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Abstract. Prompted by an application in the area of human geography
using machine learning to study housing market valuation based on the
urban form, we propose a method based on possibility theory to deal with
sparse data, which can be combined with any machine learning method
to approach weakly supervised learning problems. More specifically, the
solution we propose constructs a possibilistic loss function to account
for an uncertain supervisory signal. Although the proposal is illustrated
on a specific application, its basic principles are general. The proposed
method is then empirically validated on real-world data.
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1 Introduction

Supervised learning is the machine learning task of learning a function that
maps an input to an output based on example input-output pairs [18]. Each
example consists of an input record, which collects the values of a number of
input variables, and the associated value of the output variable (also called the
supervisory signal). The learnt function can then be used to “predict” the value
of the output variable for new unlabeled input records, whose output value is
not known.

In many real-world problems, obtaining a fully labeled dataset is expen-
sive, difficult, or outright impossible. An entire subfield of machine learning,
called weakly (or semi-) supervised learning has thus emerged, which studies
how datasets where the supervisory signal is not available or completely known
for all the records can be used for learning. According to a useful taxonomy
of classification problems that can arise in that field [10], four broad classes of
problems can be identified:



– single-instance, single-label (SISL), which corresponds to the standard set-
ting where all the examples consist of a single instance, to which a single
(i.e., certain) class label is assigned;

– single-instance, multiple-label (SIML), where some examples, consisting of
single instances, are assigned a (disjunctive) set of possible class labels, in-
cluding, to an extreme, the set of all the class labels, which corresponds to
the case of a missing supervisory signal;

– multiple instance, single-label (MISL), when examples may consist of sets of
instances, being assigned a single label as a whole;

– multiple instance, multiple-label (MIML), when, in addition, some examples
are assigned a (disjunctive) set of possible values.

This taxonomy of course assumes that the output variable of the underlying
objects, which one seeks to predict, can only have a single true value. It should be
mentioned that other problems exist, called multi-label classification [19], where,
for a given underlying object, described by an input record, multiple values can
be active at the same time, which would then be described by a conjunctive set
of output values. In that case, the learnt function is set-valued.

The above taxonomy can be extended to regression or “predictive modeling”
problems, where the “label” is a number, ranging on a discrete or continuous
interval.

In the framework of an interdisciplinary research project applying machine
learning and urban morphology theory to the investigation of the influence of the
urban environment on the value of residential real estate [21], we faced the prob-
lem of incorporating into a predictive model uncertain information associated
with prices, addressing issues of data sparsity, a problem that falls within the
SIML category of the above taxonomy. This prompted us to propose an original
method to deal with output variable uncertainty in predictive modeling, based
on possibility theory, which we present below.

As it has been argued for example by Bouveyron et al. [1], while the problem
of noise in data has been widely studied in the literature on supervised learning,
the problem of label noise remains an important and unsolved problem in su-
pervised classification. Nigam et al. [15] proposed Robust Mixture Discriminant
Analysis (RMDA), a supervised classification whose aim is to detect inconsistent
labels by comparing the labels given for labeled data set with the ones obtained
through an unsupervised modeling based on the Gaussian mixture model. To
solve the problem of automatic building extraction from aerial or satellite im-
ages with noise labels, Zhang et al. [23] propose to capture the relationship
between the true label and the noisy label, a general label noise-adaptive (NA)
neural network framework consisting of a combination of a base network with
an additional probability transition module (PTM) introduced to capture the
relationship between the true label and the noisy label. Other researchers prefer
to focus on constructing a loss function that is robust to noise [9].

However, the uncertainty brought about by data sparsity in our problem
is hard to characterize as a probability distribution, making the application of



one of the probabilistic approaches to weak supervised learning proposed in the
literature unattractive.

Vannoorenberghe et al., instead, proposed a different approach [20] in which
the induction of decision trees is based on the theory of belief functions. In their
framework, it is supposed that the training examples have uncertain or imprecise
labels. In the same spirit, Quost et al. [17] also proposed a belief-function-based
framework to be used for supervised learning, in which the training data are as-
sociated with uncertain labels. They supposed that each example in the training
data set is associated to a belief assignment that represents the actual knowl-
edge of the actual class of the example and used a boosting method to solve
the classification problem. Denœux et al. [4] introduce a category of learning
problems in which the labels associated to the examples in the training data set
are assessed by an expert and encoded in the form of a possibility distribution.
Although this work is very relevant to what we are proposing here, the authors
obtain their possibility distributions from human experts, which can be expen-
sive and difficult, whereas the method we propose automatically computes those
distributions from data.

Traditionally, housing market valuations are modeled, in a linear fashion,
through a combination of intrinsic and extrinsic features evaluated for each
dwelling. Although such linear models provide easy-to-read results, they are
severely limited as they assume linearity and independence among variables.
However, this might not be the case. For example, a specific variable might
change its behaviour for different subsets of observations. More recently, re-
searchers have applied Machine Learning (ML) techniques to study the same
phenomenon [16, 3, 8]. However, their aim was mainly predictive. Thus, although
linearity and independence among variables were tackled through the use of such
algorithms, their results lacked interpretability. Finally, the intrinsic/extrinsic di-
chotomy does not hold when the goal of the analysis is the valuation of urban
subspaces (like neighborhoods or street segments) instead of individual dwellings.
To tackle these issues, we have devised an approach rooted in Urban Morphol-
ogy to explain housing values at a fine level of spatial granularity, that of street
segments and we designed a sequence of appropriate ML techniques that out-
put interpretable results. To be more specific, the proposed approach, firstly,
computes street-based measures of housing values, urban form, functions, and
landscape and then models the relationship between them through an ensemble
method comprising of Gradient Boosting (GB) [7], topological Moran’s test [14],
and SHAP [13], a recently developed technique to interpret outputs of ML algo-
rithms. The approach has been used to explain the median valuation of street
segments in the French Riviera, using housing transactions from the period 2008–
2017, through more than 100 metrics of urban form, functions, and landscape.

One difficulty this approach runs into is that transaction data, which are
the only source of observations of the output variables (the measures of housing
values), are rather sparse at the scale of the street segment. One possible way to
overcome this difficulty would be to limit our study to those street segments for
which enough observations are available, e.g., at least ten transactions within



the observation period; however, this drastically reduces the number of street
segments that can be studied and introduces a bias toward neighborhoods having
a relatively high turnover. An alternative and more attractive solution, which is
the subject of this paper, is to use all available observations, while taking into
account the uncertainty brought about by data sparsity.

Essentially, the solution we propose is to model the uncertainty relevant
to the output variable within the framework of possibility theory and modify
the loss function of the ML technique, used to model the phenomenon, so that
it can weight the error based on the uncertainty of the output variable. This
approach is very much in the same spirit as the fuzzy loss function proposed
by Hüllermeier [11, 12]. An important advantage of such solution is that it is
readily transferable to any supervised or semi-supervised ML technique using a
loss function (which is the case for the vast majority of such techniques).

The rest of the paper is organized as follows: Section 2 provides some back-
ground on possibility theory, which is required in order to understand the pro-
posed approach; Section 3 states the main question we address, as it emerges from
the real-estate price study that motivated our proposal. The proposed solution
itself is presented in Section 4, while Section 5 discusses its empirical validation.
Section 6 draws some conclusions and proposes some ideas for further research.

2 Background on Possibility Theory

Fuzzy sets [22] are sets whose elements have degrees of membership in [0, 1].
Possibility theory [6] is a mathematical theory of uncertainty that relies upon
fuzzy set theory, in that the (fuzzy) set of possible values for a variable of interest
is used to describe the uncertainty as to its precise value. At the semantic level,
the membership function of such set, π, is called a possibility distribution and its
range is [0, 1]. A possibility distribution can represent the available knowledge of
an agent. π(I) represents the degree of compatibility of the interpretation I with
the available knowledge about the real world if we are representing uncertain
pieces of knowledge. By convention, π(I) = 1 means that it is totally possible
for I to be the real world, 1 > π(I) > 0 means that I is only somehow possible,
while π(I) = 0 means that I is certainly not the real world.

A possibility distribution π is said to be normalized if there exists at least one
interpretation I0 s.t. π(I0) = 1, i.e., there exists at least one possible situation
which is consistent with the available knowledge.

Definition 1. (Possibility and Necessity Measures) A possibility distribution π
induces a possibility measure and its dual necessity measure, denoted by Π and
N respectively. Both measures apply to a classical set S ⊆ Ω and are defined as
follows:

Π(S) = max
I∈S

π(I); (1)

N(S) = 1−Π(S̄) = min
I∈S̄
{1− π(I)}. (2)



In words, Π(S) expresses to what extent S is consistent with the available
knowledge. Conversely, N(S) expresses to what extent S is entailed by the avail-
able knowledge. It is equivalent to the impossibility of its complement S̄—the
more S̄ is impossible, the more S is certain. A few properties of Π and N in-
duced by a normalized possibility distribution on a finite universe of discourse
Ω are the following. For all subsets A,B ⊆ Ω:

1. Π(A ∪B) = max{Π(A), Π(B)};
2. Π(A ∩B) ≤ min{Π(A), Π(B)};
3. Π(∅) = N(∅) = 0; Π(Ω) = N(Ω) = 1;

4. N(A ∩B) = min{N(A), N(B)};
5. N(A ∪B) ≥ max{N(A), N(B)};
6. Π(A) = 1−N(Ā) (duality);

7. N(A) > 0⇒ Π(A) = 1; Π(A) < 1⇒ N(A) = 0;

A consequence of these properties is that max{Π(A), Π(Ā)} = 1. In case of
complete ignorance on A, Π(A) = Π(Ā) = 1.

3 Problem Statement

To make this paper self-contained, we briefly recall here some elements, relevant
to the solution we are going to describe in Section 4, of the problem that mo-
tivated our proposal. The interested reader can refer to [21] for a more detailed
explanation.

3.1 Pre-processing

Housing transactions of different years and housing typologies cannot be directly
compared due to yearly inflation, housing market cycles (e.g., economic reces-
sion, upturn), and specific market behaviours affecting different housing types.
For example, bigger properties tend to be sold less frequently as they are more
expensive and subject to long term investments, while smaller properties, due
to their relative lower valuations, tend to be exchanged more easily and tend
to be subject of shorter-term investments. The average price per square meter
tends also to be structurally higher for small flats for technical reasons (even the
smallest flat needs sanitary and cooking equipment, which proportionally weigh
more on the average price per surface unit compared to a larger property). The
very notion of average price per square meter can thus be challenged when ap-
plied to such diverse housing markets. To address these issues, instead of the
conventional price per square meter, our method requires to separate the trans-
actions by year and housing type and compute ventiles of prices for each subset
year of transaction - housing type. We consider such statistics as appropriate
normalized values, which account for different market segments and years, thus
making transactions comparable among them.



3.2 Computation of the Median of Values

Having classified each transaction in a ventile of value, the next step requires
to first assign to each data point the street segment to which they belong and,
second, aggregate the information on value at the street level through the com-
putation of a measure of central tendency (i.e., median). Such measure provides
information on the central point of the distribution of the value of the housing
market, for each street. We perform such computation for the ensemble of each
street segment and its immediate neighbouring streets. This for two reasons:
firstly, transactions located in streets directly connected to one another tend to
have similar valuations (due to the influence of the same location factors, pres-
ence of properties at the intersection of several streets segments, etc.); secondly,
data on house prices tend to be quite sparse, even for several years, and thus a
local interpolation allows us to increase the data coverage. Nevertheless, most
street segments end up having less than ten transactions per housing type, which
introduces uncertainty into the computation of the median statistics.

3.3 Street-Based Metrics of the Urban Environment and Landscape

To characterize the context of each street segment in the most comprehensive
way possible, we compute a set of descriptors that quantify aspects of the urban
fabric, street-network configuration, functions, housing stock, and landscape.
Their definition is out of the scope of this paper.

4 Proposed Solution

In abstract terms, we can describe the problem as follows. We are given a sam-
ple of observed variates x1, x2, . . . , xn and a number of probability distributions
(the hypothesis space). We want to assess the possibility degree of these proba-
bility distributions based on the given sample, i.e., the degree to which they are
compatible with the observations.

4.1 Possibility of a Price Distribution

We can limit ourselves to parametric families of distributions. In this case, this
problem can be described as a sort of possibilistic parameter estimation. In
the Incertimmo project, we consider distributions described by three deciles:
(d1, d5 = median, d9). We recall that the ith decile di is the smallest number
x satisfying Pr[X ≤ x] ≥ i

10 . By definition, d1 ≤ d5 ≤ d9. Furthermore, for a
probability distribution defined in the [a, b] interval, we know that 10% of the
probability mass is in the [a, d1] interval, 40% in the (d1, d5] interval, 40% in the
(d5, d9] interval, and 10% in the (d9, b] interval. We make the additional simpli-
fying assumption that the probability mass is uniformly distributed within each
of the above intervals. While this might look like a very restrictive assumption,
on the one hand it is motivated by the type of qualitative descriptions of price



distribution that are of interest to the human geographers (i.e., by the appli-
cation at hand) and, on the other hand, could easily be relaxed by selecting
other parametric families of distributions without serious consequences on the
proposed approach.

This yields a parametric family of probability distributions on the [a, b] in-
terval whose density (in the continuous case) or probability (in the discrete case)
function is

f(x; d1, d5, d9) =


1

10(d1−a) , a ≤ x ≤ d1;
2

5(d5−d1) , d1 < x ≤ d5;
2

5(d9−d5) , d5 < x ≤ d9;
1

10(b−d9) , d9 < x ≤ b.

(3)

The degenerate cases that arise when d1 = d5, d5 = d9, or d9 = b are treated
by adding to the result the contributions of the lines whose condition becomes
empty.

In the specific application described in Section 3, as we have seen, the ob-
served variates are ventiles of the general distribution of housing prices, taking
up values in the discrete set {1, 2, . . . , 20}.

Given the sample x1, x2, . . . , xn, it is easy to compute the probability that it
is produced by a given distribution of the parametric family, having parameters
(d1, d5, d9). This is

Pr[x1, x2, . . . , xn | (d1, d5, d9)] =

n∏
i=1

f(xi; d1, d5, d9). (4)

This probability is in fact a likelihood function over the distribution of price
ventiles, which we will denote by L(d1, d5, d9).

The link between likelihoods and possibility theory has been explored in [5].
The main result of that study was that possibility measures can be interpreted
as the supremum of a family of likelihood functions. It should be stressed that
this is an exact interpretation, not just an approximation. Based on this result,
we transform the likelihood function L into a possibility distribution over the
set of parametric probability distributions of the form (d1, d5, d9).

Notice that the parameters d1, d5, d9 of the probability distributions are the
elementary events of this possibility space. A possibility distribution over that
space is obtained by letting

π(d1, d5, d9) = L(d1, d5, d9)/Lmax, (5)

where

Lmax = max
1≤x≤y≤z≤20

L(x, y, z),

with x, y, z ∈ {0, 1, . . . , 20}, so that all the maximum-likelihood probability dis-
tributions have a possibility degree of 1, thus yielding a normalized possibility
distribution. Alternatively, the logarithm of the likelihood could be used instead.
We restrict the values of the three parameters to the set {0, 1, . . . , 20}, because



prices are relative and expressed in ventiles in the application at hand. Of course,
for other applications, different ranges of values should be considered.

Now, specific values or intervals of one parameter will constitute complex
events, i.e., sets of elementary events, and their possibility and necessity mea-
sures can be computed as usual, as the maximum of the possibilities of the
distributions that fit the specification and 1−max of all the others, respectively.
For instance, the possibility measure over the median price ventile (d5) of a given
street segment will be given, for all d5 ∈ {1, . . . , 20}, by

Π(d5) = max
1≤x≤d5≤y≤20

π(x, d5, y), (6)

where π(·, ·, ·) is defined as in Equation 5.

4.2 Loss Function under Possibilistic Uncertainty

The error made by the model predicting that the median price for a street
segment is in ventile ŷ when all we know is the possibility distribution π over
the probability distributions of the prices for that segment, can be defined as

L(ŷ, π) =

∫ 1

0

min
Π(y)≥α

(ŷ − y)2dα, (7)

where Π(y) is the possibility measure of the distributions having y as their
median. Equation 7 is based on an underlying square error function e(y) =
(ŷ − y)2, but it could be easily generalized to use an arbitrary error function.

In practice, if Λ = (0 = λ1, λ2, . . . , 1) is the list of possibility levels of π, such
that ∀i > 1,∃(z, y, z) : π(z, y, z) = λi, Equation 7 can be rewritten as

L(ŷ, π) =

‖Λ‖∑
i=2

(λi − λi−1) min
Π(y)≥λi

(ŷ − y)2. (8)

This loss function has been coded in Python in such a way that it could be
provided as a custom evaluation function to an arbitrary machine learning
method offering this possibility. Most of the loss computation requires iterating
through all price distributions of the parametric family (with the three parame-
ters 0 ≤ d1 ≤ d5 ≤ d9 ≤ 20, there are 1,540 of them). To optimize performance,
we pre-computed the loss function into a lookup table. Since we are using Gradi-
ent Boosting Gradient descent (Newton version in XGBoost), we have provided
also functions that return its gradient and Hessian.

5 Experiments and Results

In this section we report the experiments we carried out to validate our method.
We use real-world data consisting of all the housing transactions made on the



French Riviera over the period 2008–2017.1 Each record contains detailed intrin-
sic features of the dwelling that was sold/bought, including its address and the
price paid. From these data, we compiled a dataset whose records correspond to
street segments, described by more than 100 metrics of urban form, functions,
and landscape, and a distribution of price ventiles for each type of dwelling.

Our goal is to compare the performance of a predictive model trained on this
dataset, where the labels are uncertain, due to sparseness of transaction data,
to the performance of a predictive model trained on a dataset where the labels
are certain (in our case, estimated based on a sufficient number of transactions).
If the model trained under uncertainty is able to obtain results similar to those
of the model trained without uncertainty, this can be taken as evidence that our
method is successful at compensating for the loss of transaction data.

5.1 Experimental Protocol

We proceeded as follows. From our dataset, we extracted the set of street seg-
ments having at least 10 recorded transactions. These are the street segments for
which we consider that the distribution of prices can be estimated in a reliable
way. Let us call this dataset D.

Fig. 1. A graphical illustration of the sampling mechanism used to create subsamples
of the original dataset.

We then constructed a second dataset D′ by randomly subsampling the trans-
actions from the street segments of D, in such a way as to obtain a similar dis-
tribution of the number of transactions per street segment as in the full dataset
(i.e., the dataset including also segments having fewer than 10 recorded trans-
actions). For example, if in the full dataset 15% of the street segments has more
than 10 recorded transactions (by the way, this subset of the full dataset is what
we have called D), then also 15% of the street segments of D′ has more than 10
transactions. In general, if the percentage of street segments in the full dataset

1 Extracted from the PERVAL database, https://www.perval.fr/.



Table 1. Distribution of available transactions per street segment for different sub-
sampling rates. Column “≥ 10” gives the number of street segments with at least 10
transactions, “[3, 9]” the number of street segments with 3 to 9 transactions, and so
on.

Rate ≥ 10 [3, 9] [1, 2] = 0

100% 14,317 — — —
90% 13,404 913 — —
80% 12,366 1,951 — —
70% 11,125 3,190 2 —
60% 9,939 4,364 14 —
50% 8,527 5,695 95 —
40% 6,917 6,989 406 6
30% 5,055 8,050 1,149 63
20% 2,998 8,184 2,791 344
10% 814 6,013 5,610 1,880

that have n transactions is x, then D is samples so that the percentage of street
segments in D′ that have n transactions be as close as possible to x. This way,
we can say that D′ is to D as D is to the set of all street segments in the study
area and, as a consequence, any observation about the predictive power on D of
models trained on D′ can provide, by proportional analogy, an indication of the
predictive power on the full dataset of models trained on D. Figure 1 graphically
illustrates this sampling mechanism and Table 1 provides some statistics about
the dataset D′ that we obtain depending on the chosen sampling rate.

Notice that the two datasetsD andD′ have the same size (in our case, 14,317)
and consist of exactly the same street segments; what differs between them is the
number of transactions available to estimate the distribution of prices for each
street segment. In dataset D, the distribution is known precisely, and it has the
form (d1, d5, d9). In dataset D′, instead, all is known is a possibility distribution
π, as explained in Section 4.

5.2 Validation of the Possibility Distribution

To show that the possibility distribution π defined as per Equation 5, as well
as its associated possibility and necessity measures, does indeed qualitatively
describe the actual price distribution, we studied the possibility (computed ac-
cording to Equation 6) of the observed median price ventile m of street segments.
Ideally, Π(m) should be 1 for every street segment, if π perfectly described how
the prices are distributed.

Figure 2 shows the probability distribution of Π(m) for different sampling
rates of the set of transactions. We can observe that when the possibility dis-
tributions π of transaction prices for each street segment is constructed using
all the recorded transactions (which are at least 10 for any one of the 14,317
street segments considered for this study), the median is assigned a possibility
of 1 for most street segments, with some exceptions, which, upon inspection,



turned out to be street segments whose price distribution is not unimodal. Since
the parametric family of distribution used to fit the actual price distributions
is unimodal, the most likely values for their parameters are those that make
d5 correspond to one of the modes. This is an intrinsic limitation introduced
by the particular choice of a unimodal family of distribution, which was made
to simplify the geographical interpretation of the result; however, despite this
limitation, the results of the study seem to confirm the validity of the method
used to construct the possibility distributions.

Fig. 2. Distribution of Π(m) for different subsampling rates.

Unsurprisingly, as the sampling rate decreases, the number of street segments
for which the median is assigned a high possibility decreases.

5.3 Empirical Test of the Method

To conduct our tests, we selected, among all possible predictive modeling meth-
ods, XGBoost [2], which is the one that gave the best results when applied to
dataset D based on a critical comparison and benchmarking of the most popular
methods available. The rationale of this choice is that we wanted our solution to
“prove its mettle” on a very challenging task, namely to prevent the degradation
of the accuracy of the strongest available method when the supervisory signal
becomes uncertain.

We trained a model to predict the median of ventile prices (i.e., d5) on dataset
D by using XGBoost regression with the standard loss function and we trained
another model on dataset D′ by using XGBoost regression instrumented with
the proposed possibilistic loss function. We compare the results given by these
two models when applied to a test set consisting of street segments not used to
train the models. We treat the model trained on dataset D as the ground truth
and we measure the deviation of the model trained on D′ from such a target.

As a measure of prediction error, we compute the RMSD of the median
(d5) predicted by the model trained on D′ for each segment, with respect to the
median of that segment inD. We used a sampling rate of 20% to generateD′ from
D, i.e., D′ contains only 20% of the transactions available in D. We split D′ into
a training set containing 80% of the street segments and a test set containing the



Fig. 3. Results obtained on the test set by applying XGBoost regression to D′ with
the possibilistic loss function.

remaining 20% of the street segments. After training the model on the training
set, we obtain an RMSD of 2.778556 on the test set. Figure 3 shows a plot of
predicted vs. actual price ventiles for the test set. For comparison, XGBoost
using the standard loss function based on MSE trained on 80% of D (therefore,
with full information), gives an RMSD of 2.283798 when tested on the remaining
20%. In other words, the possibilistic loss function allows the prediction error to
increase by less than 22%, even though 80% of the transactions were removed
from the dataset!

6 Conclusion

We have proposed a method based on possibility theory to leverage sparse data,
which can be combined with any machine learning method to approach weakly
supervised learning problems. The solution we propose constructs a possibilistic
loss function, which can then be plugged into a machine learning method of
choice, to account for an uncertain supervisory signal.

Our solution is much in the same spirit as the fuzzification of learning algo-
rithms based on the generalization of loss function proposed in [11], in that it
pursues model identification at the same time as data disambiguation, except
that in our case ambiguity (i.e., uncertainty) affects the output variable only,
which is only partially observable in the available data, while all the input vari-
ables are perfectly known and, thus, non-ambiguous. Furthermore, as in [11], the
predictive model is evaluated by looking at how well its prediction fits the most
favorable instantiation of the uncertain labels of the training data (this is the
sense of the minimum operator in the possibilistic loss function definition).



The development of the method we presented has been motivated and driven
by a very specific application, namely by the need to leverage sparse data in a
human geography setting. However, its working principle is quite general and
could be extended to suit other scenarios. Indeed, distilling a completely general
method is the main direction for future work.
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10. Hernández-González, J., Inza, I., Lozano, J.A.: Weak supervision and other non-
standard classification problems: A taxonomy. Pattern Recognition Letters 69,
49–55 (2016)
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