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This paper presents a rigorous definition of the isolability of a fault in a flat system whose flat outputs are measured by sensors that are subject to faults. In particular, if only one sensor or actuator is faulty at a time, we show that the isolation of faults can be achieved if a pair of flat outputs satisfies some independence condition. A detailed characterization of this condition is presented. Finally, the pertinence of the isolability concept is demonstrated on the example of a three tank system.

INTRODUCTION

The fault detection and isolation (FDI) problem has been introduced in automatic control as a paradigm for designing algorithms able to detect the outbreak of faults and isolate their causes. Various FDI techniques have been developed and can be found in survey papers, see e.g. [START_REF] Zhou | Overview of fault detection and identification for non-linear dynamic systems[END_REF][START_REF] Thirumarimurugan | Comparison of fault detection and isolation methods: A review[END_REF]. The first proposed method is the hardware redundancy in which multiple sensors and actuators are used to measure and control a particular variable [START_REF] Chen | A hybrid data-driven modeling method on sensor condition monitoring and fault diagnosis for power plants[END_REF]. The drawbacks of this method are the extra equipment, maintenance cost and additional space required to accommodate the equipment. This approach was improved later on by the introduction of the model-based analytical redundancy method, based on the notion of generating residual signals. These residues are defined as the difference between the measured variables and the estimated ones. In the case of no fault, and in the ideal case of noise free observations, the values of the residues are equal to zero. In the non zero case, the estimation method must be specified, see e.g. the observer-based approach [START_REF] Tousi | Robust observerbased fault diagnosis for an unmanned aerial vehicle[END_REF], the parity-space approach [START_REF] Diversi | Robust residual generation for dynamic processes using decoupling technique[END_REF] or the Kalman-based approach [START_REF] Izadian | Application of kalman filters in model-based fault diagnosis of a dc-dc boost converter[END_REF]. However, in these approaches, a sensor may be wrongly declared faulty because of the lack of efficiency of the estimation algorithm, hence the importance of the notion of detectability.

Recently, the flatness property has been introduced into the repertoire of FDI techniques [START_REF] Suryawan | Fault detection, isolation, and recovery using spline tools and differential flatness with application to a magnetic levitation system[END_REF][START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF]. Here, residues are calculated using the differential flatness property. Roughly speaking, let us recall that a system is said to be flat if all the state and input variables can be expressed as functions of a particular variable, called flat output, and a finite number of its successive derivatives. The method presented in [START_REF] Suryawan | Fault detection, isolation, and recovery using spline tools and differential flatness with application to a magnetic levitation system[END_REF] is dedicated to linear flat systems and uses the properties of B-spline parameterisation to estimate the time derivatives of the flat output, which may not be defined because of the presence of noise. This derivative estimation can take time and cause a delay in the reconfiguration process. In order to overcome these issues, a high-gain observer has been proposed in [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF] to evaluate the time derivative of the noisy signals. The observer may be complemented by a low-pass filter to improve its performance. Note that the latter method can be applied to both, linear and nonlinear flat systems.

In the present flatness-based FDI approach, an effort is made to dissociate the theoretical isolability property, based on residue computation, and the estimation process. For this purpose, we compute the residues between the measurements and their expression exactly obtained from the measured flat outputs and their derivatives estimated online. The treatment of these residues slightly differs from the ones of the previous approaches [START_REF] Kóscielny | Fault isolability with different forms of the faults-symptoms relation[END_REF]: every sensor and actuator admits a fault alarm signature, i.e. a number of residues affected by a fault on this sensor/actuator and a fault on a sensor/actuator is isolable if its corresponding fault alarm signature is distinct. In practice, the treatment of these residues is adapted, in the presence of noise, by introducing a threshold and an estimation process as in the previous approaches [START_REF] Martínez-Torres | Fault detection and isolation on a three tank system using differential flatness[END_REF]. Moreover, we show that it is possible to increase the isolability of faults by considering several flat outputs, at the condition that they are independent, thus completing in a rigorous way some heuristic results of [START_REF] Martínez-Torres | Fault detection and isolation on a three tank system using differential flatness[END_REF]. These results are applied to a three tank FDI problem where we compute two independent flat outputs that allow the isolation of all possible simple faults (only one faulty sensor or actuator at a time).

The main contributions of this paper are the above mentioned rigorous definition of isolability of faults and the characterization of the flat outputs to be used in the fault isolation.

This paper is organized as follows: section 2 introduces the basic concepts of FDI for nonlinear differentially flat systems and their definitions. Section 3 discusses the conditions for independence between flat outputs. Section 4 deals with the application of this FDI approach to the three tank system. Finally, section 5 concludes the paper.

FLATNESS-BASED FDI

Differentially Flat System

Consider the following nonlinear system ẋ

= f (x, u) y = h(x, u) (1) 
where x, the vector of states, evolves in a n-dimensional manifold X, u ∈ R m is the vector of inputs, y ∈ R p is the measured output, m ≤ n, rank( ∂f ∂u ) = m and m ≤ p. Let (x, u) (x, u, u, ü, . . .) be a prolongation of the coordinates (x, u) to the manifold of jets of infinite order X X × R m ∞ [START_REF] Fliess | A lie-backlund approach to equivalence and flatness of nonlinear systems[END_REF], (Levine, 2009, Chapter 5).

In the sequel, we systematically denote by ξ (ξ, ξ, ξ, . . .) the sequence of infinite order jets of a vector ξ and ξ (α) (ξ, ξ, ξ, . . . , ξ (α) ) the truncation at the finite order α ∈ N of the previous sequence.

The system (1) is flat at a point (x 0 , u 0 ) ∈ X if and only if there exist a vector z = (z 1 , . . . , z m ) ∈ R m , two integers ρ and ν and mappings ψ defined on a neighbourhood V of (x 0 , u 0 ) in X and ϕ = (ϕ 0 , ϕ 1 , . . .) defined on a neighbourhood W ⊂ ψ(V) of z (z, ż, z, . . .) ψ(x 0 , u 0 ) in R m ∞ such that: (1) z = ψ(x, u (ν) ) ∈ W (2) z 1 , . . . , z m and their successive derivatives are linearly independent in W (3) The state x and the input u are functions of z and its successive derivatives:

(x, u) = (ϕ 0 (z (ρ) ), ϕ 1 (z (ρ+1) )) ∈ pr X×R m (V) (2) where pr X×R m (V) is the canonical projection from V to X × R m (4) The differential equation φ0 (z) = f (ϕ 0 (z), ϕ 1 (z)) is identically satisfied in W.
The vector z is called flat output of the system. The mappings ψ and ϕ are called Lie-Bäcklund isomorphisms and are inverse of one another.

Remark 1. The property of flatness is not defined globally. The Lie-Bäcklund isomorphisms ψ and ϕ are non unique and only locally defined. Thus, there might exist points in X where no such isomorphisms exist or, otherwise stated, where the system is not flat. It has been proven in [START_REF] Kaminski | Intrinsic and apparent singularities in differentially flat systems, and application to global motion planning[END_REF] that the set of intrinsic singularities contains the set of equilibrium points of the system that are not first order controllable.

Fault Detection and Isolation

For the flat system (1), we suppose that the vector y s = (y s 1 , . . . , y s p ) T is measured by sensors S 1 , . . . , S p respectively. We also suppose that the flat output z is part of these measurements according, without loss of generality, to z s = (y s 1 , . . . , y s m ) T .

(3) Moreover, the value of the input vector u = (u 1 , . . . , u m ) T , corresponding to the actuators A 1 , . . . , A m , is assumed to be available at every time. We now propose a new definition of the notion of residue that generalizes the one introduced by Martínez-Torres et al. ( 2014).

According to (2), the state and input read:

x z = ϕ 0 (z s (ρ) ), u z = ϕ 1 (z s (ρ+1) )
(4) where the superscript z indicates that they are evaluated as functions of the measurements z s and, according to (1),

y z k h k (ϕ 0 (z s (ρ) ), ϕ 1 (z s (ρ+1) ))
(5) is the virtual value of y k computed via the measured flat output z s .

Note that the first m components of y z are equal to the corresponding components of z s :

y z = (z s , h(ϕ 0 (z s ), ϕ 1 (z s ))) T (6) 
with h = (h m+1 (ϕ 0 (z s ), ϕ 1 (z s )), . . . , h p (ϕ 0 (z s ), ϕ 1 (z s ))) T .

Definition 1. The k th -sensor residue R S k and l th -input residue R A l , for k = 1, . . . , p and l = 1, . . . , m, are given by:

R S k = y s k -y z k , R A l = u l -u z l . (7) 
In total, we have p + m residues for a single flat output z s and we denote the full residue vector by: r = (R S1 , . . . , R Sm , R Sm+1 , . . . , R Sp , R A1 , . . . , R Am ) T = (r 1 , . . . , r m , r m+1 , . . . , r p , r p+1 , . . . , r p+m ) T (8) and according to (6) r = (0, . . . , 0, R Sm+1 , . . . , R Sp , R A1 , . . . , R Am ) T = (0, . . . , 0, r m+1 , . . . , r p , r p+1 , . . . , r p+m ) T .

(9)

Measured and calculated variables are illustrated in Fig. 1.

A residue who is always equal to zero indicates that it cannot be affected by faults on one of the sensors or actuators. Then, we eliminate it and truncate the residue vector to keep the last p components only. This truncated vector is denoted by r τ :

r τ = (R Sm+1 , . . . , R Sp , R A1 , . . . , R Am ) T = (r τ1 , r τ2 , . . . , r τp ) T . ( 10 
)
Hypothesis: From now on, we assume that there is only one fault at a time affecting the sensors or actuators.

In practice, due to the presence of noises on sensors and actuators, the successive derivatives of z s may not be 2014) to improve its robustness. Moreover, a threshold is associated to each residue. In the non faulty case, the residues in (10) will not exceed their thresholds. If, otherwise, at least one of the residues exceeds its threshold then a fault alert is launched. If several residues in (10) trigger an alert at the same time, a fault alarm signature, defined bellow, is required to isolate the fault.

For this purpose, we introduce the so-called signature matrix : Definition 2. (Signature matrix). Given the vector of residues r τ defined in (10) and ζ = (y s 1 , . . . , y s p , u 1 , . . . , u m ) T ∈ R p+m the vector of available measurements. We define by the signature matrix associated to z s , the matrix S given by:

S =    σ 1,1 σ 1,2 . . . σ 1,p+m . . . . . . . . . . . . σ p,1 σ p,2 . . . σ p,p+m    (11) 
with

σ i,j          0 if ∂r τi ∂ζ ( ) j = 0 ∀ ∈ {0, 1, . . .} 1 if ∃ ∈ {0, 1, . . .} s.t. τi ∂ζ ( ) j = 0 (12)
Remark 1. Each column Σ j of the signature matrix S indicates whether a residue r τi is or is not functionally affected by a fault on the measurement ζ j . So in (12), σ i,j = 0 means that the residue r τi is not affected by a fault on the measurement ζ j and σ i,j = 1 means that the residue may be affected. Definition 3. A column Σ j of the signature matrix S is called fault alarm signature or simply signature, associated to the sensor/actuator ζ j .

From the signature matrix S we propose the following definitions of detectability and isolability in the flatness context: Definition 4. (Detectability). A fault on a sensor/actuator ζ j is detectable if, and only if there exists at least one i ∈ {1, . . . , p} such that σ i,j = 1. Definition 5. (Isolability). A fault on a sensor S k , k = 1, . . . , p, is said isolable if, and only if, its corresponding fault alarm signature Σ k in the signature matrix S is distinct from the others, i.e.

Σ k = Σ j , ∀j = 1, . . . , p + m, j = k. ( 13 
)
An isolable fault on the actuator A l , for l = 1, . . . , m, is defined analogously:

Σ p+l = Σ j , ∀j = 1, . . . , p + m, j = p + l. (14) 
We define µ as the number of distinct signatures of the signature matrix S associated to z s . Then, µ is the number of isolable faults associated to z s .

A more general, but much more complicated, definition of isolability in the structured residual context of polynomial systems has been introduced in Staroswiecki and Comtet-Varga ( 2001), based on elimination techniques.

Definition 5 means that if the signature matrix S has two identical signatures, i.e. Σ i = Σ j , for two different sensors/actuators ζ i = ζ j , then we cannot make a decision on the faulty device, hence the fault is detected but cannot be isolated. Thus, the number of isolated faults is equal to the number of distinct signatures in the matrix S.

The Example of the three tank System

We consider a three tank system made up with three cylindrical tanks of cross-sectional area S, connected to each other by means of cylindrical pipes of section S n , and two pumps P 1 and P 2 that supply tanks T 1 and T 2 . These three tanks are also connected to a central reservoir through pipes (see Fig. 2).

The model is given by: ẋ1

= -Q 10 (x 1 ) -Q 13 (x 1 , x 3 ) + u 1 (15) ẋ2 = -Q 20 (x 2 ) + Q 32 (x 2 , x 3 ) + u 2 (16) ẋ3 = Q 13 (x 1 , x 3 ) -Q 32 (x 2 , x 3 ) -Q 30 (x 3 )
(17) where the state variables x i , i = 1, 2, 3 represent the water level of each tank, Q i0 , i = 1, 2, 3 the outflow between each tank and the central reservoir, Q 13 is the outflow between tanks T 1 and T 3 and Q 32 the outflow between tanks T 3 and T 2 , u 1 and u 2 are the incoming flows by unit of surface of each pump.

We assume the following inequalities to avoid singularities1 :

x

1 > x 3 > x 2 .
We consider that the valves connecting tanks T 1 and T 3 with the central reservoir are closed, i.e. Q 10 ≡ 0 and Q 30 ≡ 0. The expressions of Q 13 , Q 32 and Q 20 are given by:

Q 13 (x 1 , x 3 ) = a z1 2g(x 1 -x 3 ) (18) Q 20 (x 2 ) = a z2 2g(x 2 ) (19) Q 32 (x 2 , x 3 ) = a z3 2g(x 3 -x 2 ) (20)
Fig. 2. Three Tank System, Source: [START_REF] Noura | Fault-tolerant control systems: Design and practical applications[END_REF] where a zr , r = 1, 2, 3, is the flow coefficient and g the gravitational force. Each tank T i is equipped with a sensor S i to measure its level x i . Hence, the measured output is:

y s = (y s 1 , y s 2 , y s 3 ) T = (x s 1 , x s 2 , x s 3 ) T (21)
The system ( 15)-( 16)-( 17) is flat with z = (x 1 , x 3 ) T = (z 1 , z 2 ) T as flat output. The measured flat output is then given by z s = (y s 1 , y s 3 ) T = (z s 1 , z s 2 ) T . In order to construct the vector of residues, using ( 4) and ( 5), we set:

y z 1 = z s 1 y z 2 = z s 2 - 1 2g a z1 2g(z s 1 -z s 2 ) -żs 2 a z3 2 y z 3 = z s 2 u z 1 = żs 1 + a z1 2g(z s 1 -z s 2 ) u z 2 = ẏz 2 -a z3 2g(z s 2 -y z 2 ) + a z2 2gy z 2 .
According to (7), the vector of residues, associated to z s , is then given by:

r =      R S1 R S2 R S3 R A1 R A2      =      y s 1 y s 2 y s 3 u 1 u 2      -      y z 1 y z 2 y z 3 u z 1 u z 2      . ( 22 
)
However, residues R S1 and R S3 are identically zero:

R S1 = y s 1 -y z 1 = z s 1 -z s 1 = 0 R S3 = y s 3 -y z 3 = z s 2 -z s 2 = 0 ( 23 
) hence, according to (10), the vector r is truncated to:

r τ = (R S2 , R A1 , R A2 ) T = (r τ1 , r τ2 , r τ3 ) T .
(24) Therefore, the signature matrix S, associated to z s , is constructed as follows:

-All the residues in (24) depend on the measurement of z s = (y s 1 , y s 3 ) T then the first and the third columns of the signature matrix contain only ones: σ i,1 = σ i,3 = 1, ∀i = 1, 2, 3 -Only residue r τ1 depends on y s 2 and its successive derivatives, then the second column will be such that: σ 1,2 = 1 and σ i,2 = 0, i = 2, 3 -Since r τ2 depends only on u 1 and r τ3 depends only on u 2 , then column 4 and column 5 of S are such that: σ 2,4 = 1 and σ i,4 = 0 ∀i = 1, . . . , 3, i = 2 and σ 3,5 = 1 and σ i,5 = 0 ∀i = 1, . . . , 3, i = 3 respectively.

Hence, the signature matrix, associated to r τ , is given by:

S = 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 . ( 25 
)
According to definition 4, all faults on the three tank system's sensors and actuators are detectable. Since fault alarm signatures Σ 2 , Σ 4 and Σ 5 are distinct, then, according to definition 5, faults on sensor S 2 and actuators A 1 and A 2 are isolable. This reflects the fact that if, at some point during system operation, a fault alarm is launched with the signature Σ 2 then we conclude that the sensor S 2 is faulty. However, if we obtain a signature like Σ 1 , the fault could be on the sensor S 1 or S 3 , since signatures Σ 1 and Σ 3 are identical. Then, a fault on S 1 or S 3 cannot be isolated. To conclude, this example shows that the isolability property is strongly conditioned by the dependence of the flat output with respect to the measured variables. This motivates the study of the choice of flat outputs of the next section. Remark 1. In [START_REF] Nagy | State estimation of the three-tank system using a multiple model[END_REF], it has been shown that system ( 15)-( 16)-( 17) is observable through x 1 only and that x 2 and x 3 can be estimated using x 1 given the measurements of u 1 and u 2 , leading to different isolability results. The reader may refer to this article for more details. Note that, here, the measurements of u 1 and u 2 are not necessary to guarantee the x 2 -isolability.

FLAT OUTPUT SELECTION

In order to get more isolabilty on systems sensor and actuator, the authors in [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF] propose to increase the number of residues by using several flat outputs. These flat outputs must be independent in the sense that when we use them together we gain more isolability of faults. In this section, we propose a characterization of the relation between different flat outputs using a so-called augmented signature matrix. This characterization leads to a decision concerning the choice of flat outputs that are useful for the isolability.

According to definition 5, the number µ of isolated faults by a flat output z is equal to the number of distinct signatures Σ k of its signature matrix. Then, in order to get more isolability of faults, we need to increase the number of distinct signatures. This is possible when different projections of the system's output y are available that are flat outputs. For this purpose, we introduce definitions 6 and 7.

In the following, we denote the i th element of the set of q flat output vectors Z i by Z i = (z i1 , . . . , z im ) T . Definition 6. (Augmented signature matrix). Let Z 1 , . . . , Z q be q different flat output vectors of the flat system (1), such that Z i = pr R m (y). The augmented signature matrix S associated to Z 1 , . . . , Z q is defined by:

S =     S 1 S 2 . . . S q     (26)
where S i is the signature matrix associated to the flat output vector Z i .

The choice of flat output vectors is not arbitrary. They must be independent in the sense given by the following definition: Definition 7. (Independence). Let S be the augmented signature matrix associated to Z 1 and Z 2 :

S = S 1 S 2 , µ i , i = 1, 2
, the number of distinct signatures of the matrix S i and µ the number of distinct signatures of the augmented matrix S. We say that Z 1 and Z 2 are independent if, and only if

µ > µ 1 and µ > µ 2 . ( 27 
)
Definition 7 means that two flat outputs are independent if, by using them together, the number of distinct signatures increases which corresponds to the number of isolated faults. If the condition ( 27) is not satisfied then the combination of Z 1 and Z 2 is not helpful for the isolability, and we have to find another combination by calculating more flat outputs. To conclude, the condition of full isolability is given by the following proposition: Proposition 2. Let Z 1 , . . . , Z q be q different flat output vectors of the system (1). A full isolability of faults on sensors and actuators is achieved if the augmented matrix

S =     S 1 S 2 . . . S q    
has p + m distinct signatures, i.e. µ = p + m.

APPLICATION TO THE THREE TANK SYSTEM

Back to the three tank system presented in section 2.3, we denote by Z 1 the flat output vector Z 1 = (z 11 , z 12 ) T = (x 1 , x 3 ) T . The corresponding vector of residues is given by (24). We recall the signature matrix associated to Z 1 , and we denote it by S 1 :

S 1 = 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 (28)
We also recall that, according to definition 5, faults on sensors S 1 and S 3 cannot be isolated. The number of distinct signatures of S 1 is µ 1 = 3.

In order to increase the number of isolable faults, we consider Z 2 = (z 21 , z 22 ) T = (x 2 , x 3 ) T another flat output vector of the three tank system. It is measured by sensors S 2 and S 3 , i.e. Z s 2 = (z s 21 , z s 22 ) T = (y s 2 , y s 3 ) T . To construct the vector of residues associated to Z s 2 and its signature matrix, we set, using (4) and ( 5):

y Z2 1 = z s 22 + 1 2g a z3 2g(z s 22 -z s 21 ) + żs 22 a z1 2 y Z2 2 = z s 21 y Z2 3 = z s 22 u Z2 1 = żs 22 + a z1 2g(z s 21 -z s 22 ) u Z2 2 = ẏZ2 2 -a z3 2g(z s 22 -y Z2 2 ) + a z2 2gy Z2 2 .
Therefore, as shown for the flat output Z 1 , residues R Z2

S2

and R Z2 S3 are identically zero and the truncated vector of residues (10) reads:

r Z2 τ =   R Z2 S1 R Z2 A1 R Z2 A2   = y s 2 u 1 u 2 -   y Z2 2 u Z2 1 u Z2 2   . (29) 
Hence, the signature matrix associated to Z 2 is given by:

S 2 =
1 1 1 0 0 0 1 1 1 0 0 1 1 0 1

. ( 30 
)
Signatures Σ 1 , Σ 4 and Σ 5 in the matrix S 2 are distinct, then, according to definition 5, faults on sensor S 1 and actuators A 1 and A 2 are isolable by the flat output Z 2 . Moreover, the number of distinct signatures of S 2 is µ 2 = 3. However, since signatures Σ 2 and Σ 3 are identical, then faults on sensors S 2 and S 3 cannot be isolated.

It remains to be verified whether the two flat outputs Z 1 and Z 2 are independent.

The augmented signature matrix associated to Z 1 and Z 2 is given by:

S =       
1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 1

       . ( 31 
)
The number of distinct fault alarm signatures of S is µ = 5, and we have µ > µ 1 and µ > µ 2 .

Then, according to definition 6, the flat output vectors Z 1 and Z 2 are independent. Moreover, since µ = p + m, then flat output vectors Z 1 and Z 2 ensure full isolability of faults on the three tank system.

Simulation results that confirm the effectiveness of this approach can be found in [START_REF] Martínez-Torres | Fault detection and isolation on a three tank system using differential flatness[END_REF].

CONCLUSION

The current paper introduces a novel and rigorous definition of the isolability of faults affecting a system's sensors and actuators, using the flatness-based FDI approach. The described condition of isolability provides an efficient way to select flat outputs that are useful for fault isolation.

Our results are tested and validated using the three tank system. Future work should focus on the development of a method that calculates independent flat outputs directly.
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 1 Fig.1. Flatness-based residual generation defined. We assume that they are computed via a highgain observer, possibly completed by a low-pass filter as in[START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF] to improve its robustness. Moreover, a threshold is associated to each residue. In the non faulty case, the residues in (10) will not exceed their thresholds. If, otherwise, at least one of the residues exceeds its threshold then a fault alert is launched. If several residues in (10) trigger an alert at the same time, a fault alarm signature, defined bellow, is required to isolate the fault.

According to the Remark 1, the point x ∈ X s.t. x 1 = x

= x

is an equilibrium point which is not first order controllable, then it is a point of intrinsic flatness singularity.