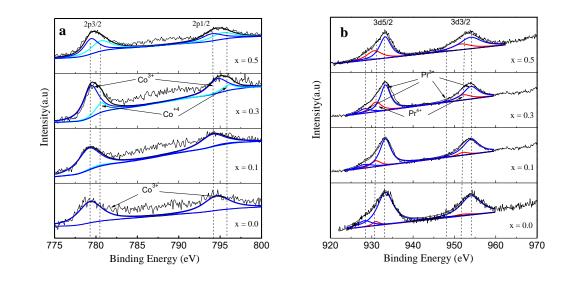
Fig. 1. Experimental (black continuous line) and calculated (red line) XRD patterns, 5 and their difference (green line at the bottom) for $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$. Blue vertical bar 6 indicate the position of Bragg peaks of the phases contained in the sample (a), 7 8 Mixture of PrSrCo_{0.7}Cu_{0.3}O_{4+ δ} with GDC after annealed at 1000 °C for 24 h in air (b).

Table 1 9

	a/b (Å)	c (Å)	$V(Å^3)$	Space group	R _p (%)	R _{wp} (%)	χ^2
PrSrCoO _{4+δ}							2.40
	3.792(3)	12.460(3)	179.19	I4/mmm	6.59	8.74	
$PrSrCo_{0.9}Cu_{0.1}O_{4+\delta}$							1.36
	3.790(2)	12.461(3)	179.01	I4/mmm	4.01	5.58	
$PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$							1.36
	3.781(3)	12.478(7)	178.39	I4/mmm	6.25	7.96	4 7
$PrSrCo_{0.5}Cu_{0.5}O_{4+\delta}$	3.787(6)	12.519(5)	179.55	I4/mmm	5.69	6.73	1.7
	5.767(0)	12.319(3)	179.55	14/11/11/11	5.09	0.75	1
							-

Cell parameters of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ (*x* = 0.0, 0.1, 0.3, 0.5). 10

Cu²⁺ and the valence state of Co ions. To assess the possible reaction between 11


PrSrCo_{0.7}Cu_{0.3}O_{4+δ} and GDC electrolyte, the two oxide powders are mixed in weight
ratio of 1:1, and then sintered at 1000 °C for 24 h in air. The XRD patterns of the
sintered mixtures are shown in Fig. 1b. No additional peaks indicating new phase
formation are detected from the patterns of the mixture. It is concluded that
PrSrCo_{0.7}Cu_{0.3}O_{4+δ} is chemically compatible with GDC below 1000 °C.

6 3.2 X-ray photoelectron spectroscopy analysis and Oxygen non-stoichiometry in 7 $PrSrCo_{1-x}Cu_xO_{4+\delta}$

To identify the surface properties of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ (x = 0.0, 0.1, 0.3, 0.5) oxides, 8 9 the chemical states of elemental Co, Cu, and O are measured by X-ray photoelectron spectroscopy (XPS) and normalized with C 1s peak at 284.6 eV. The strontium ions 10 and copper ions exhibit mono-oxidation state as Sr^{2+} and Cu^{2+} in $PrSrCo_{1-x}Cu_xO_{4+\delta}$, 11 12 while Pr and Co cations display mixed valance states. The Co 2p XPS spectra and the fitting curves are presented in Figure 2a. The peaks at 779.5 and 794.3 eV can be 13 assigned to $\text{Co}^{3+} 2p_{3/2}$ and $2p_{1/2}$, whereas the other set of peaks with binding energies 14 of 780.8 and 795.5 eV represent $Co^{4+} 2p_{3/2}$ and $2p_{1/2}$, respectively [36,37]. 15

The Pr 3d XPS spectra and the fitting curves are presented in Figure 2b. The peaks with binding energy at 927.9/933.0 eV and 948.4/953.6 eV originate from $Pr^{3+} 3d_{5/2}$ and $3d_{3/2}$, and the doublet peaks located at 931.0 eV and 952.3 eV can be assigned to $Pr^{4+} 3d_{5/2}$ and $3d_{3/2}$, respectively [37,38]. The fitting results indicate that Pr^{3+} coexists with Pr^{4+} in these samples.

21 From the XPS analysis, the percentage contributions of different valence states are

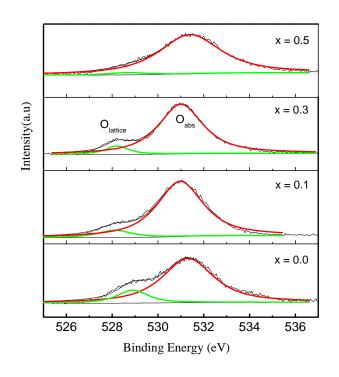
1 calculated and the average valences of Pr and Co ions are tabulated in Table 2.

3 Fig. 2. XPS spectra and fitting lines of Co 2p (a), Pr 3d (b) in PrSrCo_{1-x}Cu_xO_{4+ δ}

4 samples at room temperature.

5 **Table 2**

2


6 Contents of non-stoichiometric oxygen (δ), average valences of Pr (m+) and Co (n+)

х	Pr ^{m+}	Co ⁿ⁺	δ
0.0	3.04	3.00	0.02
0.1	3.11	3.06	0.03
0.3	3.26	3.23	0.06
0.5	3.42	3.49	0.08

7 ions in $PrSrCo_{1-x}Cu_xO_{4+\delta}$ oxides.

8 Quantitative analysis of O content for each sample is carried out according to the XPS 9 spectra and the results are also listed in Table 2. The oxygen contents for all of the 10 as-prepared samples are found to be slightly above 4.0, indicating the existence of 11 interstitial oxygen in the material. The average valences of Pr and Co increase steadily with the substitution of Cu from x = 0.1 to x = 0.5, and the overstoichiometric oxygen
 content (δ) increases from 0.02 to 0.08.

Since oxygen species on the cathode surface play a key role for oxygen reduction
reaction, the O1s XPS spectra of PrSrCo_{1-x}Cu_xO_{4+δ} are further analyzed, and the
fitting results are presented in Figure 3. The peak around 528.5±0.4 eV corresponds to
the lattice oxygen (O_{lattice}) associating to the redox properties of metal ions [24, 39-43].
The broad peak centered around 531.2±0.3 eV can be assigned to the absorbed
oxygen species (O_{abs}) on surface [38-43].

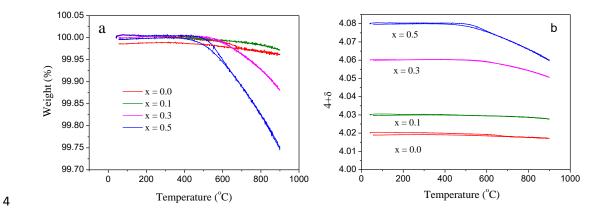
9

10 Fig. 3. O 1s core-level spectra and fitting lines of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ at room 11 temperature.

Table 3 summarizes the area percentage of different kinds of oxygen species in
 PrSrCo_{1-x}Cu_xO_{4+δ}. Obviously, the amount of chemisorbed oxygen increases with the

1 value of x, implying the improved ORR catalytic activity of Cu^{2+} doped materials.

2 Table3

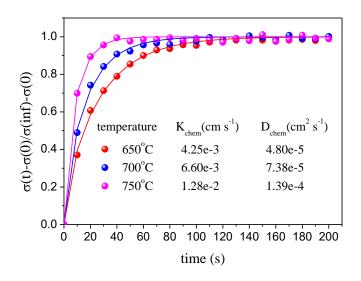

PrSrCo _{1-x} Cu _x O _{4-δ}	O _{latt}	lice	O _{abs}		
PISICO]-xCuxO4-8	Position(eV)	Area(%)	Position(eV)	Area(%)	
<i>x</i> = 0.0	528.9	14.9	531.3	85.1	
<i>x</i> = 0.1	528.1	8.7	530.9	91.3	
<i>x</i> = 0.3	528.2	8.0	531.0	92.0	
<i>x</i> = 0.5	528.7	3.6	531.4	96.4	

3 The fitting results of O 1s XPS spectra for $PrSrCo_{1-x}Cu_xO_{4+\delta}$.

4 3.3 Surface oxygen exchange and Electrical conductivity relaxation

It is known that the lattice oxygen in the perovskite oxides can be released at high 5 temperatures and leads to changes of the point defects. To get this knowledge, the 6 thermogravimetric analysis (TGA) is performed on PrSrCo_{1-x}Cu_xO_{4+δ} samples (Figure 7 8 4a). The measurement is carried out within two consecutive thermo-cycles in between room temperature up to 900 °C with a ramp of 10 °C min⁻¹ each cycle, and the data of 9 the second cycle is recorded. The corresponding oxygen non-stoichiometry as a 10 11 function of temperature is determined from the weight change of the sample, assuming the initial oxygen content is obtained from the XPS analysis (Figure 4b). All 12 the samples show weight loss at temperatures above ~ 400 °C, due to the 13 thermal-driven release of interstitial oxygen from the lattice, accompanied by the 14 reduction of Co ions. It can be observed that the weight loss of the samples with x =15

0.0 and 0.1 are very small, while it becomes significant for the samples with x = 0.3
and 0.5. In addition, the Cu²⁺ doped materials exhibit reversible behavior of oxygen
lose and uptake throughout the heating/cooling cycles.

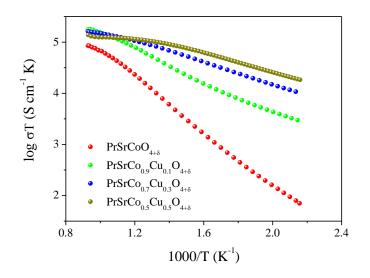

5 Fig. 4. (a) Thermogravimetric curves of PrSrCo_{1-x}Cu_xO_{4+ δ} (*x* = 0.0 ~ 0.5); (b)

6 corresponding oxygen non-stoichiometry plots as function of temperatures.

For PrSrCoO_{4+ δ} however, the weight could not reach to its initial value after the 7 thermo-cycle. This behavior suggests that the oxygen exchange process between the 8 oxides and gaseous oxygen is promoted for the Cu^{2+} doped samples. This can be 9 reasonably interpreted. Firstly, Cu²⁺ doping promotes the oxygen surface adsorption 10 ability of the PrSrCo_{1-x}Cu_xO_{4+ δ} oxides (as that proved from the O1s XPS results). 11 Secondly, the interstitial oxygen concentration (δ) increases with the increase of Cu²⁺ 12 doping concentration (table 2). Diffusion of interstitial oxygen may enhance oxygen 13 reduction reaction occurring on the cathode in the intermediate temperature range. 14 [44-47]. 15

Fig. 5 shows the typical normalized conductivity relaxation transient curves for PrSrCo_{0.7}Cu_{0.3}O_{4+ δ}. The values of D_{chem} and k_{chem} are obtained from fitting the

normalized conductivities to the appropriate solution of Fick's second law (inset, Fig. 1 5). The $D_{\rm chem}$ and $k_{\rm chem}$ values obtained at 750°C in this study are $1.39 \times 10^{-4} {\rm ~cm}^2 {\rm ~s}^{-1}$ 2 and 1.28×10^{-2} cm s⁻¹ respectively. For comparison, the $D_{\rm chem}$ value of 5.5×10^{-4} cm² 3 s⁻¹ and k_{chem} of 2.1× 10⁻² cm s⁻¹ at 750 °C were reported by Saher et al. for Pr₂NiO_{4+ δ} 4 [48]. Li et al. measured a D_{chem} and k_{chem} values of $3.5 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ and $1.6 \times 10^{-3} \text{ cm}$ 5 s⁻¹ at 750 °C for La₂NiO_{4+ δ} [49]. It can be seen that oxygen transport properties of 6 $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ is comparable to those cathode materials with excellent ORR 7 activity reported in the literatures. 8



9

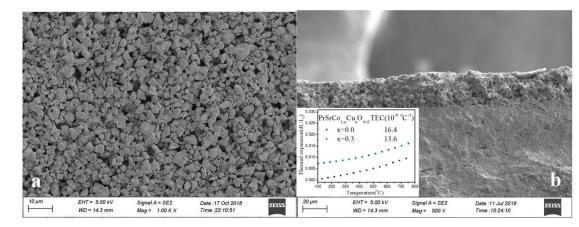
10 Fig. 5. Normalized conductivity transients measured on $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ cathode

- 11 material at different temperatures.
- 12 3.4 Electrical conductivity

Fig. 6 presents the conductivity of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ as a function of temperature in air. All the materials show gradual increase of the conductivity with the measuring temperature. It is observed that the conductivity of Cu^{2+} doped materials are always higher than $PrSrCoO_{4+\delta}$, and it increases further with the Cu^{2+} doping concentration. The conductivity values of all samples exceed 100 S cm⁻¹ at 700 °C, meeting the
 requirement of the SOFC cathode materials.

3

5


11

4 Fig. 6. Temperature dependencies of electrical conductivity of $PrSrCo_{1-x}Cu_xO_{4+\delta}$ (*x* =

 $0.0 \sim 0.5$) in air at different temperatures.

6 3.5 Electrocatalytic activity

7 In order to investigate the electrochemical properties, symmetrical cells are
8 constructed with PrSrCo_{1-x}Cu_xO_{4+δ} electrode and GDC electrolyte. Fig.7 shows the
9 surface and cross-section SEM images of PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode on GDC
10 electrolyte that sintered at 950 °C for 3 hours. Clearly PrSrCo_{0.7}Cu_{0.3}O_{4+δ} adheres

12 Fig.7. SEM images of the PrSrCo_{0.7}Cu_{0.3}O_{4+ δ} electrode sintered at 950 °C for 3 h (a:

1 surface; b: cross section).

tightly on the dense GDC electrolyte, to form a porous cathode with thickness ~ 22
µm and no obvious delamination can be observed. This result is due to the similar
TEC value of PrSrCo_{0.7}Cu_{0.3}O_{4+δ} (13.6 ×10⁻⁶ °C) and GDC electrolyte (13.1 ×10⁻⁶ °C)
(inset figure 7b). It is also observed that the TEC value has been greatly reduced in
the Cu²⁺ doped material.

Fig. 8a shows the impedance spectra of $PrSrCo_{0,7}Cu_{0,3}O_{4+\delta}$ cathode measured at 7 different temperatures. Obviously depressed arcs with irregular shape are observed at 8 9 the measurement temperatures. The polarization resistance (Rp) is obtained from the difference between low frequency intersection and high frequency one with Z 'axis. It 10 is observed that Rp decreases rapidly with the increase of measurement temperature, 11 12 showing a thermoactivated ORR reaction. Fig. 8b shows the Arrhenius plot of Rp as a function of temperature. The Rp value of 0.46, 0.14, 0.08 and 0.18 Ω cm² are 13 obtained at 700 °C for x = 0.0, 0.1, 0.3 and 0.5, respectively. It can be seen that Cu²⁺ 14 doping significantly improves the catalytic performance of the electrode. This may be 15 because the incorporation of copper ions increases the interstitial oxygen 16 concentration in the material, which improves the oxygen ion transport performance. 17 The activation energy of ORR is obtained from the slope of the Arrhenius plot, and 18 the results are listed in Fig. 8b. Compared to the pristine $PrSrCoO_{4+\delta}$, the activation 19 energy of Cu^{2+} doped cathode is significantly reduced, suggesting that the oxygen 20 reduction mechanism on the copper-doped electrode is different from that of 21

1 PrSrCoO_{4+ δ}.

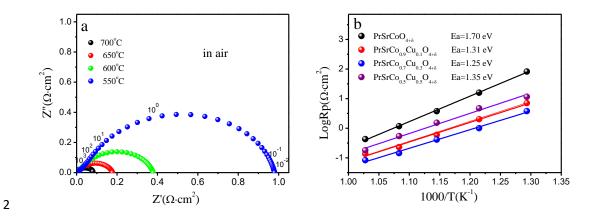
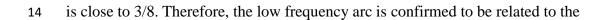



Fig. 8. (a) Nyquist plots of PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode measured at different
temperatures in air. In order to show clearly the change of Rp with temperature, the
resistance contribution of electrolyte and lead wires have been removed from the plot;
(b) Polarization resistance plotted versus inverse temperature for PrSrCo_{1-x}Cu_xO_{4+δ} (x
= 0.0, 0.1, 0.3, 0.5) cathodes.

8 In order to further understand the rate control step of the oxygen reduction (ORR) on different electrodes, the impedance spectra of $PrSrCoO_{4+\delta}$ and $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ are 9 10 collected at 700 °C under different oxygen partial pressures, and fitted with equivalent 11 circuit Rohm-(RH-CPE)-(RL-CPE) (Fig.9a and Fig.10a). Here Rohm is the resistant contribution of GDC electrolyte and lead wires, R_H and R_L represent the polarization 12 resistances of high frequency arc and low frequency arc related electrode processes. 13 The electrochemical reaction mechanism on the cathode is studied by plotting R_H and 14 R_L as a function of oxygen partial pressure (P_{O_2}), respectively (Fig.9b and Fig.10b). It 15 is known that the variation of Rp vs P_{O_2} can be well described by the following 16 expression: $\mathbf{Rp} = \mathbf{Rp}^0 \times (P_{O_2})^n$ 17

The *n* values give information about the species involved in the electrode reactions 1 2 [50-52] n = 1 $O_2(g) \rightarrow O_{2,ads}$ (Adsorption of O₂ onto the cathode surface) 3 n = 1/2 $O_{2,ads} \rightarrow 2O_{ads}$ (Dissociation of molecular adsorbed oxygen into atom 4 adsorbed oxygen on cathode surface) 5 $n = 3/8 \quad O_{TPB} + e^- \rightarrow O_{TPB}^-$ 6 (Reduction reaction of atom adsorbed oxygen $n = 1/8 \quad O_{TPB}^- + e^- \rightarrow O_{TPB}^{2-}$ into adsorbed oxygen ion at TPBs) 7 n = 0 $O_{TPB}^{2-} + V_0^{\bullet \bullet} \rightarrow O_0^x$ (The ionic oxygen transfers from the TPB to the 8 9 electrolyte) Obviously, PrSrCoO_{4+ δ} and PrSrCo_{0.7}Cu_{0.3}O_{4+ δ} cathodes exhibit different reaction 10 order (*n*). For PrSrCoO_{4+ δ} cathode, the value of n is about 0.04 for R_H, which can be 11 12 ascribed to the step of oxygen ions transfer through the electrode and electrode/electrolyte interface. The n value of low frequency arc is about 0.34, which 13

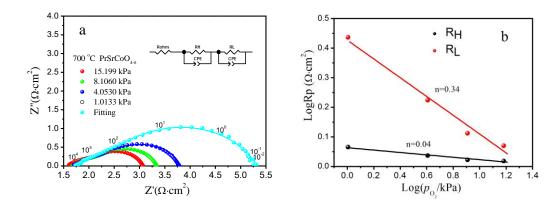


Fig. 9. (a) Impedance plots of the PrSrCoO_{4+δ} electrode with different morphologies
measured at 700 °C in air; (b) Logarithm plot of polarization resistance vs oxygen

1 partial pressure.

2

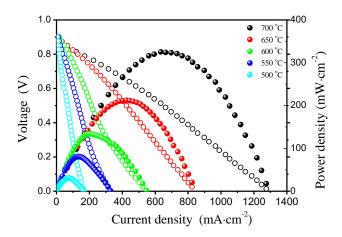


Fig. 10. (a) Impedance spectra for the PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode on GDC at 700 °C
under various oxygen partial pressures; (b) Logarithm plot of polarization resistance
vs oxygen partial pressure.

charge transfer process. In the whole range of the oxygen partial pressure that 6 measured, the value of R_L is always larger than that of R_H, which means that the 7 8 charge transfer process on PrSrCoO_{4+ δ} cathode is the rate-limiting step. In the case of $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ cathode, however the magnitude of *n* for high frequency arc is 9 close to 1/2, which suggests this process relates to the dissociation of the adsorbed 10 11 molecular oxygen and surface diffusion. In addition, the *n* value of low frequency arc is about 1.0, suggesting a diffusion process of gas oxygen inside the porous cathode. 12 The larger resistance value of R_H than that of R_L under various oxygen partial 13 pressures means that the reaction rate-limiting step on $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ cathode is 14 the dissociation and surface diffusion of the adsorbed molecular oxygen. In summary, 15 we found that Cu^{2+} doping in PrSrCoO_{4+ δ} cathode changes the oxygen reduction 16 17 mechanism from the charge transfer process to the dissociation of adsorbed molecular

1 oxygen and surface diffusion process.

Fig.11 presents the I-V and I-P curves of the electrolyte support single cell with the 2 configuration of Ni-GDC|GDC|PrSrCo_{0.7}Cu_{0.3}O_{4+ δ}. The single cell exhibits the 3 maximum power density of 327 mW cm⁻² at 700 °C. This value is much higher than 4 that of 201 mW cm⁻² for (Pr_{0.9}La_{0.1})₂Ni_{0.74}Cu_{0.21}Ga_{0.05}O_{4+δ} cathode [53] and 298 mW 5 cm⁻² for Pr₂NiO₄ cathode [54] at 700 °C reported in the literatures with similar cell 6 configuration. Accordingly, the oxygen exchange capacity and electrocatalytic 7 performance of PrSrCoO₄ cathode are successfully improved by Cu^{2+} doping strategy. 8 $PrSrCo_{0.7}Cu_{0.3}O_{4+\delta}$ is proved to be a potential cathode material for IT-SOFCs. 9

10

Fig. 11. Cell voltage and power density as a function of current density for
electrolyte-supported cells Ni-GDC/GDC/ PrSrCo_{0.7}Cu_{0.3}O_{4+δ} with humidified H₂ as
fuel and ambient air as oxidant.

14 **4.** Conclusions

PrSrCo_{1-x}Cu_xO_{4+ δ} (*x* = 0.0, 0.1, 0.3, 0.5) materials were synthesized by solid-state reaction method. The results show that PrSrCo_{1-x}Cu_xO_{4+ δ} has good chemical and thermal compatibility with GDC electrolyte. Copper doping increases the interstitial
oxygen concentration and improves the electrochemical performance of the material.
PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode exhibits the lowest polarization resistance of 0.08 Ω cm²
at 700°C, and the rate determining step (RDS) of PrSrCo_{0.7}Cu_{0.3}O_{4+δ} cathode is
dissociation of the adsorbed molecular oxygen and surface diffusion process.

6 Acknowledgement:

7 The project was supported by National Natural Science Foundation of China
8 (51872078 and 51372073).

1 **References**

2	[1] E. Boehm, J.M. Bassat, P. Dordor, F. Mayvy, J.C. Grenier, P. Stevens, Oxygen
3	diffusion and transport properties in non-stoichiometric $Ln_{2\text{-}x}NiO_{4+\delta}$ oxides, Solid
4	State Ion. 176 (2005) 2717-2725.
5	[2] L.P. Sun, Q. Li, L.H. Huo, H. Zhao, G.Y. Zhang, N. Lin, J.P. Viricelle, C. Pijolat,
6	Synthesis and performance of $Sr_{1.5}La_xMnO_4$ as cathode materials for intermediate
7	temperature solid oxide fuel cell, J. Power Sources. 196 (2011) 5835-5839.
8	[3] N.V. Lyskov, G.N. Mazo, L.S. Leonova, L.M. Kolchina, S.Ya. Istomin, E.V.
9	Antipov, The effect of temperature and oxygen partial pressure on the reduction
10	mechanism in the $Pr_2CuO_4/Ce_{0.9}Gd_{0.1}O_{1.95}$ system, Russ. J. Electrochem. 49 (2013)
11	747-752.
12	[4] R. Sayers, S.J. Skinner, Evidence for the catalytic oxidation of $La_2NiO_{4+\delta}$, J.
13	Mater. Chem. A. 21 (2011) 414-419.
14	[5] S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in
15	$La_{2-x}Sr_xNiO_{4+\delta}$, Solid State Ion. 135 (2000) 709-712.
16	[6] A. Chroneos, D. Parfitt, J.A. Kilner, R.W. Grimes, Anisotropic oxygen diffusion in
17	tetragonal La ₂ NiO _{4+δ} : molecular dynamics calculations, J. Mater. Chem. 20 (2010)
18	266-270.
19	[7] R.K. Sharma, M. Burriel, L. Dessemond, J.M. Bassat, E. Djurado, Design of
20	interfaces in efficient $Ln_2NiO_{4+\delta}$ (Ln=La, Pr) cathodes for SOFC applications, J.

21 Mater. Chem. A. 4 (2016) 12451-12462.

1	[8] R.K. Sharma, S.K. Cheal, M. Burriel, L. Dessemond, J.M. Bassat, E. Djurado,
2	Design of $La_{2-x}Pr_xNiO_{4+\delta}$ SOFC cathodes: a compromise between electrochemical
3	performance and thermodynamic stability, J. Mater. Chem. A. 5 (2017) 1120-1132.
4	[9] T. Inprasit, S. Wongkasemjit, S.J. Skinner, M. Burrie, P. Limthongkul, Effect of Sr
5	substituted La _{2-x} Sr _x NiO _{4+δ} (x=0, 0.2, 0.4, 0.6, 0.8) on oxygen stoichiometry and
6	oxygen transport properties, RSC Adv. 5 (2015) 2486-2492.
7	[10] L.M. Kolchina, N.V. Lyskov, A.N. Kuznetsov, S.M. Kazakov, M.Z. Galin, A.
8	Meledin, A.M. Abakumov, S.I. Bredikhin, G.N. Mazo, E.V. Antipov, Evaluation of
9	Ce-doped Pr ₂ CuO ₄ for potential application as a cathode material for solid oxide fuel
10	cells, RSC Adv. 6 (2016) 101029-101037.
11	[11] L.M. Kolchina, N.V. Lyskov, P.P. Pestrikov, S.Y. Istomin, G.N. Mazo, E.V.
12	Antipov, Evaluation of $La_{1.8-x}Pr_xSr_{0.2}CuO_{4-\delta}$ oxides as cathode materials for IT-SOFCs,
13	Mater. Chem. Phys. 165 (2015) 91-96.
14	[12] Y. Chen, B.M. Qian, G.M. Yang, D.J. Chen, Z.P. Shao, Insight into an unusual
15	lanthanum effect on the oxygen reduction reaction activity of Ruddlesden- Popper-
16	type cation-nonstoichiometric La _{2-x} NiO _{4+δ} (x = 0-0.1) oxides, J. Mater. Chem. A. 3
17	(2015) 6501-6508.
18	[13] Y.N. Shen, H.L. Zhao, X.T. Liu, N.S. Xu, Preparation and electrical properties of
19	Ca-doped La ₂ NiO _{4+δ} cathode materials for IT-SOFC, Phys. Chem. Chem. Phys. 12
20	(2010) 15124-15131.

21 [14] H. Li, Z. Cai, Q. Li, C. Sun, H. Zhao, Electrochemical investigation of

- 1 Pr₂CuO₄-based composite cathode for intermediate-temperature solid oxide fuel cells,
- 2 J. Alloy. Compd. 688 (2016) 972-977.
- 3 [15] L.P. Sun, H. Zhao, Q. Li, L.H. Huo, J.P. Viricelle, C. Pijolat, Study of oxygen
- 4 reduction mechanism on Ag modified Sm_{1.8}Ce_{0.2}CuO₄ cathode for solid oxide fuel
- 5 cell, Int. J. Hydrog. Energy. 38 (2013) 14060-14066.
- [16] Q. Li, H. Zhao, L.H. Huo, L.P. Sun, X.L. Cheng, J.C. Grenier, Electrode
 properties of Sr doped La₂CuO₄ as new cathode material for intermediate-temperature
 SOFCs, Electrochem. Commun. 9 (2007) 1508-1512.
- 9 [17] L.P. Sun, Q. Li, H. Zhao, J.H. Hao, L.H. Huo, G.S. Pang, Z. Shi, S.H. Feng,
- Electrochemical performance of Nd_{1.93}Sr_{0.07}CuO₄ nanofiber as cathode material for
 SOFC, Int. J. Hydrog. Energy. 37 (2012) 11955-11962.
- [18] T. Ishihara, Oxide ion conductivity in defect perovskite Pr₂NiO₄ and its
 application for solid oxide fuel cells, J. Ceram. Soc. Jpn. 122 (2014) 179-186.
- [19] T. Zhao, L.P. Sun, Q. Li, L.H. Huo, H. Zhao, J.M. Bassat, A. Rougier, S.
 Fourcade, J.C. Grenier, Electrochemical property assessment of Pr₂CuO₄
- 16 submicrofiber cathode for intermediate-temperature solid oxide fuel cells, J.
- 17 Electrochem. Energy Convers. Storage. 13 (2016) 011006.
- 18 [20] C. Sun, Q. Li, L.P. Sun, H. Zhao, L.H. Huo, Characterization and electrochemical
- performances of Pr₂CuO₄ as a cathode material for intermediate temperature solid
 oxide fuel cells, Mater. Res. Bull. 53 (2014) 65-69.
- [21] C. Munning, S. Skinner, G. Amow, P. Whitfield, I. Davidson, Oxygen transport in

- 1 the LaNiCoO₄ system, Solid State Ion. 176 (2005) 1895-1901.
- [22] Y.S. Wang, H.W. Nie, S.R. Wang, T.L. Wen, U. Guth, V. Valshook,
 A_{2-α}A_α'BO₄-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A' = Sr; B
 = Fe, Co), Mater. Lett. 60 (2006) 1174-1178.
 [23] C. Tealdi, C. Ferrara, P. Mustarelli, M. Saiful Islam, Vacancy and interstitial
- oxide ion migration in heavily doped La_{2-x}Sr_xCoO_{4±δ}, J. Mater. Chem. A. 22 (2012)
 8969-8975.
- 8 [24] J.K. Wang, J. Zhou, W.W. Fan, W.D. Wang, K. Wu, Y.H. Cheng, Investigation of
 9 structural and electrochemical properties of LaSrCo_{1-x}Sb_xO₄ (0≤X≤0.20) as potential
 10 cathode materials in intermediate-temperature solid oxide fuel cells, J. Solid State
 11 Chem. 247 (2017) 24-30.
- [25] Y. Cao, H.T. Gu, H. Chen, Y.F. Zheng, M. Zhou, L.C. Guo, Preparation and
 characterization of Pr_{2-x}Sr_xCoO_{4+δ} cathode materials for IT-SOFC, J. Inorg. Mater.
 25 (2010) 738-742.
- 15 [26] L. Gao, M.Z. Zhu, Q. Li, L.P. Sun, H. Zhao, J.C. Grenier, Electrode properties of
- 16 Cu-doped $Bi_{0.5}Sr_{0.5}FeO_{3-\delta}$ cobalt-free perovskite as cathode for intermediate-
- temperature solid oxide fuel cells, J. Alloy. compd. 700 (2017) 29-36.
- 18 [27] Q. Li, T. Xia, L.P. Sun, H. Zhao, L.H. Huo, Electrochemical performance of
- 19 novel cobalt-free perovskite $SrFe_{0.7}Cu_{0.3}O_{3-\delta}$ cathode for intermediate temperature 20 solid oxide fuel cells, Electrochim. Acta. 150 (2014) 151-156.
- 21 [28] G.N. Mazo, S.M. Kazakov, L.M. Kolchina, A.V. Morozov, S.Y. Istomin, NV.

1	Lyskov, A.A. Gippius, E.V. Antipov, Thermal expansion behavior and high-
2	temperature electrical conductivity of $A_{2-x}A_x$ 'Cu _{1-y} Co _y O _{4±δ} (A=La, Pr; A'=Pr, Sr)
3	oxides with the K ₂ NiF ₄ -type structure, J. Alloy. Compd. 639 (2015) 381-386.
4	[29] N.V. Lyskov, M.S. Kaluzhskikh, L.S. Leonova, G.N. Mazo, S.Y. Istomin, E.V.
5	Antipov, Electrochemical characterization of Pr ₂ CuO ₄ cathode for IT-SOFC, Int. J.
6	Hydrog. Energy. 37 (2012) 18357-18364.
7	[30] K. Zheng, A. Gorzkowska-sobaś, K. Świerczek, Evaluation of Ln ₂ CuO ₄ (Ln: La,
8	Pr, Nd) oxides as cathode materials for IT-SOFCs, Mater. Res. Bull. 47 (2012)
9	4089-4095.
10	[31] A. Hassen, A.I. Ali, B.G. Kim, A. Krimmel, Structure-Property Relationships in
11	$Pr_{1-x}Sr_{1+x}CoO_4 \ (0 \le x \le 0.40), Am. J. Condensed Matter Physics. 2 (2012) 93-100.$
12	[32] T. Nakamura, Y. Ling, K. Amezawa, The effect of interstitial oxygen formation
13	on the crystal lattice deformation in layered perovskite oxides for electrochemical
14	devices, J. Mater. Chem. A. 3 (2015) 10471-10479.
15	[33] A.R. Gilev, E.A. Kiselev, D.M. Zakharov, V.A. Cherepanov, Effect of calcium
16	and copper/iron co-doping on defect-induced properties of La2NiO4-based materials, J.
17	Alloy. Compd. 753 (2018) 491-501.
18	[34] A. Aguadero, J.A. Alonso, M.J. Escudero, L. Daza, Evaluation of the
19	$La_2Ni_{1\text{-}x}Cu_xO_{4+\delta}$ system as SOFC cathode material with 8YSZ and LSGM as
20	electrolytes, Solid State Ion. 179 (2008) 393-400
21	[35] A.P. Tarutin, J.G. Lyagaeva, A.S. Farlenkov, A.I. Vylkov, D.M. Medvedev,

1	Cu-substituted La ₂ NiO _{4+δ} as oxygen electrodes for protonic ceramic electrochemical
2	cells, Ceram. Int. 45 (2019) 16105–16112

3 [36] L. Jiang, T. Wei, R. Zeng, W.X. Zhang, Y.H. Huang, Thermal and
4 electrochemical properties of PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+δ} (x=0.5, 1.0, 1.5) cathode
5 materials for solid oxide fuel cells, J. Power Sources. 232 (2013) 279-285.
6 [37] F.J. Jin, H.W. Xu, W. Long, Y. Shen, T.M. He, Characterization and evaluation of
7 double perovskites LnBaCoFeO_{5+δ} (Ln=Pr and Nd) as intermediate-temperature solid

- 8 oxide fuel cell cathodes, J. Power Sources. 243 (2013) 10-18.
- 9 [38] T. Chen, S.L. Pang, X.Q. Shen, X.N. Jiang, W.Z. Wang, Evaluation of
 Ba-deficient PrBa_{1-x}Fe₂O_{5+δ} oxides as cathode materials for intermediate-temperature
- 11 solid oxide fuel cells, RSC Adv. 6(2016) 13829-13836
- 12 [39] Z.Z. Chen, J.L. Wang, D.M. Huan, S.J. Sun, G.P. Wang, Z.P. Fu, W.H. Zhang, Z.S.
- 13 Zheng, H.B. Pan, R.R. Peng, Y.L. Lu, Tailoring the activity via cobalt doping of a
- two-layer Ruddlesden-Popper phase cathode for intermediate temperature solid oxide
 fuel cells, J. Power Sources. 371(2017) 41-47.
- [40] E.Y. Konysheva, M.V. Kuznetsov, Fluctuation of surface composition and
 chemical states at hetero-interface in composites comprised of a phase with perovskite
 structure and a phase related to the Ruddlesden-Popper family of compounds, RSC
 Adv. 3 (2013) 14114-14122.
- 20 [41] J.H. Kim, X-ray photoelectron spectroscopy analysis of (Ln_{1-x}Sr_x)CoO_{3-δ} (Ln: Pr,
- 21 Nd and Sm), Appl. Surf. Sci. 258 (2011) 350-355.

1	[42] M.I. Ivanov	skaya, D.A. Kot	ikov, V.V. I	Pan'kov, V.V.	Zyryar	nov, Structure of
2	SrCo _{0.5} Fe _{0.5} O _{3-δ} -b	ased composites	prepared	by sol-gel	and n	nechanochemical
3	processes, Inorg. I	Mater. 45 (2009) 9	910-915.			

[43] Y.Q. Meng, L. Sun, J. Gao, W.Z. Tan, C.S. Chen, J.X. Yi, H.J.M. Bouwmeester,

Z.H. Sun, K.S. Brinkman, Insights into the CO₂ stability-performance trade-off of
antimony-doped SrFeO_{3-δ} perovskite cathode for solid oxide fuel cells, ACS. Appl.
Mater. Interfaces. 11(2019) 11498-11506.

- 8 [44] S. Takahashi, S. Nishimoto, M. Matsuda, M. Miyake, Electrode properties of the
- 9 Ruddlesden-Popper series, La_{n+1}Ni_nO_{3n+1} (n=1, 2, 3), as intermediate-temperature
 10 solid oxide fuel cells, J. Am. Ceram. Soc. 93 (2010) 2329-2333.
- 11 [45] F. Manvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, P. Dordor, P. Stevens,
- Oxygen reduction on porous Ln₂NiO_{4+δ} electrodes, J. Eur. Ceram. Soc. 25(2005)
 2669-2672.
- 14 [46] K. Kammer, An EIS study of $La_{2-x}Sr_xNiO_{4+\delta}$ SOFC cathode, Ionics 15(2009) 15 325-328.
- 16 [47] C. Lalanne, F. Mauvy, E. Siebert, M.L. Fontaine, J.M. Bassat, F. Ansart, P.
 17 Stevens, J.C. Grenier, Intermediate temperature SOFC single cell test using
 18 Nd_{1.95}NiO_{4+δ} as cathode, J. Eur. Ceram. Soc. 27(2007) 4195-4198.
- 19 [48] S. Saher, J. Song, V. Vibhu, C. Nicollet, A. Flura, J.M. Bassat, H.J.M.
- 20 Bouwmeester, Influence of annealing at intermediate temperature on oxygen transport
- 21 kinetics of $Pr_2NiO_{4+\delta}$, J. Mater. Chem. A. 6 (2018) 8331-8339.

2	and k_{chem} in La ₂ NiO _{4+δ} by conductivity relaxation, Solid State Ion. 206 (2012) 67-71.
3	[50] A.P. Khandale, M.G. Bansod, S.S. Bhoga, Improved electrical and
4	electrochemical performance of co-doped $Nd_{1.8}Sr_{0.2}Ni_{1-x}Cu_xO_{4+\delta}$, Solid State Ion.
5	276 (2015) 127-135.
6	[51] Z. Gao, X.M. Liu, B. Bergman, Z. Zhao, Investigation of oxygen reduction
7	reaction kinetics on $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ supported on $Ce_{0.85}Sm_{0.075}Nd_{0.075}O_{2-\delta}$ electrolyte,
8	J. Power Sources. 196 (2011) 9195-9203.
9	[52] J.D. Kim, G.D. Kim, J.W. Moon, Y.I. Park, W.H. Lee, K. Kobayashi, M. Nagai,
10	C.E. Kim, Characterization of LSM-YSZ composite electrode by ac impedance
11	spectroscopy, Solid State Ion. 143 (2001) 379-389.
12	[53] Y.X. Wang, X.Y. Zhao, S.Q. Lü, B. Yu, X.W. Meng, Y.J. Zhang, J.H. Yang, C.W.
13	Fu, Y. Ji, $(Pr_{0.9}La_{0.1})_2Ni_{0.74}Cu_{0.21}Ga_{0.05}O_{4+\delta}$ as cathode material for CeO ₂ -based
14	intermediate-temperature solid-oxide fuel cell, Ceram. Int. 40 (2014) 7321-7327.
15	[54] J.F. Yang, J.G. Cheng, Q.M. Jiang, Y.F. Wang, R. Wang, J.F. Gao, Preparation and
16	electrochemical properties of strontium doped Pr ₂ NiO ₄ cathode materials for
17	intermediate-temperature solid-oxide fuel cells, Int. J. Hydrog. Energy. 37 (2012)
18	1746-1751.

[49] Z.A. Li, R. Haugsrud, Effects of surface coatings on the determination of D_{chem}