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ON THE GENERALIZED BECKER-STARK TYPE

INEQUALITIES

YOGESH J. BAGUL, MARKO KOSTIĆ, CHRISTOPHE CHESNEAU,
AND RAMKRISHNA M. DHAIGUDE

Abstract. In this paper, we establish several generalized Becker-Stark
type inequalities for the tangent function. We present unified proofs of
many inequalities in the existing literature. Graphical illustrations of
some obtained results are also presented.

1. Introduction

Becker and Stark [6] established the inequality

1− 4x2

π2
<

x

tanx
<
π2

8
− x2

2
; x ∈ (0, π/2). (1.1)

The inequality (1.1) attracted many researchers and several of its variations
and refinements have been established. We may refer to [3–5,7–10,14,17–19],
and the references therein for more details. Chen and Cheung [7] proved that
the best possible constants for which the inequality(

1− 4x2

π2

)β
<

x

tanx
<

(
1− 4x2

π2

)α
; x ∈ (0, π/2) (1.2)

holds are α = π2/12 ≈ 0.8224 and β = 1. The inequality (1.2) refines (1.1).
Recently, Chen and Elezović [8] proved the following inequality:

π2

12
− 2x3

3π
<

x

tanx
< 1− 8x3

π3
; x ∈ (0, π/2). (1.3)

Although the upper bound of (1.3) is sharper than the corresponding upper
bound of (1.1), it is not sharper than the upper bound in (1.2).

The inequality

1− 4x2

π2
<

x

tanx
< 1− x2

3
; x ∈ (0, π/2) (1.4)

was proved by Z.-H. Yang et. al. [17, (96)]. Before we proceed any further,
we would like to note that the right inequality in (1.4) is not good near
the point x = π/2− as well as that this inequality is not better than the
right inequality in (1.2), as incorrectly stated in [17, Remark 17]. Strictly
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speaking, the following inequality, which appears as a part of the equation
[17, (98)], is not true since the estimate(

π2 + 4x2

π2 − 4x2

)π2/24

<
3

3− x2
, x ∈ (0, π/2)

cannot be satisfied near the point x = π/2− . It is also known that

1− 2x

π
<

x

tanx
<
π2

4
− πx

2
; x ∈ (0, π/2). (1.5)

The left inequality of (1.5) is due to H.-F. Ge [11] and the right inequality
of (1.5) is due to S. B. Stečkin [16].

Among all the inequalities (1.1)-(1.5), the inequality (1.2) is the best. In
this paper, our aim is to obtain several generalized inequalities by studying
monotonicity of functions with one parameter. We will obtain or refine the
above inequalities as particular cases of our results.

2. Preliminaries and lemmas

The following power series expansions involving Bernoulli numbers can
be found in [12, 1.411]:

cotx =
1

x
−
∞∑
k=1

22k

(2k)!
|B2k|x2k−1 ; |x| < π, x 6= 0 (2.1)

and

cscx =
1

x
+

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x2k−1; |x| < π, x 6= 0, (2.2)

where B2k are the even indexed Bernoulli numbers. The expansion (2.2) can
be rewritten as

x

sinx
= 1 +

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x2k; |x| < π. (2.3)

From (2.1), we obtain( x

sinx

)2
= −x2(cotx)′ = 1 +

∞∑
k=1

(2k − 1)22k

(2k)!
|B2k|x2k; |x| < π, x 6= 0.

(2.4)

In addition to the above formulas, we will also use the following lemmas
in order to prove our main results. For Lemma 1, we refer to [2].

Lemma 1. Let f1(x) and f2(x) be two real valued functions which are con-
tinuous on [a, b] and derivable on (a, b), where −∞ < a < b < ∞ and
g′(x) 6= 0, for all x ∈ (a, b). Let,

A(x) =
f1(x)− f1(a)

f2(x)− f2(a)
, x ∈ (a, b)
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and

B(x) =
f1(x)− f1(b)

f2(x)− f2(b)
, x ∈ (a, b).

Then, we have

(i) A(x) and B(x) are increasing on (a, b) if f ′1(x)/f ′2(x) is increasing
on (a, b).

(ii) A(x) and B(x) are decreasing on (a, b) if f ′1(x)/f ′2(x) is decreasing
on (a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strict-
ness of monotonicity of f ′1(x)/f ′2(x).

The result below gives a relation between two consecutive absolute Bernoulli
numbers. It is established recently in [15].

Lemma 2. For k ∈ N, the Bernoulli numbers satisfy

(22k−1 − 1)

(22k+1 − 1)

(2k + 1)(2k + 2)

π2
<
|B2k+2|
|B2k|

<
(22k − 1)

(22k+2 − 1)

(2k + 1)(2k + 2)

π2
.

Lemma 3. Let A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k be convergent
for |x| < R, where ak and bk are real numbers for k = 0, 1, 2, · · · such that
bk > 0 for k ≥ 0. If the sequence ak/bk is strictly increasing (or decreasing),
then the function A(x)/B(x) is also strictly increasing (or decreasing) on
(0, R).

For more details about Lemma 3, see for instance [13]. The following
lemma can be found in [1].

Lemma 4. For all integers k ∈ N, we have

2(2k)!

(2π)2k

1

1− 2α−2k
< |B2k| <

2(2k)!

(2π)2k

1

1− 2β−2k
, (2.5)

with the best constants α = 0 and β = 2 + (ln(1− 6/π2))/ ln 2 ≈ 0.6491.

3. Main results

In this section, we will state and prove our main results. For the begin-
ning, for any number p ∈ R we define

φp(x) :=
tanx− x
xp tanx

, x ∈ (0, π/2).

Then, the following result holds.

Theorem 1.

I. φp(x) is strictly increasing on (0, π/2) if and only if p ≤ 2, and
II. φp(x) is strictly decreasing on (0, π/2) if and only if p ≥ π2/4 ≈

2.4674.
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Proof. By differentiation, we have

Fp(x) = tan2 x · φ′p(x) = −px−(p+1) tan2 x− (1− p)x−p tanx+ x1−p sec2 x.

Note that φp(x) is strictly increasing on (0, π/2) if and only if Fp(x) > 0,
x ∈ (0, π/2), i.e.,

p <
x2 sec2 x− x tanx

tanx(tanx− x)
=

(
x

sinx

)2 − x cotx

1− x cotx
=: f(x), x ∈ (0, π/2).

From (2.1) and (2.4), we get

f(x) =

∑∞
k=1

22k(2k−1)
(2k)! |B2k|x2k +

∑∞
k=1

22k

(2k)! |B2k|x2k∑∞
k=1

22k

(2k)! |B2k|x2k

=

∑∞
k=1

22k2k
(2k)! |B2k|x2k∑∞

k=1
22k

(2k)! |B2k|x2k
:=

∑∞
k=1 akx

2k∑∞
k=1 bkx

2k
, x ∈ (0, π/2).

From this, we get ak/bk = 2k (k ∈ N). Since the sequence {ak/bk}∞k=1 is
strictly increasing, we conclude from Lemma 3 that the function f(x) is
strictly increasing on (0, π/2). Hence, φp(x) is strictly increasing on (0, π/2)
if and only if p ≤ inf {f(x) : 0 < x < π/2} = f(0+) = 2. Similarly, φp(x) is
strictly decreasing on (0, π/2) if and only if Fp(x) < 0, which is equivalent
to saying that p ≥ sup {f(x) : 0 < x < π/2} = f(π/2−) = π2/4. �

Remark 1. Suppose that p ∈ (2, π2/4). Since the function f(x) is strictly
increasing on (0, π/2), we get from the above that there exists a unique point
xp ∈ (0, π/2) such that f(xp) = p. This implies f(x) < p for x ∈ (0, xp) and
f(x) > p for x ∈ (xp, π/2) so that φp(x) is strictly decreasing on (0, xp) and
strictly increasing on (xp, π/2), with φp(x) ≥ φp(xp) for x ∈ (0, π/2).

Let p ∈ (−∞, 4] \ {0}. Define now

ψp(x) :=
ln
(

x
tanx

)
ln
(

1− px2
π2

) , x ∈ (0, π/2).

Then, we have:

Theorem 2.

I. ψp(x) is strictly decreasing on (0, π/2) if and only if p < 0, and
II. ψp(x) is strictly increasing on (0, π/2) if and only if 0 < p ≤ 4.

Proof. Set ψ1(x) := ln(x/ tanx), x ∈ (0, π/2) and (ψ2)p(x) := ln(1 −
(px2/π2)), x ∈ (0, π/2). Then ψ1(0+) = 0 = (ψ2)p(0) and differentiation
yields

ψ′1(x)

(ψ2)′p(x)
=

1

2p

(
π2 − px2

) x− sinx cosx

x2 sinx cosx
=

1

2p
(ψ3)p(x), x ∈ (0, π/2),
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where, for every x ∈ (0, π/2),

(ψ3)p(x) :=
(
π2 − px2

) x− sinx cosx

x2 sinx cosx
=

(π2 − px2)

x2

(
2x

sin 2x
− 1

)
.

By (2.3), we get

(ψ3)p(x) =
(π2 − px2)

x2

∞∑
k=1

22k − 2

(2k)!
|B2k|(2x)2k

= (π2 − px2)
∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x2k−2

= π2
∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x2k−2 − p

∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x2k

=
2π2

3
+

∞∑
k=1

(
π222k+2(22k+2 − 2)

(2k + 2)!
|B2k+2| − p

22k(22k − 2)

(2k)!
|B2k|

)
x2k

=
2π2

3
+

∞∑
k=1

akx
2k, x ∈ (0, π/2),

where

ak :=
π222k+2(22k+2 − 2)

(2k + 2)!
|B2k+2| − p

22k(22k − 2)

(2k)!
|B2k| (k ∈ N). (3.1)

Case I. If p < 0, then ak > 0 for k ∈ N and (ψ3)p(x) is strictly increasing
on (0, π/2). Consequently, ψp(x) is strictly decreasing on (0, π/2) by
Lemma 1.

Case II. If p ∈ (0, 4], then −p ≥ −4 and we have

ak ≥
π222k+2(22k+2 − 2)

(2k + 2)!
|B2k+2| − 4

22k(22k − 2)

(2k)!
|B2k| =: j(k), k ∈ N.

From Lemma 4, we calculate

ak ≥ j(k) >
22k+3

π2k

(
22k+2 − 2

22k+2 − 1
− 22k − 2

22k − 2β

)
=

22k+3

π2k
.

22k+2(2− 2β)− 22k

(22k+2 − 1)(22k − 2β)

=
24k+3

π2k
.

4(2− 2β)− 1

(22k+2 − 1)(22k − 2β)
.

Since 4(2− 2β) ≈ 1.7268, we get ak > 0 for k ∈ N. This shows that
(ψ3)p(x) is strictly increasing on (0, π/2). By Lemma 1, ψp(x) is also
strictly increasing on (0, π/2).

�
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If p < 4, then the function ψp(x) cannot be defined for x ≥ π/2. Suppose
now that p > 4 and consider the function ψp(x) defined for x ∈ (0, π/

√
p).

Then, the following result holds.

Theorem 3. The function ψp(x) is strictly decreasing on (0, π/
√
p) if p ≥

84/15.

Proof. Repeating verbatim the arguments used in the proof of Theorem 2,
we get that

(ψ3)p(x) =
2π2

3
+
∞∑
k=1

akx
2k, x ∈ (0, π/2),

where ak (k ∈ N) is given through (3.1). Let c := 84/(15π2). Then, we have

ak ≤ π2

(
22k+2(22k+2 − 2)

(2k + 2)!
|B2k+2| − c

22k(22k − 2)

(2k)!
|B2k|

)
=: l(k), k ∈ N.

Then l(k) < 0 if and only if

|B2k+2|
|B2k|

< c
22k(22k − 2)

(2k)!

(2k + 2)!

22k+2(22k+2 − 2)

=
c

4

(2k + 1)(2k + 2)(22k−1 − 1)

(22k+1 − 1)
.

From Lemma 2, we have

|B2k+2|
|B2k|

<
(22k − 1)

(22k+2 − 1)

(2k + 1)(2k + 2)

π2
.

Keeping in mind the arguments used in the proof of Theorem 2, it remains
to be shown that

4(22k − 1)(22k+1 − 1) < cπ2(22k−1 − 1)(22k+2 − 1), k ∈ N.

After making a substitution x = 4k (x ≥ 4), it suffices to show that

2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
≤ c

4
π2, x ≥ 4.

The equality holds for x = 4, while the strict inequality holds for x > 4
because the function

y = 2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
, x ≥ 4

is strictly decreasing (https://www.desmos.com/calculator), as it can be
easily approved. �

Next, we will show how our results give some known and other inequalities
for x/ tanx. First of all, we can see by Theorem 1 that the function

φ2(x) =
tanx− x
x2 tanx
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is strictly increasing on (0, π/2). Hence,

φ2(0+) =
1

3
< φ2(x) =

tanx− x
x2 tanx

< φ2(π/2−) =
4

π2
,

which gives the inequality (1.4). Similarly, φ1(x) is strictly increasing on
(0, π/2) and with limits at extremities. Thus, we obtain

1− 2x

π
<

x

tanx
< 1; x ∈ (0, π/2). (3.2)

This gives the left inequality of (1.5). Looking at the strictly decreasing
function φ3(x) on (0, π/2) and the limit φ3(π/2−) = 8/π3, we get the right
inequality of (1.3). Indeed, this inequality can be sharpened by considering
φp(x) for p = π2/4. Since (φp(x))p=π2/4 is strictly decreasing on (0, π/2), we

obtain
(φp(x))p=π2/4 >

(
φp(π/2

−)
)
p=π2/4

,

i.e.,

x

tanx
< 1−

(
2x

π

)π2/4

; x ∈ (0, π/2). (3.3)

However, there is no strict comparison between the right inequality (1.2)
and (3.3).

Now it is easy to formulate the following

Corollary 1. The exponents 2 and π2/4 such that

1−
(

2x

π

)2

<
x

tanx
< 1−

(
2x

π

)π2/4

; x ∈ (0, π/2) (3.4)

are optimal.

Proof. Let

g(x) =
ln
(
1− x

tanx

)
ln
(

2x
π

) =
g1(x)

g2(x)
.

Here g1(x) and g2(x) are such that g1(π/2−) = 0 = g2(π/2). Then

g′1(x)

g′2(x)
=
x2 sec2 x− x tanx

tanx · (tanx− x)
= f(x),

which is strictly increasing on (0, π/2) as discussed in the proof of Theorem
1. Calculating the limits at extremities, we obtain the required. �

Several other inequalities can be established by using Theorem 1. We also
have the following corollaries of Theorem 2.

Corollary 2. If p ∈ (0, 4] and x ∈ (0, λ), where λ ∈ (0, π/2], then the
inequalities (

1− px
2

π2

)α
<

x

tanx
<

(
1− px

2

π2

)β
(3.5)

hold with the best possible constants α = ψp(λ
−) and β = π2/3p.
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Proof. From Theorem 2, ψp(x) is strictly increasing on (0, λ) for p ∈ (0, 4].
So,

ψp(0
+) < ψp(x) < ψ(λ−).

Since ψp(0
+) = π2/3p, we get (3.5). �

Remark 2. The inequality (1.2) can be deduced from Corollary 2, with p = 4
and λ = π/2.

Corollary 3. If a > 0, then the following inequality holds:

x

tanx
<

(
π2

π2 + ax2

)π2/3a

; x ∈ (0, π/2). (3.6)

Remark 3. Graphically it is observed that the inequality (3.6) is in fact true
for x ∈ (0, π).

We can use Theorem 3 to prove the following important corollary:

Corollary 4. If x ∈ (0, π/
√
p), where p ≥ 84/15, then the following inequal-

ity holds:

x

tanx
≥
(

1− px
2

π2

)π2/3p

. (3.7)

Furthermore, α = π2/3p is the optimal value for which (3.7) holds with a
number p ≥ 84/15 given in advance.

Albeit not used henceforward, we will state and prove the following result:

Proposition 1. Suppose that 0 < p1 < p2 and x ∈ (0, π/
√
p2). Then, we

have (
1− p2

x2

π2

)π2/3p2

<

(
1− p1

x2

π2

)π2/3p1

. (3.8)

Proof. Let 0 < a < 1. Then, the mapping t 7→ ln(1 − at) − a ln(1 − t),
0 ≤ t < 1 is strictly increasing because its first derivative is given by

t 7→ a(1− a)t(1− t)−1(1− at)−1, t ∈ [0, 1).

Therefore, we have

ln(1− at) > a ln(1− t), 0 < a < 1, 0 < t < 1. (3.9)

Applying (3.9) with a = p1/p2 and t = p2x
2/π2, we get

ln(1− p2x
2/π2)

p2
<

ln(1− p1x
2/π2)

p1
.

Multiplying the both sides of the above inequality with π2/3 and taking the
exponents, we immediately get (3.8). �
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Suppose now that 4 < p < 84/15.We want to better explore the inequality
(3.7) and the right part of the inequality (1.2) in this intermediate case. First
of all, it is clear that there exists a sufficiently small real number εp > 0 such
that

x

tanx
>

(
1− px

2

π2

)π2/3p

, x ∈
(
(π/
√
p)− εp, π/

√
p
)
. (3.10)

Set now

A :=

{
p > 4 ;

x

tanx
>

(
1− px

2

π2

)π2/3p

for all x ∈
(
0, π/

√
p
)}
.

By Corollary 4, we have [84/15,+∞) ⊆ A. On the other hand, Proposition
yields that, if p0 > 4 and p0 /∈ A, then (4, p0]∩A = ∅. Therefore, it is natural
to ask: Can we calculate the set A intrinsically?

The answer is affirmative as the next result shows:

Theorem 4. We have A = [7π2/15,+∞).

Proof. Define

h(x) := ln
( x

tanx

)
− π2

3p
ln
(

1− px
2

π2

)
, x ∈ (0, π/

√
p).

Then h(0+) = 0 and

h′(x) =
3π2 + x2(2π2 − 3p)

3x(π2 − px2)
− 2

sin(2x)

=
[3π2 + x2(2π2 − 3p)] sin(2x)− 6x(π2 − px2)

3x(π2 − px2) sin(2x)
, x ∈ (0, π/

√
p).

Set t := 2x ∈ (0, 2π/
√
p) and

g(t) :=
sin t

t
− 12π2 − 3pt2

12π2 + t2(2π2 − 3p)
, t ∈ (0, 2π/

√
p).

Then, it can be easily seen that h′(x) > 0 if and only if g(t) > 0 if and only
if q(t) > 0, where

q(t) := sin(t) ·
[
12π2 + t2(2π2 − 3p)

]
− t
[
12π2 − 3pt2

]
, t ∈ [0, 2π/

√
p).

Using https://www.symbolab.com/solver/partial-derivative-calculator, we get

that q(i)(0) = 0 for i = 0, 1, 2, 3, 4 as well as that

q(v)(t) = t2 cos t · (2π2 − 3p) + 10t sin t · (2π2 − 3p) + cos t · (60p− 28π2),

for any t ∈ [0, 2π/
√
p). Since 2π2 − 3p > 0 for p < 84/15, we have that

the assumption p ≥ 7π2/15 implies q(v)(0) ≥ 0 and q(v)(t) > 0 for all
t ∈ (0, 2π/

√
p). This simply implies q(t) > 0 for all t ∈ (0, 2π/

√
p) and there-

fore the function h(x) is strictly increasing on (0, π/
√
p); therefore h(x) >

h(0+) = 0 for all x ∈ (0, π/
√
p) and [7π2/15,+∞) ⊆ A. If p < 7π2/15, then

we have q(i)(0) = 0 for i = 0, 1, 2, 3, 4 and q(v)(0) < 0, so that t = 0 is a local
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maximum of function q(t) (which can be extended to the even function de-
fined on the whole real line) and therefore q(t) < 0 in a right neigborohood
of point t = 0, which implies that h′(x) < 0 in a right neigborohood of point
x = 0 and therefore h(x) < 0 in a right neigborohood of point x = 0; hence,
p /∈ A. �

Now Corollary 4 holds with p ≥ 7π2/15. For p = 7π2/15, from Corollary
4, we get

(
1− 7x2

15

)15/21

<
x

tanx
; x ∈ (0, δ), (3.11)

where δ =
√

15/7 ≈ 1.46385 · · · .
Now, let us compare graphically the bounds of x/ tanx given in (1.2)

with those obtained in (3.3) and in (3.11) in Figures 1 and 2, respectively.
In each case, we distinguish two non-overlalping intervals of values for x to
show some hierarchy for these bounds.
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Figure 1. Graphs of lower bounds of x/ tanx in (1.2) and

(3.11) for (a) x ∈ (0, 1.2) and (b) x ∈ (1.2,
√

15/7).
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Figure 2. Graphs of upper bounds of x/ tanx in (1.2) and
(3.3) for (a) x ∈ (0, 1) and (b) x ∈ (1, π/2).

Based on Figure 1 and a numerical analysis, we see that, for x ∈ (0, δ∗)
where δ∗ ≈ 1.3407, the lower bound in (3.11) is stronger than the lower
bound in (1.2). It is weaker for x ∈ (δ∗, δ), where δ ≈ 1.4638. Also, based
on Figure 2 and a numerical analysis, for x ∈ (0, µ), where µ ≈ 1.1913, the
upper bound in (1.2) is stronger than the upper bound in (3.3). It is weaker
for x ∈ (µ, π/2).

We conclude the paper by posing an open problem as follows:

Open Problem. Suppose that p, ζ > 0. Then, determine the best
possible constants αp,ζ , βp,ζ ∈ R such that the inequality(

1− pxζ

πζ

)βp,ζ
<

x

tanx
<

(
1− pxζ

πζ

)αp,ζ
; x ∈ (0, π/2) ∩ (0, π/p1/ζ)

holds.
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