
HAL Id: hal-02885664
https://hal.science/hal-02885664

Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

[Rp] Reproducing and replicating the OCamlP3l
experiment

Roberto Di Cosmo, Marco Danelutto

To cite this version:
Roberto Di Cosmo, Marco Danelutto. [Rp] Reproducing and replicating the OCamlP3l experiment.
The ReScience journal, 2020, �10.5281/zenodo.3763416�. �hal-02885664�

https://hal.science/hal-02885664
https://hal.archives-ouvertes.fr

R E S C I E N C E C
Reproduction / parallel programming

[Rp] Reproducing and replicating the OCamlP3l
experiment

Di Cosmo, Roberto1,2, ID and Danelutto, Marco3, ID
1Inria, Paris, France – 2Université de Paris, Paris, France – 3University of Pisa, Pisa, Italy

Edited by
Konrad Hinsen ID

Reviewed by
Frédéric Gava ID

Received
24 March 2020

Published
23 April 2020

DOI
10.5281/zenodo.3763416

This article provides a full report on the effort to reproduce the work described in the
article “Parallel Functional Programmingwith Skeletons: the OCamlP3L experiment” [1], writ-
ten in 1998. It presented OCamlP3l [2], a parallel programming system written in the
OCaml programming language [3].

The system described in [1] was a breakthrough in many respects: it showed that it was
possible to implement parallel skeletons [4] a combinators in a functional programming
language; it showed how this parallel programming style allowed to write a single source
code that produced executables targeted for sequential execution, hence enabling usual
debugging techniques, and executables for parallel execution; and it led to the introduc-
tion in OCaml of the ability to marshal functional closures, used later on by a wealth of
different applications.

The article consists of twomainparts, the systemdescription, and the systemevaluation,
so replicating the results involves the following:

1. recover the source code of the OCamlP3l system

2. make it compile and run on a modern OCaml 4.x system

3. recover the tests used in the system evaluation

4. verifywe can get speedup in performance similar to the one reported in the article.

When starting this replication effort, we had the following expectations:

1. recover the source code should be easy: just look in the paper directory on our
machines

2. compile and run might be difficult: the code was designed 23 years ago for OCaml
1.07

3. recover tests should be easy: just look in the paper directory on our machines

4. verify speedup might be challenging: many parameters may have changed in mi-
croprocessors and network.

The reality turned out to be surprisingly different. In the following we sum up the steps
that we performed to address each of these four challenges, and the final outcome.

Copyright © 2020 R. Di Cosmo and M. Danelutto, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Di Cosmo, Roberto (roberto@dicosmo.org)
The authors have declared that no competing interests exist.
Code is available at https://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/.
– SWH swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/.
Open peer review is available at https://github.com/ReScience/submissions/issues/22.

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 1

https://orcid.org/0000-0002-7493-5349
https://orcid.org/0000-0002-7433-376X
https://orcid.org/0000-0003-0330-9428
https://orcid.org/0000-0001-5452-3809
mailto:roberto@dicosmo.org
https://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/
https://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git//
https://github.com/ReScience/submissions/issues/22
https://rescience.github.io/

[Rp] Reproducing and replicating the OCamlP3l experiment

1 Recovering the source code

Looking into the original paper directory turned out to be of little help, as there was no
trace of the source code or any useful information. So we turned to the paper itself, and
found three links to web pages:

• www.di.unipi.it/~marcod/ocamlp3l/ocamlp3l.ml, that today returns 404; looking at the
archived copies on the archive.org allowed to recover some documentation, but not
the source code;

• www.di.unipi.it/~susanna/p3l.ml, that is still live, but provides no useful link to the
source code

• pauillac.inria.fr/ocaml, that is also live, but the only hope to find the source code
was the link to the anonymous CVS server which points today to the OCaml GitHub
organization, where we found no trace of this 23 years old code.

Searching the web The links from the original paper being now useless, we resorted
to searching the web, and found http://ocamlp3l.inria.fr/. We followed the link http://
ocamlp3l.inria.fr/eng.htm#download to the download page that offered an ftp link, ftp:
//ftp.inria.fr/INRIA/caml- light/bazar-ocaml/ocamlp3l/ocamlp3l-2.03.tgz, now dead, and web
link, http://ocamlp3l.inria.fr/ocamlp3l-2.03.tgz that was still working. Unfortunately, this is
version 2.03 of OCamlP3l, way more evolved, and quite different from the version 0.9
used in the original research article, and there was no trace of the version history, so the
quest was far from over.

Saving version 2.03 Here we decided to make a pause, and properly deposit this ver-
sion 2.03, with extendedmetadata, into Software Heritage [5] via the HAL national open
access archive, the result being now availabe as [6].

Back to searching theweb Moreweb searches brough up a relatedwebpage for a newer
system, http://camlp3l.inria.fr/eng.htm touting a link to a git repository on Gitorious, http:
//gitorious.org/camlp3l/. Unfortunately, following the link leads to nowhere, as Gitorious
has been shutdown in 2015, but luckily Software Heritage has saved the full content of
Gitorious, so we could download a a full copy of the git repository, but unfortunately
its version history only goes back to 2011, with version 1.03 of CamlP3l, not OCamlP3l,
and no trace of earlier versions of the system, so we were seemingly back to square one.

Finding it on Software Heritage This long journey gave us an idea: what about search-
ing directly in Software Heritage? This turned out to be the lucky strike: a full copy
of https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git had been safely archived by Software
Heritage in 2015, and we found in it the whole version history starting from 1997. The
journey ended successfully, we had found the source code!

2 Compiling and running

We did not know exactly which version of the source code was used in the article, but
since the article was published in September 1998, it seemed safe to pick in the version
control system a stable version dating from a few months before.

We settled for the version of code source available in the directory whose SWH-ID is
swh:1:dir:01d2169c88d0783182b1b7facffa522ba09b5957 contained in the revision dated

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 2

www.di.unipi.it/~marcod/ocamlp3l/ocamlp3l.ml
archive.org
www.di.unipi.it/~susanna/p3l.ml
pauillac.inria.fr/ocaml
http://ocamlp3l.inria.fr/
http://ocamlp3l.inria.fr/eng.htm#download
http://ocamlp3l.inria.fr/eng.htm#download
ftp://ftp.inria.fr/INRIA/caml-light/bazar-ocaml/ocamlp3l/ocamlp3l-2.03.tgz
ftp://ftp.inria.fr/INRIA/caml-light/bazar-ocaml/ocamlp3l/ocamlp3l-2.03.tgz
http://ocamlp3l.inria.fr/ocamlp3l-2.03.tgz
http://camlp3l.inria.fr/eng.htm
http://gitorious.org/camlp3l/
http://gitorious.org/camlp3l/
https://archive.softwareheritage.org/browse/origin/https://gitorious.org/camlp3l/camlp3l.git/directory/
https://archive.softwareheritage.org/browse/origin/https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/directory/
https://archive.softwareheritage.org/swh:1:dir:01d2169c88d0783182b1b7facffa522ba09b5957;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0
https://rescience.github.io/

[Rp] Reproducing and replicating the OCamlP3l experiment

June 23rd 1991 with SWH-ID swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0.

The code contained in this directory seems to be version 1.0 [7] and is classified as fol-
lows by the sloccount utility:

SLOC Directory SLOC-by-Language (Sorted)
1490 ocamlp3l-vprocess ml=1490
1451 Source ml=1451
1162 Examples ml=1138,perl=13,csh=11
159 ocamlp3l-vthread ml=159
67 Doc ml=67
31 Tools csh=31

To our great surprise, and satisfaction, the code compiled with the modern OCaml 4.05
installed on our machines unchanged. The only notable difference is that the modern
compiler produces several newwarnings that correspond to better static analysis checks
introduced over the past quarter of a century.

This is a remarkable achievement, not just for our own code, but for OCaml itself.

3 Recovering the test suite and replicating speedup figures

Here too, looking into the original paper directory turned out to be of little help, as there
was no trace of the test suite used in the article or any useful information. Web searches
were of little interest, as this test suite was used only for the article and not published.
A long search through old backups on tape, CR-ROMS and DVDs did not yield anything
relevant either. Hence, our reproducibility journey ended here.

But we did not want to stop here: having found the original code, we could replicate the
speed-up results, using a new test suite. After all, according to the article we wrote over
22 years ago, the original test suite was just producing a computational load to keep the
compute nodes busy enough to take advantage of the parallelism.

As a first step, we adapted code in the Examples directory, from the SimpleFarm/simple-
farm.ml [8] and the PerfTuning/pipeline.ml [9] files. The result is a simple parametric
test code, shown in Figure 1, that allows to test the speedup one can get from the farm
parallel skeleton in configurations obtained by varying the number nproc of process-
ing nodes, and the time msecwait elapsed in each sequential computation.

The second step was to make the ocamlp3lrun driver command [10], that was using
rsh (see these two occurrences) and rcp (see this occurrence) back in 1997 , work with
the ssh and scp commands that are mainstream today.
A quick hack that works without even touching the code is to create an executable file
rsh containing just the two lines:

#!
ssh $*

and similarly for rcp. Running the parallel test on a set of n different machines is then
a simple matter of issueing the commands

ocamlp3lcc -par test-for-speedup.ml
ocamlp3lrun test-for-speedup <machine1> <machine2> ... <machinen>

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 3

https://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/
https://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/SimpleFarm/simplefarm.ml
https://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/SimpleFarm/simplefarm.ml
swh:1:cnt:8415f9451cf1ecaef70daab45c0ea2e5200f7d38;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/PerfTuning/pipeline.ml
https://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
https://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;lines=105-113/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
https://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;lines=89/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
https://rescience.github.io/

[Rp] Reproducing and replicating the OCamlP3l experiment

(* compute a funct ion over a stream of f l o a t s using a farm *)
2 (* very simple code to t e s t the speed−up of a farm skeleton *)

4 l e t msecwait = 1 0 0 ; ; (* time spent in sequent ia l computation , microseconds *)
l e t nproc = 1 ; ; (* number of nodes a l l oca t ed in the farm skeleton *)

6
(* ac t i v e wait for n microseconds *)

8 l e t microwait n =
l e t t = Unix . gett imeofday () in

10 l e t now = re f (Unix . gett imeofday ()) in
while (! now < (t + . (0 . 0 0 1 * . (f l o a t n)))) do

12 now := Unix . gett imeofday ()
done ; ;

14
l e t farm_worker comptime =

16 (funct ion x −>
(microwait comptime ; x * . x)) ; ;

18
l e t nothing _ = () ; ;

20
l e t generate_input_stream =

22 l e t x = re f 0 .0 in
(funct ion () −>

24 begin
x := ! x + . 1 . 0 ;

26 i f (! x < 129 . 0) then ! x e l se r a i s e End_of_f i le
end) ; ;

28
(* the timing s t u f f *)

30 l e t now = re f (Unix . gett imeofday ()) ; ;
l e t s t op_ in i t _ =

32 now := (Unix . gett imeofday ()) ; ;
l e t stop_end _ =

34 p r in t _ s t r i ng ” Elapsed time on stop node i s ” ;
p r i n t _ f l o a t ((Unix . gett imeofday ()) −. ! now) ;

36 print_newline () ; ;

38 l e t do_nothing _ = () ; ;

40 l e t progr () =
s t a r t s t op

42 (generate_input_stream , nothing)
(do_nothing , s top_ in i t , stop_end)

44 (farm (seq (farm_worker msecwait) , nproc))
in pardo progr ; ;

test–for–speedup.ml

Figure 1. Test code for evaluating speedup of a farm skeleton, by varying the
nproc and msecwait parameters. The exact source of the test suite has SWH-ID
swh:1:cnt:8e7f96cb82d50ea73c2d8e4bf2c832b0ada49a7e

The third step was to run a parameter sweep experiment on a cluster available at the
University of Pisa, and collect the data that was used to produce the new figures that we
show in Figure 2.

The cluster is configured with 32 nodes each equipped with dual socket Intel(R) Xeon(R)
CPU E5-2640 v4 2.40GHz. At the time of this experiment 5 nodes where busy or in main-
tainance and therefore our replication experiments were run with parallelism degrees
nw ∈ [1 − 24]. It is worth pointing out that the cluster nodes, differently from the ones
used in the original experiments, sport 20 cores with 2-way hyperthreading. Hence, in
order to replicate the very same experiments dating back to late ʼ90s, we used only one
process per node, as if the node had a single processor available.
Figure 2a and Figure 2b show the completion times and the relative speedupsmeasured

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 4

https://archive.softwareheritage.org/swh:1:cnt:8e7f96cb82d50ea73c2d8e4bf2c832b0ada49a7e
https://rescience.github.io/

[Rp] Reproducing and replicating the OCamlP3l experiment

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

C
om

pl
et

io
n

tim
e

(s
ec

s)

Parallelism degree (PE used)

128 Items (measured)
256 Items (measured)

128 Items (ideal)
256 Items (ideal)

512 Items (measured)
512 Items (ideal)

(a) Completion time for three different stream sizes
(128, 256 and 512 items)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

S
pe

ed
up

Parallelism degree (PE used)

128 items
256 items
512 items

ideal

(b) Measured vs. ideal speedup for the three different
stream sizes (128, 256 and 512 items)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 12 16 20 24

C
om

pl
et

io
n

tim
e

(s
ec

s)

Parallelism degree (PE used)

exp 1
Exp 2
exp 3

(c) Stability: Completion times measured in three dif-
ferent consecutive experiments

 12

 12.5

 13

 13.5

 14

 0 5 10 15 20 25

C
om

pl
et

io
n

tim
e

(s
ec

s)

Parallelism degree (PE used)

scaled completion time
Expected

(d) Scaled speedup: stream size proportional to the par-
allelism degree

Figure 2. Replication results. Syntetic benchmark using a farm pattern.

in three different experiments, processing streams of data items of different lengths.
The completion times are very close to the ideal ones, but looking at the speedup fig-
ures we can see that the larger the load the better speedup is achieved. Indeed, the inter-
arrival time of tasks on the stream is negligible with respect to the time spent processing
the single task and therefore longer streams help giving more work to each one of the
“workers” in the parallel farm. This, in turn, results in a minor impact of the overheads
associated to the set up and orchestration of the nodes that take part in the computation.
Figure 2c shows the result of three different runs of the same experiments, executed at
three different times of the same day on the cluster. We observe the same completion
times, confirming the stability results already achieved at the time OcamlP3L was devel-
oped. Finally, Figure 2d reports the scaled speedup results. For each parallelism degree
nw, we used an input streamwhose length was k×nw. The measured completion times
are almost constants and close to the ideal one, which is the sequential time taken to
compute a k item stream.

To sum up, we could replicate quite faithfully the quality of the results achieved more
than 20 years ago. It is worth pointing out that this is a nontrivial achievement, as the
architectures used for these experiments today and in the past are completely differ-
ent, both in terms of computation power (processors) and in terms of communication
bandwidth and latency (network interface cards).
In our opinion, this is clearly due to two distinct and synergic factors:

• the clean “functional” design and implementation of OcamlP3l, that resisted to
language and system development, and

• the algorithmic skeleton1 principles which are the base of the overall implemen-
tation of OcamlP3L that naturally implement “portability” across different archi-
tectures, independently of the fact the architectures use different hardware.

1aka “parallel design patterns”

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 5

https://rescience.github.io/

[Rp] Reproducing and replicating the OCamlP3l experiment

4 Conclusion

We have reported on our experience in reproducing work we have done ourselves on
the OCamlP3l experiment over 22 years ago [1]. Contrary to our expectations, the most
difficult part has been to recover the source code. For its presevation, we had relied on in-
stitutional repositories first, and freely available collaborative development platforms
later, neither of which passed the test of time.

We are delighted to report that leveraging the SoftwareHeritage archive [5] we have been
able to recover the full history of development of the system, and rebuild it as it likely
was at the time the original article had been published. Despite the fact that we did not
find the exact test suite used 22 years ago to test the scalability of the system, we have
been able to replicate the results on modern hardware.

As a byproduct of this work, we have also safely archived in Software Heritage, and de-
scribed in HAL, the stable final release 2.3 of OCamlP3l [6].

Based on this experience, we strongly suggest to systematically archive and reference
research source code following the Software Heritage guidelines [11].

References

1. M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. “Parallel Functional Programming with Skeletons: the
OCamlP3L experiment.” In: ACM Workshop on ML and its applications. ACM. Baltimore, United States, Sept.
1998.

2. [SW] R. Di Cosmo, M. Danelutto, X. Leroy, and S. Pelagatti, The OCamlP3l library, 1998. LIC: GPL. URL: https:
//archive.softwareheritage.org/gitorious.org/ocamlp3l/ocamlp3l_cvs.git.

3. X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml system release 4.09: Docu-
mentation and user’s manual. Intern report. Inria, Sept. 2019, pp. 1–789.

4. M. Cole. Algorithmic skeletons: structured management of parallel computation. MIT Press, 1989.
5. J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli. “Building the Universal Archive of Source Code.” In: Commun.

ACM 61.10 (Sept. 2018), pp. 29–31.
6. [SW] R. Di Cosmo, P. Weis, F. Clement, and Z. Li, OcamlP3l release 2.03, 2007. LIC: LGPL-2. HAL: ⟨hal-02487

579v1⟩, SWHID: ⟨swh:1:dir:85642a2e0333bbd6340c0a84ae6bad48cba11940;origin=https://hal.archives-ouv
ertes.fr/hal-02487579⟩.

7. [SW REL.] R. Di Cosmo, M. Danelutto, X. Leroy, and S. Pelagatti, The OCamlP3l library version 1.0, 1998. LIC:
GPL. SWHID: ⟨swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocaml
p3l/ocamlp3l_cvs.git/⟩.

8. [SW EXC.]M. Danelutto, “Simple Farm test program,” from The OCamlP3l library 1998. LIC: GPL. SWHID: ⟨sw
h:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cv
s.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/SimpleFarm/sim
plefarm.ml⟩.

9. [SW EXC.]M. Danelutto, “Pipeline test program,” from The OCamlP3l library 1998. LIC: GPL. SWHID: ⟨swh:1:cn
t:8415f9451cf1ecaef70daab45c0ea2e5200f7d38;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;an
chor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/PerfTuning/pipeline.ml⟩.

10. [SW EXC.] R. Di Cosmo, “Driver command,” from The OCamlP3l library 1998. LIC: GPL. SWHID: ⟨swh:1:cnt:c4
28f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor
=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun⟩.

11. R. Di Cosmo. “How to use Software Heritage for archiving and referencing your source code: guidelines and
walkthrough.” HAL preprint �hal-02263344�. Apr. 2019.

ReScience C 6.1 (#2) – Di Cosmo and Danelutto 2020 6

https://archive.softwareheritage.org/gitorious.org/ocamlp3l/ocamlp3l_cvs.git
https://archive.softwareheritage.org/gitorious.org/ocamlp3l/ocamlp3l_cvs.git
https://hal.archives-ouvertes.fr/hal-02487579v1
https://hal.archives-ouvertes.fr/hal-02487579v1
http://archive.softwareheritage.org/swh:1:dir:85642a2e0333bbd6340c0a84ae6bad48cba11940;origin=https://hal.archives-ouvertes.fr/hal-02487579
http://archive.softwareheritage.org/swh:1:dir:85642a2e0333bbd6340c0a84ae6bad48cba11940;origin=https://hal.archives-ouvertes.fr/hal-02487579
http://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/
http://archive.softwareheritage.org/swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/
http://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/SimpleFarm/simplefarm.ml
http://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/SimpleFarm/simplefarm.ml
http://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/SimpleFarm/simplefarm.ml
http://archive.softwareheritage.org/swh:1:cnt:4d99d2d18326621ccdd70f5ea66c2e2ac236ad8b;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git/;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/SimpleFarm/simplefarm.ml
http://archive.softwareheritage.org/swh:1:cnt:8415f9451cf1ecaef70daab45c0ea2e5200f7d38;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/PerfTuning/pipeline.ml
http://archive.softwareheritage.org/swh:1:cnt:8415f9451cf1ecaef70daab45c0ea2e5200f7d38;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/PerfTuning/pipeline.ml
http://archive.softwareheritage.org/swh:1:cnt:8415f9451cf1ecaef70daab45c0ea2e5200f7d38;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Examples/PerfTuning/pipeline.ml
http://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
http://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
http://archive.softwareheritage.org/swh:1:cnt:c428f4deb1cdff8500fff5c449b99454a816c163;origin=https://gitorious.org/ocamlp3l/ocamlp3l_cvs.git;anchor=swh:1:rev:2db189928c94d62a3b4757b3eec68f0a4d4113f0;path=/Tools/ocamlp3lrun
https://hal.archives-ouvertes.fr/hal-02263344
https://rescience.github.io/

	Recovering the source code
	Compiling and running
	Recovering the test suite and replicating speedup figures
	Conclusion

