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I investigate a class of models with scalar and pseudoscalar solutions to the g − 2 anomaly for
both the muon and the electron over the mass range of perturbativity (mφ . 50 GeV), with Yukawa
couplings proportional to the lepton’s mass. In particular, I investigate the constraints from BaBar,
beam dump experiments, Z decay measured quantities, LEP mono-γ searches, ee→ ττ(γ) searches,
and solar and Horizontal Branch (HB) stars bounds. For a pseudoscalar, I find that no region in
the parameters space can simultaneously provide a solution for both the electron and the muon
anomalies while maintaining the required form of the couplings, and therefore the pseudoscalar
solution is disfavored. On the other hand, I find for the scalar case that there is an open window
above ∼ 30 MeV in the allowed region, but with significant tension with experiment for the region
mφ & 10 GeV. In addition, there is a smaller window between ∼ 350 KeV and 1 MeV that is not
ruled out by cosmological observations. Part of the first open window is expected to be covered by
the proposed NA64 experiment. Similar analysis can be readily applied to other proposed solutions
to the anomaly, such as solutions with Z′ or with the dark photon.

I. INTRODUCTION

An exciting piece of evidence for the existence of
physics Beyond the Standard Model (BSM) is the dis-
crepancy between the predicted and the measured val-
ues of the muon anomalous magnetic moment aµ ≡
(gµ − 2)/2. The current measured value [1–4] shows a
3.5σ discrepancy compared with the SM prediction [5–
7]:

∆aµ = aExp
µ − aSM

µ = 273± 80× 10−11. (1)

A similar less significant discrepancy of about 1.1σ was
also observed for the electron [8]:

∆ae = aExp
e − aSM

e = −91± 82× 10−14. (2)

Although both discrepancies fall short of the 5σ limit
required to confirm their existence, they nonetheless pose
tantalizing hints for physics BSM. In addition, current
experiments at Fermilab [9, 10] and at the J-PARC E34
collaboration [11, 12] are expected to yield improved ex-
perimental results in the near future.

New physics explanations of this anomaly include (see
[13] for a comprehensive review) supersymmetry (see [14]
for a review), a light Z ′ boson [15–23] (also see [24] for
a review), a scalar contribution within the framework of
the 2 Higgs Doublet Model (2HDM) [25–32], additional
fermions [33], leptoquarks [34, 35], and the dark photon
[36].

Recently, there have been proposed solutions to this
anomaly through a scalar [5] or a pseudoscalar Axion-
Like Particle (ALP)[6] in a general framework. In this
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short paper, I will investigate the viability of these solu-
tions, explore the relevant experimental limits, and high-
light the experimental probes for their discovery for the
mass range of their validity.

For the case of a pseudoscalar, the effective interaction
with photons and fermions can be parametrized by:1

L =
1

4
gφγγφFµν F̃

µν + iYφllφψ̄γ5ψ, (3)

where gφγγ is a dimensionful coupling, Yφll is a dimen-

sionless Yukawa coupling and Fµν , F̃µν are the mag-
netic field strength tensor and its dual respectively. For
a scalar, F̃µν is replaced with Fµν and there is no iγ5

in the second term. Since |∆ae∆aµ
| ∼ Y 2

φee

Y 2
φµµ

(see Eqs. 5

and 6 below), and we can see from Eqs. 1 and 2 that
within the allowed range of uncertainties, we could ob-
tain |∆ae∆aµ

| ≈ (memµ )4 2, then we are motivated to define

the Yukawa couplings to be proportional to the lepton
mass:

Yφll =
ml

v
≡ mlgφll, (4)

where v ≡ g−1
φll is some model-dependent energy scale

that is universal for all leptons, such as the axion decay

1 This interaction can be viewed as an effective theory of a UV-
complete model. One possible UV-completion that is consis-
tent with the SM EW theory was introduced in [5]. Such a
model could lead to lepton-flavor violation through terms like
Yφijφl̄ilj , i 6= j. We ignore this possibility in this paper as it
will not affect the interaction in Eq. 3 and as it was studied in
detail in [5]. The interested reader is instructed to refer to [5] for
detailed analysis.

2 Notice that from Eqs. 5 and 6, ∆al ∼ Y 2
φllr
−2, where r =

mφ/ml. The assumption in Eq. 4 makes ∆al ∼ m4
l , and thus

∆ae
∆aµ

≈ (me
mµ

)4.
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constant or the radion constant. The coupling of the form
given in Eq. 4 has the additional advantage in that it
arises in many UV-comepltions as Psuedo Nambu Gold-
stone Bosons (PNGB), such as axion models [37], Left-
Right Twin Higgs Models [38] and dark matter models
with a scalar portal to the dark sector [39] (also see [40]).
PNGBs have an approximate shift symmetry and their
interactions are proportional to some universal symme-
try breaking scale. In addition, such models have been
widely discussed in literature as an effective theory for
solving the g − 2 anomaly (see for example [5], [6], [41]).
I will focus on this form of Yukawa couplings throughout
this paper.

It was shown in [5] that the discrepancy in gµ−2 can be
explained by a scalar with Yφµµ ∼ O(10−3), while in [6],
it was shown that an ALP pseudoscalar can explain both
of the electron and the muon anomalies by considering
the NLO contributions.

The LO and NLO contributions to the ∆aµ,e are shown
in Fig. (1). The LO contribution for the scalar, as well
as for the pseudoscalar, was calculated in [5]:

∆apl = −
Y 2
φll

8π2
r−2

∫ 1

0

dz
(1− z)3

r−2(1− z)2 + z
, (5)

∆asl =
Y 2
φll

8π2
r−2

∫ 1

0

dz
(1 + z)(1− z)2

r−2(1− z)2 + z
, (6)

where r ≡ mφ
ml

. On the other hand, the NLO contribu-

tion includes the Barr-Zee (BZ) contribution (top right
diagram in Fig. 1), the two-loop Light-By-Light (LBL)
contribution (bottom left diagram in Fig. 1), and the
Vacuum Polarization (VP) contribution (bottom right
diagram in Fig. 1). These contributions are the same
for both the scalar and the pseudoscalar cases and are
given by[6]:

aBZ
l,φ '

( ml

4π2

)
gφγγYφll ln

Λ

mφ
, (7)

aLBL
l,φ '

3α

π

(mlgφγγ
4π

)2

ln2 Λ

mφ
, (8)

aVP
l,φ '

α

π

(mlgφγγ
12π

)2

ln
Λ

mφ
, (9)

where φ is either a scalar or a pseudoscalar, gφγγ is the
dimensionful coupling of φ to photons, and Λ is some
UV cutoff scale that is assumed to be much larger than
mφ. I will set the cutoff scale Λ = 1 TeV throughout this
paper. Notice that since the Lagrangian in Eq. 3 is CP-
conserving, there will be no contribution to the lepton’s
Electric Dipole Moment (EDM). I will ignore the more
general case where CP-violating terms are present.

FIG. 1. LO (top left diagram) and NLO scalar/pseudoscalar
contributions to the lepton anomalous magnetic moment.

II. FAVORED REGION

In this section, I will investigate the parameter space
and try to establish the favored region for both the scalar
and the pseudoscalar cases. If we inspect equations 5
through 9, we notice the following:

• For a scalar, the LO contribution is always positive,
while for a pseudoscalar it is negative. As for the
NLO contributions, we can see that the LBL and
the VP are always positive, while the BZ contribu-
tion depends on the sign of gφγγYφll.

• Since the central measured anomaly for the muon
is positive, while for the electron it is negative, a
scalar solution can easily accommodate the muon
anomaly. However, yielding the central measured
electron anomaly would require the assumption
that gφγγYφll < 0 so that the BZ contribution can
offset all other (positive) contributions. This would
require large (nonperturbative) Yukawa couplings
for the electron and therefore it is disfavored. Thus
I will assume that all couplings are positive for the
scalar case. This means that the central measured
electron anomaly cannot be produced. However, it
is possible to show that the contribution is within
∆ae + 2σe

3.

• As the LO contribution for the pseudoscalar case
is negative, it can easily accommodate the mea-
sured electron anomaly, however, in order to yield
the (positive) measured muon anomaly, one needs
somewhat large couplings to photons while keep-
ing the Yukawa coupling somewhat small in order
for the NLO contributions to dominate over the
LO. Nonetheless, it is possible to find such solu-
tions while maintaining perturbative couplings as
we shall see below.

• For the pseudoscalar case, if we assume that gφγγ >
0, then Yφee < 0 while Yφµµ could be either posi-
tive or negative. On the other hand, assuming that

3 See added note at the end of this paper.
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gφγγ < 0 yields exactly the same solution but with
opposite signs.

A. Pseudoscalar

For concreteness, I will assume that gφγγ < 0. Fig. (2)
shows the 2σ allowed regions for e and µ with gφγγ =
−0.05 GeV−1. Notice that there is no overlap between
the two regions even for small masses, which means that
there is no region in the parameter space where Eq. 4
is valid. As a matter of fact, there is no pseudoscalar
solution in the whole parameter space where Eq. 4 is
true. In addition, for both Yukawa couplings to have
the same sign, one needs |gφγγ | & 0.03 GeV−1, which
is excluded by cosmological observations [42], therefore
the pseudoscalar solution is disfavored. One can avoid
these constraints by assuming that Yφµµ > 0 and Yφee <
0, however, one needs to justify this assumption. I will
disregard the pseudoscalar solution in the remainder of
this paper.

�ϕ��

�ϕμμ

0 10 20 30 40

2.× 10-4

5.× 10-4

0.001

0.002

mϕ[GeV]

g ϕ
μ
μ
(e
e
)[
G
eV

-
1
]

FIG. 2. The 2σ allowed region for e (green) and µ (blue) of
the parameter space for the pseudoscalar solution assuming
gφγγ = −0.05 GeV−1. The lack of any overlap between the
favored regions for the electron and the muon indicates that
we cannot have a solution where Eq. 4 is valid. Therefore the
pseudoscalar solution is disfavored.

B. Scalar

With the assumption that all couplings are positive,
I attempt at finding the favored region in the parame-
ter space for the scalar case. Here, I will only focus on
solutions of the form in Eq. 4 and discard all other pos-
sibilities.

Notice that we have three parameters, namely mφ, gφll
and gφγγ . I will fix gφγγ and keep gφll and mφ as free
parameters. I will select appropriate benchmark points
for gφγγ by minimizing the χ2 of the electron and muon
measurements:

χ2 =
(∆Exp

µ −∆φ
µ)2

σ2
µ

+
(∆Exp

e −∆φ
e )2

σ2
e

. (10)

More concretely, I fix the value of gφγγ , then I use Eq.
10 to find gφll and mφ that minimize χ2, together with
the value of χ2 at the minimum. Then I will scan through
a wide range of gφγγ , and then set the benchmark points
where χ2

min is the smallest.
Fig. 3 shows χ2

min for several values of gφγγ . As the
plot shows, gφγγ . 10−6 GeV−1 yields the lowest val-
ues of χ2. Notice that χ2 becomes almost constant for
smaller couplings. This is reasonable as when the cou-
pling to photons becomes very small, the NLO contribu-
tions become negligible and the LO contribution is domi-
nant. This high-level analysis seems to favor smaller cou-
plings to photons, suggesting that the coupling to leptons
is the dominant coupling. This is consistent with the cos-
mological constraints on ALPs (see for instance [42]). I
will focus on this scenario and I will choose gφγγ = 10−6

and 10−11 GeV−1 as two benchmark points. Notice that
to a good level of accuracy, the second benchmark point is
representative of the entire region of gφγγ . 10−8 GeV−1,
with very similar favored regions for the predicted mass
and coupling.

+ + + + + + + + +
+

+

+

10-14 10-12 10-10 10-8 10-6 10-4

1.25

1.30

1.35

1.40

gϕγγ[GeV
-1]

χ
m
in
2

FIG. 3. χ2
min vs. gφγγ . The plot shows that smaller couplings

to photons are favored.

Now we can use Eqs. 6 - 9 in order to find the allowed
region in the mφ−Yφll parameter space corresponding to
a 2σ deviation from the central values. In order to set an
upper limit on mφ, we demand that all Yukawa couplings
remain perturbative. Obviously, the most stringent
bound comes from Yφττ as it has the largest value. Re-
quiring that Yφττ . 1, we obtain an upper bound on mφ

of ∼ 45(50) GeV for gφγγ = 10−11(10−6 GeV). Fig. (4)
shows the allowed region corresponding to the two bench-
mark points. The plots show the 2σ bands for the Yukawa
couplings to electrons and muons assuming that Eq. 4
holds. In addition, the plots also show the region where
the contribution to ∆ae is within 2σ of the measured
value assuming that the Yukawa couplings to leptons are
independent of one another. Notice that the brown re-
gion corresponds to ∆aφe ∈ (0,∆aExp

e + 2σe] since we are
assuming positive couplings. Thus as noted earlier, there
is no point in the parameter space that can yield the
central value of the measured ∆ae = −91× 10−14.

We can carry the χ2 analysis further to find the favored
region in the mφ − gφll parameters space for the bench-
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FIG. 4. The 2σ bands corresponding to the allowed region for
e and µ for the scalar case at the two benchmark points with
gφγγ = 10−11 GeV−1 (top) and 10−6 GeV−1 (bottom). The
brown region corresponds to ∆aφe ≤ ae + 2σe. Notice here

that for the blue and green bands
Yφµµ
Yφee

=
mµ
me

in accordance

with Eq. 4.

mark points. Fig. (5) shows the scalar mass and coupling
to leptons that minimize χ2, together with the 68% and
95% confidence level contours. Notice that this region is a
subset of the allowed region in Fig. (4). For gφγγ = 10−11

GeV−1, we find a predicted scalar mass of ∼ 540 MeV,
with gφll ' 1.45× 10−2 GeV−1. For this point, one finds
a predicted anomaly ∆aµ(e) = 273 × 10−11(8 × 10−18).
On the other hand, for the second benchmark point
(gφγγ = 10−6 GeV−1), the predicted mass and cou-
pling are 64 MeV and 5× 10−3 GeV−1 respectively, with
∆aµ(e) = 272× 10−11(5× 10−17). This is consistent with
the results found in [5].

Notice that the predicted values of the electron
anomaly for these benchmark points are much smaller
that the (absolute) measured central value of 91× 10−14

(see Eq. 2), albeit they are still within the 2σ limit. This

is logical as we can see from Eq. 6, ∆ae ∼ ∆aµ ×
(
me
mµ

)4
if the Yukawa coupling has the form given in Eq. 4. This
is an important prediction to test this model. That is,
we claim that if indeed this model is correct, then more
accurate measurements of electron anomaly should yield

∆ae ∼ ∆aµ ×
(
me
mµ

)4 ∼ O(10−18). If future measure-

ments of the electron anomaly are inconsistent with this,
then the assumption in Eq. 4 would be ruled out and
other explanations would be needed. Another important

prediction of this model is the tau anomaly. Given that
Eq. 4 predicts the anomlay to be proportional to the
mass, then (gτ − 2) should be large enough to be mea-
sured. Specifically, we predict (gτ − 2) = 8(1.5) × 10−6

for gφγγ = 10−11(10−6) GeV−1.

++
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FIG. 5. The favored point in the mφ − gφll parameter space
of the scalar solution, with 68% and 95% confidence level
contours for gφγγ = 10−11 GeV−1 (top) and 10−6 GeV−1

(bottom).

III. EXPERIMENTAL PROBES AND LIMITS

For the mass range . 50 GeV, the most relevant con-
straints come from the BaBar experiment, beam dump
experiments, the Z decay, the LEP mono-γ searches,
ee→ ττ and ee→ ττ + γ searches, and from the bounds
on solar emission and the on emission from HB stars. Al-
though there is overlap between the results of this chapter
and [43], where they discuss a similar effective model and
a UV completion through the 2HDM, there are several
novel features in this work, including bounds from the Z
decay, LEP searches and the solar and HB stars. In ad-
dition, here we attempt at explaining both the electron
and the muon anomalies and we extend the range of the
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mass over the entire range of validity. Thus our work
should be viewed as complementary to theirs.

A. BaBar

Recent results from the BaBar experiment [44] search-
ing for the process e+e− → µ+µ−Z ′, Z ′ → µ+µ− can be
important for constraining the parameters space. The
results can be used to extract the constraints on the
process e+e− → µ+µ−φ, φ → µ+µ− 4. The tree-level
Feynman diagrams that contribute to this process are
shown in Fig. (6), where I have neglected the diagrams
where the scalar is radiated by the initial state parti-
cles or by the intermediate particle, since the coupling
to muons dominates over the coupling to electrons and
photons, and I am assuming a subleading coupling to the
Z. Fig. (4) in [44] sets an upper limit σMax on the pro-
cess e+e− → µ+µ−Z ′, Z ′ → µ+µ−. Therefore, we can
extract the limits on the gφll −mφ parameter space by
requiring:

σ(e+e− → µ+µ−φ)× Br(φ→ µ+µ−) < σMax. (11)

FIG. 6. The dominant tree-level contributions to e+e− →
µ+µ−φ.

The excluded part of the parameter space is shown in
the light gray region in Fig. (9). Notice that it does not
constrain the favored region corresponding to a 2σ devi-
ation, although larger deviations would be constrained.
This result also shows us that any new searches from
BaBar (or similar experiments like Belle II) need to be at
least an order of magnitude better in order to explore the
favored region in the parameter space, or that searches
should be made for a similar process with taus instead of
muons, as the former has a larger coupling. Thus, there
is a good motivation to search for processes like ee→ 4τ .

Notice that in calculating the branching fraction, we
are assuming that the scalar can only decay to leptons
or photons. If the scalar is allowed decay to other SM
particles, the limits will become even weaker. Also notice
that the upper limit in BaBar’s results found in Fig. (4)
of [44] is spiky, therefore the upper limit used in Eq.
11 contains significant uncertainty of about a factor of
a few. In extracting σMax, I was conservative and used
the smallest cross-section. A less conservative estimate
would relax the limits further.

4 [45] extracts the constraints from BaBar’s results for the pseu-
doscalar case.

B. Z Decay5

The excellent measurements of the Z decay width and
branching fractions present us with a potentially suitable
tool for probing the parameter space. In particular, we
can explore the limits associated with the scalar loop
correction to the Z decay to a pair of leptons.

The scalar loop corrections can significantly affect the
leptonic decay width of the Z boson. The NLO correc-
tions to Z → ll̄ are shown in Fig. (7), where the cou-
pling of φ to Z is assumed to be subdominant compared
with the coupling to leptons. Notice here that UV di-
vergences in the leg corrections cancel that in the vertex
correction, and that for a massive φ the result is free of
IR divergences.

FIG. 7. Scalar NLO corrections to Z → ll̄.

Dropping the lepton mass in the loops, and keeping mφ

only as an IR regulator, which is justified for mφ � ml

where this bound is moslty relevant, the NLO correction
is approximately given by:

δΓ(Z → ll̄) ' −Γ0

m2
l g

2
φll

8π2

[
log
(M2

Z

m2
φ

)
− 2

]
, (12)

where Γ0 is the LO decay width given by:

Γ0(Z → ll̄) =
g2(g2

V + g2
A)

48π cos2 θW
MZ

√
1−

4m2
l

M2
Z

. (13)

We can compare this correction with the branching
fractions of the leptonic Z decays, which are given by
[48]:

Br(Z → e+e−) = (3363.2± 4.2)× 10−3 %, (14)

5 [46, 47] also discuss the 1-loop corrections to the Z-decay in
the context of R-parity violating extensions to SUSY and in the
context of type-II 2HDM.
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Br(Z → µ+µ−) = (3366.2± 6.6)× 10−3 %, (15)

Br(Z → τ+τ−) = (3369.6± 8.3)× 10−3 %. (16)

As it turns out, the decay to ττ provides the most
stringent constraints in spite of the larger uncertainty in
its branching fraction. This is due to its larger coupling
given the assumption in Eq. 4.

The excluded region of the parameter space at a 2σ
level is shown in red in Fig. (9). As can be seen from
the plots, there is some tension between the Z-loop de-
cay and the allowed region near mφ ∼ 10 GeV, although
the alowed region is not fully excluded. Notice here that
since we are dropping the mass of the tau, the bound will
be less reliable for the range mφ < mτ , however, this is
unimportant as in that region the Z-decay constraint is
far from the favored region and therefore our results are
unaffected. On the other hand, in the region of interest
where mφ is larger than a few GeV, dropping the mass
of the tau is justified and won’t impact the results sig-
nificantly. The same argument applies for the constraint
obtain from e+e− → τ+τ− we discuss below.

C. Constraints from e+e− → τ+τ−

The analysis conducted in the previous section can be
extended to the e+e− → τ+τ− searches conducted by
the LEP experiment [49–64], the KEK collaboration [65–
68], DESY-PETRA collaboration [69–74], and the SLAC-
PEP experiment [75].

Here, the process of ee → ττ proceeds through the s-
channel with a photon or a Z propagator, and the NLO
loop correction due to φ will be identical to the case of
the Z decay shown in Fig. (7). So we can set the 2σ
bound as:

δσloop(ee→ ττ) < 2δMeasured
σ , (17)

where

σloop = σ0

[
1 +

m2
τg

2
φll

8π2

(
2− log

( s

m2
φ

))]
, (18)

and σ0 is the tree level cross-section. The bound is shown
in Fig. (9) in light green. As the plot shows, and similar
to the case of the Z decay, there is significant tension
with experimental results for mφ & 10 GeV, although
this region is not fully excluded.

D. Muon Beam Dump Experiments

Muon beam dump experiments provide a powerful tool
for probing the mass range ∼ 1− 200 MeV. The relevant
constraints come from Orsay [76] and the E137 experi-
ment at SLAC [77] (also see [41] for a summary).

In the Orsay beam dump experiment, searches for the
light Higgs boson in the 2HDM were conducted through
looking for the process eN → eNH,H → e+e−. In [76],
the coupling of the lighter Higgs to electrons is assumed
to be:

ghee =
me

v
tanβ, (19)

where tanβ = v1/v2, the ratio of the two doublets’ VEVs.
The results show the excluded region in the tanβ −mh

parameter space. Therefore, they can readily be extrap-
olated to this model by setting gφll ≡ tan β

v .
On the other hand, [77] presents the results of the

E137 beam dump searches for axions produced via
bremsstrahlung followed by the subsequent decay to
e+e−. The results were extracted for the case of a scalar
in [41], so I will just use their results.

I show these constraints in magenta (Orsay) and or-
ange (E137) in Fig. (9). As can be seen from the plots,
muon beam dump experiments exclude the region be-
tween mφ ∼ 1 MeV and 30 MeV. On the other hand,
the window between mφ ∼ 30 − 200 MeV is still open.
This window is projected to be explored by the proposed
NA64 project at CERN [78, 79]. The NA64 experiment
is a fixed-target experiment that can run in the muon
mode with a beam energy of 160 GeV and is designed for
searching for missing energy & 50 GeV. This experiment
can help probe this open window. The projected region
in the parameter space is shown by the dashed line in
Fig. (9).

Another proposed experiment is Fermilab’s displaced
decay search with a muon beam energy of 3 GeV [80].
However, the projected sensitivity of this experiment cov-
ers only a part of the projected sensitivity of the NA64
experiment, therefore I will not plot it here.

E. Constraints from LEP Mono-γ and ee→ ττγ
Searches

The LEP mono-γ searches were conducted to set lim-
its on the number of neutrinos via studying the process
e−e− → νν̄γ. The results can be used to set limits on
the mφ−gφll parameter space by considering the process
e+e− → γφ for the range mφ ≤ 2me. The tree-level pro-
cess proceeds through the t and u channels, however, due
to the smallness of the scalar’s coupling to the electron,
the constraints are weak. On the other hand, stronger
constraints can be obtained through the triangle diagram
shown in Fig. (8) where the τ runs in the loop.

Similar to the case of the Higgs, we can write the ef-
fective Lagrangian as:

Leff = cγ
α

πvφ
AµνA

µνφ+ cγZ
α

πvφ
AµνZ

µνφ, (20)

where vφ = g−1
φττ . The effective couplings can be ex-

tracted from the results of the Higgs. For example, we
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FIG. 8. e+e− → γφ triangle diagram.

can use the result of the Higgs decay to γγ where instead
of the top running in the loop, we have the tau. This
gives:

cγ =
1

8
|Aφτ (ττ )|, (21)

where ττ =
4m2

τ

m2
φ

, and:

Aφτ (τ) = 2τ
[
1 + (1− τ)f(τ)

]
, (22)

f(τ) =


[

sin−1
(

1√
τ

)]2
, τ ≥ 1

− 1
4

[
ln
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]2
, τ < 1.

(23)

Similarly, we find cγZ from the Higgs decay to Zγ. We
obtain:

cγZ =
1

4 sin θW
|Bφτ (ττ , λτ )|, (24)

where λτ =
4m2

τ

m2
Z

and:

Bφτ (τ, λ) = 2Nτ
c

[
Qτ
(
Iτ3 − 2Qτs

2
w

)
cw

][
I1(τ, λ)− I2(τ, λ)

]
,

(25)

I1(τ, λ) =
τλ

2(τ − λ)
+

τ2λ2

2(τ − λ)2

[
f(τ)− f(λ)

]
+

τ2λ

(τ − λ)2

[
g(τ)− g(λ)

]
, (26)

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ)− f(λ)

]
, (27)

g(τ) =

{ √
τ − 1 sin−1

(
1√
τ

)
, τ ≥ 1

√
τ−1
2

[
ln
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]
, τ < 1.

(28)

Here Qτ = −1, Nτ
c = 1 and Iτ3 = − 1

2 . Armed with this,
we can find the cross-section of the triangle diagram in
Fig. (8):

σ(e+e− → γφ) =
( e2gφll

32π2
√

2πcw

)2( 1−m2
φ/s

1−m2
Z/s

)2

×
[
(1− 4s2

w + 8s4
w)g2c2γZ + 32c2we

2c2γ(1−m2
Z/s)

2

−8 cw g e cγcγZ(1− 4s2
w)(1−m2

Z/s)
]
,

(29)

where sw, cw are the sine and cosine of the Weinberg angel
respectively. The results from ALEPH [81, 82], L3 [83–
85], OPAL [86] and DELPHI collaborations [87] can be
used in order set constraints on the scalar by requiring
that at a 2σ level:

σ(e+e− → γφ) < 2δMeasured
σ , (30)

for mφ ≤ 2me. Notice that for mφ ≤ 2me, φ could decay
to γγ, however, for both benchmark points, the decay
length is orders of magnitude larger than the dimensions
of the detector, so φ appears as missing energy. On the
other hand, for mφ > 2ml, where l = e, µ, τ , φ can
decay to a lepton pair, so we can use LEP ee → ll + γ
searches for that region. The cross-section for ee → llγ
can be readily obtained by multiplying the cross-section
in Eq. 29 by the appropriate branching fraction for the
mass range. The constraints are shown in brown in Fig.
(9).

F. Constraints from Solar Emission, HB Stars and
SN1987A

Supernova 1987 (SN1987A), HB stars and solar emis-
sion constraints can impose stringent constraints on
ALPs for masses . 1 GeV (see [42, 88] for instance).
However, such constraints are only relevant if the ALP’s
dominant coupling is to photons. Since the coupling to
photons in the type of models we are considering in this
paper is favored to be much less than that to leptons (at
least for the scalar case), those limits need to be revisited.

If φ is produced in the sun or in HB stars, then it could
affect the measured energy loss rate of the star when it
streams out, in addition to affecting the star’s evolution.
Therefore one can obtain a bound on mφ and gφll by
requiring that the amount of energy carried away by the
scalar be less than the observed limits.

In this model where the scalar’s couplings to leptons
are dominant, φ will be mainly produced in stars via its
interaction with electrons. Assuming that the electrons
are nonrelativistic and nondegenerate, which is a good
assumption for the solar and HB stars’ mediums, the
Compton-like scattering e−γ → e−φ dominates over both
Bremsstrahlung e+e− → e+e−φ and electron-positron
annihilation. For mφ � me, we can neglect the recoil
energy of the electron and to a good approximation the
energy loss rate per unit volume is given by [89]:

Q =
ne
π2

∫ ∞
mφ

dω
σ(ω)ω3

eω/T − 1
, (31)

where ω is the energy of the photon and ne is the number
density of the electrons, which in terms of the electron
fraction in the star ye, the mass density of the star ρ, and
the atomic mass unit mu, is given by:

ne =
yeρ

mu
. (32)
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This calculation was done by Grifols & Massó in [90]
with mφ neglected. Here, I will keep the mass of the
scalar but assume it’s less than me, and keep the as-
sumption that the recoil energy of the electron is small.
The cross-section is given by:

σ(e−γ → e−φ) =
e2g2

φll

32π

m2
e

ω2
F (x, y), (33)

where x =
mφ
ω , y = me

ω and F (x, y) is some complicated
function that I relegate to Appendix A. The bound on
the solar (HB) emission rate is [89]

ε̇ ≤ 2(10) erg g−1 s−1. (34)

Given this bound, we can use Eq. 33 to solve Eq. 31
numerically in order to find the excluded region in the
parameter space. Here I set the average temperature
to be 107(108) K for the solar (HB) medium, the average
density to be 102(104) g cm−2 for the solar (HB) medium
and use ye = 0.5 for both. The yellow region in Fig. (9)
shows the excluded part of the parameter space by the
solar constraints, while the dark green region shows the
excluded part by HB stars. As the plot shows, all masses
below ∼ 350 KeV are excluded. However, we must note
that for mφ close to the electron mass, the bound is less
rigorous as our assumption of a small electron’s recoil
energy becomes less valid. However, I checked numeri-
cally that including the recoild energy of the final state
enelctron does not significantly impact the bound. Also,
notice that the HB constraints are much more stringent
than the solar ones in spite of the weaker bound in Eq.
34. This is due to the higher temperature of HB stars
compared with the sun, which yields a larger Boltzmann
factor in Eq. 31.

Of course, this analysis is valid only if φ streams freely
out of the star, i.e. if it does not get trapped inside the
medium of the star. In order to verify the validity of
this assumption, we can calculate the mean free path of
φ and compare it with the radius of the star. The mean
free path is given by:

λ ∼ 1

σne
=
[ e2g2

φll

32πmu
m2
eω

2yeρF (x, y)
]−1

. (35)

Assuming that the average photons energy is given by:

〈ω〉 =
π4

30ζ(3)
T ' 2.701T, (36)

one can easily check that for the entire mass range of
interest, the mean free path is orders of magnitude larger
than the radius of the sun or the typical radius of an HB
star, thereby justifying the free streaming assumption.

A similar argument applies for scalars produced in su-
pernovas. However, it was shown in [40] that for a scalar
produced in the supernova core, the mean free path is
given by:

λmpf ∼ 10 m
( g−1

φll

106 GeV

)2

, (37)

which means that for gφll larger than 10−6 GeV−1, the
scalar gets trapped in the core and never streams out.
Thus, SN1987A does not costrain the favored region and
therefore we ignore it.
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FIG. 9. The exclusion plot of the mφ − gφll parameter space
corresponding to the gφγγ = 10−11 GeV−1 (top) and gφγγ =
10−6 GeV−1 (bottom) benchmark points. The plot shows
the 2σ allowed region for ∆aµ(e) (beige); the excluded region
by the NLO correction to the leptonic Z decay (red), the
excluded region due to the NLO corrections to ee→ ττ (light
green), Orsay (magenta), E137 (orange), LEP mono-γ and
ee → ll + γ searches (brown), solar emission (yellow) and
HB star emission (dark green); and the projected region for
NA64 (dashed). The plots also show the favored points that
correspond to the minimum χ2 in the two scenarios.

G. Discussion

We have shown that the constraints from BaBar, beam
dump experiments, the NLO correction to the Z decay,
LEP mono-γ searches, ee → ττ(γ) searches, and solar
and HB star constraint, exclude a significant part of the
parameter space. Fig. (9) shows that all masses below
∼ 350 KeV are excluded by solar and HB constraints;
beam dump experiments exclude the region above 1 MeV
up to ∼ 30 MeV, while masses above ∼ 10 GeV are in
significant tension with the NLO corrections to the Z de-
cay to ττ and the NLO corrections to ee→ ττ , although
this region is not entirely excluded. This leaves a large
open window between ∼ 30 MeV and ∼ 10 GeV that is
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most favored to be explored.
Part of this region is projected to be explored by the

proposed NA64 experiment, which is projected to cover
the mass range from 1 MeV and up to the di-muon mass.
The first benchmark point corresponding to gφγγ = 10−6

GeV−1 lies in this region. On the other hand, the second
benchmark point lies outside this region but could be
explored by the Belle II experiment [91]. The Belle II
experiment has recently started collecting data and it
is expected that by 2025, it would have reached a total
integrated luminosity of 50 ab−1. This projects it to be
more sensitive than the BaBar experiment, and therefore
might help explore more of the parameter space above the
dimuon threshold which is not covered by NA64 and up
to ∼ 5 GeV. This leaves two windows, one above ∼ 5 and
the other is between ∼ 350 KeV and 1 MeV.

The International Linear Collider (ILC) [92] (if built)
might help explore both regions. For the former, the
ILC’s ultra-precision measurement of the Z production
and subsequent decay can help improve the bounds from
the Z decay by lowering the measured uncertainties,
while for the latter region, the e+e− → h +�ET chan-
nel can help investigate the hypothetical process e+e− →
h+ φ .

A final point to mention is that due to the assump-
tion made in Eq. 4, the dominant coupling will be to
the tau lepton, and therefore collider and beam dump
experiments limits are more stringent. If we assume a
different type of coupling to leptons, say by assuming a
suppressed coupling to the tau compared to the muon,
then the constraints will be alleviated, and more of the
parameter space will open. We will very briefly discuss
one model where this can be achieved in the next section.

IV. A RADION SOLUTION FOR THE g − 2
ANOMALY?

In the Randall-Sundrum (RS) model [93], the radion
is the scalar field that parametrizes the fluctuations of
the extra dimension around its potential minimum. The
radion could pose an interesting possibility for solving
the g − 2 anomaly due to its unique couplings to mat-
ter. More specifically, the radion’s coupling to matter is
highly model-dependent and varies according to the lo-
calization of the matter fields on either of the branes or
in the bulk. The coupling to brane-localized matter is
given by [94]:

φ(x)

ΛUV,IR
TrTµν , (38)

where φ(x) is the 4D radion field, ΛUV,IR is the radion
constant on the UV and IR branes respectively and Tµν
is the stress-energy tensor. Since the UV scale is typi-
cally many orders of magnitude larger than the IR scale,
it is possible to suppress the coupling to the tau lep-
ton compared to the muon by assuming that the former

is localized on the UV brane, while assuming that the
latter is localized on the IR brane. This way, one could
alleviate all of the constraints (except for beam dump ex-
periments) as the couplings will be rescaled by mµ/mτ .

Although the typical mass of the radion is compara-
ble to the Electroweak (EW) scale (∼ 100 GeV), much
lighter masses can be achieved through the Contino-
Pomarol-Rattzzi (CPR) mechanism [95] as was demon-
strated in [96, 97].

Another interesting aspect of a radion solution is that
the radion could couple to nucleons and pions through
quarks and gluons [96], which presents additional exper-
imental probes. Focusing on the coupling to pions, we
can write the effective Lagrangian as:

Lφππ = gφππm
2
πφπ

+π−, (39)

where gφππ is the effective radion coupling to pions with
dimension (mass)−1. If the radion is heavy enough, it
could decay to π+π−:

Γ(φ→ π+π−) =
g2
φππ

16π

m4
π

mφ

(
1− 4m2

π

m2
φ

) 1
2

. (40)

The decay width in Eq. 40 could be small for typical
values of gφππ but could still be measurable. For instance,
the decay width for a 400 MeV radion with gφππ = 0.3
GeV−1 would be ' 1.2 KeV.

For lighter masses, searches for the rare pion decay
π− → µ−ν̄µφ could provide an interesting search option.
If we assume that gφππ dominates over gφll, then the
branching fraction of this hypothetical decay would be
given by:

Br(π → µνφ) ' 1.35× 10−2
( gφππ

GeV−1

)2

%. (41)

For instance, gφππ ∼ 0.03 GeV−1 would yield a branch-
ing fraction comparable to the observed rare decay π+ →
e+e−e+νe.

V. CONCLUSIONS

The g − 2 anomaly remains one of the best ways to
search for physics BSM. In this paper, I investigated a
class of models with a scalar/pseudoscalar that has a
coupling to leptons proportional to the lepton’s mass.

We saw in this paper that for the case of a pseudoscalar
solution, there is no region in the parameter space that
could simultaneously solve both the electron and the
muon anomalies with Yukawa couplings of the form in
Eq. 4. However, if no assumption is made regarding the
form of the Yukawas, it is possible to have a pseudoscalar
solution for both of the anomalies. Nevertheless, this so-
lution is not very attractive since it would require tuning
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the scalar’s coupling to photons to be somewhat large
in order for both of the Yukawa couplings to have the
same sign. Such a large coupling to photons would be
disfavored by cosmological observations.

On the other hand, a scalar can simultaneously pro-
vide a solution for both anomalies while having the re-
quired form of the Yukawa couplings. In such a case,
we demonstrated that such a solution favors smaller cou-
plings to photons . 10−6 GeV−1, and we established the
corresponding favored region in the mφ − gφll parameter
space that corresponds to two representative benchmark
points. We investigated the experimental constraints
from the BaBar experiment, beam dump experiments,
the NLO corrections to the Z decay and to ee → ττ ,
LEP mono-γ and ee → ll + γ searches, and from solar
and HB emission bounds, and we saw that a significant
part of the parameter space is excluded. In particular, we
found only two open windows for mφ between ∼ 350 KeV
and 1 MeV, and between ∼ 30 MeV and ∼ 50 GeV, with
the region above ∼ 10 GeV being in significant tension
with experiment.

The tools used in this paper can be used to constrain
other solutions to the g − 2 anomaly, such as solutions
that adopt the Z ′ or the dark photon to explain it. I
expect that the limits on these solutions would not be
too different from the scalar case for the same range of
masses and couplings, they are nonetheless worthwhile
investigating.

Future experiments, such as NA64, Belle II, and the
ILC can help explore significant regions of the parameter
space, and one hopes that in the near future, enough data
would be collected to shed more light on the remaining
open windows, and thus help explore the viability of this
solution.
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Appendix A: Explicit Expression for F (x, y)

F (x, y) =
2y

(1 + 2y + 2y2)4(1 + 4y4 + 4x2y2)

×

[
(1 + 2y+ 2y2)(1 + 2y+ 2y2 + 4y3)2(1 + 4y4 + 4x2y2)

×log
(1 + 2y2 + 2y

√
1− x2

1 + 2y2 − 2y
√

1− x2

)
−4y

√
1− x2

(
16y8(2x2+9)+

16y7(4x2+7)+16y6(5x2+4)+40y5(2x2+1)+24y4(2x2+1)+

4y3(6x2 + 5) + 4y2(x2 + 3) + 64y10 + 128y9 + 6y+ 1
)]
.

(A1)

Added note: After finalizing this paper, a new results
[98] was published claiming a 2.4σ discrepancy in the
measured electron anomaly:

∆ae = −88± 36× 10−14. (A2)

If this yet uncorroborated result is true, then our re-
sults cannot explain both anomalies simultaneously at
the 2σ level, although the results remain valid at the 3σ
level. This is because the electron anomaly will be neg-
ative at the 2σ level and a novel explanation would be
needed to explain the sign discrepancy between the two
anomalies. In this case, the electron anomaly in this work
would serve more as a constraint on the allowed region
of muon anomaly, and the result in Figure 9 would be
relevant for the muon anomaly only. Either way, a cor-
roborating result is still needed to confirm the value and
the sign of the electron anomaly.
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