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Abstract

In this article, we consider the P1 approximation of the radiative transfer equation. This system is linear
hyperbolic and satisfies a diffusion limit. Some scheme have been proposed which reproduce this diffusion
limit. Here, we extend such schemes, originally defined on polygonal meshes, to conical meshes.
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1 Introduction

In this article, we consider the following system

1

HE + = div(F) = 0,

) € ” (1.1)

O F+-VE+ —F =0,
e 9

Here, 0 = o(t,x) > 0 is the cross-section, ¢ > 0 is a fixed (small) parameter. The scalar function F = E(t, x)
is the radiative energy, while the vector-valued function F = F'(t, z) is the radiative flux. In all the paper, the
spatial variable is denoted by = € R?, and the time variable by ¢ > 0. System (1.1) is completed by boundary
conditions. Here, we restrict our attention either to periodic boundary conditions, or homogeneous Dirichlet
boundary conditions.

The model (1.1) is an approximation of the radiative transfer equation [7, 8, 19, 20], in which the closure is
made by assuming that the radiative intensity is an affine function of the velocity.

It is well-known that, in the limit ¢ — 0, this system reduces to the diffusion equation

O E — div <1VE> =0. (1.2)
g

This is easily seen by a Hilbert expansion of E and F' in powers of €. It is important, from a physical point of
view, to use a numerical scheme which is consistent with this limit. Such a scheme is usually called asymptotic
preserving (AP). Many such schemes exist in the literature. The first work we know of in this direction is [14].
In this work, the aim was to design a scheme which is well-balanced (WB), that is, which exactly preserves
stationary solutions of the system. However, doing so, the scheme happens to be AP as well. Further works in
this direction may be found in [3, 4, 5, 10, 12, 13, 16]. All these works deal with (possibly deformed) polygonal
meshes. The aim of the present article is to generalize such AP schemes to conical meshes.

Conical meshes have already been used for instance in [1] for discretizing the compressible Euler equations
of hydrodynamics. However, in such a case, the question of diffusion limit is irrelevant, and therefore has not
been studied in [1]. Here, we choose the approach used in [3, 12], which is actually an extension of [16] to
dimension 2, using nodal flux evaluations. Before doing so, we first extend the diffusion scheme of [11, Section
2.2.2] (see also [3, Section 4.2]) to conical meshes, using cell-centered finite volumes with nodal flux evaluations.
It happens that, doing so, we find a scheme which, when particularized to a polygonal mesh, does not give the
standard one presented in [11]. In particular, this new scheme does not suffer from the cross-stencil instability
mentioned in [11].

The article is organized as follows: in Section 2, we define what we mean by conical meshes, introducing
some notation. In Section 3, we present the generalization of diffusion schemes with nodal fluxes to conical
meshes. The scheme is analyzed, and some numerical results are provided. Section 4 is devoted to the definition
of AP scheme on conical meshes, using the method developed in [11, 3], and adapting it to conical meshes. Two
versions are proposed, depending on how the source term in the second line of (1.1) is discretized. In both case,
numerical results are presented.

2 Conical meshes

2.1 Definition and basic properties

In all the paper, we consider a domain ) C R? which is Lipschitz and bounded. We assume that a mesh is
given on ). By mesh, we mean the following;:

1. (Qj)1<j<N is a finite family of nonempty connected open disjoint subsets of 2 (the cells) such that
SE
ﬁ = U ﬁj;

j=1

2. (Mr)lgrgp is a family of P distinct points (the nodes) of  such that, for all r, M, € 09, for some j;



3. for all j, the boundary 0%; of €2; is the union of a finite number of edges, each of which is a smooth
one-dimensional curve joining two nodes (say, M, and M, 1) of 2. Moreover, two different edges share
at most one node. Finally, any edge is contained either in 92 or in Q; N €2, for two distinct cells ; and
Q.

The edges are not necessarily segments, so we describe below how we parametrize them.
Let My and My be two points linked by a regular arc yy;°¢ \p,- It is further assumed that this arc can be
represented by a closed part zero-level curve of a function I':

IT: R2 —_— R
(z,y) — [(z,9)

such that yygs s, admits an implicit representation:

’7%571\42 c {($7y) € R2;F(l’,y) = 0}

Definition 2.1. If the implicit function T is a bi-variate polynomial of (mazimal) degree p, we say that the arc

VMo M, 1S of order p+ 1. In particular:

Linear form P!(x,y) : axz+by+c=0, straight lines. (2.1)
Quadratic form P*(z,y) : a2’ 4+ by’ +2cxy+drz+ey+ f=0, conics. (2.2)

We recall that solutions of the quadratic equation (2.2) generate the family of conics of the plane.

In the context of finite volume methods for which fluxes are computed on edges, instead of considering only
straight edges (2.1), we are interested in conical curves (2.2).

Proposition 2.2 (Quadratic Rational Bezier curve). Conical arcs may be parameterized by rational Bezier
curve of degree 2, charaterized by 2 endpoints My and Mas, a control point My, and a scalar weight w (cf Figure

1):

win_ (@)Y _ Mo(1 = q)* 4+ 2wg(1 — ¢)M; +¢°M;
M (q)_( )_ (1—q)2+2wq(l —q) + ¢ o acla) 23

Hence, we have: 3¢y, = {M*(q),q € [0,1]}.

Each conical edge depends on its two endpoints My, My and 3 (in dimension 2) additional parameters: the
control point M; and a scalar weight w. The link with conics comes from the following characterization:

(1\/-.[1=w>

Figure 1: Conic parametrized by quadratic rational Bezier curves.

Proposition 2.3. The edge is said to be of type:
- planar degenerate if w =0,

- elliptic if w €10, 1],



- parabolic if w =1,
- hyperbolic if w €11, 4+o0].
In addition, we introduce the shoulder point S located at the midpoint of arc parametrization, S := M¥(q =

0.5). It may be noted that the unit normal at this point is orthogonal to [Mg, Ms)]

(Mla w)

Qo
Q:

M-

Figure 2: Shoulder point S.

The shoulder point S satisfies the following property:

1 , 1
S = §(Q0+Q2), with Qg = m(le +Mo), Q2= T

(OJMl + Mz)

2.2 Relationship on geometric objects

We recall that the area of a cell is given by:

1 .
Q] :/ 1dv = = OM(s) - N(s)ds (2.4)
Q 2 Jog,

=35 | oM (@) N (2:5)

where N(s) is the external unit normal of cell ; whose boundary is parametrized by s and N, (q) is the non
unit one (N.(q) = N, (q)i—j). The point O is the origin, but it can be any fixed point in the plane. In practice,
it is usually set as the center of the cell ;.

19, =) "(A(0, M, M$) + A(M“*(q), M§, M{, M3)), (2.6)

e

where A(O,M§,M§5) is the area of a simplex defined by origin O, M§ and M$ vertices of edge e, and
A(M¥¢(q), M§, M¢, M$)) corresponds to the area between straight edge M§SM$ and the curved arc defined
by (2.3). In addition,

1t d d
A< M5 Mz M) = 3 [ ()0 - S ) aa (2.7
Moreover:
AM*“(q), Mg, M{,M3) = f(w)A(Mg, M{, M3), (2.8)

with f(w) a piecewise analytical function of w. The exact formula is [15], [2], [1]:
(1) if w =0, then f(w)=0,

)
(2) if 0<w <1, then f(w)= 2% (ﬂlﬁatan(, [l
(3) if w=1, then f(w)=2,

(4)

4) if w > 1, then f(w)= =% (w— ﬁlog(w—kx/oﬂ - 1))

NS

) ’ (2.9)



We recall that area may be expressed from vectors, cf [2] and Figure 3
1 dof,w
2] =3 > CiTY OMyo. (2.10)
dof

Here, dof stands for degrees of freedom. Hence, the sum runs over all degrees of freedom in the cell (that is,
values at the nodes and values at the control points of the edges).

Figure 3: Normal nodal vector expressed with control point

Despite the concise writing of (2.10), a disadvantage is that the control point My, does not lie on the arc.
This is why we will use a description of the arc with its shoulder point S, cf Figure 4 (at the end), as in [1].
To summarize, (2.8) rewrites:

A(M*“(q), MG, M{, M3) = h(w) A(MG, S, M3), (2.11)
This change in the spatial location of the degree of freedom involves now the function

hw) = flw) L (2.12)

w

which is strictly decreasing on R* with values in |1, J].
This allows us to derive the following formulas, involving only the points that belong to the edges of cell €2;:

1. GLACE type:

1 ~dof ,w w
|QJ| = 520_] : 'OMdof(Q)a (213)
dof
that is,
1 T W ~r+1/2.w w 1 ~newdof,w
2] = 3 S oM, + Y CFPr 08y, | = 3 > oo OM,cwdof (2.14)
r r+1/2 newdof
with

C;’w e % ((1 — h(wr—1/2))Ny—1p + (1 = h(wri1/2))Ne g1 + h(wr—1/2) Ny /2, + h(wr+1/2)Nr,r+1/2) ,(2.15)

=T w h(w, - "
Cj+1/2, = %(Nr,r+l/2 +Nog1/2,041)- (2.16)



Figure 4: Normal vector from a degree of freedom defined on boundary cell ;. Two types: endpoints M,

denoted by é;w or shoulder point S¥,, , denoted by C;H/?w

Unknowns are located at the same points as C;lof’w : points M,., S$+1/2 inside cell, moreover they satisfy
[2][1]:
For cell Q; : Z C;lof’“’ =0 (2.17)
dof
For all degree of freedom (dof) inside the domain (Figure 6) : Z @?Of “=0 (2.18)

J

2. EUCCLHYD type:

N9 = 3(1- h(wr71/2))N—r—l,r + %h(wr71/2)Nr71/2,ra
- - -
2

)
NGT = 31— hwrg12))Npri1 + 50(Wn1/2) Ny 2,
S 1/2,0— N
NP2 o a7
N;“/Q’“+ = sh(wri1/2)Npg1/2,041-

(2.19)

We recall that the unknowns are located at the same points as N?of wE points M,, Sy, | /2 of the cell,
morevover they satisfy [2][1]:

For all cells ©; : ZN?Of’w’Jr + N?"f"“ﬁ =0 (2.20)
dof
For all dof inside the domain (Figure 6) : Z N;lof’w’Jr + N?Of’w’f =0 (2.21)

J

3. Relatonship between “GLACE type vectors” (2.15) (2.16) cf Figure (4) and “EUCCLHYD type vectors”
defined by (2.19) cf Figure (5):

Chv = (N7~ 4+ N7 )

J J J ’

~r+1/2w  gr+l/2w— Gr+1/2,w+ (222)
{ C; = (N; + N; ).

and also: _ _ _

CPohe = (NYolem . NSty (2.23)
Remark 2.4. Property for planar degenerate conic case.
By a direct computation on (2.12), we have the following:

“l)ig}) h(w) >0 (2.24)

As we will see thereafter, for planar degenerate conics, the property (2.24) enable us to design new finite volume
schemes (when compared to original polygonal ones) for straight meshes.
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Figure 5: Vector decomposition at nodes (of GLACE type vector) é?of “ into two half-vectors to left N?Of Wt

and to the right N?(’f’“_ for the scheme of EUCCLHYD type (cf (2.22))

M,

Figure 6: A degree of freedom of the edge of cell 2;: the points M, and S, /2 where the Riemann problems are
solved (exact or approximate) and the set of cells close to §2; containing this degree of freedom. For example,

from the point of view of cell ;, at the point M, (resp. at the point S‘;’H/Q) we need to define a numerical flux

G7(fan, fou fau: fa,. fa,) (vesp. a flux G772 (fo,, fa,))-



3 Diffusion schemes on conical meshes

In this Section, we propose a discretization of the diffusion equation (1.2), using the formalism of [6, 9, 17] (see
also [11, Chapter 6]).

3.1 GLACE scheme on polygonal meshes

Let us first recall the GLACE diffusion scheme on polygonal mesh. Using a finite volume approach, we integrate
(1.2) on a cell ©;, and, denoting by Ej;(t) the average value of E(t, x) on Q;, we have, after integrating by parts,

1 1

OE; — —
9] Joq, o

(VE(t,x),n) = 0.

In order to define the second term, we denote by —%VE the flux, and approximate it using GLACE formalism,
that is, nodal flux evaluations:

1
/ —(VE(t,z),n) = / (F(t,x),n) ~ Z (F.(t),CF).
09 9 09 r/M,eQ;
Here, the sum runs over all r such that the node M, belongs to €;, and
C7 =V, Q). (3.1)
This definition coincides with (2.13)-(2.14)-(2.15)-(2.16) if one reduces the degrees of freedom to the nodes M,..

In order to define the nodal flux F)., we impose the following equality:
o(M,) Y Cle(M,—xz)F,=- > Cj(VEM,),M, ),
i/ M, €Q; i/ M,€Q;

where the sum runs over all 4 such that M, € 09;. Now, we use a finite difference approximation, which
states that (VE(M,), M, — x;) ~ E(M,)— E(z;). Hence, using (2.18), we see that the terms involving E(M,)
vanish, so that we finally have

o(M,) > Cle(M,—-z)F,= Y CiE(z), (3.2)
i/ M,.€9Q; i/M,.€Q;
We end up with the following semi-discrete scheme:
1
OE; + o > (F.C})=0,
I M€

where the nodal fluxes F, are defined by (3.2). Thus, as explained in [11], the discretization of (1.2) using
GLACE formalism leads to the following scheme:

At
Bt *E?WL? z (Fr*h.cr) =0, (3.3a)
Il e,
on > BaFrT = 3 ETCY (3.3)
i/ M, €Q; i/ M, €Q;

with B, = C7 ® (M, —x;), where x; is the center of cell ;. Here, At is the time step, and n is the time index.
We use an implicit scheme in order to avoid a parabolic stability condition which proves to be too restrictive
for a fine mesh. The coefficient C7 is defined by (3.1).

As we pointed out above, the definition (3.1) coincides is the definition on conical meshes. However, if one
uses the formalism (2.13)-(2.14)-(2.15)-(2.16) with w = 0 (so that edges are straight lines), we still have degrees

of freedom at the shoulder points. Hence the two schemes do not coincide, as we will see below.

Remark 3.1. For the scheme (3.3a)-(3.3b) to be well-defined, we need the matriz 3, = Dok Brr to be invertible.

This question was studied in [11], where it is proved that BT is invertible under some regularity conditions on
the mesh. For instance, a sufficient condition is that the angle between two neighboring edges should belong to
the interval [Oope; ™ — 200p] where O, =~ 0.189rad.



Let us define Q}, = B;lc,:. We thus get the flux (3.3b),
1

n+1l __ r rn+1
Frt=— > Qe
" k/M,.€Qy

We can thus write the scheme (3.3a)-(3.3b) as follows

At 1
n+1 n r r n+1 __
r/M,.€Q; k/M,eQy,
Eiy R .
Setting E™ = E? , we can write (3.4) M E™1 = E" where the coefficient M;; of matrix M reads
Ein
At 1 o
My = 0y + fe > —(c.Q)). (3.5)
Yo Meeing; T

3.2 GLACE scheme on conical meshes

We now go on and generalize the scheme to conical meshes. In order to do so, we need to introduce additional
degrees of freedom, compared to (3.3a)-(3.3b). One can either use degrees of freedom at the control points of
edges, or at the shoulder points. Here, we choose to use the shoulder points, because a control point is not on
its edge. Hence, defining the unkwown at such a point by interpolation might be a difficult task. We will use
the modified vectors CN’JT (2.15), as shown in Figure 3 and 4. We also introduce vectors C’;+1/ ? at the shoulder
points. These vectors are defined by (2.16).

In this context, the natural extension of (3.3a)-(3.3b) is the following:

o At S 5r+1/2 o
L (Crr)+ > (e PR, | =0 (3.6a)
! r/M.€Q; 7/ M,1/2€%
or Y, BuF!= > CiE!! (3.6b)
i/ M, €9, i/ M, €
O'r+1/2 Z BiT-‘,—l/QFfr"nﬂl/Q = Z éiT'+1/2E;1+1 (36C)
i/ My y1/2€Q; i/ My y1/2€Q;

i

BT = Z Bkrv Br+1/2 = Z Bkr+1/2' (37)

k'/MTGQk k/M,,,+1/2€Qk

where Bir = é{ ® (M, —x;) and BMH/Q =C""?g (M, 412 —x;). We define the matrices BT and BT_H/Q by

As in the polygonal case, the matrix j3, is invertible, at least under some regularity conditions on the mesh.
On the contrary, the matrix 3,11/ is always singular, as the following result shows:

Lemma 3.2. The matriz Br+1/2 defined by (3.7) has rank 1.

Proof. Given a shoulder point M, /5, we have only two cells €; and €2; which share the corresponding edge.
Applying (2.18), we thus have

Sr+1/2 | Ardl/2
C; +C; =0.
Hence, using (3.7),
Brii2 = C:H/Z ® (T —x;),

which has rank one. O



In the following, we will use the following definition, for any shoulder point M, :
L
If Mr+1/2 S Q,L N Qj, N'r‘+1/2 =T; — Iy and Tr+1/2 = (N'r‘+1/2) . (38)
Computing the scalar product of (3.6c) with IN, 1/, and using (2.18) again, we have

Er - E;Hrl

3.9
Or41/2 (3.9)

(F:L:ll/z’ Nr+1/2) =

According to Lemma 3.2, we are free to choose any value for the component of the flux Frn_jll/z along T,. 115

Here, we choose to use the average between the fluxes at nodes r and r 4+ 1. Of course, some other possibilities
may be considered (see for instance [1]), as far as it remains consistent. We thus define

n 1 n n
(Fr—:_ll/Q’ TT+1/2) = 5 (F7 + + Fr-:_lla Tr+1/2) (310)

Next, using the vector Q7 = B; 1CJT as in the polygonal case we have,

Yoo QT Ty

p/ M, 1,260,

n

(F:LEI/Q,TT_;'_l/Q) = Z (Q;=Tr+1/2) 5 (311)

20 1/2
k/M, /26 r+1/

2014172

where the sum over k runs for all £ such that M, € €, and the sum over p for all p such that M, ; € Q,.
Combining (3.9) and (3.11) we are able to compute the flux at the shoulder point r 4+ 1/2:

n+1 n+1
Ei - Ej Nr+1/2

o1z [Npsapel

n+1
Fr+1/2 -

Tr+1/2

+ Y ETQR T+ Y ETHQ)T o) (3.12)

2
k/M, 1,26 P/ My y1/2€Q 20 HTTJFl/QH

This allows to put the system under ther form ME™+1 = E™, where the matrix M is defined by inserting
(3.12) and (3.6b) into (3.6a), that is,

N At (éir? Nr+1/2>
! /M, 11260 Or+1/2 HNT‘H/ZH
|Ql| O

T/M»,«GQ,;HQ]‘

At (éf» Nr+1/2)
1] r/M,.+§2:EQimQj Or1f2 | Nogapo|”
LA (CI7 2 Tsaa) (@) T o)
1921 )My 2€9209; 207412 HT7-+1/2||2
At (CM'Z+1/27TT+1/2> (@, Tq1)2)
1 >

/M,y 2eRu09; 2014172 | Trgr e

(3.13)

As it was pointed out in [11], on a cartesian mesh, the scheme (3.3a)-(3.3b) has a stencil which induces
coupling of two cells ; and €; only if they share a node. This is not the case in the scheme (3.6a)-(3.6b), as
it is clear in the definition of the matrix (3.13). Indeed, additional terms are present, which may (and actually
do) couple cells which have a common edge. This may be seen on the case of a small mesh (9 cells) displayed
in Figure 7. On the left part, there is a circle if the corresponding coefficient of the matrix is larger than 104,
For the conical case, we add star under the same condition.

10
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Figure 7: The stencil of the scheme in the case w > 0. Circles (o) correspond to the polygonal scheme, and
crosses () to conical scheme.

In the pure polygonal case, we have a cross-stencil, as explained in [11]. In the conical case, additional terms
are present. For instance, cell 5 is only coupled to cells 1,3,7,9 in the polygonal case, whereas it is coupled to
all cells in the conical case.

3.3 Numerical tests

We present some numerical tests on various meshes. Our aim is first to show that using the conical mesh
formalism has a stabilizing effect on the GLACE diffusion scheme. We also provide a convergence analysis on
a case with an analytic solution.

3.3.1 Cartesian mesh

We use a cartesian mesh on the domain Q = [—2;2]?, with 31 cells in each direction. We then make the edges
conical, adding control points at a distance d in the normal direction of a given edge, with d = 0.2Ax, Az being
the mesh size (see Figure 8). We impose that the control point is always closer to the origin than the center
of the cell. Other configurations have been tested (control points on the other side of the edge, or random
positions) with similar results.

PLOT PLOT

2 m T T T T

)

Y-Axis
1
1
Y-Axis
<
[
.
[
[
[
[
r
[
[
{
[
[
.
[
[
4
[§
[
[
[§
[
[
[
&
{
4
4
[§
4
{

. - : T T T
-2 -1 0 1 2 -2 -1 0 1 2
X-Axis X-Axis

Figure 8: Left: classical cartesian mesh. Right: conical mesh with w =1

11



We choose as an initial condition a Dirac mass, that is,

E? = IleJI if x; € [1.995; 2.005]2
E;-J =0 else

In other words, energy is present only in the central cell, and we have a total energy equal to 1. We set o = 1.
The time step is At = 0.003s, and we give the results at t = 0.03s for different meshes.

0.0301 0.0301 0.0301

Y-Axis
Y-Axis
Y-Axis

)
|

5
!

0 1 2
X-Axis X-Axis X-Axis

Figure 9: Left: classical cartesian mesh with GLACE polygonal scheme. Right: conical mesh with w =1

Results are displayed on Figure 9. In the case of the cartesian mesh, we observe the cross stencil: one in
two cells is not reached by the energy diffusion. This problem is no more present in the case of a conical mesh.

Next, we compute the numerical error of the scheme in this case. The equation reads

1
E(t,.%‘,y) - EAE(tax7y) = 07

E(07 z, y) = 6(3{::0,74:0) .

The solution is given by

O o (.2 2
Eexact(t,l'ay) = me e ), Vvt > 0. (3.14)
with
—+o00 400
/ Eexact(t,z,y)dzdy =1, ¥Vt > 0. (3.15)
0 0

The initialization is set at ¢ = 10™*s in order to avoid the singularity of the Dirac mass. We choose o = 1,
At = 1072 and a final time equal to t = 0.1. Then we compute the L? error between the exact solution and
the numerical solution. For a given mesh size Az, we use several meshes (see Figure 10): the cartesian one
(red curve), the conical one with control points outwards from the origin and w = 0 (green curve), w = 2 (blue
curve), and the conical one with control point inwards from the origin and w = 2 (purple curve).

18000 100000

polygonal
w=0

w=2+

wo=2-

' po\ygona\‘

16000

14000 10000 |

12000

10000
1000 |
8000

5000 |
4000 | 100 ¢

2000

i L . . . . 10 .
0 0.05 01 0.15 02 0.25 03 0.35 0.4 0.01 0.1 1

Figure 10: Left: error as a function of Az. Right: log of the error as a function of Ax.
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In all cases, we observe a convergence rate of approximately 2.14.

3.3.2 Radial mesh

Here we use a radial polygonal mesh on the one side, and a conical on the other side (Figure 11). For the conical
mesh, we set w = ? for orthoradial edges, and w = 0 for radial edges. The control points are defined in order
to have edges which are portions of circles centered at the origin. We expect to have a much better solution
with the conical mesh, if the exact solution is radially symmetric.

X-Axis X-Axis

Figure 11: Left: polygonal mesh. Right: conical mesh with w = g for orthoradial edges, w = 0 for radial
edges.

Here again, we use the exact solution (3.14), with an initial time equal to ¢t = 10~%s, and ¢ = 1.

-1 0 1 -1 0 1

Figure 12: Left: polygonal mesh. Right: conical mesh with w = %, t = 0.0001s

0 -1 0 1

Figure 13: Left: polygonal mesh. Right: conical mesh with w = g, t = 0.0101s
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As expected, the solution is more accurately computed in the conical case. In particular, radial symmetry
is preserved exactly (Figure 12 and Figure 13).

Next, we present a test case in which the polygonal scheme presents positivity issues. Here, we initialize the
energy by 0 everywhere, except in one cell, so that the integral of F is equal to 1.

(7
S

-1 0 1 -1 0 1

X-Axis X-Axis

Figure 14: Left: polygonal mesh. Right: conical mesh with w = @ for orthoradial edges, w = 0 for radial
edges.

We present two conical meshes: the first one with w = %, that is, with "real" conical edges (Figure 14,
right). The second one satisfies w = 0, hence it is "almost" polygonal (Figure 14, left). This allows to observe
the difference between the scheme designed for polygonal meshes (3.3a)-(3.3b), and the one designed for conical
meshes (3.6a)-(3.6b)-(3.6¢), but used on a polygonal mesh.

-1 0 1 -1 0 1

Figure 15: Left: polygonal mesh. Right: conical mesh with w =0, t = Os
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708

599

A I'e

0111

-108

109
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0.000768

-1 T T T 1 T T
-1 0 1 -1 0 1

Figure 16: Left: polygonal mesh. Right: conical mesh with w =0, t = 0.01s

3.3.3 Triangular mesh

In this Subsection, we use a regular triangular mesh of the domain{) = [—1; 1], which consists of 6700 triangles.
We add control points along the normal of each edge, at distance equal to 20% of the edge length (Figure 17).

vy T ULy

0.2 0.2

0.14 0.14

Y-Axis
Y-Axis

JANAVAVAVAVAVAVAVAVAVAVAVAY
] VENENA‘(“VAVAVAVAVAV
AVAVAVAVAV%‘gVAVAVAﬂVA A
KRS A
NN ~
Ng”ﬂ 7" -0.25 T - 1 T T
-0.2 =0.1 X_;)\,‘is 0.1 0.2 -0.2 =0.1 X_j(.)\xjs 0.1 0.2

-0.1

-0.24

Figure 17: Left: triangular mesh. Right: conical mesh with w = 1.
The initial data is equal to 0 everywhere, except in the central hexagon, so that the integral of the energy
is equal to 1. We set At = 0.002, 0 = 1 and the final time is ¢t = 0.01s.

0.01 0.01 0.01

Y-Axis
Y-Axis
Y-Axis

6.29¢-09
1

0 0
X-Axis X-Axis

Figure 18: Left: polygonal mesh. Center: conical mesh with w = 0. Right: conical mesh with w = 1.

We note that the solution is much better on the conical mesh (Figure 18). The exact solution remains
positive, while the numerical one computed on the polygonal meshes have large negative values.
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4 AP schemes for the hyperbolic heat equation

In this section we define AP schemes for system (1.1) on conical meshes. Two variants are studied, in the
spirit of [11], depending on how the source term % F' is descretized. The first one (JLa) uses a cell-centered
descretization, while the second one (JLb) uses a nodal discretization. It is shown in [11] that in dimension one,
the first discretization corresponds to Jin-Levermore scheme [16], while the second one leads to Gosse-Toscani
scheme [13].

4.1 JLa scheme

In this part we first recall the definition of GLACE AP schemes for system (1.1) on polygonal meshes. Then
we give an adaptation on conical meshes.

4.1.1 JLa scheme for polygonal meshes

The JLa scheme on polygonal meshes reads [11]:

At
EMY B+ (Cr F*h) =0, (4.1a)
el€y|
r/M,.€Q;
At o At
F'— Fr C/E = - —F"! 4.1b
i % E|Qz| Z i ir g2 % ) ( )
r/M,€Q;
where the fluxes are defined by
BN = EPT 4 (FMT - FP Y ng,) — ? S (FTY M, — 2y, (4.2a)
> (an+Zh)FT = Y CET e Y Clen BN (4:20)
i/ M,.€9Q; < i/M,.€Q; i/M,.€Q;
where the local matrices read &;, = C] ® n;, and B” =C! ® (M, — x;) with n;, = ”g:H .
We also define . R '
> i and B= > B (4.3)

i/MTGQi i/MTGQi

Note that we have used an implicit version of the scheme, in order to avoid any stability issue. However, an
explicit version is easily derived in the same way.

Remark 4.1. The matriz &, is symmetric positive definite on any non-degenerate mesh. This fact is proved
in [17]). The matriz B, is invertible under the same conditions as in the diffusion case (see Remark 3.1).

Let us now define the matrices ;. = ;. + 2 BiT and 4, = &, + == BT, so that the fluxes read

B = Er g (FPY - B ) — (B0 ML - a) (4.4a)
9]
RET = > CREFT Y R (4.4b)
k}/MTEQk k}/M,»EQ]c

Thus, assuming that 4, is invertible, we write (4.1a) as follows:

S Y (enaster) Bptt + (LA ak BT =0, (4.5)

r/M,€Q; k/M,eQy

n+1 n
EM — B 4

In order to compute the nodal values E'", we insert (4.4b) into (4.4a):

Eptt = EPY 4 (B me) = > (3 CRERT + 4 Yo BT R) (4.6)
k/MTEQk

with R = N + %(Mr — a:l)

16



Next, we insert (4.6) into (4.1b), which gives the following
o At
14 = ntl oy
( e ) sm | Z

Gathering (4.5) and (4 7) we get

En+1 FTLJrl nzr) _ Z (ﬁl’r‘—lcgE,’fﬂlﬁ’l + ,?;ldkan+17R)‘| C;F — En (47)
k

e ZZ [(cr.Qp e + (cratanFrtt)] =0, (4.82)
(1 . o‘lAt) P il E@t‘ Z {E?H i (Fin+17nw> - Z (’AYT_ICIZEZH +,%—1dkrF,f+1,R)} C; =F;. (4.8b)
il k

with Q7 =4, 'C?. In (4.11b), (4.11c) and (4.11d), the sums over 7 run for r such that M, € Q;, and the sums
over k run over k such that M, € Q.
Next, we write the scheme under the matrix form
E’I’L
MPY X = X" with X" = FP
Fy
Each block of the vector X™ is of size NV, the number of cells. Let us give the expression of the terms of the
matrix MP°Y. We define

—1
Xk} = ak:ra
and we have

B e S enen s+ (enarm)] = mr

At At
(1+ 72 ) s S {E?“ +(Frthm) = 3 G O R) B - 3 (4 Fﬁ“ﬁﬂ cr=

k k

Thus, the coefficients of the matrix MP°Y read, for all i, j such that 1 <i,j < N,

N At
M ol Cr r
Z‘y = 6ij+g|752,| 2: ( i’Qj)7
v r/M,.eQ;N8,;
At

l s T
My = ] Y. (ChAh),
e/ M,e,n0;
At
1 T T
MPY N = SN} Sooo(CraT),
e/ M,.eQ,n0;
At . At . .
MY, = 5ij€|79‘| Yoo - e > (epRrR)Cr(),
o/ M,eQ; "/ M.eQinQ;
o; At At - At - -
Mf—f%,j-%]\f = 5 (1 + ) + 6ljm Z an(l)C'L (1) - €|Q| Z (XJ |17R> Ci (1>7

v T/Mreﬂi T/M»,«GQ,;HQ]‘

o At . At o
MENjon = Ouggy > me@CiM-go7 3 (YRR)CIO),
v r/M,€Q; g r/M,.eQ;NQ;

N At . At I r
MF—&-;};V,J‘ = 5ijm Z C; (2)_T-| Z (’lecjaR) C; (2),

o M,eQ; €| ' r/M,.eQ;NQ;
- At , At , .
W = bidgy L mOCG@-g ¥ (HLRICE)
" M,eQ; o MeunQ;
. oAt At ” At , ,
Mip-:-);};\f,j+2N = 0 (1+ >+5ijE|Q‘ Z n;(2)C7(2) — 2| Z (X ]2, R) C{(2).
e M,eQ; o MeQunQ;

In the above formulas, we have used the following convention : for a vector C € R?, C(1) denotes its first
component, while C(2) denotes its second component. For a matrix X € R?*2, X1 denotes its first column,
while X}y denotes its second column.
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4.1.2 JLa scheme for conical meshes

We are now going to extend the scheme exposed in the previous subsection to conical meshes. Asin the diffusion
case, we add to the scheme contributions coming from the shoulder points.
This scheme reads

At . "
prons A0S e Y (et o (4100
" \r/M,€Q; /M,y 196
At . At
L 70 P DKL D DI o e o7 et T (4.10b)
v r/M,€Q; /My i1/2€8
The fluxes are defined by
EZ”+1 _ Elml + (Fwin+1 _ F:LH,TMT) _0r (FrnH,Mr _ wl) : (4.11a)
€
n n n n Or+1/2 n
Ezr-‘rf-ll/Q E i + (E i Fr_:_l/gani’r‘+l/2) - c / (FT_:_ll/QaM’r‘+1/2 - xl) ’ (411b)
WEM = N [CTEM + CF @ng BT (4.11c)
l/MTEQL
r4+1/2 n r+1/2 mn
77’4»1/2 7+1/2 Z |:C',L+ / El +1 + Ci+ / ®nir+1/2Fi +1:| . (411d)
i/ M, y1/2€Q;

Moreover, the matrices 4, and 4,41 /2 read

. . . +1/2
Y = Yir = Z (azr + /827"> ’ Tre1/2 = Z’Yir—i—l/Q - Z (ai7‘+1/2 + ﬂw—H/Q)
! ' ~ ~ r+1/2
Or =) Qir = Zcf ® Ny, Grgrfr = birryz = D G @iy,
' A 5 r41/2
B = ZBW Zﬁzr =C/® —x;). Bro1jz = Zﬁirﬂ/Z = Zci 2 (M, 110 — ;).

1
Here, in order to simplify the notation, the sum over ¢ runs for all i such that M, € Q; (left part) or for all
such that M, /o € Q; (right part).

As in the diffusion case, the matrix 4, is invertible under some regularity condition on the mesh, but 4,112
is, here again, of rank one (see Lemma 3.2). Hence, we apply the same treatment as in Section 3 to define the
flux F,. |,/ at the shoulder point. We denote by j the index of the cell §2; such that M,. ./, belongs to 2; N{;.
Then, we have

c/t ot =o.

Hence,
Arprs2 = 2072 @ my s + T“/Q B g (@) — @) (4.12)

Inserting this equality into (4.11d), we infer

Or41/2 e e
(FT"_H/Q, Mirprjz + 2 (z; - ;ci)) =B — EM o (FMY 4+ FP 7 ngpp0) (4.13)

As in Section 3, we define the following vectors

Or41/2
N1/ =214 4170 + T (s — ),
Tivry2 = Nf+1/2~
This allows to write (4.13) as
(1<“;L++11/2,N,ﬁ+1 /2) = EPL B (B Fng, ). (4.14)
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Next, we need to compute the flux in the direction of T, /5. As in the diffusion case, we choose to define it as
the average of the fluxes at nodes M, and M, ;1. Here again, other choices are possible (see for instance [1]).
We thus have

n 1 n
(FT+1/2?TT+1/2) = § (F,:L+1 +F7~+117T’r‘+1/2) (415)

that is, setting Q7 = 4, 1C

1
(F:L_i_ll/ga Tr+1/2) = 5 Z [(QZvTr+1/2> E]?+1 + (F];nJrlankr) (QZaTr+1/2)}
k/MTGQk

1
+ 3 Z [(Q;+17Tr+1/2) E;LH + (F;H»nprﬂ) (Q;,Tr+1/2)] . (4.16)
p/MrJrler

We are now going to compute the additional terms in the matrix M, which are due to the fluxes at the
shoulder points. We first write

N,
r+1/2 pan+tl _ r+1/2 r+1/2 n+1
Z (Cz Fr+1/2) = Z <C7; a2> (Fr+1/27NT’+1/2)
’I"/M7‘+1/2€Qi T/MT+1/2€Qi | NT+1/2H
T,
r+1/2 r+1/2
Y () (0 ).

/My 1/2€; | T+1/2H

Defining N = TH/Q L/% et T = Hl/z Lﬂz , we can write this term as follows:
"INt T |

S (e rEl) = Y N(ERLNap) Y T(E ). @17)

/My y1/2€ /M, 1/2€8; /M, 1/2€

Next, we insert (4.14) and (4.15) into (4.17). This gives

7 r+1/2
/M, 1260 /M, 1/2€Q

S (GTREL) = Y NET B (R E )

T n n
+ Z 5 (Fr +1 Fri_ll T+1/2) ) (418)
T/MT+1/2€Q7;

where it is understood that j is the index of the cell ; such that M, ;2 € Q;NQ;. We split (4.18) into three
termes, and we use (4.11c):

Z N (EinH - E?H + (Fin+1 + F}7l+1,ni7'+1/2)) ) (4.19a)
r4+1/2

T T " T . 1. n
Y. 5 E T ap) =Y ) [2 (Qk Tory2) BT 4 5 (vﬂakrFk“,Tm/z)}, (4.19D)
r4+1/2 r+1/2 k

T T " T, 1. "
Z D) (Fr+1 ) r+1/2 Z Z [2 'r‘+1/2) Ey LR 0} (%ﬁlaerFk +1»Tr+1/2):| ) (4.19¢)
r+1/2 r+1/2 k

where all sums run for r such that M, ,/; € Q;, and, here again, j is such that ; and €2; share the shoulder
point M, /5.

Keeping this in mind, we next insert the expression of the flux into the second eqation of the scheme (4.10b),
in order to compute the corresponding additional terms. These terms read

STt P 1o (4.20)
r+1/2
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First, we use (4.11b) in order to compute EZ‘TUZ

g
n+1 _ n+1 n+1 n+1 T+1/2 n+1
Eir+1/2 =Lb + (E - FT+1/2»nir+1/2) I FT+1/27 M, 1) — i),

that is,
Or4+1/2

Entl - prtl g (Fin+lanir+1/2) - (Fn+l/2’nir+1/2 +

ir+1/2 i r+1 (Mr+1/2 - mz)) .

Or41/2
€

We define R;yi1/2 = Njry1/2 + (M, 41/> — x;), which allows us to write

n+1 1
E’i’r‘t—l/Q = E:H' —+ (En+1,nir+1/2) — (F»ﬁ:—ll/gaRiT-‘rl/2> .

This also reads
N,
n+1 _ n+1 n+1 T+1/2 n+1
Eir+1/2 =B+ (Fz ’"ir+1/2) - (Riﬂrl/% ) (Fr+1/2’NT+1/2)

N1 2]
T,
- (F:lﬂl/yTr—Q—l/Q) (Rir+1/27 +1/22> .
T4/

"/ _ Nr / - _ T,
We set N = (Rir+1/27 HIVT:;/;HZ) and T = <Rir+l/2a T¢+1//22||2>’ hence

E;;ill/z = EM"M 4 (M ngq)0) — (F:fll/gaNer) N - (F:ff/yTrH/Q) T.

We insert (4.14) and (4.15) into the above equality:

n+1 _ n-+1 n+1 n+1 n+1 n+1 n+1 \/
B S =E + (B mipgaye) — (B = EF 4 (B 4+ B gy 0) ) N
o T T
— (F Y Togay2) 5 (FH Tegay2) 5
where j is such that M, € Q;NQ;. The additional term in the system reads Z C’ZH/QE;ﬁfl/Q, which
T/MT+1/2€Q1'

we split into three terms:

Z (E?H + (F T mipgaye) — (B — E]'f“|r1 + (F T+ Fj"H,nirH/g)) ./\7) C;H/Z, (4.21a)
r/Mi1/2€Q;
T
- > (BN Tap) ECZ'H/Q, (4.21b)
/My 1262
T
- Z (F:Lle1>Tr+1/2) 501 +1/2' (421C)
/M, 1126

In (4.21a), as before, the index j is such that M, /5 € Q; N Q.

We are now going to use (4.19a)-(4.19b)-(4.19¢) on the one hand, and (4.21a)-(4.21b)-(4.21c) on the other
hand, to compute the additional terms in the matrix of the system. Let M be the matrix of the system. As
before, the system reads

En
MX"tt = X" with X" = | F»
By
Each block of the vector X" is of size N (the number of cells). Collecting all the terms, we have, denoting by
MP°Y the matrix of the polygonal case, for any 4, j such that 1 <4,j < N:

R D Y S o

i o .
€|Ql| T/ M,1/2€2 €|QZ‘ T/M,41/2€Q:NQ;
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M; j+n

M; jron

MiinN,j

MiiNj+N

My N jion

Miyan,j

Mityon j+N

Miion, j+2N

At T,
+€|Q,| Z 9 (Q +Q ' Trt1/2)
e M,y €N
- At At
1
M7 + i || Z Nriri12(1) + ]| Z N1viri1/5(1)
v T/MT+1/2EQi v T/MT+1/2€QimQj
At T, .
+a|Q‘| Z 2 (7o + X7 o, Tt 2)
R0.Y SN e HaleR
- At At
1
MiZon +ouggr 2. Nminp@+ggr > Nminp()
r M,y €9 " M,y €000,
At T r r
taan 2 g M AR T
e M,y €N
At ~ - At ~
VPN geT 2 (1K) e+ o X e
! /My 1/26€8 ¢ /M, i1/2€02:NQ;
At T ” r r+1/2
el Z §(QJ'+Qj+ :Tr11/2) C; / (1),
v T‘/Mr+1/2€quﬂQj
At N
1 r+1/2
MER N+ 5@‘3‘@ > (1 —N) ni12(10)C T2 (1)
¢ T/MT+1/2EQi
At -
el > Nrp i1 2(1)CT2(1)
v T‘/Mr+1/2€quﬂQ
At T . r 1/2
ol 2 7 (Bl A e T ) 6 )
/My peQin

At
1 r+1/2
lwzpf]\};g+2N + 0i; i E : (1 _N) Nirt1/2(2)C; o (1)
e[|
T/MT+1/2€Q7;

At +1/2
o > Ny 2(2)Cr 2 (1)
T'/MT+1/QEQiﬂQ
At T e
_ XT X r+1 C”Jr /
E|Qz| Z 2 ( | + |27 T+1/2) ()7
T/MT+1/2€QiﬂQ
At <\ At —
MPPS S+ 65— 9 > <1 —N) CTH2(9) o 3 NCTH2(2)
! 7'/M7+1/QEQ' ¢ 7/ My q/2€Q2:NQ;
At r T+1/2
Tl 2. (Q + QT Tyay2) G 7(2),

’I‘/MT+1/2€QH-]Q

“rpo At 4
Mieré};V,jJrN +0ii o7 Z (1 - N) nzr—i—l/?(l)c H/Z( )

Vel
/M, 1126
At -
—m Z anr+1/2( )C; +1/2( 2)
v ’I‘/MT+1/2€QH-]Q
At T ” r+1/2
_€|Qi| Z 2 (X I & A T+1/2>C (2)
T‘/M,‘+1/2€Q7;ﬁ52
At ~
P gon T 0o 1] Z (1 *N) 17+1/2(2)Cr+1/2(2)
/M 1/2€8;
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At ~ .
e Y Ny pCTR(2)

el €2l r/M,+1/QEQ~ﬂQj

r r+1/2
| E X ‘ +X r |2a T+1/2) C +/ ( )7
‘ +1/2

where we have used the notation X7 = 4, 'ds, and Xkr“ = "3/7,.__&1(3114;7-4'_1. As in the polygonal case, for a vector
C € R?, C(1) denotes its first component, while C(2) denotes its second component. For a matrix X € R?*2,
A1 denotes its first column, while X}, denotes its second column.

4.2 JLb scheme

In this section, we present a second version of the preceding scheme, in which the last term of the second
equation of (1.1) is discretized at the nodes instead of being discretized at the cell centers.

4.2.1 JLb scheme for polygonal meshes
If the mesh is polygonal, the scheme reads [11]

E?Jrl _ En |Q ‘ Z Cr Fn+1 =0, (422&)
R o SO = (O @ (M, — ) o, (220)
i gm | CQule? & t

where the fluxes are defined by

Er = EPTU o (FP - B g, — (P ML — ) (4.23a)
3
S (an+ Zhe) F = Y OB S Cleng B (4.23b)
i/ M,.€Q; € i/ M,.€Q; i/ M,.€Q;

-~

‘“‘i

and the local matrices are &;, = C] ® n;, and Bir =C! ® (M, — x;) with n;, = I

|
A A 5 A ~ g 4
From now on, we set &, = E Gipy Br = E Bir and 4, = E Nir = M§ (air + gﬁzr)

’L-/MTGSIi i/MTGSZi i/MTEQi
The scheme also reads
At
EMY —EM 4 9 (Cr,FM) =0, (4.24a)
E‘ Z| T‘/MrEQ
Fin+1 Fm Q Z CT E* "+1 (424b)
| vy
with the fluxes
B = EPY 4 (T - B n) (4.25a)
~ g 5 n rn T n
> (aw+ Zhe)EVI = 3 CIET 4 3 Clemg T (4:25D)
i/ M, €Q; i/ M, €Q; i/ M, €Q;

With this form, it is clear that we can apply exactly the same method as with the JLa scheme. The only
difference is the last term of (4.24b). These computations are left to the reader, and we only give below the
matrix we obtain in such a way. We use the same convention as before, denoting by MP°Y the matrix of the
system. The indices ¢ and j are such that 1 <4i,5 < N.

o At T ”
MB vo= dij + Z (Cian) ’

lS| /M, €Q;NQ;
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MZP;YN =

Miftay = €]€]

Mff}\yu = iS5

MR v = 8ij+0i TN

Mipf%,j+2N = 0y

szf;};\fj = dij5o7
Mz‘p-i(-);};\f,j-i-N = i35
M3y jpan = 0 +6

Y el

> np(2)Cr(2) -

>

r/M,eQ;NQ;

(% 'C},R) Ci (1),

= o > (ARG,
¢ r/M,€Q;NQ;
At :
o] 2 (WRR)CI),
oy Mein0;
-2 GrlonRr)cie),
r/M,€Q;NQ;
At , ,
- €|Q‘ Z (Xk:‘l’,R’) Cz (2)7
,LT’/MTGQimQ]’
o L WHRRCE,
o/ M,e,n0;

where we have used the following notation: R = m;,. (note that in the JLa case we have R = n;,+ 2= (M, — x;)),

and & = 'Ay;ldkr.

4.2.2 JLb scheme for conical meshes

We now extend the JIb scheme to conical meshes. It reads (we recall that C] = Var,[€2;| and C;H/ 2=

Vm

r41/2

1251)

At
E}T - Bl 4

At
Fin+1 _ FZ‘” +

At

B |Qi|€2
r/M,.€Q;

At
N |Qi|€2 Z

with the fluxes

and the matrices

e€2]

CrErt!
€|Q’L| Z 1 r +

/My 1/2€

n+1 _ n+1
Eir+1/2 - Ez

2 n+l __
’YT+1/2FT‘+1/2 =
i/ Moy 2€Q

(Cr F ) +

> Ci® (M, — ;)0 F'

+1 _ pntl +1 +1
BT =BT+ (FMT - F T ng,)

_ n+1
Fr+1/2’
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>

/M, 1/26€80;

(CT+1/27Fn+1 ) _

7 r+1/2

i 2pn+t |

T/ Myy1/2€9Q

nir+1/2) )

WET = Y [CIEMT + C @ng FI,

ir+1/2

(Mo 12— @) 01 FL

[(J{*”QFJ;LJrl +Crt g nir+1/2Fi"+1} :

(4.26a)

(4.26b)

(4.26¢)

(4.26d)

(4.27a)
(4.27b)

(4.27¢)

(4.27d)



’3/7“ = Z’?’LT = Z (dzr + %Bzr) )

« « -
Qp = g Qi = § Cz' X Ny,
i i

Br :ZBH :ZBir:C;n@(MT—CEi).

N N N Or41/2 5
Vr+1/2 = Z’Yir+1/2 = Z (ar+1/2 + - / 3r+1/2) )

K3

N ~ r+1/2
Qri1/2 = Zair+1/2 = Z C; @ Tiry1/2,
i i

Brsrjp =Y Birs12 =Y C/T2 @ (M2 — x0),

% i
where all the sums run for i such that M, € €Q; (left column) and M, /5 € €; (right column). As in the
polygonal case, we need to change the definition of the flux (4.27b). We define R;, 1,2 = 1 41/2, and get

EM = E,TLH + (F‘in+1anir+1/2) - (Fn+1/27Rir+1/2> .

ir+1/2

Note that in the JLa case, we had R;,11/2 = Njpp1/2 +

JLa case. For this purpose, we introduce

Nyy12 =204 412+

Tr+1/2 =

r4+1

Or41/2
g

(M, 41/2 — ;). We proceed exactly as in the

Or41/2

(wj - :1:1) ’

where j is such that M, 1/, € Q; N ;. We also define

N = (Cv_“+1/2 Nyy1)2 ) - (C_r+1/2

[Ny

We these notation, the matrix of the system reads

N N At
L poly =0 E :
Mig = My 40 g

At
+ >
el€]
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T
5 (Q; + Q;H’ Try1/2)
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T. - N,
+1/22> e (RWH/Q,M,Z) |
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T TT A= T T
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2
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I
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Nnppq/2(1)

T/Mr+1/2€Qi T/MT+1/2€QVLOQJ'
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a2 g @t e T,
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. - At At
1
M;jion = M;);LN + 6”@ Z Nnir+1/2(2) + M Z Nniri1/2(2)
! T/MrJrl/QEQi v T,Mr+1/2€QiﬂQj
At T, .
oo 2 g kA e T )
v T/Mr+1/2652iﬂﬂj
~ ~ poly At ~, r+1/2 At r~r+1/2
Mg = NN+ g > (=Nt + o Y NettR)
g T/MT+1/zeQi v ’I‘/MT+1/2€Q7;HQJ'
At T . . r+1/2
“Tol X g @rQtimap e,
r M,y €N
N e T M .y Herta
+Nj+N = Mg nt E=Ton] =N )ni112(1)C; (1)
r M,y €9
At ~ r+1/2
=N > N1 2(1)CTH2(1)
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At T .
_ =" Z 2 (Xr| +XT+1|07 r+1/2)C +1/2( )

el
T‘/Mr+1/2EQ ﬂQ
. At i
1 r+1/2
Misnjron = MPER oy + 51‘]‘@ > (1 - N) niri2(2)C; T2 (1)

v ’I‘/MT+1/2€Q¢

At r
—e Y N p@CT ()

6|Qz| T‘/Mr+1/2EQ7',ﬂQ
At 7- r r+1 r+1/2
O Z 5 (X] |2 + X2, Trga2) €7 (1),
T/MT+1/QEQ¢ﬂQ
M, e W L N) e + B NCI™2(2
+2N,j  — z+2N7]+ j |Q| Z ( - ) i ( )+5‘Q-| Z i ( )
! T/MT+1/2€S% Mg 2 €uNQ,
At 7 . .
o Y p@rtman e
¢ 7/ My 1/2€Q2:N8;
. At N
1 r+1/2
Miyongin = MPSN N + 06— e| | > (1 _N) nirp12(1)CT2(2)
/My y1/2€8;
At .
“qa 2 Nmeapme e
¢ /My 1/2€Q2:N8;
At T r r41 r+1/2
Y > 5 (X + X L Togay2) C77(2)
’I‘/Mr+1/2€QiﬂQ
N At
1 r+1/2
Mi+2N,j+2N = Mlpr}],\IJ+2N +6zgm Z (]— _N> nzr+1/2(2)c / ( )
! T/ M i1/2€Q
At -
—m Z anr+1/2( )C; +1/2( 2)
! ’I‘/Mr+1/2€Q'ﬂQ
Q Z X . |2, r+1/2) CTH/Q( 2),
X

As before, for a vector C € R?, C(1) denotes its first component, while C(2) denotes its second component.
For a matrix X € R?*2, X1 denotes its first column, while X}, denotes its second column.

Note that, once the JLa scheme is implemented, JLb is only a slight modification: changing R on the one
hand, and changing F[”rl in the second equation on the other hand.

4.3 Numerical tests

We present in this section some numerical tests for the schemes presented above. The two variants JLa and
JLb give more or less the same results, so we do not make any difference between them.

We first present results for a small parameter €. This allows to assess the fact that the scheme is asymptotic
preserving (AP) in the diffusion limit. We also present results with larger values of e, for which explicit solutions
allow to assess the convergence of the scheme.

4.3.1 Diffusion limit ¢ = 10~

Here, we use a cartesian mesh on the domain Q = [0;4]?, with 31 cells per direction. For each edge, we add
a control point in the normal direction, at a distance equal to 20% of the edge length, towards the origin (see
Figure 19).
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Figure 19: Left: cartesian mesh. Right: conical mesh with w = 1.

The initial condition is a Dirac mass, that is,
0_ 1
E? = 0 otherwise,

and F = 0. Thus, only the central cell contains some energy, and the total integral of E° is equal to 1. We set
e =10"% and o = 1, and the time step is At = 0.003. The results are displayed in Figure 20 at time ¢ = 0.03.
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1 |u83

1||6
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Y-Axis
Y-Axis

L4
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0.57 0229
-6.83e-17 -9.380-09
0 1 2 3 4 0 1 2 3 4
X-Axis X-Axis

Figure 20: Results for a Dirac initial condition. Left: polygonal mesh. Right: conical mesh with w =0

Y-Axis
Y-Axis

X-Axis X-Axis

Figure 21: Left: conical mesh with w = 0.01. Right: conical mesh with w = 1.

We see that the scheme on polygonal mesh suffers from cross-stencil. We also plot in Figure 21 the same
result for a different value of w. Recall that in the case w = 0, we do not recover the scheme on a polygonal
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mesh, although the mesh is polygonal. Indeed, the contribution of the shoulder points is still present and in
some sense sovles the cross-stencil issue.

4.3.2 Transport case ¢ =1

We now present the same kind of results for e = 1. All other parameters of the simulation are unchanged. In
particular, we use meshes displayed in Figure 19.

4
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26
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138 00333
0.820 -0.326
0377 N 0684
00752 104
0527 -
098 176
-1.43 I =2.12
18 En
E e
2 o E

0 1 2 3 4

X-Axis

Figure 22: Left: polygonal mesh. Right: conical mesh with w = 0.
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Y-Axis
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Figure 23: Left: conical mesh with w = 0.01. Right: conical mesh with w = 1.

Results are displayed in Figures 22 and 23. As in the diffusion limit case, we still observe the cross-stencil
issue, with the same conclusion.

4.3.3 Radial mesh in the diffusion limit ¢ = 10~*

We now go back to the diffusion limit case, but use different meshes, which are displayed in Figure 24. The
weights are all set to w = %, so that edges are portion of circles centered at the origin. We set ¢ = 10* and
o = 1, and the time step is At = 0.003. The results are displayed in Figure 25 and 26 at time ¢ = 0.03.
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Figure 27: Left: polygonal mesh. Right: conical mesh with w = ‘/Ti

4.3.5 Triangular mesh in the diffusion limit ¢ = 10~*

We now test the scheme on a triangular mesh. The domain is 2 = [—1;1]2. The original triangular mesh is
displayed in Figure 28 (left). For the conical mesh, we add a control point for each edge, at a distance equal to
20% of the edge length along the normal. This gives the mesh displayed in Figure 28 (right).
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=0.25 T T T u y =025 T T T T T
-02 -0.1 0 0.1 02 -02 -01 0 o1 02
X-Axis X-Axis

Figure 28: Left: polygonal mesh. Right: conical mesh with w =1

Here again, 0 = 1, ¢ = 1074, and the initial data is a Dirac mass at the origin. The time step is At = 0.001,
and the results ar presented at ¢ = 0.014 (Figures 29 and 30).
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Figure 29: Left: polygonal mesh. Right: conical mesh with w =0
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Figure 30: Left: conical mesh with w = 0.01. Right: conical mesh with w = 1.

As in the case of the diffusion scheme, the original scheme on polygonal meshes has positivity issues. This
is not the case for the scheme on conical meshes, even in the limit w = 0. This limit corresponds to a polygonal
mesh, but with a different scheme (see Remark 2.4).

4.3.6 Triangular mesh in the transport case ¢ =1

This test is exactly the same as the preceding one, except that € = 1. Results are displayed in Figures 31 and
32.
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Figure 31: Left: polygonal mesh. Right: conical mesh with w =0
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Figure 32: Left: conical mesh with w = 0.01. Right: conical mesh with w =1

Here again, the cross-stencil issue is observed for the polygonal case. It is not present in the case of conical
meshes.
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4.3.7 Convergence study

Here we propose a convergence analysis of the scheme. For this purpose, we need an explicit solution. Using
periodic boundary condition, and assuming that o is constant, a natural way to compute solution is to use a
plane wave decomposition, that is,

E(z,yt) =Y > aj;(H)e? ™, (4.28)

JEZ kET

where L is the period (that is, the size of the domain). We also point out a simple computation lead from (1.1)
to the damped wave equation for E:
0°E o OE
oz e o
where we explicitly used that o is constant. Inserting (4.28) into (4.29), we find a linear differential equation
solved by each o ;. Solving it (we skip the computations, which are tedious but not difficult), we end up with
the following solutions:

If 4m+/j2 + k2 < &,

1
- SAE=0, (4.29)

27 2k o sinh (vt sinh (vt
E(z,y,t) = cos ( ng + gy) ¢ 3ez {a <;251n2’5’y) + cosh (’yt)) + ﬁW} ) (4.30)
B el . (2imx 2kmy\ _ et [ 47%(j2 + k?) sinh(vt) o j
F(x,y,t) = 7 (2 1+ kD) sin ( T + 7 ) e 2:? [oz 2.2 5 +p 522y sinh(yt) — cosh(vt) A
h —1\/02—167T2('2+k2) d the initial dat iven b
where v = 24/ 7223 U , and the initial data are given by
- 2jmx  2kmy - el . [ 2jmx 2kmy j
E(x,y,())acos( 7 +L), F(I’y’O)BQW(jQ—i—kQ)Sm( T + 7 )
If dm\/j2 + k2 > 2L,
2jmx 2kmwy\ _ ot o sin (yt) sin (yt)
E(z,y,t) = cos < 7+ L> e 2e2 {a (52 5 +cos (7t) | + BT , (4.31)
el . (2jmx 2kmy\ _ o [ 4w2(5% + k?) sin(vt) o j
F(z,y,t) = o (]2 T k2) SI ( I + 7 > e 2¢? [a 1,222 ~ +0 262+ sin(vyt) — cos(v) L)

1 2 2
where v = 2\/16ng2 (j2+k2) — 2—4, and the initial data are given by

_ 2imx 2kmy _ eL . 2jmx 2kmy j
E(z,y,0) = acos ( 7t L) , F(r,y,0) = _ﬁ27r(j2+k2) sm( Tt L)

In what follows, we use the following parameters: c =1,e =1, L =20, j=1, k=2, a =1, 8 = 0. Hence,
we are in the case (4.31). We add 1 to the energy in order to avoid negative non-physical energies. Hence, the
energy reads

29 2% e . .
E(x,y,t) =1+ cos ( JTE + Wy) e 22 (Usm (71)

7 2 2 —l—cos('yt)), (4.32)

which is plotted in Figure 33
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X-Axis

Figure 33: The exact solution given by (4.32).

We define the meshes as follows: first, we use a uniform grid if size N, x Ny, with N, = N, ranging from
50 to 1000. This mesh is then made conical in three different ways:

1. For each edge, we add a control point at a distance equal to 20% of the edge length, in the direction of
the normal going away from the origin. This mesh is shown in Figure 34 (upper right).

2. For each edge, we add a control point at a distance equal to 20% of the edge length, in the direction of
the normal going toward the origin. This mesh is shown in Figure 34 (lower left).

3. The same as above, but with the direction chosen randomly outward or inward. This mesh is shwon in
Figure 34 (lower right).

Y-Axis
o
Y-Axis

Y-Axis
Y-Axis

Figure 34: The different meshes used for the convergence analysis: upper left cartesian mesh, upper right conical mesh
with control points away from the origin, lower left conical mesh with control points closer to the origin, lower right
random control points.

We fix At = 2.5 x 107°, so that the time discretization error is much smaller than the spacial discretization
error. We compute the relative L? error on the energy at the final time 7 = 1, as a function of the number
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of cells per direction. As shown in Figure 35, we observe convergence of order one, as expected. The error is
almost the same for all conical meshes. It is slightly larger for the polygonal mesh.

JLa polygonal e
JLa conical -
| JLa comical +
JLa conical random

15/x ——

0.001 -

100 1000

Figure 35: Error on the energy as a function of then number or cells per direction. The exact solution is given by (4.32),
withe=c=1and j=1,k=2.

We also performed similar tests in the diffusion limit: first with ¢ = 10~%, then £ = 1078, In each case, we
used the above-mentionned exact solution with ¢ = 1 and j = 1, k = 2. The time step is set to At = 1074,
and, due to the stiffness of the system, we use an implicit scheme. As can be seen on Figure 36, the error is

second-order with respect to Az. This is consistent with the fact that the limit diffusion scheme is second-order
convergent.

4.3.8 A periodic test case with holes

In this last test, we have used the geometry displayed in Figure 37.
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Figure 37: Geometry and mesh of the test case presented in Subsection 4.3.8
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Figure 36: Error on the energy as a function of the number or cells per direction, in the diffusion limit case
€ = 1078. The exact solution is given by (4.32), with c =1 and j =1,k = 2.

We solve problem (1.2) with ¢ = 1, with periodic boundary conditions on the outer boundaries. On the
boundary of the holes, homogeneous Neumann boundary conditions are used. The initial data is a Dirac mass
at point (0.7,0.7), that is, close to the left-hand side hole, above it and on its right. When using a polygonal
mesh, the code crashes due to (unphysical) negative values and numerical instabilities. However, using an exact
description of the hole boundaries with conical edges allows for a more stable scheme, with the solution displayed
on Figure 38.
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Figure 38: Solution of problem (1.2) with a Dirac mass as initial data

A similar study has been carried out in the case of (1.1), with ¢ = ¢ = 1. Here, we have no maximum
principle and it is expected that the energy becomes negative [18]. However, we still have a much nicer behavior
when the holes are described by exact (conical) edges. See Figure 39 for the polygonal case, and 40 for the
conical case.
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Figure 39: Solution of problem (1.1) with ¢ = ¢ = 1, with a Dirac mass as initial data, on a polygonal mesh.
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Figure 40: Solution of problem (1.1) with ¢ = ¢ = 1, with a Dirac mass as initial data, on a conical mesh with
an exact description of the boundary edges on the holes.
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