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Strategic decentralization in binary choice
composite congestion games∗

Cheng Wan†
Department of Economics; Nuffield College, University of Oxford

New Road, OX1 1NF, Oxford, United Kingdom

Abstract

This paper studies strategic decentralization in binary choice composite network con-
gestion games. A player decentralizes if she lets some autonomous agents to decide re-
spectively how to send different parts of her stock from the origin to the destination. This
paper shows that, with convex, strictly increasing and differentiable arc cost functions,
an atomic splittable player always has an optimal unilateral decentralization strategy.
Besides, unilateral decentralization gives her the same advantage as being the leader in
a Stackelberg congestion game. Finally, unilateral decentralization of an atomic player
has a negative impact on the social cost and on the costs of the other players at the
equilibrium of the congestion game.

Keywords routing, decentralization, Stackelberg game, composite congestion game

1 Introduction

This paper introduces strategic decentralization into composite network congestion games,
and studies its properties in a specific subclass of such games. A player decentralizes her
decision-making if she lets each of her deputies decide independently how to send the part of
her stock deputed to him from its origin to its destination. A unilateral decentralization can
be beneficial or deleterious for the decentralizing player herself, and it also has an influence
on the other players’ utility and the social welfare as well. This paper provides a detailed
analysis of these problems in the case where all the players have the same binary choice.
In a network congestion game, i.e. routing game, each player has a certain quantity of stock
and a finite set of choices. A choice is a directed, acyclic path from the player’s origin to her
destination. A player with a stock of infinitesimal weight is nonatomic. She has to attribute
her stock to only one choice. A player with a stock of strictly positive weight is atomic. She
(more rigorously, her stock) is splittable if she can divide it into several parts and affect each
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part to a different choice. She can also be non splittable, which is the case originally studied
in the seminal work of Rosenthal 1973 [26] on congestion games. This paper considers only
the splittable case so that the word splittable is often omitted. A path is composed of a series
of arcs, and the cost of a path is the sum of the costs of its component arcs. The cost entailed
to a user of an arc depends on the total weight of the stocks on it as well as on the quantity
of that user’s stock on it. A player wishes to minimize her cost, which is the total cost to
her stock. A game with both nonatomic and atomic players is called a composite game. An
equilibrium in a composite congestion game is called a composite equilibrium (CE for short)
(Harker 1988 [11], Boulogne et al. 2002 [7], Yang and Zhang 2008 [34], Wan 2012 [31]). An
equilibrium does not necessarily minimize the social cost, i.e. the total cost to all the players.
In a composite congestion game, an atomic player of weight m decentralizes if she is replaced
by a composite set of players called her deputies (i.e. n atomic players of weight α1, . . . , αn

and a set of nonatomic players of total weight α0, such that ∑n
i=0 α

i = m) who have the same
choice set as her, and she collects the sum of her deputies’ costs as her own.
Here is an example of advantageous decentralization. Two atomic players both have a stock
of weight 1

2 to send from O to D. Two parallel arcs link O to D, with per-unit cost function
c1(t) = t + 10 and c2(t) = 10t + 1 respectively. At the equilibrium, both players send weight
2
11 on the first arc and 7

22 on the second one. The cost is 4.14 to both players and the social
cost is 8.28. If player 1 deputes her stock to two atomic deputies both of weight 1

4 , then at
the equilibrium of the resulting congestion game, both deputies send weight 1

44 on the first
arc, while player 2 sends weight 1

4 there. The cost is 2.06 to both deputies of player 1. Hence
player 1 gains by decentralizing because her current cost 4.12 is lower than 4.14. However,
player 2’s cost is now 4.59 and the social cost is 8.71, both higher than before.
Assuming that the arc cost functions are convex, strictly increasing and continuously differen-
tiable in congestion, this paper obtains the following properties of unilateral decentralization
in composite congestion games with binary choice or, equivalently, in a two-terminal two-
parallel-arc composite routing game:
(i) For the atomic player who decentralizes unilaterally, all her decentralization strategies
are weakly dominated by single-atomic ones which depute her stock to at most one atomic
deputies in addition to nonatomic ones (Theorem 2.1). A fortiori, she possesses an optimal
decentralization strategy (Theorem 3.1), which depends on her relative size among all the
players.
(ii) Unilateral decentralization gives an atomic player the same advantage as being the leader
in a Stackelberg congestion game (Theorem 3.2).
(iii) After the unilateral decentralization of an atomic player, the social cost at the equilibrium
increases or does not change, and the cost to each of her opponents increases or does not change
(Theorem 4.1).
Although the above results are obtained in the specific setting of binary choice games, the goal
of this paper is to introduce the notion of strategic decentralization into composite congestion
games, to point out its significance, and to initiate a systematic study of its properties.
The paper is organized as follows. Section 2 presents the model, defines decentralization,
and shows the special role of single-atomic decentralization strategies. Section 3 proves the
existence of an optimal unilateral decentralization strategy, and shows that unilateral decen-



tralization gives an atomic player the same advantage as being the leader in a Stackelberg
congestion game. Section 4 focuses on the impact of unilateral decentralization on the social
cost and the other players’ cost. Section 5 concludes. The proofs and auxiliary results are
regrouped in Section 6.

Related literature

The “inverse” concept of decentralization – coalition formation or collusion between players –
has been extensively studied. Hayrapetyan et al. 2006 [13] first define the price of collusion
(PoC) of a parallel network to be the ratio between the worst equilibrium social cost after
the nonatomic players form disjoint coalitions and the worst equilibrium social cost without
coalitions. Bhaskar et al. 2010 [4] extended this study to series-parallel networks. (A series-
parallel network can be constructed by merging in series or in parallel several graphs of parallel
arcs.) This index is closely related to another important notion: the price of anarchy (PoA),
which is introduced by Koutsoupias and Papadimitriou 1999 [17] (and [22]) as the ratio between
the worst equilibrium social cost and the minimal social cost in nonatomic games. Cominetti
et al. 2009 [9] derives the first bounds on the PoA with atomic players. For a specific
network structure, one can deduce the PoC by the PoA with atomic players and the PoA with
nonatomic players. Further results on the bound of the PoA with atomic players are obtained
in Harks 2011 [12], Roughgarden and Schoppmann 2011 [28] and Bhaskar et al. 2010 [4].
Roughgarden and Tardos 2002 [29] and Correa et al. 2008 [10] provide fundamental results
on the bound of the PoA with nonatomic players. PoA in nonatomic games with asymmetric
costs or elastic demands are studied in [23] and [8], among others.
Beyond the coalitions formed by nonatomic players, Cominetti et al. 2009 [9], Altman et
al. 2011 [1], and Huang 2013 [14] consider those formed by atomic players. Their results
can be interpreted as the impact of certain kinds of collusion and hence, the “inverse" of it,
decentralization, on the social cost. Wan 2012 [31] studies the impact of coalition formation
on the nonatomic players’ cost outside the coalition in parallel-link networks. In terms of the
impact of coalition formation on the cost of the coalition members themselves, Cominetti et
al. 2009 [9], Altman et al. 2011 [1] and Wan 2012 [31] provide examples in different con-
texts of disadvantageous coalition formation for the members themselves. These are actually
examples of advantageous decentralization. Finally, for works on strategic decentralization,
one can cite Sorin and Wan 2013 [30] in integer-splitting congestion games, and Baye et al.
1996 [2] in industrial organization (where they call the strategic decentralization of a firm
“divisionalization”).
Finally, let us point out that the above-mentioned coalition formation is studied by the ap-
proach of comparative statics in a noncooperative game setting. It is different from the
cooperative routing games studied in Quant et al. 2006 [24] and Blocq and Orda [5].
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Figure 1: A binary choice congestion game.

2 Model and preliminary results

2.1 Binary choice composite congestion games

Nodes O and D are linked by two parallel arcs. The per-unit cost function of arc r is cr, for
r = 1, 2. When the total weight of stocks on arc r is t, the cost to each unit of them is cr(t).
Both c1 and c2 are defined on Ω, a neighbourhood of [0, M̄ ], with M̄ > 0. They satisfy the
following assumption throughout this paper.

Assumption 1. Both c1 and c2 are strictly increasing, convex and continuously differentiable
on Ω, and non-negative on [0, M̄ ].

There is a continuum of nonatomic players of total weight T 0, and N atomic players of strictly
positive weight T 1, T 2, . . . , TN respectively, where N ∈ N. If there are no nonatomic (resp.
no atomic) players, then T 0 = 0 (resp. N = 0). Let I = {0, 1, . . . , N}. The player profile is
denoted by T = (T i)i∈I , and their total weight is M = ∑

i∈I T
i, with M < M̄ .

The profile of the nonatomic players’ strategies is described by their flow x0 = (x0
1, x

0
2), where

x0
r is the total weight of the nonatomic players on arc r. The strategy of atomic player i

is specified by her flow xi = (xi1, xi2), where xir is the weight that she sends by arc r. Call
x = (xi)i∈I the (system) flow. Denote respectively by X i = {xi ∈ R2

+ |xi1 + xi2 = T i} the
space of feasible flows for the nonatomic players or an atomic player i, and by X = ∏

i∈I X
i

the space of feasible system flows. Let ξ = (ξr)r∈{1,2} be a vector function defined on X by
ξr(x) = ∑

i∈I x
i
r, i.e. the aggregate weight on arc r. For i ∈ I, let x−i = (xj)j∈I\{i}.

With flow x, the cost to a nonatomic player taking arc r is cr(ξr(x)). The cost to atomic player i
is ui(x) = xi1c1(ξ1(x))+xi2c2(ξ2(x)). The social cost is CS(x) = ξ1(x)c1(ξ1(x))+ξ2(x)c2(ξ2(x)).

Let this composite congestion game be denoted by Γ(T ). Flow x ∈ X is a composite equilibrium
(CE) of Γ(T ) if (Harker 1988 [11]):
(a) for r ∈ {1, 2}, if x0

r > 0, then cr(ξr(x)) ≤ cs(ξs(x)) for all s ∈ {1, 2}; and
(b) for i ∈ I\{0}, xi minimizes ui( ·, x−i) on X i.

Like all composite congestion games taking place in a two-terminal parallel-arc networks, game
Γ(T ) always admits a unique CE. The reader is referred to [25] or [31] for a proof. For the
uniqueness of equilibria in congestion games with different types of players and in more general
networks, see, for example, [18, 20, 25] and [3]. Let the nonatomic players’ common cost at
the unique CE x be denoted by u0(x).



According to Assumption 1, there exists at most one number ξ̂ ∈ [0,M ] such that c1(ξ̂) =
c2(M − ξ̂), and ξ exists if and only if c1(M) ≥ c2(0) and c2(M) ≥ c1(0).
There are four possible cases concerning the relations between c1(0), c1(M), c2(0), c2(M) and
ξ̂. Two of them are listed in the following assumption and studied in this paper.

Assumption 2. One of the following two conditions holds:
(i) c1(M) < c2(0).
(ii) c1(M) ≥ c2(0), c2(M) ≥ c1(0), and

ξ̂ c′1(ξ̂) ≥ (M − ξ̂) c′2(M − ξ̂). (2.1)

The other two cases are symmetric to them: (iii) c2(M) < c1(0); (iv) c1(M) ≥ c2(0), c2(M) ≥
c1(0) and ξ̂ c′1(ξ̂) ≤ (M− ξ̂) c′2(M− ξ̂). One can prove that cases (i) and (ii) correspond to the
situation where arc 1 is less costly than arc 2 at the CE x of any composite congestion game
taking place in this network with the total weight of the players being M (cf. Lemma 6.1),
whereas cases (iii) and (iv) correspond to the inverse.

2.2 Decentralization strategies

In composite congestion game Γ(T ), an atomic player l of weight T l decentralizes if she is
replaced by a finite number n ∈ N of atomic players of weight α1, α2, . . . , αn (in a non-
increasing order) and a continuum of nonatomic players of total weight α0 such that ∑n

i=1α
i+

α0 =T l. These nonatomic players of total weight α0 and the n atomic players are called her
deputies. There can be only atomic or only nonatomic deputies.
A (decentralization) strategy of atomic player l is a profile α=(α0, α1, . . . , αn) of her deputies.
Atomic player l’s strategy space is denoted by S l = ⋃+∞

n=0 S l,n, where S l,n is the set of strategies
designating n atomic deputies:

S l,n={α=(α0, α1, . . . , αn)∈Rn+1
+ |α1≥· · ·≥αn>0;

n∑
i=0
αi=T l}.

There are some specific classes of strategies worth noticing.
• α is the nonatomic strategy, denoted by α, if α0 = T l or, equivalently, n = 0. It is the
unique element in S l,0.
• α is the trivial strategy, denoted by ᾱ, if n = 1 and α1 = T l. When playing this strategy,
atomic player l does not decentralize.
• α is a single-atomic strategy (SA strategy for short), if α = α, or n = 1 and α1 ∈ (0, T l].
The set of SA strategies is S l,0 ∪ S l,1. An SA strategy is determined, and from now on also
denoted, by the weight of the unique atomic deputy (if there is one) and 0 if there is none. The
space of SA strategies is thus isometric to the closed interval SAl := [0, T l]. The nonatomic
strategy and the trivial strategy are both SA.



2.3 Unilateral decentralization and SA strategies

This paper focuses on unilateral decentralization. Suppose that atomic player N decentralizes
unilaterally. Let T−N = {T j}N−1

j=0 be the profile of atomic player N ’s opponents.
After player N decentralizes according to strategy α ∈ SN , the profile of the players in the net-
work is denoted by (α, T−N). Rigorously, the player profile is (α0+T 0, α1, . . . , αn, T 1, . . . , TN−1).
Instead of playing a congestion game against her opponents T−N by herself, atomic player N
let her deputies do it, and autonomously, i.e. without any cooperation between them. This
congestion game Γ(α, T−N) is hence induced by N ’s decentralization strategy α. Denote its
unique CE by zα = ((xi(zα))ni=0, (yj(zα))N−1

j=0 ), with xi(zα) = (xi1(zα), xi2(zα)) and yj(zα) =
(yj1(zα), yj2(zα)). Atomic deputy of weight αi sends weight xir(zα) on arc r, and nonatomic
deputies of total weight x0

r(zα) among α0 choose arc r. Let xr(zα) = ∑n
i=0 x

i
r be the total

weight of atomic player N ’s stock on arc r, whereas yr(zα) = ∑N−1
j=0 yjr be the aggregate weight

of her opponents’ stock there. Still denote the aggregate weight on arc r by ξr(zα).
Assume that the CE zα is always attained in congestion game Γ(α, T−N). Player N ’s cost for
playing α is defined as the total cost to her deputies at zα:

UN(α, T−N) = x1(zα) c1(ξ1(zα)) + x2(zα) c2(ξ2(zα)). (2.2)

Two decentralization strategies α and α̃ in SN are equivalent with respect to the opponents’
profile T−N if they yield the same cost to atomic player N :

UN(α, T−N) = UN(α̃, T−N).

In this paper, the equivalency between two decentralization strategies of N is always with
respect to T−N , hence it is no longer specified.
SA strategies play a special role among all the decentralization strategies.

Theorem 2.1. For any strategy α ∈ SN , there is an SA strategy s that is equivalent to α.

Proof. Lemmas 6.4–6.7 give the subset of SA strategies equivalent to α.

3 Optimal decentralization

3.1 Optimal decentralization strategy

This section investigates in the existence of an optimal decentralization strategy α of atomic
player N , i.e. the one minimizing UN(α, T−N). Note that the space of decentralization
strategies of N , SN = ⋃+∞

n=0 SN,n, is the union of a countably infinite number of simplexes.
Hence, the existence of an optimal strategy should not be taken for granted.
According to Theorem 2.1, if N has an optimal decentralization strategy, there must be an
equivalent SA strategy of her. Therefore, instead of studying the existence of an optimal
strategy in SN , one need only focus on the space of SA strategies, SAN = [0, TN ], which is a



compact set in R. An optimal strategy thus exists if player N ’s cost is continuous in her SA
strategy on SAN .
As the following theorem shows, an SA optimal strategy does exist and its explicit form
depends on the relative weight of atomic player N among all the players. In particular, when
M and T 1, ..., TN−1 are fixed, three cases can be distinguished. They are respectively called
nonatomic, trivial and nontrivial, according to the form of the SA optimal strategies.

Theorem 3.1. Atomic player N has an optimal decentralization strategy which minimizes
her cost at the CE of the induced composite congestion game. More precisely, denoting H =
c2(0)−c1(M)

c′1(M) , one has:

1 (nonatomic). Every strategy of atomic player N is optimal and is equivalent to the nonatomic
strategy α, if one of the two following holds:
(1.1) H > 0 and either (i) T i ≤ H for all i ∈ I \ {0}, or (ii) N > 1, max1≤i≤N−1 T

i > H,
TN ≤ C0.
(1.2) H ≤ 0 and either (i) ∑N

i=1 T
i ≤ C1, or (ii) N > 1, ∑N−1

i=1 T i > C1, and TN ≤ C2.
2 (trivial). Atomic player N ’s unique optimal strategy is the trivial one ᾱ, i.e. not decentral-
izing, if one of the two following holds:
(2.1) H > 0, TN > H, and max1≤i≤N−1 T

i ≤ H in the case that N > 1.
(2.2) H ≤ 0, N = 1 and TN > C1.
3 (nontrivial). Atomic player N has at least one optimal strategy which is not necessarily
nonatomic or trivial in the remaining situations.
Here C0, C1 and C2 are strictly positive constants, determined by M and T 1, . . . , TN−1.

Some remarks on the profitability of strategic decentralization of atomic playerN are necessary
here. It is known (Orda et al. 1993 [21], Wan 2012 [31], also see Lemma 6.1) that smaller
players are more likely to free ride by using the least costly arc(s). The bigger a player is, the
more she tends to use the more expensive arc to internalize the negative externality of her
choice on her own stock. Accordingly, as Theorem 3.1 shows, the optimal choice of atomic
player N also depends on her relative size among all the players. In the nonatomic case,
either atomic player N is too small compared with her atomic opponents, or all the players
are small. Then, she can never change the outcome of the congestion game by unilateral
decentralization, because she and her potential deputies always behave like free-riders. In the
trivial case, atomic player N is very big compared to her opponents. If she decentralizes, she
cannot free ride on them to her advantage because they are too small. Moreover, since her
deputies are not internalizing enough their externalities, she actually loses by decentralizing.
In the non trivial case, atomic player N is neither too small to be always a free-rider, nor big
enough to be dominating. In this case, by some appropriate decentralization, she manages to
free ride on her atomic opponents.
Besides, let us point out that although the paper studies a one-person decision problem where
atomic player N chooses how to decentralize, an alternative formulation of the problem as an
extensive form game is also possible. By the definition of N ’s cost UN(α, T−N) induced by her
choice α, the problem can be considered as a two-stage game called unilateral decentralization
game. In the first stage, only N makes a move by choosing a decentralization strategy. In the



second stage, her deputies created by this choice as well as the players in T−N play a composite
congestion game. Then, an optimal decentralization strategy α of atomic player N and the
corresponding CE zα in Γ(α, T−N) constitute a subgame perfect Nash equilibrium (SPNE) of
the unilateral decentralization game. Theorem 3.1 shows that an SPNE exists in this game.
However, this unilateral decentralization game is not precisely a Stackelberg game in the sense
that the leader, atomic player N , moves in the first stage and the followers, T−N , move in the
second stage. As a matter of fact, by decentralizing unilaterally in the first stage, player N
creates new players, i.e. her deputies, who will participate in the second stage. Hence, while
making her choice in the first stage, player N should anticipate not only the action of her
opponents T−N but also that of her own deputies in the second stage.

3.2 Unilateral decentralization and Stackelberg game

This subsection compares the advantage of being able to decentralize unilaterally and that of
being the leader in a Stackelberg congestion game. Stackelberg-type behaviour in routing is
studied in [15, 16, 27, 33] and [6], etc.
Let SΓ(TN , T−N) be the Stackelberg composite congestion game where atomic player N is
the leader and the players in T−N are the followers. In the first stage of the game, player N
chooses how to distribute her flow on the two arcs. Then in the second stage, the followers
choose how to distribute their flows. Let player N ’s strategy in the first stage be denoted by
x = (x1, x2) ∈ XN . Given x, the followers in T−N play a composite congestion game denoted
by Γx(T−N) whose unique CE is denoted by Zx. Let ΠN(x, T−N) denote player N ’s cost at
(x, Zx). Then a subgame perfect Nash equilibrium (SPNE) of the game is attained, if it exits,
at (x∗, Zx∗) where x∗ = arg minx∈XN ΠN(x, T−N).
At the end of the previous subsection, the optimal unilateral decentralization problem is
formulated as a two-stage game, where atomic player N is also the first mover. Although
that game is not exactly a Stackelberg game as SΓ(TN , T−N), atomic player N has the same
advantage as the first mover in both games, as the following theorem shows.

Theorem 3.2. Stackelberg game SΓ(TN , T−N) admits an SPNE.
Besides, by playing an optimal decentralization strategy α ∈ SN , atomic player N has the
same cost UN(α, T−N) as her SPNE cost in Stackelberg game SΓ(TN , T−N).

Obviously, player N cannot do worse in the Stackelberg game than in the unilateral decen-
tralization game, because she can always do by herself what she anticipates her deputies to
do. On the contrary, there can be a strategy (x1, x2) of player N in the Stackelberg game
that cannot be “mimicked” by a decentralization strategy. In other words, no decentralization
strategy α satisfies that, at the CE of the induced congestion game, the aggregate weight of
player N ’s deputies’ stock on arc r is exactly xr. However, such a strategy (x1, x2) cannot be
optimal as the proof of the theorem shows.
One should not deduce from Theorem 3.2 that the study of unilateral decentralization is useless
because, once being the first mover, an atomic player need only do what her optimal deputies
would have done. As pointed out in Sorin and Wan 2013 [30], in a congestion game, a player’s
choice has an influence on other players’ costs not via her identity (i.e. anonymously) but via



the weight of her stock attributing to each particular choice. The behavior of decentralization
is thus feasible in terms of strategies and undetectable to the others. These two features
distinguish decentralization, as a strategic opportunity, from the first mover’s advantage in a
Stackelberg congestion game.

4 Impact of strategic decentralization

This section studies the impact of atomic player N ’s unilateral decentralization on the other
players’ costs and the social cost. Recall that the trivial decentralization strategy ᾱ corre-
sponds to not decentralizing. Thus one has only to compare the cost to the players in T−N
and the social cost at zᾱ with those at zα, for an arbitrary strategy α ∈ SN .

Theorem 4.1. Suppose that atomic player N decentralizes according to strategy α ∈ SN .
Then at the CE of the induced congestion game, the social cost and the cost to each player in
T−N are not lower than at the CE of the congestion game without decentralization:

CS(zα) ≥ CS(zᾱ) and uj(zα) ≥ uj(zᾱ), ∀j ∈ I\{N}. (4.1)

In addition, equalities hold only in the nonatomic case, i.e. when the assumptions in the first
case of Theorem 3.1 hold.

Recall that the smaller a player is, the more she tends to free ride by using the less costly
arc (cf. remark after Theorem 3.1) and exerts a higher externality on the other players. By
decentralizing, atomic player N lets her deputies, who are smaller than her, free ride more
aggressively. In other words, her deputies put more weight on the less costly arc, arc 1, than
she herself would have done. Not only do these deputies of N increase the cost of the less
expensive arc for its users, they also drive the others to put more weight on the more expensive
arc, arc 2. In this way, the unilateral decentralization of N increases the social cost as well as
her opponents’ costs.
Meunier and Pradeau [19, Theorem 3] recover a particular case of Theorem 4.1 concerning
social cost and without nonatomic players. They show that in an atomic game taking place in
a two-terminal two parallel-arc network with increasing, strictly convex and differentiable arc
cost functions, if an atomic player i transfers some of her stock to a smaller atomic player j
(T j ≤ T i), then the social cost at the CE increases or remain constant after the transfer. In
particular, when taking T j = 0, this transfer of stock is equivalent to the decentralization of
atomic player i who deputes her stock to two atomic deputies.

5 Discussion and perspectives

This paper first introduces strategic decentralization behavior into composite congestion games.
Then, in the particular setting of binary choice case, it shows (i) the existence of optimal uni-
lateral decentralization which depends on the relative size of the decentralizing player, (ii)
the “equivalence” between being the only player to decentralize and being the leader in a
Stackelberg game, and (iii) the negative impacts of unilateral decentralization on the others.



With more general network structure, Theorem 4.1 is no longer valid.
In the setting of single OD (where all the players share the same origin and the same des-
tination), Huang 2013 [14] provides the following example adapted in our language. In the
network shown on the left hand side of Figure 2, the social cost at the unique equilibrium
with two atomic players of weight 200 and 21 respectively increases when the atomic player
of weight 21 deputes her stock to two atomic deputies of weight 20.9 and 0.1 respectively.

O D

20t+ 5000

t2 + 500

t11

B

A C

D

E

F

1.9

0 0

0 0

2.8t

Figure 2: Counter-examples.

Cominetti et al. 2009 [9] provide the following example in a multiple OD game. The network
is shown on the right hand side of Figure 2. Only arc E−F has non constant cost function. A
group of nonatomic players and an atomic player both have weight 1. The nonatomic group
has OD pair (A,B) and available paths A−B and A−E−F−B, while the atomic player has
OD pair (C,D) and available paths C−D and C−E−F−D. The social cost at the CE is
3.89. If the atomic player deputes her stock to a group of nonatomic players, the social cost
at the new CE is 3.8, lower than 3.89. Altman et al. 2011 [1] provide an example of multiple
OD game, where the decentralization of an atomic player to several atomic deputies increases
the social cost.
These examples show that our result concerning the social cost can neither be extended to
single OD games with more than two parallel arcs, nor to multiple OD games even if each OD
pair is linked by two parallel arcs. The validity of the result concerning the opponents of the
decentralizaer remains an open question.
Besides, this paper only considers unilateral decentralization. Decentralization games in which
all the atomic players decentralize simultaneously are worth examining. Another potential
extension follows Sorin and Wan 2013 [30], where a deputy can also decentralize, and his
deputies as well, and so on. In their case, a player has a finite integer weight and can only have
deputies of integer weight. Therefore, sequential decentralization will terminate after a finite
number of steps. In the setting of this paper, however, an atomic deputy of any size is able to
decentralize. A possible approach consists in studying the asymptotic behavior of a sequential
decentralization process. A first attempt to study one-shot simultaneous decentralization
games as well as sequential decentralizing processes is made in Wan 2012 [32], with two
atomic players and affine arc cost functions.



6 Auxiliary results and the proofs

6.1 Auxiliary functions, notations and properties of a CE

Without loss of generality, assume from now on T 1 ≥ T 2 ≥ · · · ≥ TN−1. Denote M−N =∑N−1
i=0 T i the total weight of atomic player N ’s opponents. Denote by T [l] = ∑l

j=1 T
j the total

weight of the l largest atomic players in T−N , and let T [0] = 0.
Fix ε > 0. Functions h, a, and Fn for n ∈ N are defined on Ω as follows:

h(t) =


c2(M − t)− c1(t)

c′1(t) , if 0 ≤ t ≤M ;

h(0)− εt, if t < 0;
h(M)− ε(t−M), if t > M,

a(t) =


c′2(M − t)
c′1(t) , if 0 ≤ t ≤M ;

a(0), if t < 0;
a(M), if t > M,

Fn(t) = (M − t) (1 + a(t)) + nh(t), n ∈ N.

H , h(M), A , a(ξ̂).

The following facts are derived from Assumption 1 and the above definition.
(i) a is non-increasing, strictly positive and continuous on Ω.
(ii) h and all Fn’s are strictly decreasing and continuous on Ω. Their inverse functions h−1

and F−1
n are well defined on neighborhoods of [h(M), h(0)] and [F n(M), F n(0)] respectively,

and are also strictly decreasing and continuous.
(iii) Case (i) in Assumption 2 corresponds to H > 0, whereas case (ii) corresponds to H ≤
0, h(0) ≥ 0 in addition to (2.1).

(iv) h(ξ̂) = 0 and Fk(ξ̂) = (M − ξ̂) (1 + A) = F0(ξ̂) for all k.

(v) ξ̂ exists if and only if
H ≤ 0, h(0) ≥ 0. (6.1)

Recall a necessary and sufficient condition for x ∈ X to be the CE of composite congestion
game Γ(T ) [11]: for all r ∈ {1, 2},

x0
r>0⇒cr(ξr(x))= min

s∈{1,2}
cs(ξs(x)), (6.2)

xir>0⇒cr(ξr(x))+xirc′r(ξr(x))= min
s∈{1,2}

cs(ξs(x))+xisc′s(ξs(x)), ∀i∈I\{0}. (6.3)

The following lemma regroups some important properties of the CE of an arbitrary composite
congestion game with aggregate stock weight M .

Lemma 6.1. At the CE x of Γ(T ), denote ξr(x) simply by ξr.
1. For each arc r ∈ {1, 2},
(1) if x0

r > 0, then xir > 0 for all atomic player i;



(2) if T i ≥ T j for atomic players i and j, then xir ≥ xjr, and equality holds if and only if
T i = T j or xir = xjr = 0;
(3) for all atomic player i and for s 6= r, if xir > 0 and xis = 0, then cr(ξr) < cs(ξs).
2. c1(ξ1) ≤ c2(ξ2).

3. If H ≤ 0 (i.e. c2(0) ≤ c1(M)), then ξ1 ≤ ξ̂.

4. h(ξ1) ≥ 0, and equality holds if and only if H ≤ 0 and ξ1 = ξ̂.

Proof. 1. cf. Wan 2012 [31].
2. In the case H > 0 (c1(M) < c2(0)), c1(ξ1) ≤ c2(ξ2) is always true. In the case H ≤ 0,
suppose c1(ξ1) > c2(ξ2). If ξ1 ≤ ξ̂ and thus M − ξ1 ≥ M − ξ̂, by the definition of ξ̂,
c1(ξ1) ≤ c1(ξ̂) = c2(M − ξ̂) ≤ c2(ξ2), contradicting the hypothesis that c1(ξ1) > c2(ξ2).
Therefore, ξ1 > ξ̂ ≥ 0 and, consequently, ξ2 < M − ξ̂. According to Assumptions 1 and 2,
ξ1 c
′
1(ξ1) > ξ̂ c′1(ξ̂) ≥ (M − ξ̂) c′2(M − ξ̂) > ξ2 c

′
2(ξ2). Thus, ξ1 c

′
1(ξ1) > ξ2 c

′
2(ξ2).

Notice that N ≥1 because otherwise T 0 =M , i.e. all the players are nonatomic and take the
less expensive arc 2. Hence c1(0)> c2(M), contradicting Assumption 2. It follows from the
hypothesis c1(ξ1)>c2(ξ2) and the first result of this lemma that there exists some l∈{1, . . . , N}
such that xi1>0, xi2>0 for 1≤ i≤ l and, if l <N , xi1 = 0, xi2 = T i for l+1≤ i≤N . According
to eq. (6.3),

c1(ξ1) + xi1 c
′
1(ξ1) = c2(ξ2) + xi2 c

′
2(ξ2), ∀1 ≤ i ≤ l. (6.4)

Besides, x0
2 = T 0 if T 0 > 0 because of eq.(6.2). Summing eq.(6.4) leads to lc1(ξ1) + ξ1c

′
1(ξ1) =

lc2(ξ2) + (ξ2 −
∑N
i=l+1 T

i − T 0)c′2(ξ2) ≤ lc2(ξ2) + ξ2c
′
1(ξ1), and equality holds if and only if

T 0 = 0 and l = N . But this is impossible because, by hypothesis, c1(ξ1) > c2(ξ2), and
ξ1c
′
1(ξ1) > ξ2c

′
2(ξ2).

Thus, c1(ξ1) ≤ c2(ξ2).

3. If c2(0) ≤ c1(M) and ξ1 > ξ̂, then by Assumption 1, c1(ξ1) > c1(ξ̂) = c2(M − ξ̂) > c2(ξ2),
which contradicts the fact that c1(ξ1) ≤ c2(ξ2).
4. If c1(M) < c2(0) or, equivalently, H > 0, the fact that ξ1 ≤M implies that h(ξ1) ≥ h(M) =
H > 0. If c2(0) ≤ c1(M), the fact that ξ1 ≤ ξ̂ implies that h(ξ1) ≥ h(ξ̂) = 0, and the equality
holds if and only if ξ1 = ξ̂.

6.2 Definition and properies of the four modes of zα

For a decentralization strategy α, denote α[k] = ∑k
i=1 α

i. Also, for the sake of simplicity, zα is
often replaced by z, xr(zα) by xr, yjr(zα) by yjr , yr(zα) by yr, ξr(zα) by ξr, if no confusion can
arise.
Define four modes of zα, the CE of congestion game Γ(α, T−N) as follows. They respectively
correspond to: 1) All players put all their weight on arc 1; 2) Some atomic deputies of N put
some weight on arc 2; 3) Some atomic players among T−N put some weight on arc 2, while all
the deputies of N put all their weight on arc 1; 4) All the atomic players put weight both on
arc 1 and arc 2, while there are nonatomic players on both arcs.



The CE zα is of mode 1 if c1(ξ1) < c2(ξ2);
xi1 = αi, 0 ≤ i ≤ n; yj1 = T j, 0 ≤ j ≤ N − 1.

(6.5)

α1 · · · αn α0 T 1 · · · TN−1 T 0

arc 1 α1 · · · αn α0 T 1 · · · TN−1 T 0

arc 2 0 · · · 0 0 0 · · · 0 0

Table 1: Mode 1.

The CE zα is of mode 2 specified by k ∈ N∗ and l ∈ {0, 1, . . . , N − 1}, if

c1(ξ1) < c2(ξ2);
1≤k≤n; xi2>0, 1 ≤ i ≤ k;
xi2 = 0, i∈J1 ,{k+1, . . . , n}∪{0}, if J1 6=∅;
yj2>0, 1≤j≤ l, if 1≤ l≤N−1;
yj2 =0, j∈J2 ,{l+1, . . . , N−1}∪{0}, if J2 6=∅.

(6.6)

α1 · · · αk αk+1 · · · αn α0 T 1 · · · T l T l+1 · · · TN−1 T 0

arc 1 x1
1 · · · xk

1 αk+1 · · · αn α0 y1
1 · · · yl

1 T l+1 · · · TN−1 T 0

arc 2 x1
2 · · · xk

2 0 · · · 0 0 y1
2 · · · yl

2 0 · · · 0 0

Table 2: Mode 2.

The CE zα is of mode 3 specified by l ∈ {1, . . . , N − 1}, if
c1(ξ1) < c2(ξ2);
xi2 = 0, 0 ≤ i ≤ n;
1≤ l ≤N−1; yj2>0, 1≤j≤ l;
yj2 =0, j∈J2 ,{l+1, . . . , N−1}∪{0}, if J2 6=∅.

(6.7)

α1 · · · αn α0 T 1 · · · T l T l+1 · · · TN−1 T 0

arc 1 α1 · · · αn α0 y1
1 · · · yl

1 T l+1 · · · TN−1 T 0

arc 2 0 · · · 0 0 y1
2 · · · yl

2 0 · · · 0 0

Table 3: Mode 3.

The CE zα is of mode 4 if
c1(ξ1) = c2(ξ2). (6.8)

Lemma 6.2. For all α ∈ SN , the CE zα takes one of the four modes above.



α1 · · · αn α0 T 1 · · · TN−1 T 0

arc 1 x1
1 · · · xn

1 x0
1 y1

1 · · · yN−1
1 y0

1
arc 2 x1

2 · · · xn
2 x0

2 y1
2 · · · yN−1

2 y0
2

Table 4: Mode 4.

Proof. According to Lemma 6.1, at zα, c1(ξ1) ≤ c2(ξ2), hence there are nonatomic players
taking arc 2 only if c1(ξ1) = c2(ξ2); besides, all the atomic players must put some weight on
arc 1; also, if an atomic player put some weight on arc 2, then all the atomic players larger
than her must do so as well. Hence, zα must take one of the four modes above.

Lemma 6.3. If two decentralization strategies α and α̃ in SN are such that the total weight
on arc 1 is the same at zα and zα̃, i.e. ξ1(zα) = ξ1(zα̃), then they are equivalent with respect
to T−N .

Proof. Denote zα̃ by z̃, xr(z̃) by x̃r, yjr(z̃) by ỹjr , and ξr(z̃) by ξ̃r.

If ξ1 = ξ̃1 = ξ̂, then UN(α, T−N) = UN(α̃, T−N) = c1(ξ̂).

If ξ1 6= ξ̂, then y0
1 = T 0, and according to eq.(6.3), for each 1 ≤ j ≤ N−1, both yj1 and ỹj1 solve

the following equation in w: Either w < T j and c1(ξ1) + w c′1(ξ1) = c2(ξ2) + (T j − w) c′2(ξ2),
or w = T j and c1(ξ1) + w c′1(ξ1) ≤ c2(ξ2) + (T j − w) c′2(ξ2). There is only one solution to
this equation, hence yj1 = ỹj1. Similarly, y0

1 = ỹ0
1. Therefore x1 = x̃1 and UN(α, T−N) =

UN(α̃, T−N).

Lemma 6.4. 1. If zα is of mode 1, then

x1 = TN , y1 = M−N , ξ1 = M. (6.9)

2. There exists a strategy α ∈ SN such that zα is of mode 1 if and only if

H > 0; T 1 ≤ H if N > 1. (6.10)

3. Assume eq.(6.10). Define a subset of SN by:

SN1 = {α ∈ SN
∣∣∣α = α, or α1 ≤ H}.

Then, α ∈ SN1 if and only if zα is of mode 1. Furthermore, all the strategies in SN1 are
equivalent to each other with respect to T−N .
In particular, the nonatomic strategy α is in SN1 .

Proof. Since ξ1 = M and c1(ξ1) < c2(ξ2), one has c1(M) < c2(0) or, equivalently, H > 0. If
N ≥ 2, then it follows from eq.(6.3) that, for 1 ≤ j ≤ N − 1, c1(M) + T j c′1(M) ≤ c2(0) or,
equivalently, T j ≤ H. Similarly, if n ≥ 1, then for 1 ≤ i ≤ n, αi ≤ H.



Lemma 6.5. 1. If zα is of mode 2 specified by k and l, then

xi1 = αi a(ξ1) + h(ξ1)
1 + a(ξ1) , 1 ≤ i ≤ k; x1 = TN − α[k] − k h(ξ1)

1 + a(ξ1) ; (6.11)

yj1 = T j a(ξ1) + h(ξ1)
1 + a(ξ1) , 1 ≤ j ≤ l; y1 = M−N − T [l] − l h(ξ1)

1 + a(ξ1) ; (6.12)

ξ1 = M − α[k] + T [l] − (k + l)h(ξ1)
1 + a(ξ1) = F−1

k+l(α[k] + T [l]). (6.13)

In particular, if l ≥ 1, then for all 1 ≤ j ≤ l, T j > h(ξ1).
2. For given k ∈ N∗ and l ∈ {0, . . . , N−1}, there exists a strategy α ∈ SN such that zα is of
mode 2 specified by k and l if and only ifF

−1
l (T [l]) > h−1(T l) if l ≥ 1; TN>kh(F−1

l (T [l]));
TN≥Fk+l(h−1(T l+1))−T [l] if N≥ l + 2; TN>F0(ξ̂)−T [l] if H≤0.

(6.14)

3. For given k ∈ N∗ and l ∈ {0, . . . , N−1}, assume eq.(6.14). Given a real constant w such
that 0<w≤TN ; w>k h(F−1

l (T [l])); w<Fk+l(h−1(T l))−T [l] if l ≥ 1;
w≥Fk+l(h−1(T l+1))−T [l] if l≤N − 1; w>F0(ξ̂)−T [l] if H≤0,

(6.15)

denote η1 = F−1
k+l(w + T [l]), and define a subset of SN by:

SN2 (w, T−N ; k, l)={α∈SN |n≥k; α[k] =w;
∀1≤ i≤k, αi>h(η1); ∀k + 1≤ i≤n, αi≤h(η1)}.

Then, α ∈ SN2 (w, T−N ; k, l) if and only if it induces zα of mode 2 specified by k and l and, at
zα, the total weight on arc 1, ξ1(zα), is η1. Furthermore, the strategies in SN2 (w, T−N ; k, l) are
equivalent to each other.
4. SA strategy w − (k − 1)h(η1) is equivalent to the strategies in
SN2 (w, T−N ; k, l).

Proof. Let us prove for the case that l ≥ 1. The case that l = 0 is similar.
1. For 1 ≤ i ≤ k, eq.(6.3) implies that c1(ξ1) + xi1 c

′
1(ξ1) = c2(ξ2) + xi2 c

′
2(ξ2) or, equivalently,

xi1 = αi a(ξ1)+h(ξ1)
1+a(ξ1) . Similarly, for 1 ≤ j ≤ l, yj1 = T j a(ξ1)+h(ξ1)

1+a(ξ1) .

The rest of the results in eq.(6.11), eq.(6.12) and eq.(6.13) can then be easily obtained. In
particular,

Fk+l(ξ1) = α[k] + T [l]. (6.16)

Since Fk+l is strictly decreasing, ξ1 = F−1
k+l(α[k] + T [l]).

2–3. For 1 ≤ i ≤ k, the fact that xi1 = αi a(ξ1)+h(ξ1)
1+a(ξ1) and 0 < xi1 < αi yields (i) αi >

−h(ξ1)/a(ξ1), which is always true, because h(ξ1) ≥ 0 and a(ξ1) > 0; and (ii)

αi > h(ξ1). (6.17)



Similarly as for eq.(6.17), one has T j > h(ξ1) for all 1 ≤ j ≤ l.
Four constraints on ξ1 can be deduced.
(i) Eq.(6.17) implies

α[k] > k h(ξ1) (6.18)
or, equivalently, according to eq.(6.16), Fk+l(ξ1) = (M − ξ1)(1 + a(ξ1)) + (k + l)h(ξ1) >

k h(ξ1) + T [l] ⇒ Fl(ξ1) = (M − ξ1)
(
1 + a(ξ1)

)
+ l h(ξ1) > T [l]. Therefore, ξ1 < F−1

l (T [l]).

(ii) The fact that T j > h(ξ1) for all 1 ≤ j ≤ l implies ξ1 > h−1(T l).
(iii) If l <N−1, then for l+1≤ j≤N−1, according to eq.(6.3), c1(ξ1) + T j c′1(ξ1) ≤ c2(ξ2) or
equivalently T j ≤ h(ξ1), which further implies ξ1 ≤ h−1(T l+1).

(iv) If H ≤ 0, then according to Lemma 6.1, ξ1 < ξ̂.

These four constraints on ξ1 (i.e. ξ1 < F−1
l (T [l]), ξ1 > h−1(T l), ξ1 ≤ h−1(T l+1) and ξ1 < ξ̂)

together with eq.(6.17), eq.(6.16) and eq.(6.18) imply that

TN ≥ α[k] > kh(ξ1) > k h(F−1
l (T [l])); (6.19)

α[k] = Fk+l(ξ1)− T [l] < Fk+l(h−1(T l))− T [l]; (6.20)
TN ≥ α[k] = Fk+l(ξ1)− T [l] ≥ Fk+l(h−1(T l+1))− T [l], if l < N − 1; (6.21)
TN ≥ α[k] = Fk+l(ξ1)− T [l] ≥ F0(ξ̂)− T [l], if H ≤ 0. (6.22)

Equations (6.19)-(6.22) yield eq.(6.15).
Besides, eq.(6.19) and eq.(6.20) imply that

k h(F−1
l (T [l])) < Fk+l(h−1(T l))− T [l]

⇒ T [l] + k h(F−1
l (T [l])) < Fl(h−1(T l)) + k T l

⇒ F−1
l (T [l]) > h−1(T l).

This result, together with eq.(6.19)-eq.(6.22), proves eq.(6.14).
If n > k, then for k+1 ≤ i ≤ n, according to eq.(6.3), c1(ξ1)+αi c′1(ξ1) ≤ c2(ξ2) or, equivalently,
αi ≤ h(ξ1).
4. In five steps, let us show that, if the conditions in eq.(6.14) and those in eq.(6.15) are
satisfied for k and w, then they are also satisfied when k is replaced by 1, and w is replaced
by w − (k − 1)h(η1).
1) If h(F−1

l (T [l])) < 0, then T p ≥ w > h(F−1
l (T [l])). If h(F−1

l (T [l])) > 0, TN ≥ w >
k h(F−1

l (T [l])) > h(F−1
l (T [l])).

2) If l < N − 1, then TN ≥ Fk+l(h−1(T l+1)) − T [l] = F1+l(h−1(T l+1)) − T [l] + (k − 1)T l+1 ≥
F1+l(h−1(T l+1))− T [l], where the second inequality is due to the fact that k ≥ 1.
3) The fact that η1 > h−1(T l) implies that F1+l(η1) < F1+l(h−1(T l)). Besides, by the definition
of η1, w− (k− 1)h(η1) = Fk+l(η1)− T [l] − (k− 1)h(η1) = F1+l(η1)− T [l]. Therefore, w− (k−
1)h(η1) < F1+l(h−1(T l))− T [l].
4) If l<N−1, the relation η1≤h−1(T l+1) implies that F1+l(η1)≥F1+l(h−1(T l+1)). As a result,
w − (k − 1)h(η1) = F1+l(η1)− T [l] ≥ F1+l(h−1(T l+1))− T [l].



5) If H ≤ 0, the relation η1 ≤ η̂ implies that w− (k− 1)h(η1) = F1+l(η1)− T [l] ≥ F0(η̂)− T [l].
Therefore, the CE zw−(k−1)h(η1) induced by SA strategy w− (k− 1)h(η1) is of mode 3 specified
by 1 and l. The definition of η1 implies that w + T [l] = Fk+l(η1) = F1+l(η1) + (k − 1)h(η1).
Hence, w − (k − 1)h(η1) + T [l] = F1+l(η1) or, equivalently, η1 = F−1

1+l(w − (k − 1)h(η1)).
According to eq.(6.13), the total weight on arc 1 at zw−(k−1)h(η1) is also η1, which means that
SA strategy w − (k − 1)h(η1) is equivalent to the strategies in Sp2 (w, T−N ; k, l), by applying
Lemma 6.3.
Lemma 6.6. 1. If zα is of mode 3 and specified by l, then

x1 =TN ; yj1 = T j a(ξ1)+h(ξ1)
1+a(ξ1) , 1≤j≤ l; y1 =M−N−T

[l]−l h(ξ1)
1+a(ξ1) ; (6.23)

ξ1 =M−T
[l]−l h(ξ1)
1+a(ξ1) =F−1

l (T [l]). (6.24)

In particular, for all 1 ≤ j ≤ l, T j > h(ξ1).
2. If N > 1, for given l ∈ N∗ and l < N , there exists a strategy α ∈ SN such that zα is of
mode 3 and specified by l if and only if

F−1
l (T [l]) > h−1(T l);
F−1
l (T [l]) ≤ h−1(T l+1) if l ≤ N − 2;
T [l] > F0(ξ̂) if H ≤ 0.

(6.25)

3. If N > 1, for given l ∈ N∗ and l < N , assume eq.(6.25). Define a subset of SN by:

SN3 (T−N ; l) = {α ∈ SN |α = α, or α1 ≤ h(F−1
l (T [l])) }.

Then, α ∈ SN3 (T−N ; l) if and only if it induces zα of mode 3 specified by l and, at zα, the total
weight on arc 1 is F−1

l (T [l]). Furthermore, the strategies in SN3 (T−N ; l) are equivalent to each
other.
In particular, the nonatomic strategy α is in SN3 (T−N ; l).

Proof. Similar to the proof of Lemma 6.5.
Lemma 6.7. 1. If zα is of mode 4, then

xi1 = Aαi

1 + A
, 1≤ i≤n, if n≥1; yj1 = AT j

1 + A
, 1≤j≤N−1, if N>1; ξ1 = ξ̂. (6.26)

2. There exists a strategy α ∈ SN such that zα is of mode 4 if and only if

H ≤ 0; T [N−1] ≤ F0(ξ̂), if N > 1. (6.27)

3. Assume eq.(6.27). Define a subset of SN by:

SN4 = {α = (αi)ni=0 ∈ SN |α = α, or α[n] ≤ F0(ξ̂)− T [N−1]}.

Then α ∈ SN4 if and only if zα is of mode 4. Furthermore, the strategies in SN4 are equivalent
to each other.
In particular, the nonatomic strategy α is in SN4 .



Proof. Since the two arcs have equal cost, ξ1 = ξ̂ and, according to eq.(6.1), H ≤ 0. Flows
eq.(6.26) can be deduced from eq.(6.3). And they imply that

x0
1 + y0

1 = ξ1 −
n∑
i

xi1 −
N−1∑
j

yj1 = ξ̂ − A(α[n] + T [N−1])
1 + A

. (6.28)

It follows from 0 ≤ x0
1 ≤ α0 and 0 ≤ y0

1 ≤ T 0 that 0 ≤ x0
1 + y0

1 ≤ TN −α[n] +M−N − T [N−1] =
M − α[n] − T [N−1]. One deduces, by considering eq.(6.28), that α[n] + T [N−1] ≤ ξ̂ · 1+A

A
and

α[n] +T [N−1] ≤ (M − ξ̂)(1 +A). But, ξ̂ · 1+A
A
≥ (M − ξ̂)(1 +A) because (M − ξ̂)(1 +A) ≤M ≤

ξ̂ 1+A
A

, which is itself due to eq.(2.1). Therefore, α[n] + T [N−1] ≤ (M − ξ̂)(1 + A) = F0(ξ̂).

6.3 Lemmas and proofs

Lemma 6.8. Suppose that α, α̃ ∈ SN are two decentralization strategies of atomic player N ,
and zα, zα̃ respectively the CE of game Γ(α, T−N) and Γ(α̃, T−N). If zα is of mode 2, and
x1(zα̃) > x1(zα), y1(zα̃) ≥ y1(zα), then

UN(α̃, T−N) > UN(α, T−N).

Proof. Denote zα by z, zα̃ by z̃, xr(z) by xr, xr(z̃) by x̃r, yr(z) by yr, yr(z̃) by ỹr, ξr(z) by ξr
and ξr(z̃) by ξ̃r.
Suppose that x is specified by k ∈ N∗ (and l ∈ N∗ in the case that x is of mode 2). According
to eq.(6.3),

c1(ξ1) + xi1 c
′
1(ξ1) = c2(ξ2) + xi2 c

′
2(ξ2), 1 ≤ i ≤ k. (6.29)

Summing eq.(6.29) leads to kc1(ξ1)+[x1−(TN−α[k])]c′1(ξ1) = kc2(ξ2)+x2c
′
2(ξ2). Consequently,

c1(ξ1) + x1c
′
1(ξ1) = c2(ξ2) + x2c

′
2(ξ2) + (k − 1)[c2(ξ2) − c1(ξ1)] + (TN − α[k])c′1(ξ1). Since

c1(ξ1) ≤ c2(ξ2) by Lemma 6.1, one deduces that c1(ξ1)+x1c
′
1(ξ1) ≥ c2(ξ2)+x2c

′
2(ξ2). Moreover,

there exists B > 0 such that

c1(ξ1) + x1 c
′
1(ξ1) ≥ B ≥ c2(ξ2) + x2 c

′
2(ξ2). (6.30)

Assumption 1, eq.(6.30) and the fact that c1(ξ̃1) ≤ c2(ξ̃2) (still by Lemma 6.1) imply that, for
all s ∈ (x1, x̃1] and t ∈ [x̃2, x2),

c1(s+ y1) + s c′1(s+ y1) > B > c2(t+ y2) + t c′2(t+ y2), (6.31)
c1(s+ y1) ≤ c1(ξ̃1) ≤ c2(ξ̃2) ≤ c2(t+ y2).

They further imply that s c′1(s+ y1) > t c′2(t+ y2) and, moreover, there exists C > 0 such that
for any p ∈ (y1,M

−N ] and q ∈ [0, y2),

s c′1(s+ p) > C > t c′2(t+ q). (6.32)



Let us compare UN(α̃, T−N) and UN(α, T−N):

UN(α̃, T−N)− UN(α, T−N) = [x̃1 c1(ξ̃1) + x̃2 c2(ξ̃2)]− [x1 c1(ξ1) + x2 c2(ξ2)]
= [x̃1 c1(ξ̃1)− x̃1 c1(x̃1 + y1)] + [x̃1 c1(x̃1 + y1)− x1 c1(ξ1)]− [x̃2 c2(x̃2 + y2)
− x̃2 c2(ξ̃2)]− [x2 c2(ξ2)− x̃2 c2(x̃2 + y2)]

=
∫ ỹ1

y1
x̃1c
′
1(x̃1 + s)ds+

∫ x̃1

x1
[c1(s+ y1) + sc′1(s+ y1)]ds

−
∫ y2

ỹ2
x̃2c
′
2(x̃2 + t)dt−

∫ x2

x̃2
[c2(t+ y2) + tc′2(t+ y2)]dt

> (ỹ1 − y1)C + (x̃1 − x1)B − (y2 − ỹ2)C − (x2 − x̃2)B = 0,

where the inequality is due to eq.(6.31) and eq.(6.32).

Lemma 6.9. For l = 0 (if N > 1) and for 1 ≤ l ≤ N − 2 (if N > 2), define

Bl = Fl+1(h−1(T l+1))− T [l].

Suppose that either (i) H > 0, N > 1 and T 1 > H, or (ii) H ≤ 0, N ≥ 2, T [N−1] ≥ F0(ξ̂).
Then,
1. The CE zα induced by atomic player N ’s nonatomic strategy α is of mode 3 specified by l0,
l0 being the unique number in {1, . . . , N−1} that meets the conditions in eq.(6.25).
2.

F−1
1 (T [1]) > F−1

2 (T [2]) > · · · > F−1
l0 (T [l0]); (6.33)

F−1
l (T [l]) > h−1(T l), 1 ≤ l ≤ l0. (6.34)

If l0 < N − 1, then

F−1
l0 (T [l0]) ≤ F−1

l0+1(T [l0+1]) ≤ · · · ≤ F−1
N−1(T [N−1]), if l0 > 1; (6.35)

F−1
l (T [l]) ≤ h−1(T l), l0 + 1 ≤ l ≤ N − 1. (6.36)

3. For all k ∈ N,

Fk+l(h−1(T l+1))− T [l]

>k h(F−1
l (T [l])), if l0>1 and 1≤ l≤ l0−1,

≤k h(F−1
l (T [l])), if l0<N−1 and l= l0.

(6.37)

In particular, if l0 > 1, then Bl > h(F−1
l (T [l])) for all 1 ≤ l ≤ l0 − 1.

4. If l0 > 1, then for all k ∈ N and 1 ≤ l ≤ l0 − 1, Fk+l(h−1(T l+1))− T [l] > kh(F−1
l0 (T [l0])).

5. If l0> 1, then B0≥B1≥· · ·≥Bl0−1. For l∈{1, . . . , l0−1}, Bl=Bl−1 if and only if T l+1 =T l.
6. Bl0−1 > h(F−1

l0 (T [l0])).
7. For all strategy α ∈ SN , one and only one of the following is true:
(i) zα is of mode 3 and specified by l0; besides, α is equivalent to α.
(ii) zα is of mode 2 and specified by some k ∈ N∗ and some l ∈ {0, 1, . . . , l0}.



Proof. Denote zα simply by z.
1. The CE z is not of mode 1 when H > 0 because of eq.(6.10), and is not of mode 4 when
H ≤ 0 because of eq.(6.27). It is not of mode 2 because n = 0. Thus, it is of mode 3.
Lemma 6.6 shows that z must be specified by some unique l0 ∈ {1, . . . , N − 1} satisfying
eq.(6.25).
2. One has only to prove for the case where N > 2. First, suppose that l0 < N − 1. Let us
prove eq.(6.35) and eq.(6.36) by induction.
The fact that l0 6= N − 1 implies that N − 1 does not meet all the four conditions in eq.(6.25).
However, in this case, only the second condition can be violated. Thus, F−1

N−1(T [N−1]) ≤
h−1(TN−1). Now, suppose that for some l ∈ {l0 + 1, . . . , N − 1},

F−1
l (T [l]) ≤ F−1

l+1(T [l+1]) ≤ · · · ≤ F−1
N−1(T [N−1]);

F−1
p (T [p]) ≤ h−1(T p), ∀p ∈ {l, . . . , N−1}.

The relation F−1
l (T [l]) ≤ h−1(T l) implies that h(F−1

l (T [l])) ≥ T l and, consequently, T [l] =
Fl(F−1

l (T [l])) = Fl−1(F−1
l (T [l])) + h(F−1

l (T [l])) ≥ Fl−1(F−1
l (T [l])) + T l. This implies that

T [l−1] ≥ Fl−1(F−1
l (T [l])) and, as a consequence, F−1

l−1(T [l−1]) ≤ F−1
l (T [l]) ≤ h−1(T l). In partic-

ular, F−1
l−1(T [l−1]) ≤ F−1

l (T [l]) and F−1
l−1(T [l−1]) ≤ h−1(T l).

If F−1
l−1(T [l−1]) > h−1(T l−1), then all the conditions in eq.(6.25) are satisfied so that l0 = l− 1.

Otherwise, one continues the induction by considering l−1. In this way, eq.(6.35) and eq.(6.36)
are proved.
Next, let us prove eq.(6.33) and eq.(6.34) by induction.
According to eq.(6.25), F−1

l0 (T [l0]) > h−1(T l0). Suppose that l0 > 1 and, for some l ∈
{2, . . . , l0},

F−1
l (T [l]) > F−1

l+1(T [l+1]) > · · · > F−1
l0 (T [l0]);

F−1
p (T [p]) > h−1(T p), ∀p ∈ {l, . . . , l0}.

If F−1
l−1(T [l−1]) ≤ F−1

l (T [l]), then Fl−1(F−1
l−1(T [l−1])) ≥ Fl−1(F−1

l (T [l])), i.e. T [l−1] ≥ Fl(F−1
l (T [l]))−

h(F−1
l (T [l])) = T [l]− h(F−1

l (T [l])) which implies h(F−1
l (T [l])) ≥ T l or equivalently F−1

l (T [l]) ≤
h−1(T l). It contradicts the hypothesis that F−1

l (T [l]) > h−1(T l). Therefore, F−1
l−1(T [l−1]) >

F−1
l (T [l]). Furthermore, F−1

l−1(T [l−1]) > F−1
l (T [l]) > h−1(T l) ≥ h−1(T l−1). These prove

eq.(6.33) and eq.(6.34).
3. For all k ∈ N,

Fk+l(h−1(T l+1))− T [l] − k h(F−1
l (T [l]))

= Fl(h−1(T l+1))− T [l] + k[T l+1 − h(F−1
l (T [l]))]> 0, if h−1(T l+1) < F−1

l (T [l]),
≤ 0, if h−1(T l+1) ≥ F−1

l (T [l]).
(6.38)

If l0 > 1, then, for all l ∈ {1, . . . , l0 − 1}, eq.(6.33) and eq.(6.34) show that F−1
l (T [l]) >

F−1
l+1(T [l+1]) > h−1(T l+1). If l0 < m, then, according to eq.(6.25), F−1

l0 (T [l0]) ≤ h−1(T l0+1).
These two inequalities and eq.(6.38) lead to the conclusion.



4. On the one hand, for l ∈ {1, . . . , l0− 1}, it is proven in the previous statement that
F−1
l (T [l]) > h−1(T l+1) and, consequently, T [l] < Fl(h−1(T l+1)). On the other hand, eq.(6.25)

implies that h−1(T l0) > F−1
l0 (T [l0]) or equivalently T l0 < h(F−1

l0 (T [l0])), thus, T l+1 > h(F−1
l0 (T [l0])) ≥

T l0 .
These two results imply that Fk+l(h−1(T l+1))− T [l]− k h(F−1

l0 (T [l0])) = Fl(h−1(T l+1))− T [l] +
k [T l+1 − h(F−1

l0 (T [l0]))] > 0, which concludes.
5. For l ∈ {0, . . . , l0 − 2}, Bl − Bl+1 = [Fl+1(h−1(T l+1)) − T [l]] −
[Fl+2(h−1(T l+2))− T [l+1]] = [Fl+2(h−1(T l+1))− T l+1− T [l]]− [Fl+2(h−1(T l+2))− T [l]− T l+1] =
Fl+2(h−1(T l+1)) − Fl+2(h−1(T l+2)) ≥ 0, because T l+1 ≥ T l+2. Clearly, equality holds if and
only if T l+1 = T l+2.
6. According to eq.(6.25), F−1

l0 (T [l0]) > h−1(T l0) or equivalently T [l0] < Fl0(h−1(T l0)). Hence,
Fl0(h−1(T l0)) > T [l0] = T [l0−1] + T l0 > T [l0−1] + h(F−1

l0 (T [l0])) and, consequently, Bl0−1 =
Fl0(h−1(T l0))− T [l0−1] > h(F−1

l0 (T [l0])).
7. Given an arbitrary strategy α ∈ Sp. Because T 1 > H in the case where H > 0, and
T [N−1] ≥ F0(ξ̂) in the case where H ≤ 0, zα cannot be of mode 1 or mode 4 according to
Lemmas 6.4 and 6.7. If zα is of mode 3 and specified by l, then l meets the conditions in
eq.(6.25), i.e. l = l0. If zα is of mode 2 and specified by k and l, then F−1

l (T [l]) > h−1(T l) by
eq.(6.14). According to eq.(6.34) and eq.(6.36), l ∈ {1, . . . , l0}.

Lemma 6.10 (Nonatomic case). Suppose that one of the following holds:
(i) H>0, TN≤H, and T 1≤H if N > 1;
(ii) H>0, N >1, T 1>H, TN≤h(F−1

l0 (T [l0])), where l0 is the one in Lemma 6.9;

(iii) H≤0, TN + T [N−1]≤F0(ξ̂);

(iv) H ≤ 0, N ≥ 2, T [N−1] > F0(ξ̂), TN ≤ h(F−1
l0 (T [l0])), where l0 is the one in Lemma 6.9.

Then,
1. All the strategies in SN are equivalent to the nonatomic strategy α. In particular, every
strategy of atomic player N is optimal.
For all SA strategy s ∈ [0, TN ], zs = zᾱ, the CE induced by the trivial strategy ᾱ or equivalently
the CE of the original game Γ(T ) without decentralization.
2. zα is of mode 1 in case (i), of mode 4 in case (iii), and of mode 3 and specified by l0 in
cases (ii) and (iv).

Proof. The results follow from Lemmas 6.4, 6.6, 6.7 and Lemma 6.9 (2).

Lemma 6.11 (Trivial case). Suppose that either (i) H>0, TN >H, and T 1≤H if N >1, or
(ii) H≤0, N=1 and TN>F0(ξ̂). Then
1. zᾱ is of mode 2 specified by 1 and 0.
2. Atomic player N ’s unique optimal decentralization strategy is the trivial one ᾱ, i.e. not
decentralizing.
3. For SA strategies s ∈ [0, TN ], ξ1(zs) and x1(zs) are continuous and non-increasing in s,
and y1(zs) is continuous and non-decreasing in s.



Proof. Denote zᾱ by z̄, xr(z̄) by x̄r, yr(z̄) by ȳr, and ξr(z̄) by ξ̄r. Consider the case H > 0
only. The proof for the case H ≤ 0 is similar.
1. For any strategy α ∈ SN , zα cannot be of mode 4, because H > 0. It cannot be of mode 2
specified by k ∈ N∗ and l ∈ N∗ or mode 3 because, otherwise T 1 > h(ξ1(zα)) > h(M) = H
according to Lemmas 6.5 and 6.6. Therefore, zα is of mode 1 or mode 2 specified by some
k ∈ N∗ and 0.
For any α such that zα is of mode 2 specified by some k ∈ N∗ and 0, it follows from
Lemma 6.5 that there exists some w ∈ (0, TN ] satisfying the conditions in eq.(6.15) so that
α ∈ SN2 (w, T−N ; k, 0). Clearly, ᾱ is in SN2 (TN , T−N ; 1, 0). Thus, z̄ is of mode 2 specified by 1
and 0. Lemma 6.5, eq.(6.11) and eq.(6.12) imply x̄1 = TN − TN−h(ξ̄1)

1+a(ξ̄1) < TN , ȳ1 = M−N and
ξ̄1 = F−1

1 (TN).
2. According to Lemma 6.4, zα is of mode 1 if and only if α ∈ SN1 , i.e. α = α or α1 ≤ H.
In particular, an SA strategy s is in SN1 if and only if s ≤ H. Fix a strategy α ∈ SN1 . Then,
x1(zα) = TN , y1(zα) = M−N and ξ1(zα) = M by eq.(6.9). Since x1(zα) > x̄1 and y1(zα) = ȳ1,
it follows from Lemma 6.8 that UN(α, T−N) > UN(ᾱ, T−N). In other words, no strategy in
SN1 is optimal. In addition, for all s ∈ [0, H], ξ(zs) = M , x1(zs) = TN and yj0(zs) = T j for
0 ≤ j ≤ N − 1, i.e. they are all constant in s.
Now consider an SA strategy s ∈ (H,TN ]. It is not in SN1 , hence zs is of mode 2 specified by 1
and 0. The total weight on arc 1 at zs is ξ1(zs) = F−1

1 (s) by Lemma 6.5. By abuse of notation,
define two functions of s, ξ1 and x1, by ξ1(s) , ξ1(zs) and x1(s) , x1(zs). Since F1 is strictly
decreasing, a bijection θ can be defined from interval (H,TN ], the domain of s, to interval
[F−1

1 (TN),M), the domain of ξ1, such that θ = F−1
1 and θ−1 = F1. Then, atomic player N ’s

cost UN(s, T−N), as a function of s, can be written as a function v of ξ1 on [F−1
1 (TN),M):

v(ξ1) = UN(θ−1(ξ1), T−N) = UN(F1(ξ1), T−N).

According to eq.(6.11), x1 = TN− F1(ξ1)−h(ξ1)
1+a(ξ1) = TN−M+ξ1. Then, for all ξ1 ∈ [F−1

1 (TN),M),

v(ξ1) = x1c1(ξ1) + (TN − x1) c2(M − ξ1) = (TN −M + ξ1)c1(ξ1) + (M − ξ1)c2(M − ξ1).

Its derivative function is

v′(ξ1) = c1(ξ1) + (TN −M + ξ1) c′1(ξ1)− c2(M − ξ1)− (M − ξ1)c′2(M − ξ1)
= c′1(ξ1) (TN − F1(ξ1)) = c′1(ξ1) (TN − s) ≥ 0

and equality holds if and only if s = TN or, equivalently, ξ1 = F−1
1 (TN).

Therefore, v(ξ1) attains its unique minimum on interval [F−1
1 (TN),M) at F−1

1 (TN), and it is
strictly increasing on [F−1

1 (TN),M). As a result, the trivial strategy ᾱ is optimal, and it is
the unique SA strategy that is optimal.
Let us show that ᾱ is the unique optimal strategy. Recall that no strategy in SN1 is optimal,
hence it is enough to show that no strategy in SN \SN1 other than ᾱ is optimal. Given an
arbitrary α ∈ SN \SN1 , suppose that it is in SN2 (w, T−N ; k, 0) for some w ∈ (0, TN ] and
k ∈ N∗. According to Lemma 6.5, α is equivalent to SA strategy w − (k − 1)h(η1), where
η1 = F−1

k (w). If SA strategy w−(k−1)h(η1) < TN , then α is not optimal. If w−(k−1)h(η1) =
TN , then α induces the same aggregate weight on arc 1 as ᾱ, i.e. η1 = F−1

1 (TN). As a
result, w = TN + (k − 1)h(F−1

1 (TN)). On the one hand, F−1
1 (TN) < M and, consequently,



h(F−1
1 (TN)) > h(M) = H > 0. It follows that w = TN + (k − 1)h(F−1

1 (TN)) ≥ TN , and
equality holds if and only if k = 1. On the other hand, w ≤ TN . Therefore, k = 1 and
w = TN , and α is just ᾱ.
3. It is already shown that for s ∈ [0, H], ξ, x1(zs) and y1(zs) are all constant in s. For
s ∈ (0, H], recall that ξ1(zs) = F−1(s), and y1(zs) = M−N by Lemma 6.5. Thus ξ1(zs) is
strictly decreasing in s, y1(zs) is constant. Consequently, x1(zs) = ξ1(zs) − y1(zs) is strictly
increasing in s.

Lemma 6.12 (Nontrivial case). In the cases not treated in Lemmas 6.10 and 6.11, one has
the following.
1. Atomic player N has at least one optimal decentralization strategy.
2. If α ∈ SN is optimal, then zα can be of mode 3 specified by l0, or of mode 2 specified by
some k ∈ N∗ and some l ∈ {0, 1, . . . , l0}.
3. For SA strategy s ∈ [0, TN ], ξ1(zs) and x1(zs) are continuous and non-increasing in s, and
y1(zs) is continuous and non-decreasing in s.

The proof follows arguments similar to those in the previous proof, but much longer. It is
omitted to save space.

Proof of Theorem 3.1. The result follows from Lemmas 6.10, 6.11, and 6.12, which treat
the three cases respectively. For the nontrivial case, Lemma 6.12 shows that U(s, T−N) is a
continuous function in SA strategy s on [0, TN ], hence a minimizer exists.

Corollary 6.13. Consider SA strategies s ∈ SAN = [0, TN ] and the corresponding CE zs in
the induced game Γ(s, T−N). Both ξ1(zs) and x1(zs) are non-increasing in s, whereas y1(zs)
is non-decreasing in s.

Proof. It is a straight forward corollary of Lemmas 6.10–6.12.

Proof of Theorem 3.2. According to Theorem 2.1, it is sufficient to prove

inf
x∈XN

ΠN(x, T−N) = min
s∈SAN

UN(s, T−N), (6.39)

and the minimizer on the left hand side exists and is unique.
First show that infx∈XN ΠN(x, T−N) ≤ mins∈SAN UN(s, T−N). Indeed, for any s ∈ SAN , recall
that the aggregate flow of the deputies of atomic player N at zs is x(zs) = (xr(zs))2

r=1, and the
flows of the players in T−N are y(zs) = ((ylr(zs))2

r=1)N−1
l=0 . In Stackelberg game SΓ(TN , T−N), by

playing strategy x(zs), the CE of the induced composite congestion game Γx(zs)(T−N), Zx(zs), is
just y(zs). This is because at (x(zs), Zx(zs)) and at zs, the flows of the players in T−N satisfy the
same equilibrium condition and such flows are unique. Thus, ΠN(x(zs), T−N) = UN(s, T−N)
and, consequently, infx∈XN ΠN(x, T−N) ≤ mins∈SAN UN(s, T−N).
Next show that infx∈XN ΠN(x, T−N) ≥ mins∈SAN UN(s, T−N). For all decentralization strategy
s ∈ SAN , let z′s = (x(zs), y(zs)) be the semi-aggregate flow induced by zs by considering only
the aggregate flow of atomic player N ’s deputies. Now in Stackelberg game SΓ(TN , T−N),
for an arbitrary strategy x ∈ XN of the leader atomic player N , if it induces a CE Zx in



the composite congestion game Γx(T−N) such that (x, Zx) = z′s for some s ∈ SAN , then
ΠN(x, T−N) = UN(s, T−N) ≥ mint∈SAN UN(t, T−N). Suppose that there exists x ∈ XN such
that no s ∈ SAN satisfy (x, Zx) = z′s. Let us show that ΠN(x, T−N) is not lower than
UN(ᾱ, T−N), the cost to atomic player N when she plays the trivial decentralization strategy
ᾱ. In other words, such a strategy cannot be strictly better than xN , with xN being N ’s flow
at the CE x of congestion game Γ(T ).
For the sake of simplicity, denote zᾱ by z̄, xr(zᾱ) by x̄r, yjr(zᾱ) by ȳjr , yr(zᾱ) by ȳr, and ξr(zᾱ)
by ξ̄r; besides, denote by ξr the total weight on arc r at (x, Zx), and by yj = (yjr)2

r=1 the flow
of atomic player j or that of the nonatomic players in T−N at (x, Zx).

If ξ1 = ξ̄1 = ξ̂, then ΠN(x, T−N) = UN(ᾱ, T−N) = TNc(ξ̂). If ξ1 = ξ̄1 6= ξ̂, then by the proof of
Lemma 6.3, x1 = x̄1 and yj1 = ȳj1, 0 ≤ j ≤ N − 1. Consequently, z̄ = (x, Zx), a contradiction.
Thus one should only consider the case that ξ1 6= ξ̄1.
According to Corollary 6.13, x1(zs) and ξ1(zs) are non-increasing and continuous in s while
y1(zs) is non-decreasing and continuous in SA decentralization strategy s ∈ [0, TN ]. In partic-
ular, the maximum (resp. minimum) of ξ1(zs) and x1(zs) are attained at s = 0 (resp. s = TN),
i.e. when atomic player N plays the nonatomic decentralization strategy α (resp. the triv-
ial decentralization strategy ᾱ). Since no s satisfies (x, Zx) = z′s, x1 /∈ [x̄1, x1(zα)] (because
otherwise a contradiction can be obtained by arguments similar to the proof of Lemma 6.3).
But x1(zα) = TN , thus x1 cannot be greater than this. Therefore x1 < x̄1. If ξ1 > ξ̄1, then
for all j ∈ {0, . . . , N−1}, yj1 ≤ ȳj1. Indeed, for j = 0, since c1(ξ̄1) < c1(ξ1) ≤ c2(ξ2) < c2(ξ̄2),
ȳ0

1 = T 0 ≥ y0
1. For each 1 ≤ j ≤ N − 1, ȳj1 is the solution of the following equations in w:

either w < T j and c1(ξ̄1) + w c′1(ξ̄1) = c2(ξ̄2) + (T j − w) c′2(ξ̄2), (6.40)
or w = T j and c1(ξ̄1) + w c′1(ξ̄1) ≤ c2(ξ̄2) + (T j − w) c′2(ξ̄2), (6.41)

while yj1 is the solution of these equation in w:

either w < T j and c1(ξ1) + w c′1(ξ1) = c2(ξ2) + (T j − w) c′2(ξ2), (6.42)
or w = T j and c1(ξ1) + w c′1(ξ1) ≤ c2(ξ2) + (T j − w) c′2(ξ2). (6.43)

If ȳj1 satisfies eq.(6.40), i.e. c1(ξ̄1) + ȳj1 c
′
1(ξ̄1) = c2(ξ̄2) + (T j − ȳj1) c′2(ξ̄2), since ξ1 > ξ̄1,

c1(ξ1) + ȳj1 c
′
1(ξ1) > c2(ξ2) + (T j − ȳj1) c′2(ξ̄2). Thus, if yj1 satisfy either eq.(6.42) or eq.(6.43),

then yj1 < ȳj1. If ȳj1 satisfies eq.(6.41), then ȳj1 = T j ≥ yj1.
Therefore y1 ≤ ȳ1. But x1 < x̄1, hence ξ1 < ξ̄1, contradictory to the hypothesis that ξ1 > ξ̄1.
This proves that ξ1 ≤ ξ̄1 and consequently y1 ≥ ȳ1. Let ∆ξ = ξ̄1− ξ1 and ∆x = x̄1−x1. Then
∆x ≥ ∆ξ. Now let us show that ΠN(x, T−N) > UN(ᾱ, T−N).
At z̄, c1(ξ̄1) ≤ c2(ξ̄2) and, according to eq.(6.3), c1(ξ̄1)+x̄1c

′
1(ξ̄1) ≤ c2(ξ̄2)+x̄2c

′
2(ξ̄2). Therefore,

for all s ∈ [0,∆ξ],

c1(ξ̄1 − s) ≤ c2(ξ̄2 + s), (6.44)
c1(ξ̄1 − s) + (x̄1 − s)c′1(ξ̄1 − s) ≤ c2(ξ̄2 + s) + (x̄2 + s)c′2(ξ̄2 + s), (6.45)



Finally,

ΠN(x, T−N)− UN(ᾱ, T−N)
= [x1c1(ξ1) + x2c2(ξ2)]−[x̄1c1(̄ξ1) + x̄2c2(̄ξ2)]
= [x2c2(ξ2)−x̄2c2(̄ξ2)]−[x̄1c1(̄ξ1)−x1c1(ξ1)]
= [(x̄2 + ∆ξ)c2(ξ̄2 + ∆ξ)− x̄2c2(ξ̄2) + (∆x−∆ξ)c2(ξ̄2 + ∆ξ)]
− [x̄1c1(ξ̄1)− (x̄1 −∆ξ)c1(ξ̄1 −∆ξ) + (∆x−∆ξ)c1(ξ̄1 −∆ξ)]

=
∫ ∆ξ

0
c(ξ̄2 + s) + (x̄2 + s)c′2(ξ̄2 + s) ds−

∫ ∆ξ

0
c1(ξ̄1 − s) + (x̄1 − s)c′1(ξ̄1 − s) ds

+ (∆x−∆ξ)(c2(ξ̄2 + ∆ξ)− c1(ξ̄1 −∆ξ)] ≥ 0,

because of eq.(6.44) and eq.(6.45).
Eq.(6.39) is proved. Meanwhile, an equilibrium strategy of player N in the Stackelberg game,
i.e. a minimizer of the left hand side of eq.(6.39), is also found: (xr(zα))2

r=1, where α is an
optimal unilateral decentralization of player N .

Proof of Theorem 4.1. For the sake of simplicity, denote zᾱ by z̄, xr(zᾱ) by x̄r, yj(zᾱ) by
ȳj, and ξr(zᾱ) by ξ̄r.
In the nonatomic case, atomic player N ’s all decentralization strategies, including the trivial
one (not decentralizing), result in the same outcome. Hence, the other players’ costs and the
social cost never change after the decentralization.
Now consider the trivial case and the nontrivial case. According to Lemmas 6.11, 6.12 and
their proofs, z̄ is of mode 2. Then c1(ξ̄1) < c2(ξ̄2).
It is sufficient to prove the result for all SA strategies s ∈ [0, TN). Corollary 6.13 states
that ξ1(zs) and x1(zs) are non-increasing in s and, in particular, strictly decreasing in a
neighborhood around TN , while y1(zs) are non-decreasing in s. Fix an s ∈ [0, TN), and denote
xr(zs) simply by xr, yjr(zs) by yjr , and ξr(zs) by ξr. Then, ξ1 > ξ̄1 and x1 > x̄1. By the same
argument used in the proof of Theorem 3.2, one can show that for all j ∈ I \ {0, N}, yj1 ≤ ȳj1.
Let us compare the costs of the players in I\{N} and the social cost at zs with those at z̄.
For the nonatomic players in T 0, the fact that ξ1 ≥ ξ̄1 immediately implies that u0(z) =
c1(ξ1) ≥ c1(ξ̄1) = u0(z̄). Equality holds if and only if ξ̄1 = ξ1, which is impossible.
For j ∈ I\{0, N} such that c1(ξ̄1) + ȳj1c

′
1(ξ̄1) = c2(ξ̄2) + ȳj2c

′
2(ξ̄2) and, consequently, ȳj1c′1(ξ̄1) >

ȳj2c
′
2(ξ̄2) because c1(ξ̄1) < c2(ξ̄2). Let B be a constant such that ȳj1c′1(ξ̄1) > B > ȳj2c

′
2(ξ̄2).

Then, for all s ∈ (ξ̄1 − ȳj1,M − ȳ
j
1] and all t ∈ [−ȳj2, ξ̄2 − ȳj2),

ȳj1c
′
1(ȳj1 + s) > B > ȳj2c

′
2(ȳj2 + t). (6.46)



It follows from the relation ξ1 > ξ̄1 that ξ1 − ȳj1 > ξ̄1 − ȳj1 and ξ2 − ȳj2 < ξ̄2 − ȳj2. Therefore,

[ȳj1c1(ξ1) + ȳj2c2(ξ2)]− [ȳj1c1(ξ̄1) + ȳj2c2(ξ̄2)]
= [ȳj1c1(ȳj1 + ξ1 − ȳj1) + ȳj2c2(ȳj2 + ξ2 − ȳj2)]− [ȳj1c1(ȳj1 + ȳ−j1 ) + ȳj2c2(ȳj2 + ȳ−j2 )]
= ȳj1[c1(ȳj1 + ξ1 − ȳj1)− c1(ȳj1 + ȳ−j1 )]− ȳj2[c1(ȳj2 + ȳ−j2 )− c2(ȳj2 + ξ2 − ȳj2)]

=
∫ ξ1−ȳj

1

ξ̄1−ȳj
1

ȳj1c
′
1(̄yj1+s)ds−

∫ ξ̄2−ȳj
2

ξ2−ȳj
2

ȳj2c
′
2(̄yj2+t)dt> [ξ1−ξ̄1]B−[ξ̄−j2 −ξ2]B =0,

where the inequality is due to eq.(6.46), and

[yj1c1(ξ1) + yj2c2(ξ2)]− [ȳj1c1(ξ1) + ȳj2c2(ξ2)]
= [yj1 − ȳj1]c1(ξ1) + [yj2 − ȳj2]c2(ξ2) = [yj1 − ȳj1][c1(ξ1)− c2(ξ2)] ≥ 0

because yj1 ≤ ȳj1 and c1(ξ1) < c2(ξ2). As a result,

uj(zs)− uj(z̄) = [yj1 c1(ξ1) + yj2 c2(ξ2)]− [ȳj1 c1(ξ̄1) + x̄j2 c2(ξ̄2)]
= [yj1c1(ξ1)+yj2c2(ξ2)]−[ȳj1c1(ξ1) +ȳj2c2(ξ2)]+[ȳj1c1(ξ1)+ȳj2c2(ξ2)]
−[ȳj1c1(̄ξ1)+ȳj2c2(̄ξ2)]

> 0.

For j ∈ I \{0, N} such that c1(ξ̄1) + ȳj1c
′
1(ξ̄1) < c2(ξ̄2) + ȳj2c

′
2(ξ̄2), ȳj1 = T j ≥ yj1. Recall that

c2(ξ2) ≥ c1(ξ1) and ξ1 > ξ̄1. Therefore,

uj(z)− uj(z̄) = [ yj1 c1(ξ1) + yj2 c2(ξ2) ]− T j c1(ξ̄1) ≥ T j c1(ξ1)− T j c1(ξ̄1) > 0.

Finally, consider the social cost. Since z̄ is of mode 2 specified by 1 and l, it follows from eq.(6.3)
that c1(ξ̄1)+x̄1 c

′
1(ξ̄1) = c2(ξ̄2)+x̄2 c

′
2(ξ̄2), and c1(ξ̄1)+ ȳj1 c′1(ξ̄1) = c2(ξ̄2)+ ȳj2 c′2(ξ̄2) for 1 ≤ j ≤ l

if l ≥ 1. Summing these l + 1 equations leads to (l + 1)c1(ξ̄1) + [ξ̄1 − (M−N − T [l])] c′1(ξ̄1) =
(l+1)c2(ξ̄2)+ ξ̄2 c

′
2(ξ̄2). Consequently, c1(ξ̄1)+ ξ̄1 c

′
1(ξ̄1) = c2(ξ̄2)+ ξ̄2 c

′
2(ξ̄2)+ l[ c2(ξ̄2)−c1(ξ̄1)]+

(M−N − T [l]) c′1(ξ̄1). Since c1(ξ̄1) ≤ c2(ξ̄2) and l ≥ 0, there exists a constant D > 0 such that
c1(ξ̄1) + ξ̄1 c

′
1(ξ̄1) ≥ D ≥ c2(ξ̄2) + ξ̄2 c

′
2(ξ̄2). According to Assumption 1, c1 and c2 are both

strictly increasing while c′1 and c′2 are non-decreasing. Hence, for any s ∈ (ξ̄1,M ] and any
t ∈ [0, ξ̄2),

c1(s) + s c′1(s) > D > c2(t) + t c′2(t). (6.47)

Since ξ1 > ξ̄1, eq.(6.47) implies that

CS(zs)− CS(z̄)
= [ξ1 c1(ξ1) + (M − ξ2) c2(M − ξ2)]− [ξ̄1 c1(ξ̄1) + (M − ξ̄1) c2(M − ξ̄1)]
= [ξ1 c1(ξ1)− ξ̄1 c1(ξ̄1)]− [(M − ξ̄1) c2(M − ξ̄1)− (M − ξ1)c2(M − ξ1)]

=
∫ t

ξ̄1
[c1(s) + sc′1(s)]ds−

∫ M−ξ̄1

M−ξ1
[c2(t) + tc′2(t)]dt

> (ξ1 − ξ̄1)D − (M − ξ̄1 −M + ξ1)D
= 0.
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