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Abstract

This work shows that the formation of a finite number of coalitions in a nonatomic network
congestion game benefits everyone. At the equilibrium of the composite game played by coalitions
and individuals, the average cost to each coalition and the individuals’ common cost are all lower
than in the corresponding nonatomic game (without coalitions). The individuals’ cost is lower
than the average cost to any coalition. Similarly, the average cost to a coalition is lower than
that to any larger coalition. Whenever some members of a coalition become individuals, the
individuals’ payoff is increased. In the case of a unique coalition, both the average cost to the
coalition and the individuals’ cost are decreasing with respect to the size of the coalition. In
a sequence of composite games, if a finite number of coalitions are fixed, while the size of the
remaining coalitions goes to zero, the equilibria of these games converge to the equilibrium of a
composite game played by the same fixed coalitions and the remaining individuals.

Key words: coalition, nonatomic game, atomic splittable game, composite game, network
congestion game, routing game, Wardrop equilibrium, composite equilibrium

1 Introduction

This paper considers the impact of introducing coalitions in network congestion games played by
nonatomic individuals, namely nonatomic routing games. These games belong to a more general
class of noncooperative games played by a continuum of anonymous identical players, each of whom
has a negligible effect on the others.

First, let us cite some historic references on routing games, in particular, on coalitions in such
games.

Beckman, McGuire and Winston [2] first formulated Wardrop equilibrium (Wardrop [13]) in
nonatomic congestion games as an optimal solution of a convex programming problem, and thus
proved its existence under weak conditions on the cost functions.

A coalition of nonatomic individuals of total weight T behaves the same way as an atomic
player who holds a flow of weight T that can be split and sent by different paths. Routing games
with finitely many atomic players holding splittable flow (called atomic splittable games) were first
examined by Haurie and Marcotte [6]. They focused on the asymptotic behavior of Nash equilibria
in such games. By characterizing a Nash equilibrium in an atomic splittable game and a Wardrop
equilibrium in the corresponding nonatomic game by two variational inequalities, they proved that
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the former converges to the latter, when the number of atomic players tends to infinity. This result
will be extended in this paper.

Harker [5] first studied composite games (that he called mixed games), where atomic players
holding splittable flow (or coalitions) and nonatomic individuals play together. He characterized a
composite-type equilibrium by a variational inequality, and thus proved the existence of a solution
under some weak conditions on the cost functions as well as its uniqueness under more stringent
conditions.

Orda, Rom and Shimkin [9] made a detailed study on the uniqueness and other properties of
Nash equilibria in atomic splittable games on two-terminal parallel-link networks. This specific
setting will be adopted in this paper, where their results will be extended. Richman and Shimkin
[11] extended their results to composite congestion games in nearly parallel-link networks.

For the impact of coalitions on the equilibrium costs, Cominetti, Correa and Stier-Moses [3]
showed that, in the atomic splittable case where the atomic players are identical, the social cost at
the equilibrium of the game is bounded by that of the corresponding nonatomic game, under weak
conditions on the cost functions.

Hayrapetyan, Tardos and Wexler [7] proved that the formation of coalitions (that they called col-
lusion) reduces the social cost in a two-terminal parallel-link network. Although stronger conditions
on the cost functions are needed in this paper, our results prove that the formation of coalitions
benefits everyone.

Apart from the consequence of the formation of coalitions on the equilibrium costs, this paper
also studies how this impact varies with the structure of coalitions.

1.1 A Sketch of the model

A continuum of nonatomic individuals are commuters in a two-terminal parallel-arc (directed) net-
work. Their common origin and common destination are the only two vertices, which are connected
by a finite set of parallel arcs. The per-unit traffic cost of an arc depends only on the total weight
of the flow on it. A pure strategy of an individual is an arc by which she goes from the origin to the
destination. Nash equilibria in such nonatomic games are usually called Wardrop equilibria (WE
for short) [13]. At a WE, the arc chosen by an individual costs no more than any other available
arc, hence it has the lowest cost in the network. The individuals have the same cost at a WE.

A composite routing game is played by a finite number of disjoint coalitions formed by some of
the individuals and the remaining individuals. A coalition is specified by its size. Within a coalition,
a coordinator assigns an arc to each member, with the objective of minimizing their total cost. An
equilibrium in this game is called composite equilibrium (CE for short), since it is Nash-type for the
coalitions and Wardrop-type for the individuals. All the individuals have the same cost at a CE,
while the average costs to the coalitions may differ.

1.2 Main results

After recalling the existence and the uniqueness of the CE of a composite game under certain
conditions on the cost functions, five main results are obtained:

1. At the CE, the average social cost, the individuals’ cost and the average cost to each coalition
are lower than the equilibrium cost at the WE of the corresponding nonatomic game.

2. At the CE, the average cost to a coalition is lower than that to any other larger coalition. If
a coalition sends flow on a certain arc, then any other larger coalition sends more on it.
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3. If some members quit a coalition to become individuals, the individuals’ cost is increased at
the corresponding CE.

4. If there is only one coalition, the social cost, the average cost to the coalition, and the indi-
viduals’ cost at the CE are all decreasing with respect to the size of the unique coalition.

5. If, in a sequence of composite games, a finite number of coalitions are fixed, and the maximum
size of the remaining coalitions tends to zero, the sequence of equilibrium of these games
converges to the equilibrium of a game played by the same fixed coalitions and the remaining
individuals.

1.3 Organization of the work

The paper is organized in the following way. Section 2 provides a detailed description of the model
as well as characterizations of the CE in different formulations. The existence and the uniqueness
of the CE will be recalled. Section 3 analyzes some important properties of the CE. Section 4
deals with the impact of the formation of coalitions by comparing the players’ costs at the WE
of the corresponding nonatomic game and those at the CE. Section 5 considers the impact of the
composition of the players on the CE costs: first, how the equilibrium costs vary with the size of a
unique coalition; second, how the individuals’ cost varies when some members of a coalition become
individuals. Section 6 focuses on the asymptotic behavior of CE, by fixing some coalitions while
letting the remaining coalitions vanish. Section 7 discusses some problems for future research.

2 The model and characterization of an equilibrium

2.1 Model and notations

Network and arc costs (R, c). Let the set of identical anonymous nonatomic individuals be
described by the unit real interval I = [ 0, 1], endowed with the Lebesgue measure µ. The players’
common origin is vertex O, and their common destination is vertex D. The finite set of parallel
arcs between O and D is denoted by R, with R = |R| its cardinality. Let c = (cr)r∈R be the
vector of the per-unit arc cost functions: for every arc r, x 7→ cr(x) is a real function defined on a
neighborhood U of [ 0, 1]. The per-unit cost of an arc only depends on the total weight of the flow
on it. The network is characterized by the pair (R, c).

The following assumption is made throughout this paper.

Assumption 1. For every arc r in R, the cost function cr is strictly increasing, convex and con-
tinuously differentiable on U , and nonnegative on [ 0, 1].

O D1

R
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Composite routing game Γ(R, c,T). Suppose that K coalitions are formed in the set of in-
dividuals I, with K ∈ N = {0, 1, 2, · · · }. The family of coalitions is denoted by K = {1, . . . , K}.
Every coalition behaves like an atomic player holding a splittable flow. The remaining individuals
are independent nonatomic players. For a coalition k ∈ K, the measurable set of its members is
denoted by Ik, a subset of I, and its total weight is denoted by T k = µ(Ik). Let I0 denote the set
of individuals so that I0 = [ 0, 1]\ ∪k∈K I

k, and its weight is T 0 = µ(I0) = 1−
∑

k∈K T
k. Without

loss of generality, it is assumed that T 1 ≥ T 2 ≥ · · · ≥ TK . Let us define T = (T 0; T 1, . . . , TK ).
Let Γ(R, c,T) be the composite routing game played by these K coalitions and the remaining
individuals in the network (R, c).

Two particular cases should be mentioned. First, if I0 = [ 0, 1] and K = 0, there is no coalition
so that the game is a nonatomic one, denoted simply by Γ(R, c), and the equilibria there are WE.
Second, if I0 is empty, i.e. T 0 = 0, the game is an atomic splittable one with K atomic players, and
the equilibria there are Nash equilibria (NE for short) in its usual sense; in particular, if K = 1,
i.e, there is a global coalition, the equilibrium is obtained by solving the optimization problem of
searching for the social optimum.

Strategies and flow configurations. In the game Γ(R, c,T), as the individuals are identical
and anonymous, only the total weight sent by each coalition on each arc counts. The strategy profile
of the individuals (resp. the strategy of coalition k) is specified by the flow configuration (flow for
short) x0 (resp. xk) defined by

x0 = (x0
r)r∈R (resp. xk = (xk

r )r∈R),

where x0
r (resp. xk

r ) is the total weight of the individuals (resp. of coalition k) on arc r.
A strategy profile is specified by x = (x0, x1, . . . , xK), a point in R(1+K)×R.
The feasible flow set of the individuals (resp. of coalition k) is a convex compact subset of RR,

defined by

F 0 =
{
x0 ∈ RR | ∀ r ∈ R, x0

r ≥ 0 ;
∑
r∈R

x0
r = T 0},

(
resp. F k =

{
xk ∈ RR | ∀ r ∈ R, xk

r ≥ 0 ;
∑
r∈R

xk
r = T k}).

The feasible flow set F of the game Γ(R, c,T) is a convex compact subset of R(1+K)×R, defined
by F = F 0 × F 1 × · · · × FK .

The aggregate flow x′ induced by x is a vector in RR, defined by x′ = (xr)r∈R, where xr =
x0

r +
∑

k∈K x
k
r is the aggregate weight on arc r.

For coalition k, the vector x−k is a point in F−k =
∏

l∈{0}∪K\{k} F
l, defined by x−k =

(xl)l∈{0}∪K\{k}. For all arc r, define x−k
r = x0

r +
∑

l∈K\{k} x
l
r.

Average costs and marginal costs. The average cost to the individuals, the average cost to
coalition k and the average social cost are respectively defined by

Y 0(x) = 1
T 0

∑
r∈R

x0
rcr(xr), Y k(x) = 1

T k

∑
r∈R

xk
rcr(xr), Y (x) =

∑
r∈R

xrcr(xr).

As the total weight of the players is normalized to 1, the average social cost is just the social cost.
The total cost to coalition k is denoted by uk(x) = T k · Y k(x) =

∑
r∈R x

k
rcr(xr).
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Following Harker [5], the marginal cost function of coalition k is defined by

ĉk(x) = (ĉk
r (x))r∈R, where ĉk

r (x) = cr(xr) + xk
rc
′
r(xr).

Notice that ĉk(x) is the gradient of uk(x) with respect to xk. More precisely,

ĉk(x) = ∇xk uk(xk, x−k) =
( ∂uk

∂xk
r

(
x
))

r∈R
.

2.2 Characterizing equilibria: existence and uniqueness

The following definition of a CE (Harker [5]) consists of two parts: the first for the individuals and
the second for the coalitions.

Definition (Composite equilibrium). A point x∗ = ( x∗0, x∗1, . . . , x∗K ) in F is a CE of the game
Γ(R, c,T) if

∀ r ∈ R, if x∗0r > 0, then r ∈ arg min
s∈R

cs (x∗s) ; (2.1)

∀ k ∈ K, x∗k minimizes uk(xk, x∗−k) on F k. (2.2)

Proposition 2.1 (Characterization of a CE). The following are equivalent.

1. x∗ = ( x∗0, x∗1, . . . , x∗K ) in F is a CE.

2. (marginal cost formulation) x∗ = ( x∗0, x∗1, . . . , x∗K ) in F satisfies

∀ r ∈ R, if x∗0r > 0, then ∀s ∈ R, cr(x∗r) ≤ cs(x∗s); (2.3)
∀ k ∈ K, if x∗kr > 0, then ∀s ∈ R, ĉk

r (x∗r) ≤ ĉk
s(x∗s),

i.e. cr(x∗r) + x∗kr c
′
r(x∗r) ≤ cs(x∗s) + x∗ks c

′
s(x∗s). (2.4)

3. (variational inequality formulation) x∗ = ( x∗0, x∗1, . . . , x∗K ) in F satisfies

〈 c(x∗), x0 − x∗0 〉+
∑
k∈K
〈 ĉk(x∗), xk − x∗k 〉 ≥ 0, ∀ x = ( x0, x1, . . . , xK ) ∈ F. (2.5)

Here, 〈 ·, ·〉 stands for the standard inner product operator on the Euclidean spaces.

Proof. (i) ⇔ (ii): For the individuals, (2.3) is simply a reformulation of (2.1). For the coalitions, in
order to show that (2.2) is equivalent to (2.4), let us first prove that for coalition k, uk(xk, x−k) is
convex in xk for any given x−k in F−k.

Indeed, for any r in R, since cr is convex and strictly increasing,

cr(yk
r + x−k

r ) ≥ cr(xk
r + x−k

r ) + (yk
r − xk

r ) c′r(xk
r + x−k

r )
⇒ yk

r cr(yk
r + x−k

r ) ≥ yk
r cr(xr) + yk

r (yk
r − xk

r ) c′r(xr) ≥ yk
r cr(xr) + xk

r (yk
r − xk

r ) c′r(xr)

= xk
r cr(xr) + (yk

r − xk
r )
[
cr(xr) + xk

r c
′
r(xr)

]
.

⇒
∑
r∈R

yk
r cr(yk

r + x−k
r ) ≥

∑
r∈R

xk
r cr(xr) +

∑
r∈R

(yk
r − xk

r )
[
cr(xr) + xk

r c
′
r(xr)

]
,

5



which implies that

uk(yk, x−k) ≥ uk(xk, x−k) + 〈∇xk uk(xk, x−k), yk − xk 〉, ∀ xk, yk ∈ F k. (2.6)

Thus, x∗k minimizes the convex function uk(xk, x∗−k) on the convex compact set F k if, and only
if, 〈∇xk uk(x∗), xk − x∗k 〉 ≥ 0 for all xk ∈ F k or, equivalently,

〈 ĉk(x∗), xk − x∗k 〉 ≥ 0, ∀ xk ∈ F k. (2.7)

Let us set ĉk = minr∈R ĉ
k
r (x∗). Then,

∑
r∈R( ĉk

r (x∗)− ĉk) (xk
r − x∗kr ) =

∑
r∈R ĉk

r (x∗) (xk
r − x∗kr )−

ĉk∑
r∈R (xk

r − x∗kr ) =
∑

r∈R ĉk
r (x∗) (xk

r − x∗kr ) − ĉk(T k − T k) = 〈 ĉk(x∗), xk − x∗k 〉. Consequently,
(2.7) is equivalent to ∑

r∈R
( ĉk

r (x∗)− ĉk) (xk
r − x∗kr ) ≥ 0. (2.8)

It remains to show that (2.8) is equivalent to (2.4).
(2.4) ⇒ (2.8): According to (2.4),

( ĉk
r (x∗)− ĉk) (xk

r − x∗kr ) =
{

( ĉk
r (x∗)− ĉk)xk

r ≥ 0, if x∗kr = 0,
0, if x∗kr > 0.

Thus,
∑

r∈R( ĉk
r (x∗)− ĉk) (xk

r − x∗kr ) ≥ 0.
(2.8) ⇒ (2.4): Let us define an auxiliary flow xk in F k as follows: xk

r = 0 if ĉk
r (x∗) > ĉk, and

xk
r = T k

m if ĉk
r (x∗) = ĉk. Here m = |{r ∈ R | ĉk

r (x∗) = ĉk}|, the number of arcs whose marginal cost
to coalition k at x∗ are the smallest in the network. Then, for this specific xk, (2.8) implies that∑

r∈R,ĉk
r (x∗)>ĉk( ĉk

r (x∗ )− ĉk) (−x∗kr ) ≥ 0. Consequently, x∗kr = 0 if ĉk
r (x∗) > ĉk, which leads to (2.4).

(ii) ⇔ (iii): By the same argument used above for the equivalence between (2.4) and (2.7), one
can show that (2.3) is equivalent to〈

c(x∗), x0 − x∗0
〉
≥ 0, ∀ x0 ∈ F 0. (2.9)

The variational inequalities (2.7) and (2.9) imply immediately (2.5). For the converse, it is
enough to take an x = ( x0, x1, . . . , xK ) in F such that xl = x∗l for all l in K (resp. xl = x∗l for
all l in {0} ∪ K \ {k}) to get (2.9) (resp. (2.7)).

Thus, one has shown that (2.3) and (2.4) are equivalent to (2.5).

Remark 1. (iii) has been proven for the specific cases of NE and WE as well as for CE: a WE was
characterized as the solution of a variational inequality problem by Smith [12] and Dafermos [4], and
as the solution of a nonlinear complementarity problem by Aashtiani and Magnanti [1]. Variational
inequalities were used to characterize a NE in atomic splittable games by Haurie and Marcotte [6],
and a CE in composite games by Harker [5].

Condition (2.4) shows that the marginal costs (ĉk
r )r∈R play the same role for coalition k as

(cr)r∈R for the individuals: at the CE, all the arcs used by coalition k have the lowest marginal cost
and, a fortiori, the same one. For flow x ∈ F , ĉk

r (x) = cr(xr) + xk
rc
′
r(xr) is a function of only two

variables xk
r and xr. Besides, according to Assumption 1, it is strictly increasing in both of them.

Theorem 2.2 (Existence and uniqueness of CE). In a composite game, a CE exists, and it is
unique.
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Proof. The variational inequality formulation for CE (2.5) is used to prove its existence. Theorem
3.1 in Kinderlehrer and Stampacchia [8, p.12] states that the variational inequality problem (2.5)
admits a solution if F is a convex compact set, and if ĉk and c are continuous. According to
Assumption 1, these conditions are satisfied.

For the uniqueness of CE, see Richman and Shimkin [11, Theorem 4.1].

Remark 2. For the nonatomic routing game Γ(R, c), a WE exists if the cost functions cr’s are con-
tinuous. If they are furthermore strictly increasing on U , then the WE is unique. See Patriksson [10,
Theorems 2.4, 2.5] for a proof.

3 A detailed study on CE

Let us consider a composite game Γ(R, c,T). This section focuses on the properties of its unique
CE, denoted by x here and in Section 4.

First, some notations are recalled or given.
R0(x) = {r ∈ R |x0

r > 0} ⊂ R is the support of x0.
Rk(x) = {r ∈ R |xk

r > 0} ⊂ R is the support of xk, for coalition k.
c0(x) is the lowest arc cost in the network.
ĉk(x) is the marginal cost to coalition k of every arc used by it.
Y 0(x) is the common cost to all the individuals. Y 0(x) = c0(x).
Y k(x) is the average cost to coalition k.
Y k(x) = minr∈Rk cr(xr) is the lowest arc cost of the arcs used by coalition k.
Y (x) is the social cost.
All the statements made in this section and Section 4 are to be understood at the CE x. And x

will often be omitted if it does not cause confusion.

The following facts follow immediately from (2.3) and (2.4). They will be repeatedly referred to
in this work without further explanation.
Facts.

cr(xr) = c0, if r ∈ R0; cr(xr) ≥ c0, if r ∈ R \ R0.

∀ k ∈ K, ĉk
r (x) = ĉk, if r ∈ Rk; ĉk

r (x) ≥ ĉk, if r ∈ R \ Rk.

The following lemma states that an arc used by a coalition costs less than any arc not used by
it.

Lemma 3.1. For any coalition k, for any arc r in Rk and any arc s in R \Rk, cr(xr) < cs(xs).

Proof. Since xk
r > 0 and xk

s = 0, cr(xr) < cr(xr) + xk
rc
′
r(xr) = ĉk ≤ cs(xs).

The next lemma shows that an arc used by individuals is also used by all the coalitions. Besides,
the average cost to any coalition is not lower than the individuals’ cost.

Lemma 3.2. For any coalition k,

1. R0 ⊂ Rk, i.e. for all r ∈ R, if x0
r > 0, then xk

r > 0.

2. c0 < ĉk.

7



3. Y 0 = Y k ≤ Y k.

Proof. (i) Suppose that x0
r > 0. If xk

r = 0, there is another arc s such that xk
s > 0. Then, cr(xr) ≥

ĉk(x) = cs(xs) + xk
sc
′
s(xs) > cs(xs). However, x0

r > 0, hence cr(xr) ≤ cs(xs), a contradiction.
(ii) Take r in R0. By (i), xk

r > 0. Thus, ĉk = cr(xr) + xk
rc
′(xr) > cr(xr) = c0.

(iii) The individuals take the arcs with the lowest cost, hence Y 0 ≤ Y k ≤ Y k. And (i) implies
that Y 0 = Y k.

The next lemma states that an arc used by a coalition is also used by any larger coalition, and
the larger one sends more flow on it.

Lemma 3.3. Let two coalitions k and l be such that T k < T l. Then the following are true.

1. Rk ⊂ Rl, i.e. for all r ∈ R, if xk
r > 0, then xl

r > 0.

2. ĉk < ĉl.

3. For any arc r, xk
r ≤ xl

r, and the inequality is strict if xk
r > 0.

4. Y k ≤ Y l, and the equality holds if, and only if, Y l = Y k = Y 0.

If T k = T l, all the inequalities or inclusions above become equalities.

Proof. (i) Suppose that T k < T l. If Rk 6⊂ Rl, there is some r such that xk
r > 0 but xl

r = 0. Hence,
ĉk = cr(xr) + xk

rc
′
r(xr) > cr(xr) ≥ ĉl. In particular, ĉk > ĉl.

For all s in R\Rk, cs(xs) ≥ ĉk > ĉl, which implies that xl
s = 0. In consequence, R\Rk ⊂ R\Rl

or, equivalently, Rl ⊂ Rk.
For all r in Rl and, a fortiori, in Rk, ĉk = cr(xr) + xk

rc
′
r(xr) and ĉl = cr(xr) + xl

rc
′
r(xr). Hence,

xk
r − xl

r = (ĉk − ĉl)/c′r(xr) > 0, so that xk
r > xl

r. As a result, T l =
∑

r∈Rl xl
r <

∑
r∈Rl xk

r ≤ T k, a
contradiction.

Therefore, Rk ⊂ Rl.
Suppose that T k = T l. The above proof is still valid. Thus, Rk ⊂ Rl and, by symmetry,

Rl ⊂ Rk. This leads to Rk = Rl.
(ii) and (iii) Suppose that T k < T l. By (i), Rk ⊂ Rl. There are two cases.
Case 1. Rk = Rl. Given r in Rk = Rl, ĉk = cr(xr)+xk

rc
′
r(xr) and ĉl = cr(xr)+xl

rc
′
r(xr). It fol-

lows that xl
r−xk

r = (ĉl− ĉk)/c′r(xr). Thus, 0 < T l−T k =
∑

r∈Rk(xl
r−xk

r ) = (ĉl− ĉk)
∑

r∈Rk 1/c′r(xr)
and, consequently, ĉl > ĉk.

Case 2. Rk ⊂ Rl but Rk 6= Rl. Take s in Rl \ Rk. Then, ĉl = cs(xs) + xl
sc
′
s(xs) > cs(xs) ≥ ĉk.

In both cases, ĉl > ĉk. For all r in Rk, xl
r − xk

r = (ĉl − ĉk)/c′r(xr) > 0; in particular, xk
r < xl

r.
And for all r in R \Rk, 0 = xk

r ≤ xl
r.

Suppose that T k = T l. By (i), Rk = Rl. On the one hand, the same argument as for Case 1
leads to ĉl = ĉk and xl

r = xk
r for all r in Rk = Rl. On the other hand, xl

r = xk
r = 0 for all r in

R \Rk.
(iv) Suppose that T k < T l. According to (i), Rk ⊂ Rl.
Set Ỹ l =

∑
r∈Rk xl

rcr(xr)/
∑

r∈Rk xl
r, the average cost to coalition l on Rk. By Lemma 3.1, the

arcs in Rk cost strictly less than those in R \ Rk. One deduces that Ỹ l = Y l if Rk is equal to Rl,
and Ỹ l < Y l if Rk is a proper subset of Rl.
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Now, let us show that Y k ≤ Ỹ l.

Ỹ l =
∑

r∈Rk xl
rcr(xr)∑

r∈Rk xl
r

=
∑

r∈Rk xk
rcr(xr) +

∑
r∈Rk(xl

r − xk
r )cr(xr)∑

r∈Rk xk
r +

∑
r∈Rk(xl

r − xk
r )

= Y kT k +
∑

r∈Rk(xl
r − xk

r )cr(xr)
T k +

∑
r∈Rk(xl

r − xk
r ) .

It follows from (iii) that, for all r in Rk, xl
r − xk

r > 0. The relation Y k ≤ Ỹ l is thus equivalent
to the inequality

Y k ≤
∑

r∈Rk(xl
r − xk

r )cr(xr)∑
r∈Rk(xl

r − xk
r ) . (3.1)

For r in Rk, xl
r − xk

r = (ĉl − ĉk)/c′r(xr) and cr(xr) = ĉk − xk
rc
′
r(xr). Inequality (3.1) can thus be

written as ∑
r∈Rk xk

rcr(xr)∑
r∈Rk xk

r

≤
∑

r∈Rk cr(xr)(ĉl − ĉk)/c′r(xr)∑
r∈Rk(ĉl − ĉk)/c′r(xr) =

∑
r∈Rk cr(xr)/c′r(xr)∑

r∈Rk 1/c′r(xr)

⇔
∑

r∈Rk

xk
rcr(xr)

∑
r∈Rk

1
c′r(xr) ≤

∑
r∈Rk

xk
r

∑
r∈Rk

cr(xr)
c′r(xr)

⇔
∑

r∈Rk

xk
r

(
ĉk − xk

rc
′
r(xr)

) ∑
r∈Rk

1
c′r(xr) ≤

∑
r∈Rk

xk
r

∑
r∈Rk

ĉk − xk
rc
′
r(xr)

c′r(xr)

⇔
∑

r∈Rk

(
xk

r

)2
c′r(xr)

∑
r∈Rk

1
c′r(xr) ≥

( ∑
r∈Rk

xk
r

)2
. (3.2)

Inequality (3.2) follows from Cauchy-Schwarz inequality. Furthermore, the equality holds (or,
equivalently, Y k = Ỹ l) if, and only if, xk

rc
′
r(xr) is constant for all r in Rk. When this is the case,

cr(xr) = ĉk−xk
rc
′
r(xr) is also a constant for all r in Rk. According to Lemma 3.2 (iii), this constant

must be equal to c0.
The relations Y k(x) ≤ Ỹ l(x) ≤ Y l(x) is now established. Suppose, moreover, that Y k(x) =

Y l(x). On the one hand, Ỹ l(x) = Y l(x), implying that Rk = Rl. On the other hand, Y k(x) =
Ỹ l(x), implying that every arc in Rk costs c0.

Suppose that T k = T l. The result follows directly from (iii).

Remark 3. (i) and (iii) of Lemma 3.3 were also proven by Orda, Rom and Shimkin [9] with another
formulation for atomic splittable games. Lemma 1 in [9] claims that, at the NE, if xk

r < xl
r for some

arc r, then xk
s ≤ xl

s for all arc s, and the inequality is strict if xk
s > 0.

The following corollary of Lemma 3.3 shows that the behavior of a coalition at the CE is specified
by its weight.

Corollary 3.4. Two coalitions send the same weight on every arc if, and only if, they have the
same weight. In this case, they have the same average cost.

4 Comparison between CE and WE

The previous section was contributed to the basic properties of the CE x of the game Γ(R, c,T).
This section will compare it with the WE w = (wr)r∈R of the corresponding nonatomic game
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Γ(R, c). The equilibrium cost at w is denoted by W ∈ R. One says that x induces w if x′ = w, i.e.
xr = wr for all r ∈ R.

Following Hayrapetyan, Tardos and Wexler [7], let R− = {r ∈ R |xr < wr}, R+ = {r ∈ R |xr >
wr} and RJ = {r ∈ R |xr = wr} be, respectively, the set of underloaded arcs, the set of overloaded
arcs and the set of justly-loaded arcs.

Lemma 4.1. If x does not induce w, then the following are true.

1. For all s ∈ R− and for all r ∈ R+, cs(xs) < W < cr(xr).

2. R0 ⊂ R−, i.e. for all r ∈ R, if x0
r > 0, then xr < wr.

3. R+ ⊂ R1, i.e. for all r ∈ R, if xr > wr, then x1
r > 0.

Proof. (i) As x′ 6= w, both R− and R+ are nonempty. Take s in R− and r in R+, then ws > xs ≥ 0
and wr < xr. In particular, ws > 0, which implies that s is used at the WE. Then, cs(xs) <
cs(ws) = W ≤ cr(wr) < cr(xr).

(ii) The individuals take the arcs of the lowest cost at x. According to (i), these arcs must be in
R−, hence R0 ⊂ R−.

(iii) For all r in R+, since xr > wr ≥ 0, r is used at x. According to Lemma 3.2 and Lemma 3.3,
it is used by the largest coalition, coalition 1. Thus, R+ ⊂ R1.

The following theorem compares the equilibrium costs at x with the equilibrium cost at w.

Theorem 4.2. If x does not induce w, then Y 0(x) < W and Y k(x) < W for each coalition k.
Consequently, Y (x) < W .

Proof. For the individuals, for all r ∈ R0, cr(xr) = Y 0(x). Lemma 4.1(ii) implies that r is in R−,
and Lemma 4.1(i) shows that cr(xr) < W .

For the coalitions, it is enough to show that Y 1(x) < W for the largest coalition, coalition 1.
Once this is proven, the remaining results follow from Lemma 3.3.

Let us define an auxiliary flow z in F , such that it induces w and satisfies the following conditions.
z1

r > x1
r , zk

r ≥ xk
r , z0

r = x0
r , k ∈ K \ {1}, r ∈ R−,

z1
r < x1

r , zk
r ≤ xk

r , z0
r = x0

r , k ∈ K \ {1}, r ∈ R+,

zk
r = zk

r , k = 0 or k ∈ K, r ∈ RJ .

For example, one can define, for all k ∈ K and r ∈ R+, zk
r = xk

r − dk
r , where dk

r = (xr −
wr)xk

r/
∑

l∈K x
l
r, while for all r ∈ R−, zk

r = xk
r +dk

r , where dk
r = (wr−xr)

∑
t∈R+ d

k
t /
∑

s∈R−(ws−xs).
The above conditions are satisfied due to Lemma 4.1(iii).

Let us define another auxiliary flow y in F as follows. For all r ∈ R,

yk
r =

{
zk

r , if k 6= 1,
x1

r , if k = 1.

In other words, at y, the individuals and all coalitions, except coalition 1, behave like at w, while
coalition 1 behaves like at x. Let us show that u1(x) ≤ u1(y) < u1(z).

Some preliminary results are needed.
For all s ∈ R− and for all r ∈ R+,
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i) ys ≥ xs, because ys − xs =
∑
K\{1} z

k
s − xk

s ≥ 0.
ii) xr ≥ yr, because xr − yr =

∑
K\{1} x

k
r − zk

r ≥ 0.
iii) By Lemma 4.1(iii), coalition 1 takes arc r. Thus,

cr(xr) + x1
rc
′
r(xr) = ĉ1(x) ≤ cs(xs) + x1

sc
′
s(xs). (4.1)

Moreover, due to Assumption 1, for all 0 < x < xr and y > 0,
cr(xr − x) + (x1

r − x) c′r(xr − x) < ĉ1(x) < cs(xs + y) + (x1
s + y) c′s(xs + y). (4.2)

Finally, cs(xs) < cr(xr) by Lemma 4.1(i). Then, it follows from (4.1) that x1
rc
′
r(xr) < x1

sc
′
s(xs).

Let B be a constant such that maxt∈R+{x1
t c
′
t(xt)} ≤ B ≤ mint∈R−{x1

t c
′
t(xt)}. Then, by Assump-

tion 1, for all x and y such that 0 ≤ x < xr and y > xs,
x1

r c
′
r(x) ≤ B ≤ x1

s c
′
s(y). (4.3)

Now, let us show that u1(x) ≤ u1(y) < u1(z).
u1(y)− u1(x) =

∑
r∈R

y1
rcr(yr)−

∑
r∈R

x1
rcr(xr) =

∑
r∈R

x1
rcr(yr)−

∑
r∈R

x1
rcr(xr)

=
∑

s∈R−

[
x1

scs(ys)− x1
scs(xs)

]
−
∑

r∈R+

[
x1

rcr(xr)− x1
rcr(yr)

]
=

∑
s∈R−

∫ ys

xs

x1
s c
′
s(x) dx−

∑
r∈R+

∫ xr

yr

x1
r c
′
r(x) dx

≥
∑

s∈R−
(ys − xs)B −

∑
r∈R+

(xr − yr)B =
∑
r∈R

(yr − xr)B = 0.

The inequality above is due to (4.3) and the fact that ys ≥ xs for all s in R− and xr ≥ yr for all r
in R+.
u1(z)− u1(y) =

∑
r∈R

z1
rcr(wr)−

∑
r∈R

y1
rcr(yr) =

∑
r∈R

z1
rcr(wr)−

∑
r∈R

x1
rcr(wr − z1

r + x1
r)

=
∑

s∈R−

[
z1

scs(ws)− x1
scs(ws − z1

s + x1
s)
]
−
∑

r∈R+

[
x1

rcr(wr − z1
r + x1

r)− z1
rcr(wr)

]
=

∑
s∈R−

∫ z1
s

x1
s

∂

∂x

[
xcs(ws − z1

s + x)
]
dx−

∑
r∈R+

∫ x1
r

z1
r

∂

∂x

[
xcr(wr − z1

r + x)
]
dx

=
∑

s∈R−

∫ z1
s

x1
s

[
cs(ws − z1

s + x) + xc′s(ws − z1
s + x)

]
dx

−
∑

r∈R+

∫ x1
r

z1
r

[
cr(wr − z1

r + x) + xc′r(wr − z1
r + x)

]
dx

≥
∑

s∈R−

∫ z1
s

x1
s

[
cs(xs − x1

s + x) + xc′s(xs − x1
s + x)

]
dx (4.4)

−
∑

r∈R+

∫ x1
r

z1
r

[
cr(xr − x1

r + x) + xc′r(xr − x1
r + x)

]
dx

>
∑

s∈R−
(z1

s − x1
s) ĉ1(x)−

∑
r∈R+

(x1
r − z1

r ) ĉ1(x) (4.5)

=
∑
r∈R

(z1
r − x1

r) ĉ1(x) = (T 1 − T 1) ĉ1(x) = 0.
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Inequality (4.4) is due to the following facts which follow immediately from the definition of z. For
s in R−, z1

s > x1
s and ws − z1

s ≥ xs − x1
s, while for r in R+, x1

r > z1
r and xr − x1

r ≥ wr − z1
r .

Inequality (4.5) is due to (4.2).
Thus, one has proved that u1(x) < u1(z) or, equivalently, Y 1(x) < Y 1(z). Besides, since z

induces w, every arc used at z costsW . In consequence, Y 1(z) = W , which completes the proof.

Remark 4. Cominetti, Correa and Stier-Moses [3, Corollary 4.1] proved that, if the cost functions
are non-decreasing, convex and differentiable, and the atomic splittable players are identical, then
the social cost at any NE in an atomic splittable game is lower than that at the corresponding
WE. Hayrapetyan, Tardos and Wexler [7, Theorem 2.3] proved that, in a two-terminal parallel-arc
network, if the cost functions are non-decreasing, convex and differentiable, then the social cost at
any NE in an atomic splittable game is lower than that at the corresponding WE. In this work,
stronger convexity conditions on the cost functions allow to prove that not only the social average
cost, but also the average cost to any coalition and the individuals’ cost are lower at the CE than
at the WE.
Remark 5. Cominetti, Correa and Stier-Moses [3, §2.1] provided an example where two groups of
individuals have different origin/destination pairs. They showed that, when one of the two groups
forms a coalition, both the social cost and the average cost to this coalition are increased. This
implies that further studies are needed for more general cases where the network is not two-terminal
parallel-arc type.

5 Impact of the composition of the population on the CE costs

This section focuses on the relation between the costs at the CE and the composition of the set
of the players, i.e. its partition into coalitions and individuals. In the first part, one considers
a unique coalition of weight T ∈ [ 0, 1], and studies the variation of the coalition’s cost and the
remaining individuals’ cost with respect to T . In the second part, for a general composition of the
set of the players, one shows that, whenever a coalition decreases, i.e. some of its members become
individuals, the individuals’ cost is increased.

5.1 CE costs as functions of the size of the unique coalition

Suppose that a unique coalition of weight T ∈ [0, 1] is formed. Every horizontal line in Figure 1
represents a composition of the set of the players: the unique coalition is presented by the plain part
on the left, and the individuals by the dashed part on the right. From bottom to top, the unique
coalition decreases. The top (dashed) line stands for the WE w, the bottom (plain) line stands
for the social optimum, and any horizontal line between them stands for the CE of a one-coalition
composite game.

Lemma 5.1. There exists a number T̃ in [ 0, 1] such that the CE in Γ(R, c, (1− T ; T )) induces w
if, and only if, T ≤ T̃ .

Proof. Let Ra = {r ∈ R |wr > 0} be the set of used arcs at w, and Ri = R\Ra = {r ∈ R |wr = 0}
the set of unused arcs, which may be empty. Set A =

∑
r∈Ra

1
c′r(wr) . Then, the following constant

T̃ = min
{

min
r∈Ra

wrc
′
r(wr)A, min

r∈Ri

(cr(0)−W )A
}
, (5.1)

is the threshold. This can be proven in two cases.
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Figure 1: Composition of the players

Case 1. For all r ∈ Ri, cr(0) > W .
In this case, T̃ > 0. Let us show that the CE induces w if, and only if, T ≤ T̃ .
On the one hand, if T ≤ T̃ , the following flow x is the CE.x1

r = T
Ac′r(wr) , x0

r = wr − x1
r , r ∈ Ra;

x1
r = x0

r = 0, r ∈ Ri.

Indeed, x is well-defined because of the definition of T̃ , and
∑

r∈R x
1
r = T . Next, as xr = wr for

all r, the individuals do take the arcs of the lowest cost. Finally, it follows from the definition of
T̃ that, for all r ∈ Ri, (cr(0) − W )A ≥ T̃ ≥ T . It is not difficult to see that, for all r ∈ Ra,
cr(xr) + x1

rc
′
r(wr) = W + T

A and, for all r ∈ Ri, cr(0) ≥W + T
A . The equilibrium condition (2.2) is

thus satisfied for the coalition. One deduces that x is the CE. Besides, it induces a WE, because
xr = wr for all r.

On the other hand, if the CE x induces w, i.e. xr = wr for all r, then for all r ∈ Ri, xr = wr = 0,
which implies that there exists an arc s ∈ Ra such that x1

s > 0. However, for all r ∈ Ra such that
x1

r = 0, one has W = cr(wr) = cr(xr) ≥ ĉ1(x) = cs(xs) + x1
sc
′
s(xs) > cs(xs) = cs(ws) = W , a

contradiction. Therefore, for all r ∈ Ra, x1
r > 0 and cr(xr) + x1

rc
′
r(xr) = ĉ1(x). In consequence,

x1
r = ĉ1(x)−cr(xr)

c′r(xr) = ĉ1(x)−W
c′r(wr) . The constraint x1

r ≤ wr implies that ĉ1−W < wrc
′
r(wr). Consequently,

T =
∑

r∈Ra
x1

r =
∑

r∈Ra

ĉ1−W
c′r(wr) = (ĉ1 −W )A < wrc

′
r(wr), for all r ∈ Ra.

Besides, for all r ∈ Ri, ĉ
1 ≤ cr(0), which implies that T = (ĉ1 −W )A ≤ (cr(0) −W )A. Thus,

T ≤ T̃ is proven.
Case 2. There exists some t ∈ Ri such that ct(0) = W .
In this case, T̃ = 0. Let us show that the CE does not induce a WE as long as T > 0. Otherwise,

suppose that for some T > 0, the CE x induces a WE. By the same reasoning as in Case 1, there
exists an arc s ∈ Ra such that x1

s > 0. Then, ct(0) = W = cs(ws) < cs(ws) + x1
sc
′
s(ws) = ĉ1.

However, xt = wt = 0, which implies that ct(0) ≥ ĉ1, a contradiction.

Example 1. There are two parallel arcs r1 and r2, whose cost functions are, respectively, c1(x) =
x+10 and c2(x) = 10x+1. A computation shows that the threshold is T̃ = 1

10 . If less than one tenth
of the players join the coalition, the coalition changes actually nothing in the game equilibrium.
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Theorem 5.2. Let T̃ be defined by (5.1). The individuals’ cost Y 0(T ), the average cost to the unique
coalition Y 1(T ), and the social cost Y (T ) in Γ(R, c, (1− T ; T )) have the following properties.

1. For T ∈ [ 0, T̃ ], Y 0(T ) = Y 1(T ) = Y (T ) = W .

2. For T ∈ ( T̃ , 1 ], Y 0(T ) < Y 1(T ) < W , Y (T ) < W . In particular, Y 1(1) < Y 0(0) = W .

3. Y 0(T ), Y 1(T ) and Y (T ) are all strictly decreasing with respect to T on [ T̃ , 1 ].

Proof. First, notice that Y 1(T ) is not defined for T = 0, and that Y 0(T ) is not defined for T = 1.
However, as the cost functions satisfy Assumptions 1, one can extend Y 1(T ) to T = 0 and Y 0(T )
to T = 1 without difficulty.

(i) See Lemma 5.1.
(ii) According to Lemma 5.1, when T̃ < T ≤ 1, the CE does not induce w. Therefore, according

to Lemma 3.2(iii) and Theorem 4.2, Y 0(T ) ≤ Y 1(T ) < W . It remains to show that Y 0(T ) < Y 1(T ).
Suppose that Y 0(T ) = Y 1(T ). Then, Y 0(T ) = Y 1(T ) = Y 1(T ) by Lemma 3.2, where Y 1(T ) is

the lowest cost of the arcs used by the coalition. This means that every arc used by the coalition
has the lowest cost Y 0(T ). Therefore, the CE does induce w, a contradiction.

(iii) Suppose that T̃ < S < T ≤ 1. Let x = (x0, x1) and y = (y0, y1) be, respectively, the CE
of the game Γ(R, c, (1 − T ; T )) and that of the game Γ(R, c, (1 − S; S)). The other notations are
as listed at the beginning of Section 3.

LetR− be the set of underloaded or justly-loaded arcs, andR+ = R\R− be the set of overloaded
arcs. In other words,

R− = {r ∈ R | yr ≤ xr}, R+ = {r ∈ R | yr > xr}.

If R+ = ∅, then x′ = y′, i.e. xr = yr for all r ∈ R. Let us prove that this is impossible.
Define R[ = {r ∈ R | cr(xr) = c0(x)} and R] = {r ∈ R |xr > 0, cr(xr) > c0(x)}. Then, for

all r ∈ R], x0
r = 0. As T > S > T̃ , according to (ii), x and y do not induce w. Therefore, R] is

nonempty.
For all r ∈ R[, cr(yr) = cr(xr) = c0(x) while, for all r ∈ R], cr(yr) = cr(xr) > c0(x). Hence,

c0(x) is the minimal arc cost at y. One deduces that c0(y) = c0(x) and, for all r ∈ R], y0
r = 0, y1

r =
yr = xr.

On the one hand, ĉ1(x) and ĉ1(y) are both equal to cr(xr) + xrc
′
r(xr) for all r ∈ R]. On the

other hand, for all r ∈ R[, as ĉ1(x) = cr(xr) + x1
rc
′
r(xr) and ĉ1(y) = cr(xr) + y1

rc
′
r(xr), it follows

from ĉ1(x) = ĉ1(y) that x1
r = y1

r . Therefore, T =
∑

r∈R[ x1
r +

∑
r∈R] xr =

∑
r∈R[ y1

r +
∑

r∈R] yr = S,
a contradiction. Hence, R+ 6= ∅, and there exists some r ∈ R− such that yr < xr.

Now, we will show that Y 0(T ) < Y 0(S), Y 1(T ) < Y 1(S) and Y (T ) < Y (S) in eight steps.
(a) Let us prove that there exists some s ∈ R+ such that y0

s > 0.
If for all s ∈ R+, y0

s = 0, then y1
s = ys > xs ≥ x1

s and, consequently, ĉ1(y) = cs(ys) + y1
sc
′(ys) >

cr(xs) + x1
sc
′(xs) = ĉ1(x). Moreover,

∑
s∈R+ y

1
s >

∑
s∈R+ x

1
s. But

∑
r∈R y

1
r = S < T =

∑
r∈R x

1
r .

Therefore,
∑

t∈R− y
1
t <

∑
t∈R− x

1
t . In particular, there exists some r ∈ R− such that y1

r < x1
r . Since

yr ≤ xr, ĉ1(y) ≤ cr(yr) + y1
rc
′(yr) < cr(xr) + x1

rc
′(xr) = ĉ1(x), a contradiction.

(b) Let us show that c0(y) > c0(x).
Choose the previous s ∈ R+ with y0

s > 0, and recall that ys > xs. Then, Y 0(S) = c0(y) =
cs(ys) > cs(xs) ≥ c0(x) = Y 0(T ). One deduces that Y 0(T ) is strictly decreasing in T on [ T̃ , 1 ].

(c) For all r ∈ R−, x0
r = 0, because yr ≤ xr and, consequently, cr(xr) ≥ cr(yr) ≥ c0(y) > c0(x).

(d) Let us show that ĉ1(y) < ĉ1(x).
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Recall that there exists r ∈ R− such that yr < xr. Then, y1
r ≤ yr < xr, and x1

r = xr according
to (c). Therefore, ĉ1(y) ≤ cr(yr) + y1

rc
′(yr) < cr(xr) + x1

rc
′(xr) = ĉ1(x).

(e) One can show that, for all s ∈ R+, y1
s < x1

s and, consequently, y0
s > 0, x1

s > 0.
Indeed, for all s ∈ R+, ys > xs ≥ 0, hence y1

s > 0. If there exists some s ∈ R+ such that y1
s ≥ x1

s,
then ĉ1(y) = cs(ys) + y1

sc
′(ys) > cs(xs) + x1

sc
′(xs) ≥ ĉ1(x), i.e. ĉ1(y) > ĉ1(x). This contradicts (d).

It follows from the fact that ys > xs that y0
s > x0

s ≥ 0. Besides, x1
s > y1

s ≥ 0.
(f) For all r ∈ R− and s ∈ R+, cr(xr) > cs(xs), because cr(xr) ≥ cr(yr) ≥ c0(y) = cs(ys) >

cs(xs).
(g) Let us define an auxiliary flow z in the game Γ(R, c, (1− T ; T )) by{

z1
s = ys − x0

s, z
0
s = x0

s, s ∈ R+;
z1

r = yr, z
0
r = 0, r ∈ R−.

Clearly, z′ = y′, i.e. for all r ∈ R, zr = yr, and

x1
s < z1

s ≤ ys, z0
s = x0

s, s ∈ R+,

z1
r = zr ≤ xr = x1

r , z0
r = x0

r , r ∈ R−.

Now, we are ready to prove that the total cost to the coalition of weight T at z is higher than
that at x, i.e. u1

T (ỹ) > u1
T (x) (the subscript T is added to stress the weight of the coalition in

question). Indeed, since for all s ∈ R+ and for all r ∈ R− such that xr > 0,

ĉ1(x) = cs(xs) + x1
sc
′(xs) = cr(x1

r) + x1
rc
′(x1

r), (5.2)

one deduces that, for all s ∈ R+, r ∈ R− such that xr > 0, and for all x > x1
s and y such that

0 ≤ y ≤ x1
r ,

cs(x+ x0
s) + x c′s(x+ x0

s) > ĉ1(x) ≥ cr(y) + y c′r(y). (5.3)

Then

u1
T (z)− u1

T (x) =
∑

s∈R+

[
z1

scs(zs)− x1
scs(xs)

]
−
∑

r∈R−

[
x1

rcr(x1
r)− z1

rcr(z1
r )
]

=
∑

s∈R+

∫ z1
s

x1
s

∂

∂x

[
x cs(x+ x0

s)
]
dx−

∑
r∈R−

∫ x1
r

z1
r

∂

∂x

[
x cr(x)

]
dx

=
∑

s∈R+

∫ z1
s

x1
s

[
cs(x+ x0

s) + x c′s(x+ x0
s)
]
dx−

∑
r∈R−

∫ x1
r

z1
r

[
cr(x) + x c′r(x)

]
dx

>
∑

s∈R+

(z1
s − x1

s) ĉ1(x)−
∑

r∈R−
(x1

r − z1
r ) ĉ1(x) =

∑
r∈R

(z1
r − x1

r) ĉ1(x) = (T − T ) ĉ1(x) = 0

The inequality above is due to (5.3).
Next, notice the following three facts.
1) For all r ∈ R, zr = yr by the definition of z,
2) For all s ∈ R+, cs(ys) = c0(y) by (e), and
3) For all r ∈ R−, either z1

r = yr = y1
r or z1

r = yr > y1
r . In the second case, y0

r > 0, which implies
that cr(yr) = c0(y).
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These facts induce the relation between the total cost to the coalition of weight T at z and the
total cost to the coalition of weight S at y.

u1
T (z) =

∑
s∈R+

z1
s cs(zs) +

∑
r∈R−

z1
r cr(zr)

=
∑

s∈R+

[
y1

s + (z1
s − y1

s)
]
cs(zs) +

∑
r∈R−

[
y1

r + (z1
r − y1

r )
]
cr(zr)

=
∑

s∈R+

y1
s cs(ys) +

∑
r∈R−

y1
r cr(yr) +

∑
s∈R+

(z1
s − y1

s) cs(ys) +
∑

r∈R−
(z1

r − y1
r ) cr(yr)

= u1
S(y) +

∑
r∈R

(z1
r − y1

r ) c0(y)

= u1
S(y) + (T − S) c0(y) = S · Y 1(S) + (T − S) c0(y).

Recall that u1
T (z) > u1

T (x). Then,

T · Y 1(T ) = u1
T (x) < u1

T (z) = S · Y 1(S) + (T − S) c0(y). (5.4)

This implies that Y 1(S) > Y 1(T ). Because, otherwise, according to (ii), Y 0(S) = c0(y) < Y 1(S).
Then,

S · Y 1(S) + (T − S) c0(y) < T · Y 1(S) ≤ T · Y 1(T ),

which contradicts (5.4).
Therefore, Y 1(S) > Y 1(T ). One deduces that Y 1(T ) is strictly decreasing in T on [ T̃ , 1 ].
(h) Finally, let us prove that Y (S) > Y (T ), i.e. the social cost at y is higher than at x. In other

words, Y (T ) is strictly decreasing in T on [ T̃ , 1 ].
Indeed, (5.2) implies that, for all s ∈ R+ and r ∈ R− such that xr > 0,

cs(xs) + xsc
′(xs) ≥ ĉ1(x) ≥ cr(xr) + xrc

′(xr).

Then, for all s ∈ R+ and r ∈ R− such that xr > 0, for all u > xs and v such that 0 ≤ v ≤ xr,

cs(u) + u c′s(u) > ĉ1(x) ≥ cr(v) + v c′r(v). (5.5)

Thus,

Y (S)− Y (T ) =
∑

s∈R+

[
yscs(ys)− xscs(xs)

]
−
∑

r∈R−

[
xrcr(xr)− yrcr(yr)

]
=
∑

s∈R+

∫ ys

xs

∂

∂u
u cs(u) du−

∑
r∈R−

∫ xr

yr

∂

∂v
v cr(v) dv

=
∫ ys

xs

[
cs(u) + u c′s(u)

]
du−

∑
r∈R−

∫ xr

yr

[
cr(v) + v c′r(v)

]
dv

>
∑

s∈R+

(ys − xs) ĉ1(x)−
∑

r∈R−
(xr − yr) ĉ1(x) = 0,

where the inequality is due to (5.5).
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5.2 Individuals’ cost and the composition of the players

The previous results can be partially extended to the multiple coalitions case. Consider the following
two composite games.

Γ0 = Γ(R, c,T), T =
(
T 0;T 1, . . . , TK),

Γ1 = Γ(R, c,T′), T′ =
(
T 0 + δT ;T 1, . . . , T l−1, T l − δT, T l+1, . . . , TK),

with K ≥ 1, 1 ≤ l ≤ K and 0 < δT < T l. Profile T′ can be seen as obtained by T after the
withdrawal from coalition l of a group of members of total weight δT who become individuals. Let
x and y be, respectively, the CE of the game Γ0 and that of the game Γ1. The other notations are
as before.

The following theorem shows that the individuals’ cost is (weakly) higher at the CE in the game
Γ1 than in the game Γ0.

Theorem 5.3. c0(x) ≤ c0(y).

Proof. Since the case K = 1 is proven in Theorem 5.2, only the case K ≥ 2 is treated here.
First, define two sets of arcs R− = {r ∈ R | yr ≤ xr} and R+ = R \R− = {r ∈ R | yr > xr}.
If R+ = ∅, then x′ = y′ and c0(x) = c0(y).
If R+ 6= ∅, let us first prove that, for all k ∈ K \ {l},

∑
r∈R− y

k
r ≥

∑
r∈R− x

k
r .

Suppose that
∑

r∈R− y
k
r ≤

∑
r∈R− x

k
r and, consequently,

∑
s∈R+ y

k
s ≥

∑
s∈R+ x

k
s . Therefore,

there is an arc r ∈ R− and an arc s ∈ R+ such that yk
r ≤ xk

r and yk
s ≥ xk

s .
For all such r and s, if xk

r > 0 and yk
s > 0, then ĉk(y) ≤ cr(yr) + yk

r c
′
r(yr) ≤ cr(xr) + xk

rc
′
r(xr) =

ĉk(x) ≤ cs(xs) + xk
sc
′
s(xs) < cs(ys) + yk

s c
′
s(ys) = ĉk(y), a contradiction. In consequence, either

yk
r = xk

r = 0 or yk
s = xk

s = 0. For this to be true, there can be two cases.
Case 1. For all s ∈ R+ such that yk

s ≥ xk
s , yk

s = xk
s = 0. Then, there is no s ∈ R+ such

that yk
s < xk

s because, otherwise,
∑

s∈R+ y
k
s <

∑
s∈R+ x

k
s , which contradicts the hypothesis that∑

r∈R− y
k
r ≤

∑
r∈R− x

k
r . Thus, for all s ∈ R+, yk

s = xk
s = 0 and, consequently,

∑
r∈R− y

k
r =∑

r∈R− x
k
r = T k.

Case 2. There exists some s ∈ R+ such that yk
s ≥ xk

s and yk
s > 0. Then, for all r ∈ R− such

that yk
r ≤ xk

r , yk
r = xk

r = 0. Therefore, there is no r ∈ R− such that yk
r > xk

r because, otherwise,∑
r∈R− y

k
r >

∑
r∈R− x

k
r , which again contradicts the hypothesis. Thus, for all r ∈ R−, yk

r = xk
r = 0

and, in consequence,
∑

r∈R− y
k
r =

∑
r∈R− x

k
r = 0.

Hence,
∑

r∈R− y
k
r ≥

∑
r∈R− x

k
r and, consequently,

∑
s∈R+ y

k
s ≤

∑
s∈R+ x

k
s . Besides, the equalities

hold if, and only if,
∑

r∈R− y
k
r =

∑
r∈R− x

k
r = T k or 0.

Since
∑

s∈R+ ys >
∑

s∈R+ xs and
∑

s∈R+ y
k
s ≤

∑
s∈R+ x

k
s for all k ∈ K \ {l}, one deduces that∑

s∈R+

(
y0

s + yl
s

)
>
∑

s∈R+

(
x0

s + xl
s

)
≥ 0.

Let us show that there exists some t ∈ R+ such that y0
t > 0. Indeed, if for all s ∈ R+, y0

s = 0,
then

∑
s∈R+ y

l
s >

∑
s∈R+(xl

s + x0
s) ≥

∑
s∈R+ x

l
s. Besides,

∑
r∈R y

l
r = T − δT < T =

∑
r∈R x

l
r,

hence
∑

t∈R− y
l
t <

∑
t∈R− x

l
t. In particular, there exists r ∈ R− such that yl

r < xl
r and s ∈ R+

such that yl
s > xl

s. Then, ĉl(y) ≤ cr(yr) + yl
rc
′(yr) < cr(xr) + xl

rc
′(xr) = ĉl(x), and ĉl(y) =

cs(ys) + yl
sc
′(ys) > cs(xs) + xl

sc
′(xs) ≥ ĉl(x), a contradiction. Thus, there exists t ∈ R+ such that

y0
t > 0 and, consequently, c0(y) = ct(yt) > ct(xt) ≥ c0(x).

However, the average cost to the coalition of weight T l (called coalition l) in Γ0 is not necessarily
lower than that to the coalition of weight T l − δT (called coalition l′) in Γ1, and the former is not

17



necessarily lower than the average cost to the group composed of coalition l′ and a set of individuals
of total weight δT in Γ1 (the group corresponding to coalition l in Γ0). In other words, the other two
results in Theorem 5.2 (iii) cannot be extended to the multiple coalitions case. Here is an example.
Example 2. Composite game Γ takes place in the same network as in Example 1, where the cost
functions of arcs r1 and r2 are, respectively, c1(x) = x + 10 and c2(x) = 10x + 1. Coalition 1 has
weight T with T ∈ (0, 1

2 ]; coalition 2 has weight 1
2 ; the total weight of the individuals is 1

2 − T .
Then, the average cost to coalition 1 at the CE is 91

11 for T ∈ (0, 1
5 ] and 1

99 [919 − 4(25T + 4
T )] for

T ∈ [1
5 ,

1
2 ], which is constant in T on (0, 1

5 ], strictly increasing on [1
5 ,

2
5 ] and strictly decreasing on

[2
5 ,

1
2 ]. Therefore, it is not always decreasing in the size of the coalition. The average cost to the

group of total weight 1
2 composed of coalition 1 and all the individuals is 91

11 for T ∈ (0, 1
5 ] and

1
99 [400(T − 11

40)2 + 816.75] for T ∈ [1
5 ,

1
2 ], which is constant in T on (0, 1

5 ], strictly decreasing in
(1

5 ,
11
40 ] and strictly increasing on [11

40 ,
1
2 ]. In consequence, it is not always decreasing in T .

6 Asymptotic behavior of composite games

This subsection studies the asymptotic behavior of composite games, when some coalitions are fixed
and the size of the others vanish.

Definition (Admissible sequence of composite games and its limit game). A sequence of composite
games {Γn}n∈N∗ , with Γn = Γ(R, c,Tn) and Tn = (T 0

n ; T 1
n , T

2
n , . . . , T

Kn
n ), is called admissible if

{Tn}n∈N∗ satisfies the following conditions.

1. There is a constant L ∈ N, and L strictly positive constants {T 1, T 2, . . . , TL} such that∑L
k=1 T

k < 1. For all n, Kn > L, and T i
n = T i for i = 1, . . . , L.

2. δn = maxL<k≤Kn T
k
n . And δn → 0 as n→∞.

The L-coalition composite game Γ0 = Γ(R, c, (T̃ 0; T 1, T 2, . . . , TL)) is called the limit game of
the sequence {Γn}n∈N∗ , where T̃ 0 = 1−

∑L
k=1 T

k.

Remark 6. Condition (i) means that there are L coalitions fixed all along the sequence {Γn}n∈N∗ ,
and the total weight of the remaining coalitions and the individuals is fixed to T̃ 0. Condition (ii)
means that the other coalitions are vanishing along the sequence and, necessarily, Kn tends to
infinity.
Notations As before, in the game Γn, x∗n = (x∗kn )Kn

k=0 is the CE, where x∗0n is the flow of the
individuals, and x∗kn the flow of coalition k. Besides, Y 0(x∗n) is the individuals’ cost and Y k(x∗n) the
average cost to coalition k at CE.

The aggregate flows are defined as x∗n′ = (y∗n, x∗1n , x∗2n , . . . , x∗Ln ), where y∗n = (y∗n,r)r∈R, y∗n,r =
x∗0n,r +

∑Kn
k=L+1 x

∗k
n,r. Thus, y∗n is the aggregate flow of the individuals in addition to all the coalitions

different from the L fixed ones. Notice that this is different from the definition of aggregate flow in
the previous sections.
Fn = {x ∈ RR×(1+Kn) |x ≥ 0; ∀ k = 0 or k ∈ K,

∑
r∈R x

k
r = T k

n} is the feasible flow set.
F0 = {x ∈ RR×(1+L) |x ≥ 0; ∀ k ∈ K,

∑
r∈R x

k
r = T k;

∑
r∈R x

0
r = T̃ 0} is the feasible aggregate flow

set. Notice that it is common to all the games in {Γn}n∈N∗ .
In Γ0, x∗ = (y∗, x∗1, . . . , x∗L) is the CE, where y∗ = x∗0 is the flow of the individuals, and x∗k

the flow of coalition k. Y 0(x∗) is the individuals’ cost and Y k(x∗) the average cost to coalition k
at CE. The feasible flow set is F0.
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The following theorem states that the CE of Γn converges to the CE of Γ0. Hence, it justifies
the name ‘limit game’.

Theorem 6.1 (Convergence of admissible composite games). Suppose that {Γn}n∈N∗ is a sequence
of admissible games satisfying Assumption 1. Let Γ0 be its limit game. Then, x∗n′ → x∗ as n→∞.
In particular, Y k(x∗n)→ Y k(x∗) for k = 1, . . . , L, and Y k(x∗n)→ Y 0(x∗) for k = 0 and k > L.

Proof. Let us begin by writing the variational inequality condition for the CE’s x∗n and x∗.
By Proposition 2.1, x∗n is the CE of Γn if, and only if,

〈
c(x∗n), x0

n − x∗0n

〉
+

Kn∑
k=1

〈
ĉk(x∗n), xk

n − x∗kn

〉
≥ 0, ∀ xn ∈ Fn, (6.1)

and x∗ is the CE of Γ0 if, and only if,

〈 c(x∗), y− y∗ 〉+
L∑

k=1

〈
ĉk(x∗), xk − x∗k

〉
≥ 0, ∀ x = (y, x1, . . . , xL) ∈ F0. (6.2)

Due to Assumption 1, one can find a constant M such that M > supr∈R, x∈[0, 1]{|c′r(x)|}. Set
εn = 2δnMR so that εn tends to 0. Let us show that, for all n, the aggregate flow x∗n′ in F0 satisfies

〈
c(x∗n

′), y− y∗n
〉

+
L∑

k=1

〈
ĉk(x∗n

′), xk − x∗kn

〉
≥ −εn, ∀ x = (y, x1, . . . , xL) ∈ F0. (6.3)

Indeed, for any x = (y, x1, . . . , xL) ∈ F0, one can find xn = (xk
n)Kn

k=0 ∈ Fn such that{
xk

n = xk, k = 1, . . . , L;
x0

n,r +
∑Kn

k=L+1 x
k
n,r = yn,r, ∀ r ∈ R.

(6.4)

For example, take x0
n,r = yn,rT

0/T̃ 0, xk
n,r = yn,rT

k/T̃ 0 for k = L+ 1, . . . , Kn. Then, by (6.1),

〈
c(x∗n), x0

n − x∗0n

〉
+

Kn∑
k=1

〈
ĉk(x∗n), xk

n − x∗kn

〉
≥ 0

⇒
〈

c(x∗n), x0
n − x∗0n

〉
+

L∑
k=1

〈
ĉk(x∗n), xk

n − x∗kn

〉
+

Kn∑
k=L+1

〈
c(x∗n) + x∗kn ċ(x∗n), xk

n − x∗kn

〉
≥ 0

⇒
〈

c(x∗n), x0
n +

Kn∑
k=L+1

xk
n − x∗0n −

Kn∑
k=L+1

x∗kn

〉
+

L∑
k=1

〈
ĉk(x∗n), xk

n − x∗kn

〉
≥ −

Kn∑
k=L+1

〈
x∗kn ċ(x∗n), xk

n − x∗kn

〉
≥ −

Kn∑
k=L+1

〈
δnM, xk

n − x∗kn

〉
= −

〈
δnM,

Kn∑
k=L+1

xk
n −

Kn∑
k=L+1

x∗kn

〉
≥ −2δnMR.

By (6.4), this is just 〈 c(x∗n′), y− y∗n 〉+
∑L

k=1
〈

ĉk(x∗n′), xk − x∗kn

〉
≥ −εn.

As F0 is a compact subset of RR×(1+L), {x∗n′}n∈N∗ in F0 admits accumulation points. For
any convergent subsequence of {x∗n′}n∈N∗ (which is still denoted by {x∗n′}n∈N∗ for simplicity), let
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x̃ = (ỹ, x̃1, . . . , x̃L) be its accumulation point. Let n tend to infinity in (6.3). Then, by the
continuity of the marginal cost functions and the fact that εn tends to 0,

〈
c(x̃L), y− ỹ

〉
+

L∑
k=1

〈
ĉk(x̃), xk − x̃k

〉
≥ 0, ∀ x = ( y, x1, . . . , xL ) ∈ F0.

According to (6.2), this implies that x̃ = x∗.
Therefore, x∗n′ converges to x∗ as n tends to infinity. This induces immediately that Y k(x∗n)

tends to Y k(x∗) for k = 1, . . . , L, and Y k(x∗n) tends to Y 0(x∗) for k = 0 and k > L.

Remark 7. When T 0 = 0 and L = 0, Theorem 6.1 shows that the NE of an atomic splittable
game with only coalitions and no individuals converges to the WE of the corresponding nonatomic
game, when the coalitions split into smaller and smaller ones. This result is obtained by Haurie
and Marcotte [6], but only for the case where the coalitions split into equal-size ones. Theorem 6.1
is an extension of their result in three aspects. First, the coalitions do not have equal size. Second,
the games are composite. Finally, some coalitions are fixed at a nonnegligible weight.

7 Some problems for future research

This section presents some directions for further studies.

7.1 Backward induction

Consider a two-stage extensive form game with an underlying network (R, c) and a set of nonatomic
individuals [ 0, 1]. At the first stage, the individuals are given K+1 choices {s0, s1, . . . , sK}, where
K is a fixed number in N∗ = N \ {0}. The players who choose s0 are called individuals, and those
who choose sk (1 ≤ k ≤ K) are considered as members of coalition k. If there are L coalitions having
nonnegligible weights (0 ≤ L ≤ K) then, at the second stage, the individuals and L coalitions play
the composite routing game Γ(R, c,T). By Lemma 3.2, the players who choose s0 at the first stage
have the lowest cost at the end. Therefore, by a backward induction, the only subgame perfect
equilibrium of this two-stage game consists in having all the players choosing s0 at the first stage.

7.2 Composition-decision games

In a two-player composition-decision game, each player is atomic with a splittable flow. The weight
of player I is T , while that of player II is 1 − T . Each player chooses a pair of representatives
consisting of a coalition and a group of individuals, whose total weight is her own weight. The
cost to each player is defined as the average equilibrium cost to her representatives in a composite
routing game played by all the representatives. Consider two simple models where the game reduces
to a one-player game.

Model 1: One atomic player faces individuals. Player I has two strategies. Strategy 1 con-
sists in choosing a coalition of weight T , while strategy 2 consists in choosing a group of individuals
of weight T . Player II always chooses a group of individuals of weight 1− T .

If player I chooses strategy 1, the costs to the two players are, respectively, the equilibrium cost
to the unique coalition and that to the individuals in the composite game Γ(R, c, (1 − T ;T )), i.e.
Y 1(T ) for player I, Y 0(T ) for player II. If player I chooses strategy 2, both the costs to the two
players are W , the equilibrium cost in the nonatomic game Γ(R, c).
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Theorem 5.2(ii) shows that, if 0 < T ≤ T̃ , then the two strategies make no difference to player
I. If T̃ < T < 1, player I’s only best reply is strategy 1, and her cost is Y 1(T ), which is lower than
W . Strategy 1 dominates strategy 2.

Model 2: One group faces a coalition. Player I has the same two strategies as in Model 1.
Player II always chooses a coalition of weight 1− T .

If player I chooses strategy 1, the costs to the two players are the equilibrium costs in the two-
coalition game Γ(R, c, (0;T, 1 − T )). If player I chooses strategy 2, the costs to the two players
are, respectively, the equilibrium cost to the individuals and that to the unique coalition in the
composite game Γ(R, c, (T ; 1− T )), i.e. Y 0(1− T ) for player I, Y 1(1− T ) for player II.

Does strategy 1 still dominate strategy 2? The answer is negative. In the second part of
Example 2, strategy 2 is a better response than strategy 1.

Acknowledgments

I am most grateful to Professor Sylvain Sorin for all his advice, help and patience throughout
the writing of this work. I thank the editors and the two anonymous referees of Mathematics of
Operations Research for their helpful suggestions and remarks.

References

[1] H. Z. Aashtiani and T. L. Magnanti, Equilibria on a congested transportation network, SIAM
J. Algebraic Discrete Methods 2 (1981), 213–226.

[2] M. Beckmann, C. B. McGuire, and C. B. Winston, Studies in the Economics of Transportation,
Yale University Press, New Haven, 1956.

[3] R. Cominetti, J. Correa, and N. Stier-Moses, The impact of oligopolistic competition in net-
works, Oper. Res. 57 (2009), 1421–1437.

[4] S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci. 14 (1980),
42–54.

[5] P. T. Harker, Multiple equilibrium behaviors on networks, Transportation Sci. 22 (1988), 39–46.

[6] A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria,
Networks 15 (1985), 295–308.

[7] A. Hayrapetyan, É. Tardos, and T. Wexler, The effect of collusion in congestion games, Annual
ACM STOC’06 38 (2006), 89–98

[8] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their
Applications, Academic Press, New York, 1980.

[9] A. Orda, R. Rom, and N. Shimkin, Competitive routing in multiuser communication networks,
IEEE/ACM Transactions on Networking 1 (1993), 510–521.

[10] M. Patriksson, The Traffic Assignment Problem: Models and Methods, VSP, Utrecht, The
Netherlands, 1994.

21



[11] O. Richman and N. Shimkin, Topological uniqueness of the Nash equilibrium for selfish routing
with atomic users, Math. Oper. Res. 32 (2007), 215–232.

[12] M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transport. Res. 13(B)
(1979), 295–304.

[13] G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc.
Inst. Civ. Eng. II(1) (1952), 325–378.

22


	1 Introduction
	1.1 A Sketch of the model
	1.2 Main results
	1.3 Organization of the work

	2 The model and characterization of an equilibrium
	2.1 Model and notations
	2.2 Characterizing equilibria: existence and uniqueness

	3 A detailed study on CE
	4 Comparison between CE and WE
	5 Impact of the composition of the population on the CE costs
	5.1 CE costs as functions of the size of the unique coalition
	5.2 Individuals' cost and the composition of the players

	6 Asymptotic behavior of composite games
	7 Some problems for future research
	7.1 Backward induction
	7.2 Composition-decision games


