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Fused braids and centralisers of tensor representations of U,(gly)

N. Crampé* and L. Poulain d’Andecy’

Abstract

We present in this paper the algebra of fused permutations and its deformation the fused Hecke algebra.
The first one is defined on a set of combinatorial objects that we call fused permutations, and its deformation
on a set of topological objects that we call fused braids. We use these algebras to prove a Schur—Weyl duality
theorem for any tensor products of any symmetrised powers of the natural representation of U,(gln). Then
we proceed to the study of the fused Hecke algebras and in particular, we describe explicitely the irreducible
representations and the branching rules. Finally, we aim to an algebraic description of the centralisers of
the tensor products of U,(gln)-representations under consideration. We exhibit a simple explicit element
that we conjecture to generate the kernel from the fused Hecke algebra to the centraliser. We prove this
conjecture in some cases and in particular, we obtain a description of the centraliser of any tensor products
of any finite-dimensional representations of Uy(slz).

1 Introduction

The Schur-Weyl duality relates the representation theory of the group GLx(C) to the representation theory of
the symmetric groups &,,. In fact, for any N > 1 and n > 1, if V denotes the natural (vector) representation
of dimension N of GLy(C), the Schur-Weyl duality asserts that the centraliser of the action of GLx(C) on
the tensor product V®" is the image of the action by permutation of the symmetric group &,,.

Moreover, the Schur—-Weyl duality can be extended to the standard deformations of the structures under
consideration. Namely, on one hand, one replaces GLy(C) by the quantum group Uy(gln) and on the other
hand, one replace the symmetric group &,, by the Hecke algebra H,(q).

The fact that the centraliser of the action of U,(gly) (GLn(C) if ¢> = 1) is obtained as the image of
the action of the Hecke algebra H,,(q) (the symmetric group &, if ¢> = 1) is the first part of the statement,
sometimes called in invariant theory the first fundamental theorem. In order to describe more precisely the
centraliser, one needs the second part, sometimes called the second fundamental theorem, which identifies the
kernel of the action of the Hecke algebra (starting from now, we include the case ¢ = 1 in the general case,
and we indicate that in this paper ¢ is either an indeterminate or a non-zero complex number which is not a
root of unity). This kernel is well-understood and can be described alternatively in terms of the representation
theory of H,(q), or with a direct algebraic description (with an explicit generator, the ¢g-antisymmetriser) in
H,(q). One famous example is for N = 2 where one obtains the Temperley—Lieb algebra which can be seen
as a quotient of the Hecke algebra.

We note that the first part of the Schur—Weyl duality involves an algebra, here Hy,(q), which does not
depend on the dimension NV, while of course in the second part, the description of the kernel depends on N.
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We see the Hecke algebra H,(q) as a sort of “universal” centraliser allowing to obtain, for all N, the actual
centralisers and we emphasise its role. We note that for any NV, the centraliser coincides with H,,(q) for small
n (n < N) but always starts to differ at n = N + 1.

In general, centralisers of tensor powers of representations of quantum groups are interesting objects
for several reasons. First and most naturally, in representation theory, they allow to decompose these tensor
powers into direct sums of irreducible representations. For example, the decomposition of V™ can be obtained
directly from the study of the representation theory of the Hecke algebra.

Second, the centralisers contain naturally elements satisfying the braid relations. In other words, they
contain elements generating a finite-dimensional quotients of the algebra of the braid group (we emphasise
that in general the centralisers are not generated by these elements, see [15]). These images of the braid group
in centralisers come from the quasi-triangular structure of quantum groups since the images of the R-matrix
in the representation satisfy the braid relations. These has applications in particular for finding knots and
links invariants. For example, the Temperley—Lieb algebra is used to construct the Jones polynomial of a link.

In fact, an image of the braid group is already found at the level of the Hecke algebra H,,(q). Indeed, the
Hecke algebra is well-known to be a quotient of the algebra of the braid group. This step (maybe at first sight
a small step) of considering the Hecke algebra instead of the centralisers leads to quite interesting development
for the knots and links invariants. In fact, by working directly at the level of the Hecke algebra, one obtains
the HOMFLY-PT polynomial of a link, which is a two-variable generalisation of the Jones polynomial. This
polynomial can be seen as interpolating the family of invariants coming from the centralisers of V®" as the
dimension N varies. We also point out that, even though the Hecke algebra H,,(q) is larger than the centraliser,
its algebraic structure is somewhat simpler and the calculation of the HOMFLY-PT polynomial from H,(q)
is a relatively simple algebraic procedure, see e.g. [4, section 4.5]. All in all this points out again to the
importance and the useful role played by the Hecke algebra.

Finally, one can be interested in the centralisers in the context of the Yang—Baxter equation in mathemati-
cal physics. Here again our main point is the following: a very simple formula (called a Baxterisation formula,
see for example [8, [10]) builds abstract solutions of the Yang-Baxter equation inside the Hecke algebra. Then
the genuine (matrix) solutions associated to the representation V' of U,(gln) (for any NN) can be obtained by
representing this simple abstract solution vie the action of H,(g) on V®". This is our final pointer to the
usefulness of the Hecke algebra as a “universal” centraliser.

In this paper, we consider the following tensor product of representations of U, (gln):
N N N
Liky) ® Ligy) © - ® Lig, » (1)

where Lf\,i) is the k-th symmetric power of the vector representation V = Lé\lf) of Uy(gln). Here ki, ko, ... ky

are arbitrary non-negative integers. From the quasitriangularity property of U,(gln), up to isomorphism, the
centralisers do not depend on the order of ki,...,k,, so we could assume for example that ky > --- > k,,.
However, we will only make such an assumption in this paper when necessary.

Our main goal is to introduce and study an algebra playing for these tensor representations the same role
as the Hecke algebra for the representations V®". So we will denote by k = (ky, ko, ...) an arbitrary sequence
of non-negative integers and we will denote this algebra by Hy ,(q) (of course, for a given n > 0, the algebra
Hy »(q) depends on k only through the n first entries ki,..., k).

Our first main result which serves also as a motivation is that there is an action of Hy ,(q) on the space
(1)) such that its image coincides with the centraliser of the action of the quantum group U, (gly). This is the
generalisation of the first part of the Schur-Weyl duality theorem. Note that, as before, the algebra Hy ,(q)
is “universal” in the sense that it does not depend on NV, only its image in the space of endomorphisms does.
For a given N, we denote it Ff{vn(q) and this is the centraliser of the U, (gl )-action.



In fact, for fixed k, the algebras Hy ,,(¢) form a chain of algebras as n varies:

C = Hy0(q) C Hy,1(q) C Hx2(q) C ..o+ C Hxpn(q) C Hiny1(q) C-neee ;

and the chain of centralisers, that we denote,
=N =N =N =N =N
C=Hyo(q) C Hyx1(q) C Hyolq) Cooooo- CHy (@) € Hyppa(@) - )

is obtained by taking a quotient at each level of the first chain of algebras. Here as in the usual Schur—Weyl
duality, the two chains always coincide for n small enough and always start to differ at n = N + 1. In other

words, we have that Fivn(q) = Hy ,(q) if and only if n < N (and this for any k).

Regarding the definition of the algebras Hy ,(q), we proceed in two steps, starting with the situation
¢ = 1 (that we denote Hy,(1)) and then deforming this construction to obtain Hy,(g). The algebra
Hy (1) is constructed on a set of combinatorial objects, which we call “fused permutation”, which can be
conveniently described by diagrams. They generalise the usual permutations of the symmetric group &,,. As
combinatorial objects, these fused permutations can also be described as certain sequences of multisets, or as
n by n matrices with non-negative integer entries subject to the condition that the rows and columns sum
to some of the integers from the sequence k. The multiplication of these objects is best described with the
diagrams, and is a purely combinatorial procedure.

Then for the deformation Hy,(¢q), we add to these combinatorial objects a topological information
(roughly, we now have strands and we allow crossings). The resulting objects we propose to call them
“fused braids”. The ingredients to multiply these fused braids are the usual Hecke relation together with an
idempotent from the Hecke algebra, which is here the ¢g-symmetriser. As a tentative name for the resulting
algebra Hy ,(q), we propose “fused Hecke algebra” (a more precise name would be something along the lines
of k-symmetrised fused Hecke algebra). As in many cases of diagram algebras, the deformation Hy ,(q) has
the same dimension as Hy , (1) and admits a basis indexed by some standard diagrams from Hy ,(1).

Algebras similar to the fused Hecke algebras have been studied in some particular cases, however mostly
corresponding to the centralisers of Uy(glz) (so in our notation related to Fin(q) for some particular k).
They were constructed from the Temperley—Lieb algebras. We refer to [1I, [14] for studies of cellular structure
and non-semisimple representation theory and to [17), 22] for some studies related to physical models.

Then we proceed to the study of the algebras Hy ,,(¢), which we believe is now motivated. In particular,
one objective we set is to generalise also the second part of the Schur—Weyl duality theorem, namely the
description of the kernel of the quotient map from Hy ,(q) to Fiv »(q) for any N.

The path we follow towards this objective starts with the description of the representation theory of
Hy »(q), which is also of independent interest. The representation theory of the algebra Hy ,(¢q) could in
principle be obtained by seeing it as a centraliser (for N large enough), and then by using the well-known
Littlewood-Richardson rule restricted to the tensor products under consideration (1)) (in this case, this is also
called the Pieri rule). However, we find it more natural in this paper and also more convenient for our later
purposes to provide an independent treatment, which relies only on the representation theory of the Hecke
algebras. So we recover the Pieri rule by analysing the seminormal basis of skew-shape representations of
usual Hecke algebras. In fact, we obtain along the way a more precise information than the combinatorial
rule, since we identify explicitly the representation spaces of Hy ,(q) inside the representation spaces of usual
Hecke algebras, providing thus an explicit construction of the irreducible representations of Hy ,(gq). To
summarise, we completely describe the representation theory of the semisimple algebras Hy ,(q), together
with the branching rules between Hy ,—1(¢q) and Hy ,(q).

Interestingly, once the representation theory of Hy ,(q) is described, it is possible to identify a subalgebra
(which is more precisely an ideal) of Hy y(g) isomorphic to Hx_1,(q) (where k — 1 is the sequence obtained



from k by decreasing every entries by 1). This makes connections inside the whole family of algebras Hy (q)
between members with fixed n and different k. Moreover, these ideals turn out to be precisely the ideals
allowing to obtain for different NV the centralisers F{jn(q) from Hy ,(q). So at this point, we have a complete
description of the ideals from the point of view of representation theory.

Finally, we proceed to an algebraic description of these ideals, aiming to a concrete algebraic presentation
of the centralisers. We exhibit an explicit and rather simple element of the fused Hecke algebra Hy n+1(q)
and we conjecture that it is a generator of the ideal we are looking to. We are able to prove this conjecture
in the following cases:

e Any sequence k when N = 2, so in particular we obtain a description of the centraliser of any tensor
products of any finite-dimensional representations of U,(sl2).

e Any N for representations having an arbitrary symmetrised power in the first factor and then only
the natural representation.

e Any N for representations involving only the natural representation and the symmetrised square.

We indicate that recently the centralisers for N = 2 and a constant sequence k = (k, k, k,...) have been
studied from a different point of view in [I] (see also [16] for £ = 2), and again from a different perspective in
[2] for N =2 and a tensor product of three spaces.

The representation theory (including the branching rules) of the fused Hecke algebras, and of the centralis-
ers, are conveniently described by their so-called Bratteli diagrams. Moreover, the way centralisers appear as
quotients of the fused Hecke algebras is also best described, from the point of view of representation theory,
by the notion of quotients of Bratteli diagrams. We collect and organise in Appendix these notions and the
terminology we will use throughout the paper, and we also provide examples.

Some perspectives. In the situation of a constant sequence k = (k,k, k,...), the fused Hecke algebras
Hy (q) contains naturally elements satisfying the braid group relations. These elements does not generate
the whole algebra Hy ,(q) in general. So the subalgebras generated by these elements, and their images in

the centralisers ﬁf{vn(q) for various N, deserve a better study. We emphasise that these algebras are finite-
dimensional quotients of the braid group algebra in which the braid generators satisfy a characteristic equation
of order k + 1.

Regarding the study of the Yang—Baxter equation, the fused Hecke algebras admit a Baxterisation formula,
generalising the one in the usual Hecke algebra. The explicit formula will appear in a future work.

Finally one can also consider other tensor products than and/or other quantum groups than U, (gln).
The starting point of the approach developed in this paper clearly generalises as follows. One can still consider
fused braids, but use a different procedure for multiplying them. Indeed one can replace the Hecke algebras by
other quotients of the braid group algebras and/or one can replace the g-symmetrisers by other idempotents.
For example, one can keep the Hecke algebra and replace the g-symmetrisers by the g-antisymmetrisers (for
alternating powers of representations). Also, one could replace the Hecke algebra by the BMW algebra (for
other classical quantum groups) and consider analogues of the g-symmetriser and g-antisymmetriser.

Acknowledgements. Both authors are partially supported by Agence National de la Recherche Projet
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2 The algebra of fused permutations

Let k = (ki, ko, ...) € L%, be an infinite sequence of non-negative integers, and let n € Z~q .

2.1 Definition of the algebra Hy,(1) of fused permutations

Objects. We consider diagrams as follows. We place two (horizontal) rows of n ellipses (drawn as small
black-filled ellipses), one on top of another and we connect top ellipses with bottom ellipses with edges. We
require the following: for each a € {1,...,n}, there are k, edges which start from the a-th top ellipse and
there are k, edges which arrive at the a-th bottom ellipse. The total number of edges is then ki + - -+ + k.

Now take a diagram as above and let a € {1,...,n}. There are k, edges starting from the a-th top ellipse,
so denote I, the multiset {i1,...,1, } indicating the bottom ellipses reached by these edges. This is indeed a
multiset, meaning that repetitions are allowed since several of these edges can reach the same bottom ellipse.

Finally, we consider two diagrams as above equivalent if their sequences of multisets (I3, ..., I,) coincide.
Diagrammatically, this simply means that the only information that matters is of the form: which ellipse is
connected to which ones and by how many edges.

Definition 2.1. A fused permutation is an equivalence class of diagrams as explained above. We denote Dy,
the set of fused permutations associated to k and n.

We will simply say fused permutation instead of a more precise terminology for elements of Dy, (such
that for example (k, n)-fused permutations). From now on, we will almost always identify a fused permutation
with a diagram representing it.

Remark 2.2. e By definition, the set of fused permutations Dy, is in bijection with the set of sequences
(I1,...,1,) of multisets consisting of elements of {1,...,n} such that: for each a € {1,...,n}, the
number of entries in I, is equal to k, and the number of occurrences of a in the multisets I, ..., I, is

also equal to k.



o The set Dy, is also in bijection with the set of n by n matrices with entries in Z>q such that: the sum
of the entries in the a-th row is equal to k, and the sum of the entries in the a-th column is also equal
to kq. The bijection is such that the entry in position (a,b) of a matriz indicates how many times the
a-th top ellipse is connected to the b-th bottom ellipse.

Examples. o If k= (1,1,1,...) consists only of 1’s then the set of fused permutations Dy ,, coincides with

the set of permutations of {1,...,n}.
e Let n = 3 and take k1 = 2 and ky = k3 = 1. There are 7 distinct fused permutations in Dy 3 and here is
an example (we give a diagram and the corresponding sequence of multisets):

({1,3}, {1}, {2})

e Let n = 2 and take k1 = ky = 2. We give below the three distinct fused permutations of Dy 3 (for each,
we give a diagram and the corresponding sequence of multisets):

[

({11}, {2,2}) ({1,2},{1,2}) ({2,2},{1,1})

e Let n = 3 and take k1 = k» = k3 = 2. There are 21 distinct fused permutations in Dy 3 and here are
three examples (for each, we give a diagram and the corresponding sequence of multisets):

A Jatel rA

({2,2},{1,3},{1,3}) ({1,2},{1,3},{2,3}) ({3,3}, {1, 1},{2,2})

Multiplication. We define the associative C-algebra Hy ,,(1) as the C-vector space with basis indexed by
the fused permutations in Dy ,, and with the multiplication given as follows. Let d,d’ € Dy, and we identify
d, respectively, d’, with a diagram representing it.

e (Concatenation) We place the diagram of d on top of the diagram of d’ by identifying the bottom ellipses
of d with the top ellipses of d'.

e (Removal of middle ellipses) For each a € {1,...,n}, there are k, edges arriving and k, edges leaving
the a-th ellipse in the middle row. So for each a € {1,...,n}, we delete the a-th ellipse in the middle
row and sum over all possibilities of connecting the &k, edges arriving at it to the k, edges leaving from
it (at the a-th edge, there are thus k,! possibilities).

e (Normalisation) We divide the resulting sum by ki!...k,!



At the end of the procedure described above, we obtain a sum of diagrams representing a sum of fused
permutations (with rational coefficients). This is what we define to be dd’ in Hy,(1). This diagrammatic
multiplication is well-defined since the result clearly depends only on the equivalences classes of the diagrams.

The algebra Hy ,(1) is an associative algebra with unit, the unit element is the fused permutation corre-
sponding to the diagram with only vertical edges (all the edges starting from the a-th top ellipse go the a-th
bottom ellipse).

Remark 2.3. The algebra Hy ,,(1) can be defined over any ring in which ki!...ky! is invertible.

Examples. o If k = (1,1,1,...) consists only of 1’s then the algebra Hy ,(1) obviously coincides with the
complex group algebra CG&,, of the symmetric group &, on n letters
e Here is an example of a product of two elements of Hy o(1) with k1 = ko = 2:

R

Tl

e Here is an example of a product in Hy 3(1) with ky =2 and ky = k3 = 1:

2.2 Double cosets and standard basis of Hy (1)
Algebra of double cosets. We consider the following subgroup of the symmetric group Gy, 4+...44,:

|
=
N[

DO

Gk =G, x - X Gy,

where G, is embedded as the subgroup permuting the letters 1,...,k;, Gy, is embedded as the subgroup
permuting letters k1 + 1,..., k1 + ko, and so on. We denote GX™\ &y, ;... 41,/G%™ the set of double cosets of
Gyt k, With respect of &K,

We define the following element in the group algebra C&y, 1.4k, :

This element P ,, is an idempotent which satisfies wPy , = P p,w = Py, for any w € &% Then the subset
Py nCSpy vt P = {Pun@Pin | © € CSpy 4.y, } is an algebra with unit Py .



Proposition 2.4. The algebra Hy ,,(1) is isomorphic to Py, CSp, .1k, Pan-

Proof. For w € &, +...4k,, We see w as a diagram made of two rows of ky + - - - + k,, dots connected by edges
according to the permutation w (the i-th top dot is connected to the w(i)-th bottom dot). The multiplication
in &, 4.4k, is then simply the concatenation of diagrams.

Then, in the diagram of w € &, 1..4,, in each of the two rows of dots, we glue the k; first dots into
an ellipse, and the ks next dots into an ellipse and so on. We obtain thus a diagram as in the preceding
subsection. We denote [w] the corresponding fused permutation in Dy, (that is, the equivalence class of the
diagram).

First, it is immediate that any fused permutation in Dy, can be written as [w] for some w € Sy, 4.4k,
Moreover, we claim that, for wy, ws € &, +...4k, , we have

[w1] = [we] <  w; and wy are in the same double coset in Gk’"\6k1+...+kn/6k’".

To prove the claim, then note first that if w; = zwqy with x,y € &X™ then it is clear that [w;] = [ws] since
the gluing of dots into ellipses will make trivial the effect of x and y.

Reciprocally, assume that [wi] = [ws]. Up to top concatenation by elements of GX™, we can assume that,
fora=1,...,n, we have

wlki 4+ ke +1) <wlki+- - +ke1+2) < <wlki + -+ kq)

and similarly for we. Then [w] = [wz] means that w; and we differs only by a bottom concatenation with a
element of &%, This proves that w; and wy differs only by left and right multiplication by elements of &,

Now choose a set C C &y, 4...4x, of representatives for the double cosets GX™\ &y, ... 1, /S%". From the
previous claim, we have that the set {[w] | w € C} is a basis of Hy, (1), while on the other hand, the set
{PxnwPxp | we C}is clearly a basis of Py ,CSp, ...k, Picn-

We conclude that the linear map defined by [w] — Pk nwPk , is the desired isomorphism of algebras since
the multiplication of diagrams [w].[w'] corresponds by construction to the multiplication Py ,w P nw' Py p, in
Pk,n(C6k1+~--+knPk,n- O

Remark 2.5. The algebra Py, CSp, 1...if, Pun = Hypn(1) is an exzample of a Hecke algebras, see e.g. [3,
§11D]. More precisely here, it is the algebra of functions on the space Gk’”\6k1+...+k”/6k’" of double cosets
(the multiplication corresponds to the natural convolution product). Thus Hy (1) can also be seen as the
endomorphism algebra End6k1+_”+kn (My), where My is the permutation module associated to the composition

(k1,...,ky), that is, the module induced form the trivial representation of G¥™. In this paper, we will reserve
the name Hecke algebra for the deformation of the symmetric group.

Standard basis. The subgroup &% is a parabolic subgroup of Sk ++k,, and as such it enjoys special
properties. We refer to [4, §2.1].

For any 7 € G, 1.1, there exist unique elements w € Gy, 4.1, and 71 € G%" such that 7 = wm; and
0(m) = l(w) + £(m1), where £ is the usual length function on &y, 4.4, . The element w is the unique element
of minimal length in the left coset 7&%",

The set formed by the elements of minimal length in their left coset is a set of representatives for
Gkytoik,/G%", called the set of distinguished left coset representatives. Denote it by Xk n-

Further, for any m € Gy, 4.4k, there exists a unique element w € Sy, 4.4k, such that 7 = mwme with
71, Mo € &%" and £() = £(m1) + £(w) + £(m3). The element w is the unique element of minimal length in the
double coset of .



The set formed by the elements of minimal length in their double coset is a set of representatives for
GKM\ Gy, 4. sk, /G%™, called the set of distinguished double coset representatives. Besides, this set is equal
to Xy n N Xy :L

It is then7easy to see that w € G, 1.4k, is a distinguished double coset representatives if and only if we
have:

wlki 4+ ke +1) <wlki+ -+ ka1 +2) < <wlky +-+ka),

Va=1,...,n.
w ki + -t ke + ) <w ik + ko1 +2) < <w ki 4+ k),

From now on, for brevity, we will simply say w € G%"\&y, 1 ...11, /G%™ to indicate that w is one of these
distinguished double coset representatives. Morever, we will denote by f,, the fused permutation in Dy,
corresponding to w and will refer to the set

{fu | w € &™\&pyyopp, /") (2)

as the standard basis of Hy ,(1).

In the diagrammatic point of view, the choice of distinguished double coset representatives reflects the
following fact: we can assume that the k, edges leaving the a-th top ellipse do not cross and similarly for the
k, edges arriving at the a-th bottom ellipse (this for a = 1,...,n). All the diagrams of fused permutations
drawn above were drawn like this.

3 Fused braids and the fused Hecke algebra

We refer for example to [4] and [I1] for the standard facts we will recall on the Hecke algebra.

3.1 The Hecke algebra

Let m > 0. Let ¢ € C* such that ¢? is not a non trivial root of unity (¢ = 1 is allowed). The Hecke algebra
H,,(q) is the C-algebra generated by elements o1, ..., 0,,—1 with defining relations:

o2=(q—q Yo, +1 forie{l,...,m—1},
0i0i4+103 = 03410i0i+1 forie {1,...,m—2}, (3)
00 = 0;0; fori,j € {1,...,m —1} such that |i — 5| > 1.

By convention Hy(q) := C (note also that Hi(¢) = C). If ¢> = 1 the Hecke algebra is the group algebra
CG,,, of the symmetric group &,,,. In this case, we denote s1,..., s,_1 the generators o1,...,0,_1; then s;
corresponds to the transposition (7,7 4+ 1) of &,,. The restriction on ¢ ensures that H,,(q) is semisimple and
is a flat deformation isomorphic to C&,,.

For any element w € &,,, let w = s4,...54, be a reduced expression for w in terms of the generators
S1,-..,8m—1, and define o, := 0q, ...0q, € Hy(q). This definition does not depend on the reduced expression
for w and it is a standard fact that the set {0y }weg,, forms a basis of H,,(q).

For example, the following set of elements (where the product of sets A.B is {a.b | a € A, b € B}) forms
a basis of H,,(q):

1 L :
1 ’ o3 Om—1,
R B T _ . (4)
01 0302, .
0201
030201 Om—1---01



The algebras {H,,(q) }m>0 form a chain of algebras:
C=Hy(q) C Hi(q) CHy(q) C...- - C Hp(q) C Hpy1(q) C ... .. , (5)

where the natural inclusions of algebras are given by H,,(q) 2 0; — 0; € Hypt1(q).

Diagrammatic presentation of H,,(¢). We use the standard diagrammatic presentation of the Hecke
algebra H,,(q) coming from the standard diagrammatic presentation of the braid group (we refer for example
to [I1] for a precise formulation of braids and braid diagrams).

Algebraically, the braid group is the group generated by o1,...,0,_1 and the second and third lines of
relations in (3).

The diagrammatic presentation of a braid is by considering a rectangular strip with a line of m dots at its
top and a line of m dots at its bottom. We connect each top dot to a bottom dot by a strand inside the strip.
At each point of the strip at most two strands are intersecting, and at each intersection, we indicate which
strand “pass over” the other one. An intersection is called a crossing and we call a crossing positive (resp.
negative) when the strand coming from the left passes over (resp. under) the strand coming from the right.
Such diagram is called a braid with m strands and braids are considered up to homotopy, which consists in
being able of moving continuously the strands while leaving their end points fixed.

In terms of diagrams, the multiplication in the braid group is simply by concatenation of the diagram. If
« and (8 are two braids, to perform the product a8, we place the diagram of a above the diagram of § by
identifying the bottom line of dots of a with the top line of dots in 3, and then deleting the middle dots.

From now on we will always identify a braid with a braid diagram representing it. The identity element
of the braid group is the braid where all the strands are vertical and parallel. Each generator ¢; of the braid
group is associated to the following braid:

1 1—1 ) t+1 «+2 m

| /
4

The previous braid provides an example of positive crossing. The inverse o, L of o; is the following braid

1 1—1 1 t+1 1+2 m

S B AN
’ N

The first relation in can be read as 0; ' = 0; — (¢ — ¢”'), and so the Hecke algebra H,,(g) has the
following diagrammatic description: it is the algebra spanned by all braids with m strands imposing moreover
the following relation for any crossing:

\/\ = /\\/ —(g—q7")

This relation has to be understood as a local relation, meaning that for any braid and any of its crossing,
the braid is equal to a sum of two terms : the braid obtained by replacing the crossing by its opposite and
+(q¢—q ') (depending on the sign of the original crossing) times the braid obtained by replacing the crossing
by two pieces of vertical strands. In particular this allows one to transform all the negative crossings into
positive ones.
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A diagrammatic interpretation of the basis {0, | w € &,,} of H,,(q) is then the following: For any
permutation w, take a permutation diagram representing w (namely, the particular case k = (1,1,1,...) of
the diagrams defined in Section [2|) with a minimal number of intersections. And promote each intersection
into a positive crossing and see the resulting diagram as an element of H,,(q). This is oy,.

The ¢g-symmetriser of H,,(q). For L € Z, we define the g-numbers as follows
L_ L 2L
q9°—q9 " _ . L-1, L-3 —(L-1) g =1
L (o IRy , (D, =L —-
the sign £ being the sign of L. We also set [L],! := [1]4[2]4...[L]q and {L},! := {1}4{2}4... {L}q.
The g-symmetriser of H,,(q) is the following element:

[L]g = =1+ + -+, (6)

o(w) £(w) f(w)
weS,, q Ow w m q Ow —n(n— w m q Ow
P, = Lmes _ Zuwee _ grin- /2 e . (7

D wes,, 1) {m}q! [mlg!

Note that the first equality of the denominators is easy to see, by induction on m, from the basis . It is well-
known that the element P, is a minimal central idempotent in H,,(q) corresponding to the one-dimensional

representation given by o; — g for i = 1,...,m — 1. In particular, we have
P%:Pm and 0iPp = Ppoi=qP,, i=1,...,m—1. (8)

If ¢*> = 1, the projector P, is the symmetriser of C&,, projecting on the trivial representation of &,,.

3.2 Fused braids

As in the preceding section, let k = (k1, k2, ...) € ZZ,, be an infinite sequence of non-negative integers, and let
n e Z>0 .

Objects. We consider the following objects, which are similar to the braid diagrams of the previous subsec-
tion, but in which we replace the two lines of dots by two lines of n ellipses (drawn again as small black-filled
ellipses). Moreover, we connect top ellipses with bottom ellipses by strands (as before with the usual braids)
but now we require the following: for each a € {1,...,n}, there are k, strands attached to the a-th top ellipse
and k, strands attached to the a-th bottom ellipse. To be more precise, the strands which are attached to the
same ellipse are not attached to the same point of the ellipse. Instead they are attached next to each other
at the same ellipse (hence the need of ellipses instead of points or dots as for the usual braids). Examples are
drawn below. The total number of strands is then k1 +--- + k,,.

As before we require that at each point of the strip at most two strands are intersecting and we keep
the same terminology of positive and negative crossings. Again as before we consider such diagrams up to
homotopy, namely up to continuously moving the strands while leaving their end points fixed.

Such an equivalence class of diagrams we call a fused braid (we will not use a more precise name such as
(k,n)-fused braid) and we will from now on identify a fused braid with a diagram representing it.

Examples. o If k = (1,1,1,...) consists only of 1’s then a fused braid is simply a usual braid.
e Here are examples of 6 fused braids when k1 = ko = k3 = 2:

LTD T TIND PR D
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3.3 Definition of the fused Hecke algebra Hy ,(q)

In the definition below, we consider a vector space with basis indexed by fused braids and we identify the
vector basis with their indices (in other words, we consider formal linear combinations of fused braids).

Definition 3.1. The C-vector space Hy (q) is the quotient of the vector space with basis indexed by fused
braids by the following relations:

(i) The Hecke relation:

X = X —(g—q7")

(ii) The idempotent relations: for top ellipses,

X-oR = X--X

and for bottom ellipses,

XY o XY

The first relation is the Hecke relation, valid locally for all crossings as in the situation of classical braids
and Hecke algebra. The other relations are also local relations, valid for crossings near the ellipses. In words,
they impose the following: in a fused braid, if two strands start from the same ellipse and their first crossing
is crossing each other, then the original fused braid is equal to the fused braid obtained by removing this
crossing and multiplying by ¢*! depending on the sign of the crossing; and similarly for two strands arriving
at the same ellipse.

Multiplication. Now we define a product on the vector space Hy ,(¢), which makes it an associative unital
algebra. In order to multiply fused braids, we use the Hecke algebra and its g-symmetriser. Namely let b, b’
be two fused braids. We define bb’ as the result of the following procedure:

e (Concatenation) We place the diagram of b on top of the diagram of ' by identifying the bottom ellipses
of b with the top ellipses of V/

e (Removal of middle ellipses) For each a € {1,...,n}, there are k, strands arriving and k, strands leaving
the a-th ellipse in the middle row. We remove this middle ellipse and replace it by the g-symmetriser
Py, of the Hecke algebra (7).

More explicitly, in order to remove the a-th middle ellipse, we take w € &, and we first construct the diagram
where this middle ellipse is replaced by the element o,, of Hj, connecting the k, incoming strands to the k,
outgoing ones. Then we make the sum over w € &y, of the resulting diagrams, each with the coefficient q‘®)
(that is, multiplied by ¢ to the power the number of crossings we added). Finally, we normalise by dividing
this sum by >, ce. ) = {m},.

It is immediate that the fused braid with only non-crossing vertical strands is the unit element for this
multiplication.
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Definition 3.2. The fused Hecke algebra is the algebra whose underlying vector space is Hy n(q) from Defini-
tion and with multiplication defined with the procedure above. We continue to use Hy (q) to denote this
algebra .
Remark 3.3. In this paper, we work for simplicity with a complex non-zero number q, with the condition that
q? is not a non-trivial root of unity. This last condition is for staying in the semisimple regime. Nevertheless
we point out that the algebras Hy »(q) can be defined for a complex non-zero number q with the only condition
that ¢* # 1 for 1 =2,... K where K = max{ki, ..., kp}.

Alternatively, we can consider the generic algebra Hy ,,(q) defined over the ring Clg,q~1, ({K}!)fl], where
q is an indeterminate. We refer to this situation (only in the last section) as “generic q”. The statements on
representations are then to be understood over the field C(q).

Example 3.4. We illustrate below the procedure to remove a middle ellipse when the number of incoming
(and thus also of outgoing) strands is 2:

S (X

Examples. o If k = (1,1,1,...) consists only of 1’s then the algebra Hy ,(q) obviously coincides with the
Hecke algebra H,(q).
e Here is an example of a product of two elements of Hy 2(q) with k1 = kg =2

_(quw(ﬂ H +g— g7 +2¢°) NMQX )

In the right hand side of the first line we proceed as follows. For the first diagram, we apply the Hecke
relation and this results to the identity term and the term with coefficient (¢ —¢~!). For the second diagram,
we take the strand connecting the first top ellipse to the first bottom ellipse, and we move it on the left of the
diagram, then we apply the idempotent relations; this results with one term with coefficient ¢®. We proceed
similarly for the third diagram. We do almost nothing except moving the strands in the fourth diagram.

e Let k = (2,2,...) the infinite sequence of 2’s. We define below some elements of Hy ,(q):

1—1 ) 1+1 1+2

~FT BT
i

1 —1 7 1+1 1

ST X T
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The elements 3; satisfy the braid relations : 3;3;113; = 3;113;2;11. We leave to the reader the verification
of the following relations

T =%Ti=(q—q )% +¢T;  and 7 =(¢—q )*2}Zi+ (@ —a B} Ti+1,
which implies easily the following characteristic equation of order 3 for ¥;:
B @ 1S (@ P = (S-S D) (B ¢ =0

e More generally, let k = (k,k,...) be the infinite sequence of k’s for an integer k& > 1. We define
Y € Hy,(q) similarly to the previous example, namely ¥; is the fused braid for which all strands starting
from ellipse i pass over the strands starting from ellipse i + 1. All other strands are vertical.

Then the braid relation ¥;%5;11%; = ¥;41%;%;41 is satisfied. So inside the algebra Hy ,(g) the elements
>1,...,2,-1 generate a subalgebra which is a quotient of the algebra of the braid group. Note that these
elements do not generate the whole algebra Hy ,,(¢) when n > 2 and k > 1.

We will see in the next subsection that the algebra Hy ,(¢) is finite-dimensional. In particular, for n = 2,
the algebra Hy 2(q) is of dimension £+ 1. Moreover, we will see later that the algebra Hy ,(q) acts on a tensor
product of representations of U,(gln). In this representation, the elements 3J; correspond to the R-matrix,
and from this, one can obtain that 3; satisfies a certain characteristic equation (see for example [I5]). We skip
the details and we just indicate that one obtains that the minimal characteristic equation for ¥; in Hy ,(q) is:

ﬁ(zi _ (_1)k+quk+l(l+1)> —0.
=0
3.4 Standard basis
Inside the Hecke algebra Hy, 1.4k, (q), we consider the parabolic subalgebra isomorphic to
Hyy ®---® Hy, .

The first factor Hy, above is obtained as the subalgebra generated by o1, ...,0x,—1, the second factor Hy, is
obtained as the subalgebra generated by o, 41, ...,0k +k,—1, and so on. We define the following element of

Hy, 41k, (0):

Pun = Piy ® - Q Py, = P, k)Pl 1, o kitko) - Pl ko111, o eyt - 9)
In the second expression, Py, . r,) is the g-symmetriser on the generators o1, ..., 0k —1, Pk 41, ... ki+ky) 18 the
¢-symmetriser on the generators oy, 11, ..., 0k, +k,—1, and so on up t0 Py 1. ip, 141, ... k1 +-+k,) Which is the
g-symmetriser on the generators Oy foodbin_141s -+ s Okydootbip—1-

The element Py, is clearly an idempotent of Hy, .4k, (¢). Then the subset Py pHp, 4.tk (¢)Papn =
{PxnxPen | © € Hy 4otk (q) } Of Hiy4..q,, (¢) is an algebra with unit Py ,. This algebra has the following
canonical basis

{Pk,nUka,n ‘ (S 6k’n\6k1+...+kn/6k’n} s

where by w € X"\ &y, 1 ..41, /6%, we mean w is a distinguished double coset representative, as explained
in Subsection [2.2] This follows from the flatness of the deformation from the symmetric group to the Hecke
algebra which ensures that the dimension is the number of double cosets. And moreover, we have that
for any m € Sp, 4.4k, , there exists an w as above and m,m € &K such that 7 = mwm and £(7) =
U(m) + £(w) + £(w2). Therefore we have or = 04y, 0w0r, and then Py ,orPg, is proportional to o, using
Relations . This shows that the above set is indeed a spanning set of the correct cardinality.
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Proposition 3.5. The algebra Hy ,,(q) is isomorphic to Py, Hy, v...15, (¢) Pxn-

Proof. Starting from a fused braid, replace the a-th top ellipse by the idempotent Py, of Hy,(q). More
precisely, we mean that for any basis element o, of Hy,(g), we can replace the a-th top ellipse by oy, (in its
diagrammatic form) by plugging the k,-th strand starting from the ellipse to the k, bottom dots of o,,. So we
do this for any oy, in Hy,(q), and we make the sum with the same coefficients as in the definition (7)) of P,.
Similarly, we can replace the a-th bottom ellipse by the idempotent Py, of Hy,(q). Doing this for any top
and bottom ellipse, we obtain an element of Hy, 4.4k, (¢), which is more precisely in Py ,, Hg, 4.4k, (¢) Pxn
by construction. We claim that this procedure produces a well-defined map

¢ Hin(q) = PenHpy ik, (@) Prn

which is moreover a morphism of algebras.

First we have to check that the relations defining the vector space Hy ,(¢) in Definition are preserved.
The local Hecke relation is obviously preserved since it is also true by definition in Hy, +...+, (¢). The fact that
the idempotent relations are also preserved follows immediately from the properties of the g-symmetriser.

Then the multiplication in Hy ,(q) is also preserved by the map ¢ since by construction it corresponds to
the multiplication in Py pHy, 4.tk (¢) Picn-

Now let m € Sk, 4.4k, and consider o € Hy, 4.4k, (¢) in its diagrammatic representation. Then, gluing
the ki first dots into an ellipse, and the ko next dots into an ellipse and so on, we obtain the diagram of a
fused braid. We denote o] the corresponding element of Hy ,,(g). By the map ¢, the element [o,] is sent to
o, which shows the surjectivity of ¢.

It remains to show that Hy ,(q) is of dimension less than the dimension of Pk nHp, 4.+, (q) Pkn- To see
this, we show that the set

{low] | w € &"\&py 1 yh, /S"}

is a spanning set of Hy ,(¢q). First we have that {[o] | 7 € &, +...4k, } is a spanning set since we can apply the
local Hecke relation inside Hy (q). Moreover, for any m € &y, 4.4k, , there exists w € SN\ Gy, topr, /BT
and mp, m € G such that m = mywmy and £(7) = £(m1) + £(w) + £(ws). Therefore we have o = 0y, 01O,y
Thus from the idempotent relations in Definition it is clear that [0] is proportional to [oy], concluding
the proof of the proposition. O

Chain property. By convention, we consider that Hy o(q) = C. Note also that Hy 1(¢q) = C. The algebras
{Hx n(q)}n>0 form a chain of algebras:

C = Hypo(q) C Hx1(q) C Hx2(q) C...--- C Hixpn(q) C Hxpt1(q) C o ... , (10)

generalising the chain . Here, using Proposition the natural inclusions of algebras are given by

Hk,n(Q) > Pk,nka,n = Pk,nJrlek,nJrl € Hk,n+1(q> .

Indeed an element x € Hpy, 4..4k,(¢) can be seen as the element x ® 1 in Hy,y..4,(q) ® Hy,,,(q) C
Hy oo tkptkiny (@) Then, in Hy, oy 1k, (¢) the element Py, 12Pyg 41 can be seen as Py, 2Py, ® Py
The subalgebra consisting of these elements is clearly isomorphic to Py pHp, 4k, (¢) Pin = Hin(q).

Diagrammatically, the chain property reads naturally as follows: the algebra Hy ,(q) is embedded in
Hy n+1(q) by considering only the fused braids in Hy ,41(q) such that all strands starting from top ellipse
n + 1 go vertically and without crossings to the bottom ellipse n + 1.

We note that there is more generally a notion of parabolic subalgebras for Hy ,,(¢) with natural diagram-
matic and algebraic formulations that we leave to the reader.

n+1°
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Standard basis and deformation. Recall the definition of elements [oy,] € Hy (q) for any w € Sy, 4.4k,
that we used during the proof of Proposition Diagrammatically, [0,,] was obtained by putting the diagram
of o, between the two lines of ellipses, or equivalently, by gluing some dots into ellipses in the diagram of oy,.
For simplicity, we denote F, the corresponding element of Hy ,,(q). We proved that

{Fu | w € 6"\ Spy i, /S ()

is a basis of Hx ,(¢q) (w runs over a set of distinguished double coset representatives as in Subsection .

Finally we have that the two definitions (the one in the preceding section and the one in this section if
g = 1) of the algebra Hy , (1) result in the same algebras so that there is no ambiguity. The fused Hecke
algebra Hy ,(q) is a flat deformation of the algebra Hy ,,(1) of fused permutations.

We note that in the diagrammatic point of view, the basis of Hy ,(q) is naturally obtained from
the basis of Hyn(1) in the following way. Namely, take a basis element f,, of Hy,(1), where w €
&K\ Gy, 4.4k, /6%, and consider a diagram representing it with a minimal number of intersections: namely,
the k, edges leaving the a-th top ellipse do not intersect and similarly for the k, edges arriving at the a-th
bottom ellipse (this for a = 1,...,n). Then, promote each intersection as a positive crossing. The resulting
element can be seen as a fused braid of Hy ,(¢). This element is F,.

4 Classical Schur—Weyl duality

Our goal in this section is to recall the well-known Schur-Weyl duality between U, (glx) and the Hecke algebra.
The classical results presented in this section will serve as a model for the formulation of the subsequent results.
Moreover they will also be used in most of our proofs. We refer to [5, Chap. 9] for the classical Schur—Weyl
duality for U(gly) and to [12, §8.6] for its standard analogue for U,(gly) and the relevant definitions.

Recall that for a representation p : Uy(gin) — End(V') on a vector space V, what we call the centraliser
of the action of Uy(gln) on V is the following subalgebra of End(V):

Endy, (g1,)(V) = {¢ € End(V) [ o p(x) = p(x) 0 ¢,V € Ug(gln)}-

Representations of U,(gly). Let N > 1 and denote gly the Lie algebra of N x N matrices and sly the
Lie subalgebra of traceless matrices. Let U,(gln) (respectively, Uy(sln)) denote the standard deformation
of the universal enveloping algebra U(gly) of gly (respectively, of sly). If ¢ = 1, Ui(gly) = U(gly) and
U1<SZN) = U(SZN).

Let A\ be a partition with a number of non-zero parts less or equal to N, that is, let A = (A1,...,An)
with A\ > --- > Ay > 0. We denote Lf\v the irreducible highest-weight representation of Uq(glN) with
highest-weight corresponding to A.

Remark 4.1. We formulate all the results in this paper for U,(gln). Nevertheless, one can replace every-
where gly by sly without further modification. We recall for convenience of the reader the following facts.
The restriction of Lﬁ\v to Uy(sly) remains an irreducible highest-weight representation. We still denote its
restriction Lf\v. Then, for a partition A = (A1,...,AN), the associated highest-weight of sly corresponds to the
consecutive differences Aj — Aiy1, fori=1,...,N — 1, and the associated representation Liv of Uy(sln) only
depends on these differences. In particular, if Ay > 0 the representation Liv 1s equivalent to the representation
LY, where N = (\ —1,...,An — 1). In terms of Young diagrams (their definition will be recalled later), this
corresponds to the possibility of deleting columns of length N. This is valid only for Uy(sly) and therefore we
will never apply it in this paper.
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Example 4.2. o Let \ be the partition (1). The representation Lé\{) is the vector representation of Uy(gln)
of dimension N (the deformation of the natural representation of U(gly) by N x N matrices).

o If X = (k) is the partition consisting of a single integer k > 0 then Lé\li) is the deformation of the k-th

symmetric tensor power of the vector representation Lé\{).

e If N =2 and A = (k), then L%k) is an irreducible representation of Uy(gla) of dimension k + 1. Its
restriction to Ug(sla) is the unique irreducible representation of Ug(sla) of dimension k + 1. It is the

so-called “spin %” representation of Uy(sl2).

4.1 Classical Schur—Weyl duality for U,(gly)

Let n > 0. We consider the representation of Uy (gln) on the tensor power (Lé\lf))@)". The assertions concerning
this representation of U,(gln) and its centraliser, commonly referred as the (quantum) Schur-Weyl duality,
can be summarised as follows.

First, for any finite-dimensional vector space V, there is a representation of the Hecke algebra H,,(q) on
V& To give the action, let (eq,...,eq) be a basis of V and define the linear operator R € End(V ® V) by

qe; Qe if 1 =7,
Rle; ® ej) = e;®ei+(q—qge®e; ifi<j, Wwhereij=1,..d. (12)
e; Qe if i > j.

Then the following map from the set of generators of H,(q) to End(V®"):
UiHRi,i-i—l forizl,...,n—l, (13)

extends to an algebra homomorphism (where R@Hl is the operator Idyei-1 ® R ® Idyen—i-1).
We apply this construction for V = Lf\lf) carrying a realisation of the vector representation of Uy (gly) (see

for example [18] for the conventions and normalisations we are using here about Uy(gly), its action on Lé\lf)

and its coproduct).
Definition 4.3. We denote by Fﬁ:[(q) the image of the map Hy,(q) — End((Lé\{))@m) and by IY its kernel.

In the theorem below, A - n means that A is a partition of n, that is, A = (A1,..., \;) is a family of integers
such that Ay > Ao > ---> X\, >0and A\ +--- + A\ = n. The number [(\) is the number of non-zero parts of
A

Theorem 4.4 (Schur-Weyl duality). The algebra FnN(q) coincides with the centraliser of the action of Uy(gln)
on (Lé\lf))@’”. Moreover, as a Uy(gln) @ Hy(q)-module, the space (Lé\{))‘@" decomposes as follows:

Ly = @ e, (14)
P\
(NN

where the Vy\’s are pairwise non-equivalent irreducible representations of Hy(q).
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A construction of the representations V) of H,(q) for A\ - n will be recalled in the next subsection.
In particular, the Schur-Weyl duality provides a description of the decomposition of the tensor product
(Lé\lf))@m into a direct sum of irreducible U, (gly)-modules:

L= @ (@)

AFn
(NN

or, in words, the multiplicity of the U,(gly)-module Liv in the decomposition is equal to the dimension of the
H,(q)-module V) if A n and is 0 otherwise.

Concerning a description of the centraliser of the action of U,(glx) on (Lé\lf))@”, the preceding theorem
expresses it as an homomorphic image of the Hecke algebra H,(q). So a more precise understanding of this
centraliser will be obtained through a description of the kernel IV of the action of H,(g). In order to give
such a description (and also for further use), we need to recall the semisimple representation theory of Hecke
algebras.

4.2 Representation theory of the chain of Hecke algebras H,(q)

Let n > 0. We recall the well-known representation theory of the Hecke algebras H,(¢q) in a form that we will
use to study the representation theory of the algebras Hy ,(q). We refer to, e.g., [4, §10] or [I1), §5].

Combinatorics of partitions. Let A - n be a partition of n, that is, A\ = (A1,...,\;) is a family of integers
such that A\; > Ag > --- > A\ > 0 and A\ +-- -+ A\ = n. We say that \ is a partition of size n and set || := n.
The number /() of non-zero parts is called the length of A. By definition, the empty partition A = () is a
partition of size 0 and of length 0.

A pair (z,y) € Z? is called a node. For a node § = (x,y), the classical content of # is denoted by
cc() and is defined by cc(f) := y — x. The g-content, or simply the content, of the node § = (x,y) is
C(@) — q2cc(6) — q2(y—w)‘

The Young diagram of A = (Ay, ..., ;) is the set of nodes (z,y) such that z € {1,..., i} andy € {1,..., Az }.
The Young diagram of A will be seen as a left-justified array of [ rows such that the j-th row contains A; nodes
for all j =1,...,1 (a node will be pictured by an empty box). We number the rows from top to bottom.

A skew partition consists of two partitions u, A such that, as sets of nodes, u C A. It is commonly denoted
by A\/u. The Young diagram of A\/u consists of the sets of nodes which are in A and not in p. The size |A/u|
of a skew partition A\/u is |A| — || and it is the number of nodes in the Young diagram. As an example,

is the Young diagram corresponding to A = (4,4,3,2) and p = (3,2). We will make no distinction between
a skew partition and its Young diagram; this will not cause any confusion here. We will say that (x,y) is a
node of A/, or (z,y) € A/, if (z,y) is a node in the Young diagram of \/pu.

A Young tableau of shape A/ is a map from the set of nodes of A\/u to Z>1. It is represented by filling
the nodes of the A\/u by numbers in Z>;. The size of a Young tableau is the size of its shape.

A Young tableau of size n is called standard if the map from the set of nodes is a bijection with {1,...,n}
and if moreover the numbers are strictly ascending along rows and down columns of the Young diagram. We
set

STab(A/p) := {standard Young tableaux of shape \/u} .
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Let t be a standard Young tableau of size n and let §; be the node of ¢t with number i. We set cc;(t) := cc(6;)
and ¢;(t) := c¢(0;) for i = 1,...,n. Here are two examples of standard Young tableaux of size 4 with their
sequence of contents (the shape of the second one is a skew partition):

' ;214\ alt)=1, o)=¢, ot)=¢? al)=q"
b= hi“ alt)=q¢?, cl)=¢, st)=1, aul)=d".

Let t be a standard Young tableau of size n and ¢ € {1,...,n — 1}. We denote s;(t) the Young tableau
obtained from t by exchanging 7 and i + 1 (note that s;(¢) is not necessarily standard). We record here a
fundamental fact concerning standard Young tableaux of a given shape. This is surely well-known to experts,
however we provide a sketch of a proof for convenience of the reader (see also [19, Proposition 6.5] for a slightly
different formulation).

Lemma 4.5. Let A\/u be a skew partition. Any two standard Young tableauz of shape \/u can be obtained one
from another by a sequence of elementary transpositions s;,,...,S;, such that the tableaux remain standard
after every step.

Proof. Let t and t' be two standard Young tableaux of the same shape. We reason by induction on the size
n and we assume that n > 2 (if n = 1, there is nothing to prove). Denote 6 (respectively, 6') the node of ¢
(respectively, t') containing n.

If 6 = 6’ then we can use the induction hypothesis to obtain a desired sequence of elementary transpositions
acting only on {1,...,n — 1} and transforming ¢ into ¢'.

If 6 # 0" we note that since t and t' are standard, then 6 must be the rightmost node of its line and the
lowest node of its column, and similarly for #’. In particular, # and €’ can not be in adjacent diagonals. It
follows that the following procedure in three steps is possible:

e First, we use the induction hypothesis to obtain a sequence of elementary transpositions acting only on
{1,...,n — 1} and transforming t’ into a standard Young tableau with n — 1 in the node .

e Then we apply the elementary transposition (n — 1,n) to obtain a standard Young tableau with n in 6.

e Finally, we use again the induction hypothesis to obtain a sequence of elementary transpositions acting
only on {1,...,n — 1}, which transforms this standard Young tableau into . O

Representations of [,(q). We refer to [7, 20]. Let n > 1 and A\/u be a skew partition of size n. Let V),
be a C-vector space with a basis {v¢}tegTab(a /u) indexed by the standard Young tableaux of shape A /. The
following formula for the generators oy,...,0,-1 defines a representation of the Hecke algebra H,(gq) on the
space V), (this can be checked with a straightforward verification of the defining formulas of Hy(q)):

(¢ =g Deira(t) — gein(t) — g eilt)
Ut

ci+1(t) — ci(t) civ1(t) —ci(t)
where s;(t) is the Young tableau obtained from ¢ by exchanging ¢ and i+ 1 and where we define vy := 0 for any
non-standard Young tableau t'. Note that c;(t) # c;y1(t) for any t € STab(\/u). The basis {vt}resmab(a/u) 18
sometimes called the seminormal basis of the representation V) /.

If we denote by d; ;(t) := cc;j(t) — cc;(t) the axial distance between the nodes with number j and i in the
Young tableau ¢, then Formula can be written in terms of g-numbers defined in @ as follows:

diiv1(t) g
oilve) = [diiv1(t)]q o [diiv1(E)]q

These formulas can be specialised for ¢> = 1 and provide representations of the symmetric group &,,.

oi(vg) = Vs, (¢) > forie{l,...,n—1}. (15)

Vgi(8) 5 forie{1,...,n—1}. (16)
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Irreducible representations V). If )\ is a partition of n then the representation V) is irreducible. Moreover,
as A runs over the set of partitions of n, the representations V) are pairwise non-isomorphic and exhaust the
set of irreducible representations of H,,(q) up to isomorphism. The irreducible representations V) are the ones
appearing in the Schur—Weyl duality in Theorem

We note that if A\ = (n) (aline of n boxes) then the representation V{, is the one-dimensional representation
given by o; + ¢ for i = 1,...,n — 1. Its associated minimal central idempotent (in the sense described in
Appendix is what we called the g-symmetriser and denoted P,.

We note also that if A = (1,...,1) (a column of n boxes) then the representation V; 1y is the one-
dimensional representation given by o; — —g~! fori =1,...,n—1. Its associated minimal central idempotent
will be given later and is called the g-antisymmetriser.

Branching rules. From Formulas (15), the branching rules for the chain of algebras { Hy,(q) }n>0 are almost
immediate to obtain. Indeed let A - n and let = n — 1 be a subpartition of A, that is, x4 is obtained from A
by deleting one node, say 6. Then consider the subset I, of STab(\) consisting of standard Young tableaux
of shape A containing n in the node 6. The set I, is clearly in bijection with STab(x) and it is immediate
from to see that the subspace of V) generated by I, is a representation of H,_1(q) isomorphic to V,,. We
conclude then that if A is a partition of n then the restriction of V) to H,_1(¢) decomposes into irreducible
as follows:

ReSHn_l(q)(V)\) = @ V# . (17)

pwhkFn—1
HCA

The first levels of the Bratteli diagram (see Appendix [A.3|for definitions) for the chain {H}(¢)}n>0 are shown
in Appendix

4.3 Identification of the kernel in the classical Schur—Weyl duality

Let N > 2. We recall that the centraliser of the action of Uy(gln) on (Lf\{))@)” was denoted ﬁg(q) and that

it is obtained as the quotient of H,(q) by a certain ideal IV, see Definition

4.3.1 Representation-theoretic description of the kernel

In Appendix, we fix the terminology and notations for quotients of semisimple algebras and quotients of
Bratteli diagrams.

The result in the following proposition is a well-known consequence of the Schur—Weyl duality. The first
item follows quite immediately from the statements in Theorem [4.4] For the second item, one has to notice
that a partition A is such that [(\) > N if and only if its Young diagram contains a column of size N + 1, if
and only if there is a path in the Bratteli diagram from (1,1,...,1) F N +1 to A\. We indicate that the chain
structure on the quotients is explicited in a more general situation later in Section

Proposition 4.6. 1. Forn >0, the ideal IY of H,(q) corresponds to the following subset of partitions:

(AFn |l >N}

2. The Bratteli diagram of the chain {FnN(q)}nzo is the quotient of the Bratteli diagram of the chain
{Hn(q)}n>0 generated by:

Smin = {(1,1,...,1) F N + 1} (the one-column partition of size N +1) .
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We note the following immediate consequence:

TN(q)=Huq) < N>n. (18)

4.3.2 Algebraic description of the kernel

Proposition [4.6|describes the ideal IV of H,(q) on the side of representations. From this, one can easily obtain
an algebraic description of this ideal IV and thus of the quotient ﬁ,]:] (q).

The g-antisymmetriser. Let m > 0 and define the following element of H,,(q):

Yuwee, N Mow _ Yo, GO 0w _ 1y Lves, () 0w

P .= = = 19

m Zwe@m q—2£(w) q—n(n—l){m}q! q [m]q, ( )

It is well-known that the element P/ is a minimal central idempotent in H,,(¢q) projecting on the one-
dimensional representation given by o; — —¢~! for i = 1,...,m — 1. In particular, we have

(PL)}=P, and 0P, =Phoi=—q ‘P, i=1,...,m—1.

If ¢ = 1, the projector P/ is the antisymmetriser of C&,, projecting on the sign representation of &,,.
From Proposition [£.6] and using the general facts presented in Appendix [A-4] we obtain:

Proposition 4.7. If n < N then the centraliser FnN(q) coincides with Hy(q). If n > N then the centraliser
ﬁiv(q) is the quotient of Hy(q) over the relation:

Z (_q—l)é(w)aw =0,

weS N1

. 7N . .
In words, to obtain H,, (¢), we cancel the g-antisymmetriser on N +1 letters. Note that o, when w € Sy41
is a word in the generators o1,...,0n and as such can be seen as an element of H,(q) if n > N (this is a
convenient slight abuse of notation).

Example 4.8 (Temperley—Lieb algebra). Let N =2 and n > 3. What the preceding proposition states is that
the centraliser Fi(q) 1s the quotient of the Hecke algebra over the relation:

010901 — q(0102 + 0901) + q2(01 +o09) — q3 =0.

This centraliser Fi(q) 1s called the Temperley—Lieb algebra. It is easy to see using the braid relations that
conjugating this relation by o10203, one obtains the similar relation with indices 2,3, and hence that the similar
relation with indices i,i+1 for alli =1,...,n—2 is implied. Then setting 7; := o; —q, one recovers the other
standard presentation of the Temperley—Lieb algebra:

2 -1 e .
i =—(q+q¢ )T, TTATi=Ti, TiyiTiTir1 = Tiy1 and 7T = 77 if [ — 5] > 1
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5 Generalisation of Schur—Weyl duality for symmetric powers

Let k = (k1, ko, ...) € ZZ, be an infinite sequence of non-negative integers, and let n € Z>¢ . Let also N > 1.
We recall that for k£ > 1 we have denoted L, the irreducible representation of Uy(gln) corresponding to
the partition (k) (the one-line partition with k& boxes). We consider here the representation of U,(gly) on the
following tensor product:
N N
Ly @ @ L) -

By convention, for n = 0, this is the trivial representation.
We will use the definition and properties of minimal central idempotents (here, for the Hecke algebras)
recalled in general in Appendix

5.1 Schur—Weyl duality for Lf}il) R ® Lf\én)

Recall that, for any k& > 1, the element Py, of Hy(q) defined by (7)) is the primitive central idempotent associated
to the one-dimensional representation V. As such, Py is equal to the identity in the representation V() of
Hj(q) and 0 in every other irreducible representations of Hy(q).

Note that the dimension of V() is equal to 1. Therefore, from Formula expressing the Schur—Weyl
duality, we deduce immediately that we have the following decomposition of U, (gl )-modules

(L) = Ly o U (20)
with the property that
Pk|LN = IdLé\lfc) and Pk(U) =0. (21)

(k)
Then using and expanding, we have the following decomposition of U,(glx)-modules

N ki4-+kn _ N k N kn
(L(l))® 14t - (L(l))® Q- ® (L(l))® (22)
— N N /
Now, from its definition (9)), the element Py, of Hy, 4.4, (q) acts as Py, ® --- ® Py, on (Lé\{))@)kﬁ“'*k" (this

can be seen directly from the definition of the action of Hy 4.1, (¢) on this space). Therefore, using
for k = kq,...,k = k,, we obtain that the above decomposition is such that:
and  Pc,(U)=0. (23)

P
on Ly (k1) (kn)

N
(k)@ O (k)

In other words, the action of Py ,, on (Lé\{))®k1+"'+k" is the projection on Lé\,gl) ®- - -®Lé\;€n) associated to the de-
composition . As recalled in Appendix we have therefore naturally an action of Py pHy, 4.tk (¢) Pn

on Lé\;l) R Lézn) given by restriction
PenHiytoothe (@) P — End(L%) R Lf\’gn))

Pk,n$Pk,n — Pk,n$Pk,n| N N
L ®---QL
(k1) (kn)

(24)

Now we are ready to state the analogue of (the first part) of the Schur—Weyl duality.

Theorem 5.1. There is a representation of the algebra Hy n(q) on Lé\’il) R ® Lé\;n) and the image of the

map Hy »(q) — End(L%) & Lé\,in)) coincides with the centraliser of the action of Uy(gln).
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Proof. Let ¢ € Uy(gln) and let @ € Hy y...qp,(¢). From the classical Schur-Weyl duality, we know that
the actions of Py ,zPy, and of ¢ on (Lé\{))®k1+"'+k" commute. Moreover, both actions leave the subspace
Lé\lil) R ® L]\,Qn) invariant, so their restrictions to this subspace commute as well. So we have that the image
of the map is included in the centraliser of the action of Uy(gln).

For the reverse inclusion, let y € End(Lé\kf;l) ® - ® Léin)) which commutes with the action of Uy(gln).
Extend it by 0 on the subspace U’ appearing in the decomposition to get an element Y acting on
(Lﬁ))®k1+'“+k". Obviously this element Y commutes with the action of U,(glx). Therefore, from the Schur—
Weyl duality, we have an element Y € Hy, 1.1k, (q) such that Y is the action of Y on (Lf\{))@’kﬁ“*k”. Then,
we have that 7 is the action of P ,Y Py, on L?IQI) R ® Léin) and thus we conclude that 7 belongs to the
image of the map .

We just proved that the image of the map coincides with the centraliser of the action of U,(gin).
Finally, the isomorphism of Hy ,,(q) with Py, H, ...+, (¢) Pk obtained in Proposition provides by com-
position with the required action of Hy ,(q) on Lf\[ﬂ) Q& L%n) with the desired properties. ]

In view of the preceding result, we make the following definition.

Definition 5.2. We denote by Ff{vn(q) the image of the representation Hy ,(q) — End(Léil) ® - ® L( n))

and by IIJ(Vn its kernel.

From the preceding Theorem, we have that Fivn(q) is the centraliser of the action of Uy(gly) on Lé\]il) ®
e ® Lf\,in) and that it is isomorphic to the quotient of the algebra Hy ,(q) by the ideal IIJ(V -

First description of the ideals Ilj(vn. We collect a preliminary result on the ideals Ilj(vn for later use.

Recall that j'l,é\ler_,,Jrkn is the ideal of Hp, 4.4, (q) corresponding to the representation of Hp, 4.4k, (q) on
(Lé\{))®k1+'"+k" in the classical Schur-Weyl duality (see Definition .

Proposition 5.3. Under the isomorphism between Hy ,,(q) and Py pHp, +...qk,(q)Pcn, the ideal If{\jn corre-
sponds to Pk,nlli\lf-k...-s-knpkm'

Proof. Let € Hy, 4.4k, (q). We have that Pk ,xPy, belongs to the kernel of the map if and only if
the restriction on Lé\lil) X ® Lé\];n) of the action of Py ,xPg, is 0. Since Pk ,(U’) = 0, where U’ is the
complementary subspace appearing in , this is equivalent to saying that the action of Py ,xFy , on the
whole space (Lé\{))®k1+"'+k" is 0. In other words, it is equivalent to the fact that Py ,x Pk, belongs to the

ideal Ili\lf+---+kn of Hiy 4otk (@)-
Finally PnzPcyn € I, implies P 2Py € Ponly ..y Pan since BZ | = Py, and reciprocally,

N : : N : N
Pun®Pyn € Pandiy o ..., P implies Pa n@ Py € L] 4y since Ity

This concludes the proof since Ifcv ,, is defined as the kernel of the composition of the isomorphism between

Hk,n(q) = Pk,nHkl—i--u—i-kn (q)Pk’n and’ the map . Il

is an ideal.

Remark 5.4. The centraliser H{Zn(q) is described here as a quotient of the algebra Hy (q). We recall that
this algebra is isomorphic to P pHp, ..tk (q)Pen. Applying this isomorphism, it is easy to check that by

construction the centraliser Fﬁ{n(q) is sent to Pk,nﬁfc\i+--~+kn(Q)Pk,n (where we still denote by Py, the image
=N
of P in Hy .1y (q))

23



This remark illustrates the fact that, for any N, we can follow two different paths to reach the centralisers
ﬁfin(q) from Hy, 4.4k, (q), graphically depicted as follows

—N
Hiy ook (@) — Hpy oy, (0)
\ \:

=N
Hiy n(q) — Hy ()

On one hand, we can first take a quotient (depending on N ) to obtain ﬁng,_Jrkn(q) and then consider inside

each FkNﬁ,.,Jrkn (q) the subalgebras obtained by multiplying by the idempotent on both sides. On the other hand,
we can first consider the subalgebra Hy ,,(q) of Hg, 4.4k, (q) obtained by multiplying by the idempotent on both
sides, and then take a quotient depending on N. Our approach in this paper is to follow the second road and
we emphasize the role of the algebra Hy ,,(q) which does not depend on N.

6 Representation theory and Bratteli diagram of {Hx,(q)}n>0

We recall that due to the restrictions on ¢, the algebra Hy ,,(¢) is semisimple (see Propositionand Appendix
. In this section, we provide a description of the representation theory of the algebra Hy ,(¢), which relies
only on the well-known representation theory of the Hecke algebras. The knowledge of the representation
theory of Hy ,(q) will allow us to give a first description of its quotients Hy ,(g). This description will be
entirely representation-theoretic. We will use it to study in the last section a description of the quotients in
the diagrammatic presentation of Hy ,,(q).

6.1 Induction step

Let k > 1. Let A/u be a skew partition of size k and V), the corresponding representation of Hy(q)
constructed in Section |4, The next proposition identifies the subspace Py (V) /#) in terms of the seminormal
basis {vt}+esTab(n/u), Where we recall that P is the g-symmetriser of Hy. This result will serve later as the
induction step to understand the irreducible representations of Hy ,(¢q) from the ones of Hy ,—1(q).

We note the remarkable fact that the image of Py can be expressed in terms of the basis {v;} with no ¢
appearing.

Proposition 6.1. We have:

(C( > vt) if A/ contains at most one boz in each column,
Pe(Vaju) = teSTab(A/p)
0 otherwise.

Proof. The defining formula and the fundamental properties of Pi are in @ and . We note first that we

have:
1+ qo;

1+ ¢2

Let t € STab(A/p) and let i € {1,...,k —1}. We denote d := d; j+1(t) = ccit1(t) — cci(t). From Formula
, we calculate the action of o; on the subspace of V), generated by vt and vy, (1), and deduce the action
of 1+ qo;. There are three cases:

P, =P

foranyi=1,...,k— 1. (25)

(a) If i+ 1 is in the same column as i just below it in ¢ then Us,¢) = 0. The action is given by:

oi(ve) = —q vy = (1+qoi)(vg) =0.

24



(b) If i + 1 is in the same line as i just to its right in ¢ then v, ;) = 0. The action is given by:
oi(vg) =qug = (14qo)(vy) = (14 ¢*)vg.

(c) If i and i + 1 are neither in the same line nor in the same column in ¢ then s;(t) € STab(A/u). The
action in the basis {vt, vy, (4} is given by:

q-— qfl q— q72d71 q2 _ q2d q2 o q—2d
1— q2d 1— q—2d 1— q2d 1— q—2d
o; = _ B = 1+ qo; = _
q_q2d1 q_ql q2_q2d q2_q 2d
1— q2d 1— q72d 1— q2d 1— q72d

We find that the image of (1+go;) is included in the line C(vt +wv,, (1)) and moreover an easy calculation
shows that o;(ve + vg,4)) = q(ve + v, (p))-

We will combine with these elementary calculations to prove the proposition. First assume that the
skew partition A/u contains two boxes in the same column. As \/u is a skew partition, we have two adjacent
boxes in this column. Then for a standard Young tableau ¢ of shape A/u, these two boxes must contain the

numbers ¢ and i+ 1 for some i € {1,...,k—1} (with ¢+ 1 below 7). Therefore, from Case (a) above, we have:
1+ qo;
Pk(vt) = Pkw(vt) =0.

This shows that Py(V)/,) = 0 in this case.

Now, let {at}resTab(r/p) be arbitrary complex numbers. The sums below are always indexed by the set
STab(\/p). We have:

P (Z Oztvt) =P ll—i—_i—qq? (Z atvt) foranyi=1,...,k— 1.

From Case (c) above, we have that P (> atvt) is proportional to Py (Y ajuve), where the coefficients o
satisfy
oy = o ) for every t and i such that s;(¢) is standard.

i

Using Lemma we conclude that Py (Z oztvt) is proportional to Py (Z Ut), namely

Pe(> agvr) € CP(D wr) - (26)

Then if the skew partition A/p contains at most one box in each column, we have, from Cases (b) and (c)

above, that:
Vi=1,...,k—1, Ui(th) :q(th) .

From the explicit formula for the idempotent Py, this gives that Py (Z Ut) = > wv;. With 1} this shows
that P.(Vy/u) = C(>" v¢) and concludes the proof of the proposition. O]

6.2 Complete description

Let k = (K1, kg, ...) € ZS, and n € Z as before. From the generalities recalled at the beginning of Section
we need to understand the subspaces Py ,, (V') for any irreducible representation V' of the algebra Hy, 4.1, ().
The irreducible representations of Hy, +...+, (q) are the representations V), where A runs over the partitions
of size k1 + - - - + k.
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Semistandard Young tableaux and Kostka numbers. A sequence of non-negative integers v = (4, ..., 1)
such that v + -+ + 1, = n is called a composition of n. We say that the size |v| is equal to n. We make no
difference between v and the same sequence where we added some parts equal to 0 at the end.

Let t be an arbitrary Young tableau of size n. For a € Z>1, let v, be the number of times the integer a
appears in the tableau ¢. The sequence v = (v, 5, ...) forms a composition of n. We say that t is a tableau
of weight v.

A Young tableau is called semistandard if the numbers are weakly ascending along rows and strictly
ascending down columns of the Young diagram. For a skew partition A/ of size n and a composition v of n,
we set

SSTab(A/u, v) := {semistandard Young tableaux of shape A/u and of weight v} .

For example, a standard Young tableau is a semistandard Young tableau of weight (1,...,1).
For saving space we use the following notation for the composition of k1 + - - - + k,, obtained by restricting
the sequence of integers k to the first n entries:

Kpp i= (Kiye e kn) -

Apart from the standard Young tableaux, we will mainly use the notion of semistandard Young tableaux for
partitions of size k1 + -+ + ky, and of weight kj,, = (k1,...,ky). For example, if n = 4 and k)4 = (2,2,2,2)
then

111]2]2 111133 1]11f2]3
SSTab((4,4),k\4)={ 3l3lala] > 2121414 ° 2344}

are all the semistandard tableaux of shape (4,4) and of weight k4.
For a skew partition A/u of size n and a composition v of n, the number of semistandard Young tableaux
of shape A\/u and of weight v is called a Kostka number and is denoted:

Ky /p = |SSTab(A/p, v)| .

One of their main properties is that K/, , does not depend on the ordering of the parts of v. A direct
combinatorial proof of this fact can be found in [2I Theorem 7.10.2].

Dominance order and Kostka numbers. For a partition A = (A1,...,)\;), we use the convention that
Alr1 = Ajp2 = - - - = 0. For two partitions A, u of the same size, we denote

A>p = M+ N>p e+, Vi

This is the dominance ordering of partitions.
We are going to use the following combinatorial construction several times in the rest of the paper. If u
is a composition, we denote °™d the partition obtained by reordering the parts of x in decreasing order.

Lemma 6.2. Let A\ be a partition and p = (p1,...,Hun) a composition such that |A| = |u|. Assume that
A\ > 'uord'

(i) X\ has at least p, non-empty columns.

(ii) Fill the last box of the first yu, columns of A\ with the letter n. Then, as long as there is a box containing
n with an empty box in the same line on its right, move the letter n in the empty box (in other words,
slide the boxes with n to the right as far as possible):

There is a semistandard Young tableau T € SSTab(\, u) with the letters n in these positions.
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Proof. Denote pu°*% = (ph, ..., ).

(i) The condition A > p°¥ implies in particular that A; > u} which is the largest part of y. So we have
in particular A\; > p,. Thus there are more than p, non-empty columns in .

(i7) First note that since Ay +---+ X\, > pf + -+ pl, = || = |A| then X has at most n non-empty parts.
We use induction on n (the case n = 1 is trivial since in this case, A is a single line of boxes). After placing
the letters n as indicated, the remaining empty boxes in A form a partition X which is given by:

M=XM, oo N1 =Xo1, N =N (= Nit1) s N1 = Nit2y oo s A1 =M, Ay =0,

for some i € {1,...,n} (this number ¢ is such that A\1,..., A; > p, and A\jiy1 < py; if ¢ = n, it is to be
understood that the only modified part is Ay = Ay — pn). Let v = (u1,..., tn—1). It remains to show that
A > 14, Indeed by induction we will have the existence of a semistandard Young tableau in SSTab(;\, v),
which together with the boxes containing n will create an element of SSTab(\, p).

The fact that A > v°' is checked as follows. Denote 174 = (V4,...,v ;). First, we have (using A > p°4)

5\1+"'+5\k:/\1+"'+)\kZﬂ/l‘i‘""f’/i;g ifk=1,...,i—1.

This is greater or equal to 1] + - - - + v}, since in fact v < pf, ..., v < pi.
If k=1i,...,n — 1, we have (using \ > p°9)

M4 A=A N A — i > i+ g —

If p1, < pi, then this is greater than p + - - -4y, which is in turn greater or equal to ] +--- 4 v, as above.
Otherwise if p,, is one of the integer p17, ..., yi}, 1, say 7, then this is equal to gy +- -+ + )+ -+,
w,hich /is in turn equal to vj + -+ + v;. Indeed we have here v] = i, ..., vi_y = pj_, Vi = piy, ...,
Vi = Pkt

The preceding construction easily implies in particular the following known properties of Kostka numbers.

Lemma 6.3. Let A a partition and p a composition such that |\| = |u|. We have
Ky #0 = A>po.

Proof. From the recalled symmetry property of Kostka numbers, we have K , = K ,ora. So we can assume
that the parts of p are already ordered in decreasing order, namely, that we have 4 = p.

First assume that K , # 0 so that there is T' € SSTab(\, u). Let ¢ > 1. By semistandardness, in T the
numbers 1,. .., all appear in the first ¢ lines of T'. So we must have A\; +---+ X\; > p1 +-- -+ ;. This proves
that A > p.

Reciprocally, take A such that A > u. From Lemma there is an element in T' € SSTab(\, ), therefore

Ky, #0. O
6.2.1 Main result
We are now ready to describe the representation theory of the chain of algebras

C = Hxo(q) C Hx1(q) C Hypo(q) C ..o+ C Hxn(q) C Hepy1(q) Conee .

Let A+ k1 +---+ky and recall that V) is a vector space with basis indexed by STab()\) carrying the irreducible
representation of Hy, 1.4k, (q).
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Let t € STab()\). We denote by ¢ the Young tableau obtained from ¢ by the following map from {1,. .., k1 +
<o+ kptto{l,...,n}:

1,....k1— 1, ki+1,..., k1 +ko— 2, ki+- - +kn1+1,....1+--+k,—>n,

that is, we replace in t the k; first integers by 1, the next k3 ones by 2, and so on. We obtain this way a
Young tableau t of weight K, (note that £ does not have to be semistandard, as shown in the example below).
Now, let T' € SSTab(\, kj,,) a semistandard Young tableau of shape A and of weight k|,,. We define in V)
the following vector:
w = Z vg €V . (27)
teSTab())
=T

Example 6.4. Let n = 2, kjp = (2,2) and A = (3,1). There is only one semistandard Young tableau of
The

L . We have then : w
B e

2

2]3] tUn 2[4] -

3

shape A with weight k)3, and that is =0

e

1]3]4] 1]2]2]

~

remaining standard Young tableau t = of shape A\ gives a Young tableau which is not

semistandard.

Below, we denote by krrd the partition of k1 + --- + k, obtained by ordering in decreasing order the

n
numbers ki, ..., k.

Theorem 6.5. For any A& ki + -+ ky,, set Wy x := Py (V).
1. The space Wy » is spanned by the vectors wr, where T € SSTab()\,k|n).
2. A complete set of pairwise non-isomorphic irreducible (non-zero) representations of Hy ,,(q) is
{(Wiatrese, — with Sk = {AFki+ - +ky | A > kg{d .

The dimension of Wi x is the Kostka number Ky, = |SSTab(A, k)|

3. For \ € Sk, the restriction of Wy x to Hx n—1(q) decomposes as:

Respy 1 (9)(Wien) = Wics (28)
WE Res (M)

where we have set:

Resk(A) == {u € Skn—1 | # C X and M/ contains at most one box in each column}.

The condition A > k‘oﬁd implies easily that [(A) < n (see below), so that we have:

SkmC{)\l—k‘l—l-"'—i-k‘n|l()\)§n}.

In general, the inclusion is strict (see however Subsection for a situation where it is equivalent to I[(A) < n).
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Denote by k} > kb > --- > k!, the parts of kj,, after reordering. Then for partitions A\ = k1 + -+ + kj
appearing in Sk ,, the condition A > kfﬁd can be expressed by the two following equivalent set of inequalities
(using |(A| =M+ -4+ Xy =k + -+ k,):

Moo= K A <K,
M+ > K+ K A1+ < KL+ E,
A€ Skn & : & : (29)
M+t >kt ko Aot Ay < Ryt ky
M+ + A > ket M-+ A < ket

Before proving the theorem, we establish the following combinatorial bijection underlying the branching
rules . It is the generalisation for general k of the natural bijection, for A F n,

STab(\) «= | STab(n),

pFn—1
pCA

underlying the branching rules for the chain of Hecke algebras H,(q).

Lemma 6.6. For any A\ k1 + -+ ky, we have:

SSTab(\ k) ¢ ) SSTab(u,kj,1) . (30)
HE Resy (M)

Proof. The map from left to right is given by starting from T' € SSTab(\, k,,) and removing the &, boxes con-
taining n. Denote u the shape of the resulting tableau T”. Then we have obviously that T" € SSTab(u, kjn_1)
with = k1 + -+ kp—1 and p C X\. As T is semistandard, we also have immediately that \/u contains at
most one box in each column. It remains to show that pu > kf;cil. As we have at hand an element T of
SSTab(p, k|n_1), this set is thus non-empty. So we can apply Lemma

The map from right to left is given by starting from T € SSTab(u, kj,—1) with u € Resk(A) and by adding
to T’ the boxes of A/u filled with numbers n. The resulting tableau is clearly an element of SSTab(A\, k).

By construction the two maps are inverse to each other. O

Proof of the Theorem. e First we show how item 2 follows from item 1. We know that a complete set of
pairwise non-isomorphic irreducible representations of Hy ,, is given by the non-zero Wy = P, (V)) from
the results recalled in Appendix The assertion about the dimension of Wy  is immediate from item
1 since the set {wT}TGSSTab(A7k|n) is clearly linearly independent. So we only need to show that, for any
Ak +---+ k,, we have:

SSTab(A\, kp,) 20 <= A=kt

This is Lemma [6.3| with p = (ki1 ..., kp).

e Assume that n = 1 and let A - k;. Here we have Py, = Py, € Hj,(q) and the subspace Wy = Py, (V))
is thus obtained as a particular case of Proposition We have:

Wia=C( Y. w) ifA=(k), and Wix=0 if A# (k).
tcSTab()\)

Besides, for any A I kq, there is a single Young tableau of shape A and weight (k1) (since all the boxes are filled
with 1’s). Clearly, this Young tableau is semistandard if and only if A = (k1). So we have SSTab(\, (k1)) =0
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if A\ # (k1), while SSTab, (k1)) consists of one element T' if A # (k). In this latter case, we have in addition
that ¢ = T for any ¢t € STab()). This proves item 1 for n = 1.

e Now let n > 1. Recall that for any decomposition N = N; + No with N1, No > 0, there is a parabolic
subalgebra of the Hecke algebra Hx(q) isomorphic to Hy, (¢) ® Hy,(q), where the copy of Hy, (q) is generated
by the N — 1 first generators of Hy(gq) and the copy of Hy,(q) is generated by the Ny — 1 last ones.

Let A ki +---+ky,. We start by explaining that the restriction of V) to the subalgebra Hy, t..4k, ,(q) ®
Hy, (q) of Hg, 4.4k, (q) decomposes as follows:

ReSHk1+u-+kn,1(Q)®Hkn(Q)(V)\) = @ Vi® VA/M . (31)
pwhki++kn_1
pnCA

Let t € STab(X). We denote t; the standard Young tableau obtained from ¢ by keeping the boxes with
numbers 1,...,k; + -+ + kyn—1, and let p be its shape. The boxes of ¢ containing the remaining numbers
ki+---+knp_1+1,..., ki+- - -+k, form a tableau of shape A/p and let £, € STab(\/pu) denote the corresponding
standard Young tableau obtained by shifting the numbers by k1 + - -+ + k,—1. The linear map defined by

7./t’—>’Ut¢®UtT GVu®VA/u , (32)

provides the isomorphism . This follows immediately from a direct inspection of Formulas giving the
action of the generators of the Hecke algebra Hy, 1.4k, (¢) on Vy.

Then recall that the idempotent P, of Hp, 4..4k,(q) is by definition an element of the subalgebra
Hp\ 4otk () ® Hy, (¢) and can be written as Py ,,—1 ® Py, . We deduce from that

Wk)\ = Pk,n(V)\) = @ Pk’n_l(Vu) ® Pkn(v)\/u) . (33)

pkittkn—1
BCA

Using the induction hypothesis together with Proposition we obtain that Wy y is spanned by the set

Z wp @vg ,  where p € Resk(\) and T" € SSTab(u, ky,_1) . (34)
teSTab(A/p)

From Lemma we know that this set is in bijection with the set SSTab(A, kj,). Moreover, we have at once
that the vectors in correspond under the isomorphism to vectors wp in V) where T' € SSTab(J, k‘n)
(The tableau T is obtained by adjoining to T” the boxes of \/u filled with letters n). This concludes the proof
of item 1.

e Finally, we recall that the algebra Hy ,(q) is isomorphic to P nHy, +...+k, (¢)Pkn and that, after identi-
fication, the inclusion of Hy,—1(q) into Hy »(q) is given by Py p—12Pxn—1 — Pkpn—12Pxn—1 ® Py,. Then the
branching rule stated in item 3 follows immediately from together with Proposition O

Remark 6.7. Combining item 2 of the preceding theorem with the classical fact that the Kostka numbers
K, do not depend on the ordering of the composition p ([21, Theorem 7.10.2]), we see clearly that, up to
isomorphism, the algebra Hy ,(q) does not depend on the ordering of (ki,...,kn). However, the chain of
algebras { Hx »(q) }n>0 depends obviously on the ordering of k, and therefore so does its Bratteli diagram, and

this will reflect in some statements later about minimal generating sets of quotients of Bratteli diagram, see
Proposition and Theorem[8.3, item 3.
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Remark 6.8. A numerical consequence of item 2 of the preceding theorem is that:

dim Hin(q) = > [SSTab(A k)| -
Ak 4-+kp
Indeed recall that [SSTab(A, k,,)| = 0 if we do not have A > krgd. The dimension of Hy ,(q) is the number of
integer matrices with non-negative entries such that the sum of the a-th row and the sum of the a-th column
18 kq. So we have that the number of such matrices is equal to the number of pairs of semistandard Young
tableauz of the same shape and of content (k1,...,ky). This is also a consequence of a bijection between these
two sets called Robinson—Schensted-Knuth correspondence [135].

6.3 The situation of a constant sequence k = (k, %, ...)

We single out the situation of a constant sequence k = (k, k,...) for an integer £ > 1. In this situation, the
parametrisation of irreducible representations in item 2 of Theorem is much simpler since in fact we will
check that A > kfrd is simply equivalent to I[(A\) < n (for general k, this is only a necessary condition).

n

Corollary 6.9. Letk = (k,k,...) for an integer k > 1. A complete set of pairwise non-isomorphic irreducible
(non-zero) representations of Hy p, is

{Wk)\},\esk’n ’LU’ZIfh Sk,n = {)\ = kn ‘ l(/\) S n}

Proof. For a partition A - kn, we need to check that A > (k, k, ..., k) is satisfied for any partition A such that
I(A\) < n (this is enough, since as already explained, [(\) > n contradicts A > (k, k,...,k)).

So let A F kn such that [(A\) < n and assume that A > (k, k, ..., k) is not true. In particular, the inequalities
in the first set in (where here k| = kbl = --- =k, = k) are not all satisfied, so let ¢ € {1,...,n} be the
smallest index for which the inequality is false.

If i = 1 then A\; < k and from I(\) < n we have that the size of A is strictly smaller than kn. This is a
contradiction.

So we have ¢ > 1. Let « be such that

M+ +ANaa=0-1Dk+a,
AN <k

We have a > 0 by minimality of i. So we find that A\; < k — «. From this and the fact that I{((\) < n, we
obtain
A<M+ +XN+n—)\ <ik+(n—i)(k—a)=nk—a(n—1),

which shows that |A| is strictly smaller than kn. This is a contradiction. O

Example 6.10. o Ifk = (1,1,...) is the constant sequence of 1’s, the theorem expresses simply the repre-
sentation theory of the chain of Hecke algebras Hy(q) in the usual way. Indeed one has in this case Py, =1,
Wi = Vi, Sk = {\ F n}, a semistandard tableau of weight ki, = (1,...,1) is simply a standard tableau,
and the branching rules are only given by p C X\ since A\/u contains only one box.

e The first levels of the Bratteli diagrams of the chains {Hyxpn}tn>0 for k = (2,2,2,2,...) and for k =

(3,1,1,1,...) are given in Appendix .
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7 Hx-1.(q) as a subalgebra and as a quotient of Hy ,(q)

In this section we assume that our sequence k = (ki, k2, ...) consists of strictly positive integers, and we set
k—1= (ki —1,ky—1,...) € ZZ, the sequence obtained by decreasing every entry of k by 1. We are going to
study the connections between_Hkm(q) and Hyx_1,(q).

We use the definitions and the terminology fixed in the appendix for quotients of semisimple algebras and
quotients of Bratteli diagrams.

7.1 Hyg_1,(q) as a subalgebra of Hy,(q)

Let n > 0. Recall that given a subset I' of the parametrising set Sy ,, of irreducible representations of Hy ,,(q),
we have an associated subalgebra. Namely, after applying the Wedderburn decomposition and with the
notation of Theorem the subalgebra is P, . End(Wy ).

Proposition 7.1. Let A be the subalgebra of Hy ,(q) corresponding to the following subset of partitions:
{AeSkn | I(N)=n}.
Then A is isomorphic to Hy_1 ,(q).

Proof. From item 2 of Theorem m, it follows at once that the Artin—-Wedderburn decompositions (see Ap-
pendix) of Hy (q) and Hyx_1,(q) read:

Hyn(q) =2 @ End(Wi») and Hein(@) 2 P EndWioiy),
/\GSk,n )‘lesk—l,n

while the subalgebra A of H ,(q) is given by:

A2 @ End(Wi,) .

A ESk,n
I(N)=n

Therefore, it will be enough to give a bijection between {\ € Sk, | [(A) = n} and Sk_;, respecting the
dimensions of the corresponding irreducible representations (which are also explicited in item 2 of Theorem
G3).

Let A € Sk, such that I(A) = n. It means that the first column of A contains n boxes. The bijection will
be given simply by the removal of the first column. Namely, we set

¢n : {)\ S Sk,n ’ l(/\) = n} — Skfl,n

Ao ga(N) ()

where ¢, (\) is the partition obtained from A by removing the first column. We must check that ¢,, is indeed
a bijection.

First ¢,, takes values in Sk_;,. Indeed ¢, (\) is of the correct size since |pp(N)| = [N —n = (k1 — 1) +
(kg —1)+---+ (k, —1). And moreover, setting k‘oéd = (k},...,k}), we have that ¢,(\) > (k] —1,...,kl, — 1)
since it follows immediately from A\ > k‘oéd that (A — 1)+ 4+ N —1) > (k] — 1)+ -+ (k] — 1) for all 4.

A similar argument shows that adding a first column of size n to partitions in Sx_; , provides the inverse
map.
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Now let A € Sk, and set \' := ¢, (A). It remains to show that the cardinality of SSTab(\, ky,) is equal
to the cardinality of SSTab(\', (k —1)},). Let T' € SSTab(), ky,,). As the first column of A contains n boxes,
it has to be filled, in order for T to be semistandard, by 1,2,...,n in ascending order. Removing this first
column we thus obtain an element of SSTab(\’, (k — 1)},). This gives the desired bijection proving thereby
that Wi » and Wy_; y» have the same dimension and concluding the proof. O

7.2 Hyx 1,(q) as a quotient of Hy,(q)
Proposition 7.2. Let Ilfz be the ideal of Hy (q) corresponding to the following subset of partitions:

Sﬁ’;::{AeSk,n [ I(A) <mn }.
1. The quotient Hy »(q)/IS" is isomorphic to Hy_1,(q);

2. Let S be the union of Slfz for all n. The quotient of the Bratteli diagram of {Hy n(q)}n>0 generated
by Sy is the Bratteli diagram of {Hyx_11,(q)}n>0-

n

Proof. 1. By standard facts recalled in the appendix, the quotient Hy ,(¢)/Ic!" is isomorphic to the subalgebra

,n

of Hi(q) corresponding to the subset of Sy, complementary to Sg”. This subset is {\ € Sk, | I(A) = n}.
So the first item follows immediately from Proposition [7.1

2. Let (S;5) be the set of vertices generated by Sy which have been removed to obtain the quotient of the
Bratteli diagram of {Hy ,(¢) }n>0. We start by showing that we have here (Sg) = S

Let A € ST for some n > 0, namely A € Sk, with [(A) < n. From the branching rules proved in Theorem
recall that \ € Sk,n+1 is connected to A if and only if A € Resg(\') where

Resy(X) := {p € Sk, | p C X and X'/ contains at most one box in each column}.

So if X' is connected to A, we have that A’/\ contains at most one box in each column and then we obtain
I(N) <n+1from {(\) < n. In other words X € S;ij This shows that (Si) = S

So, for any level n > 0, the vertices of the quotient of the Bratteli diagram of { Hx ,,(¢) }n>0 generated by
Sy are indexed by partitions A € Sk ,, with I(X) = n. We already have a bijection, which was denoted ¢,, in

, between this set and the set of vertices of level n of the Bratteli diagram of {Hy »—1(q) }n>0-

Then it remains to show that the edges are the same in the two diagrams, namely that the bijections ¢,
commute with the branching rules of the two chains. More precisely, recall that we have

Resgy 1) (Wkn) = EB Wiku and  Resp (o) (Wio16,00) & EB Wk—1,p -
nEResk (M) pEResk—1(Pn(N))

So it remains to prove the following equality of sets:
On_1 (Resk()\)) = Resk_1 (g{)n()\)) VA € Sk with I(A) =n .

Note that if ;1 € Resk(A) with I(A) = n, then I() = n —1 since A\/p contains at most one box in each column.
So it is well-defined to apply to Resk(A) the bijection ¢,,—1.

Finally, the above equality of sets follows immediately from the following two inclusions which are
straightforward to check from the definitions: ¢,_1 (Resk()\)) C Resk_l(gbn()\)) and (;S;Lil (Resk_1 (qbn()\))) C
Resg (). O
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The minimal set of generators. We proved that the algebras {Hyx_1,(¢)}n>0 can be seen as quotients
of {Hy n(q)}n>0. More precisely we identified a set of partitions

S =N € Sk [1(N) < n},

n>0

such that the quotient of the Bratteli diagram of {Hy »(q)}n>0 generated by S coincides with the Bratteli
diagram of {Hx_1,(q) }n>o0-

Let Spin be the minimal set of partitions generating this quotient (see the appendix for this terminology).
For the following statement, recall that A\,_1 is the number of boxes in line number n — 1 of the partition .
Note that S,,;, depends on the ordering of k.

Proposition 7.3. We have:

Smin = | J{N € Siem | 1A) < ny Any >k}
n>0

Proof. To extract a minimal set of generators from S;, we must remove A from S; if and only if there is
v € Resk(\) such that 4 is already in Sy
So let X € Sk, with I(A) < n. We must prove that

There is a partition p € Resk(A) such that [(u) <n—1 < M1 <k,.

Assume first that \,—1 > k,. Then we cannot obtain a partition p with /(1) < n — 1 by removing k,, boxes
from A since there are more than k, boxes in line n — 1.

Assume now that A\,_1 < k,. We apply the procedure of Lemma [6.2] This furnishes a semistandard
tableau T' € SSTab(A, k,,) with the property that the last line of A is filled with letters n (since A\p—1 < ky).
Removing from A the boxes wich are filled with n in T', we obtain a partition p € Resk(A). Since we removed
in particular all the boxes of the line n — 1 of A we have (1) < n — 1, as desired. O

7.3 The situation of a constant sequence k = (k, k, ...)

We single out the situation of a constant sequence k = (k, k,...) for an integer k£ > 1. In this situation, we
can give more information on the minimal generating set .Sy, for the quotient of the Bratteli diagram of
{Hyx »(q)}n>0 giving the Bratteli diagram of {Hx_1,(q)}n>0

Corollary 7.4. Let k = (k,k,...) for an integer k > 1. We have:

Smin = [ J{OVF kn [ 1)) <n, Aoy >k}

n>0
Furthermore, Sy consists only of vertices of levels < k+ 1 (and contains at least a vertex of level k+1).

Proof. The description of S,,;, follows immediately from Proposition together with the description of Sk ,
in this case given in Corollary

To prove that Sy, consists only of vertices of levels < k + 1, we must show that for n > k + 1, there is
no A\ F kn with [(\) < n and A\,—1 > k. Indeed, this would imply

A >Apmiin=1)>(k+1)(n—1)=kn+n—(k+1)>kn.

Moreover, consider the partition A = (k+1,...,k+1) consisting of k lines of £+ 1 boxes each. With n = k+1,
we have A kn, [(A) =n—1<nand \,—1 = k+1 > k. Therefore, A € Sy,in, and is a vertex of level k+1. [
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Example of k = (1,1,...,). If k=1, recall that Hy,(q) is the Hecke algebra Hy,(q) while Hyx_1,(q) = C
for any n > 0. In this example, the quotient explained in Proposition [7.4] kills all partitions in the Bratteli
diagram of the Hecke algebras, except the ones of the form (1,...,1) (a single column of n boxes) for n > 0.
So there remains only one vertex in each level, and the resulting quotient is indeed the Bratteli diagram of
the constant chain of algebras C. Then Proposition asserts that this quotient is generated by the single
partition [ | .

In algebraic terms, this amounts to saying that, for any n > 2, the quotient of the Hecke algebra H,(q)
by the relation oy + ¢~ = 0 is isomorphic to C. This is quite straightforward to check directly.

Example of k = (2,2,...,). If k = 2, Proposition item 1, explains that the Hecke algebra H,(q) is
isomorphic to a quotient of Hy,(¢). In the Bratteli diagram, this is seen by keeping at each level n the
partitions of 2n with exactly n lines (see for example Appendix [B.2). Here Corollary asserts that in fact

the quotient is generated by two partitions: [ [ [ [ ] (of level 2) and (of level 3).

Algebraically, it means that the Hecke algebra H,(q) is isomorphic to a quotient of Hy ,,(¢) by one relation
coming from level 2 (that is, in Hy2(q)) and one relation coming from level 3 (that is, in Hy 3(q)).

8 Representation theory and Bratteli diagrams for ﬁl](\’ n

In this section we keep k = (ki, k2, ...) € ZZ, as before and we fix N > 1. Recall from Section [5| that, for

n > 0, the centraliser of the action of U,(glx) on the representation

N N
Ly ® - ® Ly,

was denoted Fi]z{n(q) (where Lé\,g) is the k-th symmetric power representation of U,(gln)). Morever, this
centraliser was obtained as a homomorphic image (that is, a quotient) of the algebra Hy ,(¢). Recall also that

the corresponding ideal was denoted Iy, , so that we have ﬁgn(q) = Hyn(q)/ LY.

8.1 Chain structure of {Fi\{n(Q)}nZO

In order to speak of Bratteli diagrams, we will first make explicit the inclusion maps making the family of
—=N . .
algebras {Hy ,,(¢) }n>0 into a chain of algebras.

By definition, for any n > 0, the algebra Fivn(q) is an algebra of endomorphisms of the vector space

Léil) Q- ® Lé\,in), so that the map in the following proposition makes sense.

Proposition 8.1. For n > 0, the following map provides an inclusion of algebras:

—N —N
Hy,(q)> 2= 2@ Idn € Hy 11(q) -

(kn+l>

Proof. This is in fact a particular case of the following general situation. Let U be an algebra and let A be a
morphism of algebras U — U®U. For any representations L, M of U, the space L ® M is also a representation
of U for the action given by composing the natural action of U ® U on L ® M with the map A.

Under this assumption on U, we have that the following map

Endy(L)> = = z®1d;, € Endy(L® M),
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is a well-defined injective map, which gives the natural inclusion of algebras Endy (L) — Endy (L ® M). The
injectivity is obvious. Moreove, for z € Endy (L) it is immediate that z ® Idy; commutes with the action of
any element of U ® U, in particular with the action of all elements of the form A(u), for u € U. Thus the
map indeed takes values in the centraliser Endy (L ® M).

We cover the situation of the proposition by taking U = U,(gly) and A the coproduct of U,(gly) that

we used to make tensor products of representations, L = Lé\él) Q- ® Lé\,in) and M = LEY%H). Note that
LeM = <L£\,£1) R - ® L%)) QLY =LY, @@Ly ®LY | by coassociativity of the coproduct A
of Uy(gln). O

Remark 8.2. Keeping U, A as in the proof of the proposition and assume that the morphism A satisfies
the coassociativity property, so that we do not have to indicate parenthesis in n-fold tensor products of repre-
sentations. Then one can check that a more general property is satisfied (defining “parabolic subalgebras” in
centralisers). Namely, if n > 0 and Ly, ..., L, are representations of U, we have the following inclusion of
algebras:

Endy(L1)®@ - @ Endy(Lp) 221 Q@+ Qp =21 Q- Qxy € Endy(L1 ® -+ ® Ly) .

8.2 Bratteli diagram of {Hﬁn(q)}nzo

The next result identifies the ideals If(vn in terms of the representation theory, and explains how to obtain the
Bratteli diagram for the chain of algebras Fivn(q) easily from the Bratteli diagram of the chain of algebras
Hy »(q). So in particular we obtain the representation theory of all the algebras Fﬁ{n and the branching rules

from Hivn(q) to Hﬁn_l(q).

We are using the terminology of the appendix for quotients of semisimple algebras and quotients of Bratteli
diagrams. We recall that Theorem [6.5] gives the representation theory of Hy ,(q) to which the following
statements refer to.

Theorem 8.3.

1. Forn >0, the ideal I{(Vn of Hx n(q) corresponds to the following subset of partitions:

{AeSin [ 1A) >N}

2. The Bratteli diagram of the chain {ﬁfin(q)}nzo is the quotient of the Bratteli diagram of {Hy n(q)}n>0
generated by:

S={J{A€Skn [N >N} .

n>0
3. Assume that the sequence k is in decreasing order. The quotient is generated by:
Smm = {)\ € Sk,N+1 ‘ l(/\) =N+ 1} .

In particular, Spin only contains vertices of level N + 1 and is the minimal generating set for the
quotient.
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Proof. 1. Recall that the Hecke algebra Hy, ...+, (¢) has the following Artin-Wedderburn decomposition:

Hypogn (@)= @ End(Va) .
by 4otk

We proved in Proposition that Hyn(q) = PanHpgy+otk, (@) Pcpn and in Theorem that its Artin—

Wedderburn decomposition is

Hyn(a) = PepnHpy+otk, (@) P = @ End(Wi,) ,
AeShn

where Wy \ = P, (Vy) is non-zero for X € Sy ,,.

Then we have from Proposition that the ideal Ilj(vn corresponds in H, 4.4k, (q) to Pk,n[l]c\lf+m+knpk,n
where [ é\lf 4ok, is the ideal of Hp, 4.4k, (q) appearing in the classical Schur-Weyl duality in Theorem
From this theorem, we have

Nysr, = @ End().
Ak 4+ Ep
I(A)>N
From all this, it follows directly that

I, = P End(Wi)) -
AESkn
I(A)>N
This proves item 1.

2. Let D be the Bratteli diagram of the chain {Hy ,(q)}n>0 described in Theorem

First we note that the set S in item 2 do not generate a larger set of partitions. In other words, (S) = S.
Indeed if A is a partition in D such that there is a path from an element of S to A, then in particular A\ contains
(as a subpartition) an element of S and therefore we have [(A) > N.

So at this point, we have, from item 1, that the quotient of D generated by S contains the correct vertices.
It remains to show that the edges of the quotient of D generated by S indeed express the branching rules for

the chain {ﬁ{j 2(@) }n>0. It amounts to verifying that the following diagram is commutative:

Hyn(q) — Fﬁ{n(q) - End(L@il) ® - LY )

(kn)
L I T
—N
Hyni1(q) — Hk,n+1(q) - End(Lé\,il) Q- Q Léin) ® Lé\linJrl))

where the horizontal maps are the representation maps of the algebras Hy ,,(¢) and Hy »41(q) on the tensor
spaces and the vertical maps are the inclusion of algebras. Identifying via Proposition @ the algebra Hy j,
with respectively Py nHp, 4.4k, (¢) Pk, and similarly for Hy ,,+1(q), we recall that the inclusion map ¢ is given
by

L(Pk,n:EPk,n) = Pk,nl'Pk,n ® Py

n+1 °
Moreover, when acting on L%) R ® Lé\]in) ® Lf\[cnﬂ), the first factor Py ,2 P only acts non-trivially on

the n first vector spaces while Py, acts as the identity on Lf\,inﬂ .
On the other hand, the inclusion map 7 is given in Proposition by z — z®1d Ly The verification
n+1

of the commutativity of the diagram is then immediate.
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3. If the generating property is true, the fact that S,,;, is minimal is obvious since it contains only vertices
of level N + 1. So it remains to show that the set S,,;, indeed generates the correct subset of partitions in D.
For this, we must show that

(Smin) =S, where § = | J{ A€ Sun [ 1) >N }.

n>0

First, we know already that the set S do not generate more partitions than those with [(\) > N. As Spin C S,
this shows the inclusion C.

Let n > 0 and let A € Sk, such that [(\) > N. We prove that A € (Sy,i,) by induction on n. If n < N
there is no partition A satisfying the assumptions. For the induction basis, if n = N + 1 then the partitions
A satisfying the assumptions are exactly the elements of Syin.

Assume that n > N + 1. We must show that there is u € Resi(\) such that I(u) > N.

First, if [(A\) > N + 1, then for any pu € Resk(A) we have [(1) > N since A\/p must contain at most one
box in each column.

So we can assume that [(A\) = N + 1. Recall here that by assumption we have kffld = kj,,. Note that the
inequalities in expressing that A > kj,, cannot be all equalities since, from I/(\) = N + 1 < n we have
M+ o+ AN ==k +-+ky >k +--+Ekny1. Sothereis j € {1,..., N + 1} such that:

M4+ N = k4t k,
)\j > kj
)\j + )\j+1 > k‘j + k’jJrl )

N+ Aver > ki kg

In words, 7 is the line from which all the inequalities up to the last line N + 1 are strict. Moreover, let 5/ > j
be such that \j = --- = Ay and A\ < Aj.

We apply Lemma to find a semistandard tableau in SSTab(\, k|n) and in turn, by removing the boxes
with n and keeping the resulting shape, we have a partition o € Resk(A). Note that I(u) € {N, N 4+ 1}. From
the explicit procedure of Lemmawe see that since \j = --- = A\jy > k; > ky, we have that the j’ first lines
of p are the same as the ones of .

Now, remove one box from g at the end of line 5/ and add it in line N + 1. It is easy to see that this
results in a partition fi. Obviously, [(i) = N 4+ 1. We claim that i € Resg ().

To verify the claim, first note that & C A since the only box we add to u was the first box to be removed
A in the procedure of Lemma We have also immediately that A/ contains at most one box in each
column. So it remains only to check that i > kj,,_;. Recall from the proof of Lemma that u > kj,,_; and
furthermore that

At € F A A o AaF Aagr — )

depending on the value of a. In particular we see that the inequalities are strict if @ > j’. As the partial sums
fi1 + ... fiq are different from the ones for p only for a > 7' and they differ only by one, we conclude that
fi > kpp,—1, which ends the proof that A € (Smin)- O

Remark 8.4. As recalled before, the structure of Hy, does not depend on the ordering of (ki,...,k,) but
the whole chain depends on the ordering of k. This can be seen in the preceding Theorem, item 3, which
would be false without the assumption k; > kiy1 for all i. This can be seen in the following example. Take

|

k =(1,1,1,3) and N = 2. Then in the Bratteli diagram, there is partition of length 3 at level 4:
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which is not connected to the single partition of length 3 at level 3: (indeed, one would have to add two

bozes in the same column). So in this example the quotient of the Bratteli diagram is not generated by the
partition of length 8 at level 3.

8.3 Comparison of the chain of quotients with the chain {Hy ,(q)}.>0

The centralisers form a chain of algebras
=N =N =N =N =N
C=Hyo(q) CHy1(q) CHyo(q) C.oooo- CHy,(q) CHypyi(@) Caeeee ) (36)
which are obtained as quotients of the fused Hecke algebras:

C = Hyxo(q) C Hy1(q) C Hx2(q) C...--- C Hxpn(q) C Hipya(g) Connee .

From Theorem [8.3] we obtain the following corollary to decide when the centraliser coincides with the
fused Hecke algebras. We note that the statement is the same as in the classical Schur-Weyl duality
relating the centraliser to the Hecke algebra.

Corollary 8.5. The centraliser F{(Vn(q) coincides with the algebra Hy ,,(q) if and only if n < N.

Proof. Note that for every k and n, there is a partition A € Sk, with [(A) = n. One can take A\ = k“’;d (it
is of length n since the part of (ki,...,k,) are non-zero). Then item 1 of Theorem implies immediately
that the ideal Ilj(vn is non-zero if and only if N > n, and thus the corollary follows. O

8.4 Decomposition of tensor products Léil) ®-® Léin)

We can combine what we have obtained so far to deduce immediately the decomposition of the representation

Léil) ® - ® Lé\én) of Uy(gln). We use Theorem Theorem |6.5item 2 and Theorem [8.3|item 1. We obtain

the analogue of the full statement of the Schur—Weyl duality (see Theorem [4.4]):
As a Uy(gly) ® Hy n(q)-module, the space Lé\,’ﬂ) ® - ® L%n) decomposes as follows:

N N N
AGSkn
1NN

where we recall that the set Sk, = {A\Fki+---+k, | A > kf;d} parametrises the irreducible representations
of Hy ,,(q) and Wy  is the corresponding irreducible representation constructed in Theorem The partition
kfﬁd is obtained from kj, = (k1,...,ky) by ordering the parts in decreasing order.

In particular, adding the information on the dimension of Wy ), we obtain that as a Uy(gly)-module:

Lé\]il) Q- ®Lé\];n) _ @ (L]AV)@K)\,kIn :

)\GSkyn
1NN

where K i, is the Kostka number counting the number of semistandard Young tableaux of shape A and of
weight (k1,...,kn).
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9 Algebraic description of the centralisers ﬁfjn(q)

The centraliser ﬁfjn(q) is described as the quotient Fivn(q) = Hyxn(q)/ Ili\fn and the corresponding ideal I}
was described in the preceding section in terms of the representation theory of Hy ,(g). In this section, we
aim at an algebraic description of I}J{V n

In this section, we assume that the sequence k = (kj, ka,...) does not contain 0, and that it is already in
decreasing order.

Generalisation of the g-antisymmetriser. We define an element Hy,(q) by a simple diagrammatic
procedure. For convenience, we give first the definition in the situation ¢> = 1 and then treat the general case
(examples are given below). We will give an equivalent more algebraic definition just after the examples.
Let w € &,. We define a fused permutation denoted |w|x by the following procedure. Start from the
permutation diagram of w and add vertical edges (if necessary) at each ellipse to form the diagram of a

fused permutation corresponding to k. More precisely, for each a € {1,...,n}, we add k, — 1 vertical edges
connecting the a-th top ellipse to the a-th bottom ellipse. Then we set:
ASia(1) = Y ()@l € Hin(1) . (38)
wGGn

Similarly, we define an element |oy,|x € Hkn(q) as follows. We start with the braid diagram of oy, as
defined in Section We promote all dots into ellipses, and for each a € {1,...,n}, we add k, — 1 vertical
edges connecting the a-th top ellipse to the a-th bottom ellipse. The rule is a follows: At each ellipse, the
new strands are attached to the right of the one strand already present; the added strands do not cross each
other; the new strands are “above” the original ones forming o,, (above in the natural sense, as shown in the
examples below). Then we set:

ASin(@) = Y (a7 owl € Hignlq) - (39)

weSy,

Example 9.1. Let n =3 and k = (2,2,2,...). Here is depicted the procedure to obtain ASy (1

TR TTR SR AR
11K TR BB

Here is depicted the procedure to obtain to obtain ASy ,(q

A R
11N F KSR FDH
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Note that the added vertical strands are indeed above all others. Initially, we attached them at each ellipse to
the right of the existing strands, but in the above picture, we used some idempotent relations to suppress some
crossings near the ellipses. This accounts for the modifications in the powers of q. Note that, at the end, the
coefficient is always equal to (_1)e(w) times g~ to the power the sum of the crossings in the diagram (counted
with signs).

Algebraic interpretation. Consider the following element of the usual Hecke algebra Hy, 4.4, (q):

F:Ukl---02'0k1+k2---03' ...... COki+-A4kp_1---On » (40)

where the dots between o, ...y, , and o, indicate the product of the generators in decreasing order of their
indices (note that I' = 1 only if k = (1,1,1,...)). Here is the diagrammatic representation of I (in the case
n=3):

k3

|

Let w € &,,. Under the isomorphism between Hy , and PxnHp, .4k, (q) Pk n, we claim that the element
|ow|x corresponds to
Penlowl ™ Py

where oy, is seen as an element of Hy, ...k, (¢) by the natural inclusion (it involves only the first n strands).

To check this claim, we consider braid diagrams in Hy, 1.4k, (¢) and we see the lines of k; + - - - + k;, dots
as n packets of ki,...,k, dots respectively (as shown in the above picture). Then, for each a € {1,...,n},
the element oy 4.4, ,...0q does the following: it takes the first strand of the a-th packet and move it in
position a by passing below the strands to its left. So after application of I' the first strands of the n packets
have become the n first strands. On these n first strands, we apply o, and then we move back these n strands
in their original position using I'"'. We see that these n strands always stay below the other ones, and the
other strands never cross each other and end up being vertical. So, gluing the packets of dots into ellipses,
we obtain exactly the element |oy,|x in its diagrammatical definition.

9.1 Conjectural description of the ideal [{Xn.

Now we are ready to present a conjectural description of the ideal IIJ(Vn resulting in an algebraic description

of the centralisers Fivn(q) Recall that if n < N, there is nothing to do since Hljj »(q) simply coincides with
Hk,n(Q)'

We make the following two conjectures. They generalise for example the description of the Temperley—Lieb
algebra as a quotient of the Hecke algebra, see Example Below we see the element ASk y41(¢) as an
element of Hy ,(q) for any n > N + 1, by the natural inclusion of algebras (namely, in Hy ,(g), the element
ASy n+1(g) involves only the strands attached to the N + 1 first ellipses).
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Conjecture 9.2. Let n > N. The algebra ﬁf{vn(q) is isomorphic to the quotient of the algebra Hy n(q) over
the relation:

ASy n1+1(q) =0 .

Conjecture 9.3. The element ASy n+1(q) is central in Hy n11(q).

From our description of the representations of the chain of algebras Fﬁn(q) in Theorem (in particular,
item 3), we have that in order to prove Conjecture we need only to prove that ASk n41(q) generates the
ideal IIJ{\,TN+1 of Hy n+1(¢). In other words, we need only consider the case n = N + 1.

As a first step towards Conjecture we check that the element ASy n11(q) belongs to the correct ideal.

Proposition 9.4. Ifn > N, the element ASx n11(q) belongs to the ideal If(\’[n of Hyn(q).

Proof. From the algebraic description of the elements |o,|x given above, we have that under the isomorphism
between Hy , and Py, Hy, 4...tk, (¢)Pxn the element ASk n41(q) corresponds to

Pk,nr( 3 (—qfl)f(waw) I 'P.,

wEG N1

where I" was given above, see (40f). The element in the middle is the g-antisymmetriser on N + 1 strands so,
as recalled in Section |4} it belongs to the kernel of the representation of Hy, ...+, (¢) on the tensor power of

Lé\lf). Thus, the element ASy n+1(q) belongs to the kernel of the representation of Hy ,(¢) on Lé\él) - - -®Léin)
given in Theorem (see Formula (24))). O

After this result, for Conjecture it remains only to show that ASy ny1(g) generates in Hy y411(q) an
ideal of the correct dimension. In fact, combining Theorem item 3, with Proposition we must show
that the ideal generated by ASk n4+1(g) is at least of dimension dim(Hk,LNH(q)).

At this point, by a deformation argument (see the proof of the special cases below), Conjecture can be
reduced at least for generic ¢ to the situation ¢ = 1. The situation ¢> = 1 can be attacked by a combinatorial
approach.

Both Conjectures are supported by their verifications in some special cases below. Also, explicit (computer-
aided) calculations have allowed to check their validity for all k and N such that ky + -+ kny1 < 7.

9.2 Verification in some cases

In the statements below, by generic ¢ we mean that the statement is valid in the situation where ¢ is an
indeterminate (see Remark [3.3). One can also understand that it is valid for all but a finite number of values
of q.

Proposition 9.5.
1. If k= (k,1,1,1,...) with k arbitrary, then Conjectures are true for any N.
2. If N =2, then for any k C’onjecture is true for ¢> = 1 and for q generic.
3. If k consists only of 1’s and 2’s, then Conjecture is true for ¢> =1 and for q generic for any N.

4. If k consists only of 1’s and 2’s then C’onjecture is true for ¢*> =1 for any N.
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Proof. 1. It k = (k,1,1,1,...) then the ideal Il](\,[N—l-l is of dimension 1 (the dimension of Hy_;,(q) for any
n > 0; one can also see easily that there is a single Young semistandard tableau of size k + N filled with
1,...,1(k times),2,..., N + 1: the one of shape a hook with a first line of k£ boxes). Thus there is nothing to
check for the generation of the ideal by ASk y1, and neither for the centrality of ASk n41 since a generator
of a one-dimensional ideal in a semisimple algebra must be a (minimal) central idempotent.

2. In the situation of a generic g, the element ASk n1(q) specialises for ¢> = 1 to the element ASk y41(1).
Moreover, in an irreducible representation of Hy ,(q) we can specialise ¢*> = 1 to obtain the corresponding
representation of Hy ,(1). More precisely, recall that the irreducible representations of Hy (¢q) are obtained
as Py, (V) for some irreducible representations V' of the Hecke algebra Hy, 4.1k, (¢). Using the explicit
realisation (the seminormal form) of representations of the Hecke algebras given in Section |4, we see that we
can specialise ¢ = 1.

So now assume that in some irreducible representation of Hy ,(q) the element ASy ny4+1(q) is 0. By
specialisation, this implies that the element ASy ny1(1) is 0 in the corresponding representation of ASy yy1(1).
Therefore, identifying Hy ,(¢) and Hy (1) through their Artin-Wedderburn decomposition, it means that the
ideal of Hy ,,(q) generated by ASk n1(g) contains the ideal of Hy ,,(1) generated by ASx n11(1). In particular,
for generic g, we have:

dim(Hk,n(Q)ASk,N+1(Q)Hk,n(Q)> > dim(Hk,n(l)ASk,N+1(1)Hk,n(1)> :

Moreover, we explained after Proposition [0.4] that in order to verify Conjecture[0.2} it remains to show that the
ideal generated by ASk n41(q) in Hy n+1(g) is at least of dimension dim(Hk,l’NH(q)) = dim(Hk,LNH(l)).
So combining all this, we conclude that in order to prove item 2, we need now to check that

dim(HKNH(1)ASk7N+1(1)Hk7N+1(1)) > dim(Hy_1.541(1)) - (41)

To prove this, we first introduce some combinatorial definitions and notations. Let = be a fused permuation
in Dk_1,, (a basis element of Hx_1,(1)). We define |z|x to be the fused permutation obtained by adding
a (vertical) edge connecting the a-th top ellipse to the a-th bottom ellipse for each a = 1,...,n. So |x|k
is a fused permutation in D, (a basis element of Hx_1,(1)). Note that the notation is coherent since if
k =(2,2,2,...) then = is a usual permutation and this definition coincides with the former definition of |z|.

Recall that here N = 2. To prove (41]), we are going to prove that the following set is linearly independent
in Hy3(1):

{ASk73(1) . ]ac]k , T € Dkfl’g} . (42)
To do so, we use a total order on the set of fused permutations. Recall from Section [2]that a fused permutation
is associated (one to one) to a sequence of multisets (I1,...,I,) of elements of {1,...,n}. For two multisets
I={i,...,ix} and J = {j1,...,Jx}, we write the elements in ascending order: i; < --- <1, and j; < --- < g

and we consider the lexicographic order, that is:
I <J if i3 <jyor (i =7 and iz < j2) ...
Then for two sequences of multisets, we set:
(I,..., L) < (Jiy...,Jn) if [ <Jyor (I =J and Ir < J3) ...

Thus, we have a total order on D,j ,. For usual permutation (when k = (1,1,1,...)), we denote wy the
largest element for this order: wq is simply the usual longest element of &,, associated to the sequence

({n},{n—1},...,{1}).

43



Finally, an element of X € Hy ,,(1) being a linear combination of elements of Dy ,,, we define the dominant
element of X:

Dom(X) = largest element of Dy ,, appearing in X with non-zero coefficient.

Note that finding the dominant element in a product x - " of two fused permutation is easy diagrammatically.
We follow the edge starting from the top first ellipse and when arriving at a middle ellipse, we always choose
the edges going to the right most direction. Then we repeat the procedure starting for the edges starting from
the top second ellipse, and so on.

The following lemma implies immediately that the set of elements Dom(X), when X runs over the set
, are different and thereby we obtain the linear independence of the set and conclude the verification
of item 2.

Lemma 9.6. Let z,2' € Dy_1 3.
(i) We have Dom(|wlk - |z]x) < Dom(|wolk - |z|k) for every w € &s3.
(i) We have Dom (|wox - |z[x) < Dom(|wolk - |2/[x) if < 2.

Proof of the lemma. All the proof is better read while drawing diagram. Let x € Dyx_1 3 and associate to it
the following sequence of multisets of elements of {1, 2, 3}:

o~ ({iQ?--'ailﬂ}?{j?a'“7jk2}7{l2a~-'alk3})'

It is straightforward diagrammatically to see that the sequences of multisets associated to the following
elements are:

|$|k ~r (E17E27E3) = ({1)i27 ce 7/ik1}7 {27j2) cee 7jk2}7{37l27 .. ‘7lk3})
Dom(Jwolk - [#]k) ~ (E7, B, EF) = ({3,i2,- ik, 1 {252, - o ko o AL Iy ooy Ly )

Item (ii) follows then immediately. For item (i), let w € &3 and denote (E], EY, E%) the sequence of multisets
associated to Dom (Jw|k - |z[k). Assume that (EY, E5, E}) > (ET, E5*, E5"). We will obtain a contradiction.

e If w(1) =1 then we have E] = E; < E{" which is a contradiction.

e If w(1) = 2 then Ejf is formed by is,...,i, together with a maximal element of {2, j2,...,jk, }. As
E{ > E7" this element must be 3, so that 3 € {j2,...,jk, }. Say jk, = 3. So we have E| = E". Next, Ej is
forced to contain {2, jo, ..., jk,—1} and its additional element must be a 3 since Ef > EJ* and jj, = 3. So we
have E) = EJ" and we are left, by collecting the remaining elements, with Ef = {1,la,...,l,} = E§". So we
have (E{, E), E5) = (ET", Ef", EY") which is a contradiction.

o If w(l) = 3. If w = wy then (E}, E}, E}) = (EV", EY*, E5*) which is a contradiction. So we must have
w(2) =1 and w(3) = 2. We have E] = {ia, ..., ik, ,3} = EJ* where the last 3 comes from F3. As w(2) = 1 then
E!, must contain a 1 (from E}), and therefore, from Ef > EZ" we have that 1 € {ja, ..., jk, }, say jo = 1. Then
we have B = {1,2,73,...,jk,} = EJ'. By collecting the remaining elements, we have Ef = {ja,la,...l5,}
which is equal to EY* since jo = 1. So we again reach the contradiction (Ef, EY, E4) = (ET*, EJ*, EY"). O

3. Let (ki,...,kny1) = (2,...,2,1,...,1) consisting of L 2’s for some L € {1,...,N + 1} (recall that
we assumed in this section that k is already in decreasing order). So here Hyx_; y41(1) = C&[, since a fused
pemutation of type (1,...,1,0,...,0) is a permutation in &;. With the same reasoning as in the beginning
of the proof of 2, we see that we are left to proving

dim(Hk,NH(1)Ask,N+1(1)Hk,N+1(1)) > dim(Hy_1.541(1)) = L! . (43)
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For w € & we take its permutation diagram and we double all the edges. So we have 2 lines of L ellipses
which are joined by double edges acccording to the permutation w. Then we complete the lines of ellipses with
N +1—L ellipses and we add a vertical edge for these last ellipses. So at the end, we have a fused permutation

in Dy n41 that we denote wl(f). We claim that the following set is linearly independent in Hy n1(1):

2
{ASk,N+1(1) . ’U)li) , Wwe 6L} . (44)
For m € Sn41 and w € & it is easy to see that |7 - wl((z) is equal to a single element of Dy n41 (no sum is
involved) and is in fact just |w|x where the first L ellipses of the bottom line have been permuted by w. Thus

we see readily that in the sum ASy yy1(1) 'wl(f) there is a single element with only double edges on the first L

ellipses, this is wl(f) (the term obtained from |Id|y in ASk n41(1)). Thus, wl(f) appears in ASi y41(1) 'wl(f) and

does not appear in ASy n1(1) -w{{@) if w’ # w. This shows that the set is indeed lienarly independent
in Hy n+1(1), concluding the proof of the inequality in .

4. We keep the notation of the preceding item. Let I’ be the ideal such that the algebra Hy n1(1) is the
direct sum of I’ and I{y_ ;. We have scen that ASy ny11(1) belongs to I v, so we have z’ASy y41(1) =
ASk n41(1)z" = 0 for all 2’ € I'. So to show that ASy yy1(1) is central in Hy n11(1), we must show that

ASk n+1(1) commutes with all elements in I}, 41, which we have seen to be be spanned by elements in .

So finally, we must prove that ASk y41(1) commutes with all elements w}({2) with w € &p.

We need one final piece of notations. For w € & and m € &n41, we draw the edges of w and of 7 on
the same diagram, and we thus obtain a fused permutation of Dy n41 that we denote m © w. For example,
we have ||y = m ® Idp,where Id,,n denotes the identity in &,,. We have also wl(f) = w ® w (here and below
we see w both as an element of &, and of Gy by the standard inclusion). With these notations, it is easy
to check diagrammatically that we have:

(2)
k

Tk - wy,’ =7mw®w and wl(f)-]ﬂk:wﬂ@w.

So we get finally

ASy n41(1) -wl(f) = Z (~D g o w = Z (—1)4(“’7””71)11177 Ow= wl(f) ~ASk nv+1(1)

WEGN+1 W€6N+1

£()

using that the sign (—1)“"™ is multiplicative. The proof is concluded. O

A Artin—Wedderburn decompositions and Bratteli diagrams

A.1 Semisimple algebras and algebras of the form PAP

Artin—Wedderburn decomposition of a semisimple algebra. Let A be a finite-dimensional semisim-
ple algebra over C. Let S be an indexing set for a complete set of pairwise non-isomorphic irreducible
representations of A. Then Artin—-Wedderburn theorem asserts that we have the following isomorphism of
algebras:
A= HEnd(Vy) | (45)
AES

where V) is a realisation of the irreducible representation corresponding to A. The isomorphism is given
naturally by sending a € A to the endomorphism in End(V)) corresponding to the action of a on V.
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Algebras of the form PAP and their representations. Let A be a C-algebra with an idempotent P.
Then the subset PAP = {PxzP | x € A} is an algebra with unit P. We recall very basic and classical facts
on the algebra PAP which can be found for example in [6, §6.2].

Let p : A+ End(V) be a representation of A and W := p(P)(V') the image of the operator p(P). The
subspace W is naturally a representation of the algebra PAP. Indeed W is obviously invariant under the
action of any element the form p(PzP), and thus the action of PAP on W is given simply by restriction:

PAP — End(W)

(46)
PxP — p(PzP)

lw

From now on, we will always remove the map p from the notation, and keep the same notation for an element
of an algebra and its action in a given representation.

Irreducible representations and semisimplicity. Let {V)\}\cs be a complete set of pairwise non-
isomorphic irreducible representations of A. Then the set

{P(V)) | A€ S and P(Vy) # 0}

is a complete set of pairwise non-isomorphic irreducible representations of the algebra PAP.
Moreover, if the algebra A is a finite-dimensional semisimple algebra then the algebra PAP is also a
finite-dimensional semisimple algebra and its Artin—-Wedderburn decomposition is

PAP= (P End(P(W3)) .
Aes
P(Vy)#0
A.2 Minimal central idempotents and ideals

Let A be a finite-dimensional semisimple algebra over C and S an indexing set for a complete set of pairwise
non-isomorphic irreducible representations of A.

Minimal central idempotents. Let A € S. We define E) as the element of A corresponding under
the Artin-Wedderburn decomposition of A to Idy, in the component corresponding to A and 0 in all other
components. The set {E)}\es is a complete set of minimal central orthogonal idempotents of A, meaning
that they are central, they sum to 1, they satisfy E\Ey = 6y yE) and they cannot be written as the sum of
two non-zero central idempotents.

In any representation W of A, the action of E) projects onto the isotopic component of W corresponding
to A. More precisely, if the decomposition of W into irreducible is

WPy,
Nes

then the action of E) is the projection onto V/\EBmA corresponding to this decomposition, that is:

Dm s
E)\lv@mA = IdV;BmA and E)\( @ V)\, A > =0.
A NeS\{\}
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Ideals and quotients. From the decomposition , one sees immediately that ideals (and equivalently
quotients) of A are in correspondence with subsets S’ C S as follows:

Igr := @ End(V)\) and A/IS/ = @ End(V)\) .
AES! AES\S!

One set of generators of the ideal I's: consists of the elements E, with X\ € S’.
Since we use it in Section [9] we recall that the ideal generated by an element z € A is Is» where S’ is the
subset of irreducible representations such that x acts as a non-zero element.

A.3 Bratteli diagram of a chain of algebras

Let {Ay}n>0 be a family of algebras and assume that, for any n > 0, there is a given injective map from A,
to Ap+1. We call these maps “inclusion maps” and we say that {Ay},>0, sometimes denoted as follows

Ay C A CAyC...... CA, CAp1 C...

forms a chain of algebras. The inclusion maps allow to consider elements of A,, as elements of A, 1, and more
generally of A, for £ > 1, and in turn to consider A,, as a subalgebra of A,;, and more generally of A, 4«
for k > 1.

From the inclusion of A,, into A,11, any representation V' of A, 1 can be seen as a representation of A,
by restriction; we denote this representation of A,, by Resy, (V).

Bratteli diagram of a chain of semisimple algebras. Let {A,},>0 be a chain of algebras and we assume
here that the algebras A,, are finite-dimensional semisimple algebras, since this will always be our setting in
this paper.

For an irreducible representation V; of A, 41, the restriction to A, decomposes by semisimplicity into a
direct sum of irreducible representations, namely,

Resy,, (Vi) = @ijj ,

where W; are non-isomorphic irreducible representations of A, and the numbers m; are called the multiplici-
ties. The knowledge of such decomposition for any irreducible representation of A, 1 for any n > 0 are called
the branching rules of the chain of algebras. Then the Bratteli diagram of the chain of algebras {4, },>0 is
the following graph:

e The set of vertices is partitioned into subsets indexed by n > 0. We call n the level. The vertices of
level n are indexed by the (isomorphism classes of) irreducible representations of the algebras A,,.

e The edges express the branching rules of the chain of algebras and they only connect vertices of adjacent
levels. Let V be an irreducible representation of A, and V' an irreducible representation of A, 1.
Then there are m edges connecting the vertices indexed by V and V' if and only if V appears in the
decomposition of Res 4, (V') with multiplicity m.

Graphically, we place all the vertices of a given level on an horizontal line, and we put the vertices of level
n + 1 below the vertices of level n. We often think of the edges as going down from vertices of level n to
vertices of level n 4 1.

Let v,v" be two vertices of the Bratteli diagram. A path from v to v’ is a sequence of vertices of the
form v,vy,...,v5_1,v, for some k > 1, such that at each step of the sequence, the level increases by 1. In
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other words, a path from v to v, if it exists, is obtained by starting from v and following edges only in the
downward direction to reach v’.

The partial order < on the set of vertices of a Bratteli diagram is defined by setting that v < v’ if and
only if v = v/ or there is a path from v to v'.

Dimensions. We often add the following numerical information to the Bratteli diagram of the chain
{A; }n>0: next to each vertex, we indicate the dimension of the corresponding irreducible representation.
Obviously, for n > 1 and any vertex V of level n, this dimension can be obtained from the preceding level.
Indeed it is the sum of the dimensions of the irreducible representations of level n— 1 connected to V' (counted
with multiplicity indicated by the number of edges).
Moreover, from the Artin—Wedderburn decomposition of the algebras A,, we have that the dimension of
the algebra A, is the sum of the squares of the dimensions appearing at level n.

Example A.1. A standard example of a Bratteli diagram is the Young diagram, corresponding to the poset
of partitions partially ordered by inclusion. It is the Bratteli diagram associated to the chain {C&,,}n>0 of the
complex group algebras of the symmetric groups. The first levels are given in Appendiz|[B.1]

A.4 Quotients of Bratteli diagrams and chains of ideals

We keep our setting of a chain {4, },>0 of finite-dimensional semisimple algebras. Let D be the Bratteli
diagram of the chain {A,},>0 and let S be a subset of vertices of D.

Quotients of Bratteli diagrams. We denote by (S) the set of vertices v' such that there exists v € S
with v <o’ (i.e. all vertices in S and all vertices connected by a path to them).

Definition A.2. We define Dg to be the diagram obtained from D by removing all vertices v' € (S) and
keeping only the edges of D which connect the remaining vertices.
We call the resulting diagram Dg the quotient of D generated by S.

Obviously, the quotient Dg depends only on the set of vertices (S) generated by S. Hence, several choices
of S can lead to the same quotient. There is a unique minimal choice S;,;,, which is the set of minimal
elements (for the partial order <) in (S). We call S,;,, the minimal generating set for the quotient Dg.

Example A.3. A standard example of a quotient of a Bratteli diagram is the following. Take the Bratteli
diagram of the chain {C&,},>0 (see Subsection below) and make the quotient generated by the vertex

labelled by the partition . It is easy to see that the remaining vertices are the partitions with no more than

two lines. The quotient is equal to the Bratteli diagram of the chain of Temperley—Lieb algebras.

Representation-theoretic meaning and chains of ideals. We will explain the name Bratteli diagram
for Dg, and its representation-theoretic meaning.

For every n > 0, let \S,, be the set of vertices of level n inside (S) (that is, the vertices of level n which
have been removed from D). To S, corresponds an ideal I,, of A,,. We have that {I,,},>¢ forms a chain of
ideals in {An}nzoi

IhchclhbCc...... cly,Clys1C... (47)
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which means that I,,, seen as a subset of A,;1 using the inclusion map, is contained in I, for any n > 0.
This chain property follows from the fact that, by definition of (S), every edge starting from S,, ends in Sy4;
(see Remark below).

Now the quotient Dg has the following meaning:

e The vertices of level n are in bijection with the irreducible representations of A, /I,.

e The edges give the branching rules for the following restriction procedure: a representation V' of
Ap+1/In41 can be seen as a representation of A, 1 where I, ;1 acts as 0. Thus, from the inclusion A,, C Ap41,
we can form the representation Resg, (V') of A,,. Now by the inclusion I,, C I,,1+1, we have that I,, obviously
acts as 0, and therefore Resa, (V') can be seen as a representation of A, /I,.

Remark A.4. e The family of quotients {Ay /I }n>0 does not necessarily form a chain of algebras, even if
the ideals I, form a chain of ideals. In fact, one can check that the quotients A, /I, form a chain of algebras
for the natural inclusion maps © + I, = x + I,+1 if and only if we have, for anyn >0, I, = I,4+1 N A, as
subsets of Apy1. This is stronger than the chain property for the ideals I,,.

e The property I, = 1,11 N A, ensuring that the quotients form a chain of algebras can be seen easily in
the Bratteli diagram. We have that I, = I,11 N A, if and only if:

v E Sy W of leveln+1, v <2 implies v’ € S,41.

We note that the weaker property I, C I,+1 1s equivalent to the single implication =.

Algebraic description of the quotients A, /I,. To make explicit the situation we need in this paper,
assume that the set Sy, contains vertices of a single level, say N + 1 (the general case can be obtained by
partitioning the set S, according to the level, and applying this procedure to each part).

Denote by X a generator of the ideal In41 of Ay41 (for example the sum of the central idempotents
corresponding to Spin). Then we have that for any n > N + 1, the ideal I, of A, is generated by the
element X' which is the element X seen as an element of A, by the inclusion (indeed, this element X
is non-zero precisely in the correct set of irreducible representations of A,, by definition of S,,;, and of a
Bratteli diagram).

As a conclusion, we note that for all n > N + 1, the algebra A, /I,, is the quotient of A,, over the relation
XM = 0. We refer to Example for the well-known example of Temperley—Lieb algebras.

B Examples

B.1 The chain of Hecke algebras H,(q)

The Hecke algebra H,,(q) is the particular case of the algebra Hy ,(q) where k = (1,1,...) is the infinite
sequence of 1’s. The first levels of the Bratteli diagram for the chain of Hecke algebras {H,(q) }n>0 is shown
below.

The shaded areas indicate the connections between the Hecke algebras H,,(¢q) and the centralisers of the
representations (corresponding to k = (1,1,1,...)) of Uy(gin). Namely, by deleting the vertices included in
the shaded area labelled gl together with the edges touching them, we obtain the Bratteli diagram of the
centralisers of Uy(gly). For example, if N = 2, the quotiented Bratteli diagram is the Bratteli diagram of the
Temperley—Lieb algebras.
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B.2 The chain of algebras Hy,(q) when k = (2,2,2,...)

Whenk = (2,2,2,...)is the infinite sequence of 2s, the Bratteli diagram for the chain of algebras { Hx ,(¢) }n>0
begins as:

0
|

n=1 1 [
|

>

=2 10T T (111
n=3 1L TTTT] 2U|||| 3U—i|| 1 | | i 1@
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Note that there is no arrow from pu = to A =

in the same column.

even if u C A since \/p contains two boxes

The shaded area indicates the connections between the fused Hecke algebras Hy ,(¢) and the centraliser
of the representations (corresponding to k = (2,2,2,...)) of Uy(gln), as in the preceding example.

B.3 The chain of algebras Hy,(q) when k = (3,1,1,1,...)

When k = (3,1,1,1...), the Bratteli diagram for the chain of algebras {Hx ,(q)}n>0 begins as (the shaded

areas have a similar meaning as in the preceding examples):

@
n=1 1 1171
n=2 1|||||1U|
//\ 4l(2)
n=3 1T T TT1 [TTT1
it
/) e
n=4 1|||||||3U||||3U_{||1Hj:|3 [ 1 JI , [ 1
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