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In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phe-

nomena. This class of problems is of utmost importance for robotic manipulation of fluids,

for instance, or, in general, in simulation-assisted decision making. The proposed method

infers the (linear or non-linear) constitutive behavior of the fluid from video sequences of the

sloshing phenomena. Real-time prediction of the fluid response is obtained from a reduced

order model (ROM) constructed by means of thermodynamics-informed data-driven learn-

ing. From these data, we aim to predict the future response of a twin fluid reacting to the

movement of the real container. The constructed system is able to perform accurate fore-

casts of its future reactions to the movements of the containers. The system is completed

with augmented reality techniques, so as to enable comparisons among the predicted result

with the actual response of the same liquid and to provide the user with insightful information

about the physics taking place.

Introduction

Digital twins are tools to fully address real-world phenomena and seamlessly connect reality

with virtual predictions. The abundance of data inputs allows to relate physical objects or pro-

cesses with the simulation to obtain online meaningful results. The digital twin of the object of

interest offers, in the end, a cost-effective real-time solution for taking decisions analogous to

those that we would take interacting with the real process or object.

These virtual replicas have already shown their usefulness through their implementation

across many kinds of industries and branches of science. In the field of robotics, they are the

means for scene understanding and interaction to connect robots with the actual reality [1]

[2].

In this paper, we focus on the development of a self-learning digital twin to predict the

sloshing phenomenon of a fluid so as to equip an online decision-making system. By self-

learning digital twin we mean a system that, rather than performing data assimilation (to

determine the viscosity of the fluid, for instance) it is able to construct a physically correct,

data-driven replica of a previously unseen fluid, regardless of its constitutive behavior.
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We employ computer vision techniques to obtain data of the movement of the glasses

where the real fluid and the replica are contained. Next, we feed the simulator engine with that

information. Finally, the output is represented within a real container, that may be the one

containing the fluid or not. We let the simulation run in the background so as to interpret the

physics taking place.

Machine learning is a powerful tool to learn the behavior and underlying dynamics of a liq-

uid [3]. Notwithstanding their effectiveness, physical compliance is still a central issue. In [4],

the authors proposed an alternative data-driven approach to model the physics behind the

sloshing dynamics as a regression guided by thermodynamic criteria.

Here, we substantially extend the algorithm so as to be able to construct replicas of a wide

range of fluids for building a self-learning digital twin. We aim to prove that our method is

also able to learn patterns of materials with non-linear behavior, with synthetic or real infor-

mation from the scene.

Related work

Fluid dynamics understanding based on machine learning is a rapidly growing field. It pro-

vides a deep insight into the physical complexity of flows and behaviors for their control and

manipulation. Yunzhu Li et al. [3] study fluid simulation learnt from particle interaction. They

developed the so-called dynamic particle interaction networks (DPI-Nets) in order to learn

hierarchical interaction of the particles in which the objects of study have been discretized.

They capture non linear behaviors in deformable and fluid bodies for control purposes.

Schenck and Fox [2] also employed convolutional networks to learn the physics of pouring

liquids. Noteworthy, these predictions have no guarantee to comply with the laws of Navier-

Stokes, for instance. The same problem arises in the work by Kennedy et al. [5], where approx-

imate particle methods are employed to simulate pouring. In general, in the field of robotics,

existing approaches employ approximate methods to overcome the very stringent real-time

constraints imposed by closed-loop fluid simulation. This need for very fast simulation results

has prevented existing methods from accurately satisfying basic conservation laws such as

Navier-Stokes of the laws of thermodynamics. The present work overcomes these limitations

and guarantees the satisfaction of the laws of thermodynamics while avoiding the need of solv-

ing Navier-Stokes equations.

Very few references analyze the possibility of applying the concept of digital twin to fluid

mechanics. Among them, we cite the application to drilling fluids in the field of geology, see

[6], or an approach for the oil and gas industry [7].

Brunton et al. [8] make a review of these recent advances in machine learning applied to

fluid mechanics and dynamics. It stands out the need for these systems to overcome challenges

such as generalization and interpretation. Particularly, there is a growing interest on machine

learning strategies that satisfy well-known principles of physics and do not construct black-

box models whose application to previously unseen data does not guarantee to comply with

basic principles such as energy conservation or equilibrium.

In order to overcome these limitations, the machine learning community has recently taken

a step forward physically-informed learning [9], whose application field ranges from neural

networks [10] [11] [3] [12] to linear regression learning [13] [14]. This new perspective of

machine learning aims to guide the learning process with criteria that fulfills the laws of phys-

ics. As a result, we achieve a higher degree of accuracy, as well as generality and interpretability.

In turn, those models still entail sometimes a high computational cost difficult to surmount.

Under this rationale, real-time constraints have not been—to the best of our knowledge—

attained.

https://doi.org/10.1371/journal.pone.0234569


Real-time digital twins offer applications for continuously changing, monitored systems

[15]. For this purpose, time constraints must be satisfied. Reduced order models supply digital

twins with tools to face such disadvantage [16] [17] [18] [19]. Kapteyn et al. [20], for instance,

work on physically-constrained digital twins developed in a reduced order space for aircraft

replanning. The model for each topology is defined in a reduced basis, giving support for

immediate decision making.

Twins continuously incorporate features to improve interpretation and application. Aug-

mented reality (AR), for instance, enables the contextualization of the twin in the physical

world. Consequently, interaction between reality and the replica, as well as user control and

interpretation, are straightforward. AR tools have also been successfully implemented for non-

rigid representation, such as aerodynamics [21], or deformable objects [16]. On the other and,

existing digital twins for sloshing problems revealed limitations, such time computing and

localization in the scene, that inhibit their implementation [22].

Method

In this work we suggest a data-driven twin which performs a thermodynamically admissible

emulation of sloshing dynamics. To this end, the method consists of the merge of three stages:

data assimilation, interpretation and representation. The final goal is to predict the next state

of a fluid, which could be unknown, from interpretable data of the scene. Some of the fluids

employed to learn the dynamics show viscoelastic properties. In addition, the twin needs to

operate at a frequency of 30 Hz or faster (the one at which standard cameras operate). The

result is an AR digital twin convergent and synchronized with reality for optimal control and

decision making.

Integration from data without the need to solve Navier-Stokes

Machine learning abstracts insights about the physics from given data. A priori, they are

unknown, but the algorithm finally learns the appropriate correlations to fit an accurate

model.

Our digital twin is modeled as a time-evolution problem, expressed as a function of a set

of variables zt ¼ zðtÞ 2 S � RD
; with D representing the full dimensionality of the problem.

These variables describe the energy and entropy evolution of the fluid. If we know them at

discrete time steps, we will try to find patterns so as to predict future states of the liquid. With

this integration scheme, given new real or synthetic measurements of an unseen trajectory, the

sloshing dynamics will be accurately reconstructed in real time.

This approach employs the so-called General Equation for Non-Equilibrium Reversible-

Irreversible Coupling, GENERIC [23]. This methodology has been employed satisfactorily in

several works for learning models [24] [25] [4], as well as corrections to existing models [26],

from data.

GENERIC arises as a general thermodynamic framework to describe mesoscopic dynamics.

Actually, it can be seen as the formulation that describes the process of obtention of less

detailed models, reduced from models involving more details (more degrees of freedom). The

phase portrait of a reduced model is seen under this theory as a pattern in the phase portrait of

the detailed model [27]. As a result, it expresses the dynamics in terms of the mesoscopic vari-

ables z, that lead the evolution of energy and entropy of a system as:

dz
dt
¼ L

@E
@z
þM

@S
@z
; ð1Þ

where L and M are the poisson and friction matrices, andrE andrS the gradients of energy

https://doi.org/10.1371/journal.pone.0234569


and entropy, respectively. We distinguish two main parts in this expression, one related to the

conservative part of the dynamics (LrE), and another representing the posible dissipation of

the system (MrS).

We also ensure thermodynamic consistency by imposing the so-called degeneracy condi-

tions:

L
@S
@z
¼ 0; M

@E
@z
¼ 0; ð2Þ

that establish that the energy functional does not contribute to dissipation mechanisms, while

entropy does not contribute to reversible mechanics [28].

We guarantee both impositions by forcing L to be the classical symplectic, skew symmetric,

matrix of Hamiltonian mechanics, and M symmetric, positive semi definite. With the former

restriction we ensure energy conservation:

_EðzÞ ¼ rEðzÞ � _z ¼ rEðzÞ � LðzÞrEðzÞ þ rEðzÞ �MrSðzÞ ¼ 0; ð3Þ

and with the latter, entropy generation

_SðzÞ ¼ rSðzÞ � _z ¼ rSðzÞ � LðzÞrEðzÞ þ rSðzÞ �MrSðzÞ � 0: ð4Þ

We assume that the sloshing dynamics of each fluid evolve on a finite-dimensional, smooth

and real manifold M 2 RD, reconstructed from synthetic data. In this approach, the discre-

tized, pseudo-experimental measurements of the state variables allow to build an also discre-

tized expression of GENERIC:

znþ1 � zn
Dt

¼ Lðznþ1ÞDEðznþ1Þ þ Mðznþ1ÞDSðznþ1Þ; ð5Þ

from which we can also learn new trajectories. Here, L(zn+1), DE(zn+1), M(zn+1) and DS(zn+1)

represent the discretized approaches to their original counterparts. Note also thatrE andrS
can be approximated, in the finite element style, by piece-wise polynomials so that:

rE ¼ Az;rS ¼ Bz;

with A and B two matrices of shape function derivatives. This makes L, M, A and B the objec-

tive of the following (piece-wise) linear regression procedure:

μ� ¼ fL;M;A;Bg ¼ arg min
μ
kzðμÞ � zmeask: ð6Þ

Nonetheless, the optimization and calculations are still computationally demanding. In

order to achieve real time performance for our digital twin, we make use of model order reduc-

tion techniques to find a reduced order manifold N 2 Rd
, where d� D. Fig 1 sketches our

approach. On this reduced manifold, we will preserve the important features of the dynamics

expressed in a new system of latent variables.

In [4], the authors showed the efectiveness of non-linear model order reduction techniques

(namely, LLE [29] and TDA [30]) for this problem. Following these results, we have employed

k-PCA (kernel Principal Component Analysis) [31] to distill the reduced order manifold of

each fluid.

In our problem, we have a data matrix Z. Each column zi, i = 1, . . ., n is a snapshot, a vector

of state variables that represent the state of the fluid at a specific time instant. For each fluid,

https://doi.org/10.1371/journal.pone.0234569


we have a total of n snapshots.

j j j

z1 z2 � � � zn
j j j

2

6
4

3

7
5 ¼ Z 2 RD�n

:

Given a matrix Z snapshots, we compute the product S = ZT Z to obtain the matrix of pair-

wise scalar products. The key hypothesis of k-PCA is that the projection of the points to a new

space � : M � RD ! RQ, where Q is the new dimension, probably higher than the current

space, can result to be linearly separable. We apply PCA in RQ. As a result, we obtain the most

relevant nonlinear principal components of Z and thus a projection to a much lower dimen-

sional manifold. With this method we successfully embedded then into a three dimensional

system N � Rd¼3
.

The discretized GENERIC formulation is also consistent in the low dimensional manifold

we have built [32]. L and M are squared matrices whose shape we frequently know from the

description of the problem we model—there is a vast literature in the field [33] [34] [25] [28]

[23]—. Nevertheless, they cannot be projected to the non-linear low dimensional manifold

where the database has been projected, where we risk to loss the rich thermodynamic structure

induced by Eqs (3) and (4). As a result, they are also the objective of the regression procedure

in the reduced manifold.

Experimental and pseudo-experimental data

GENERIC learns the sloshing dynamics of the liquids from the measurements of the state vari-

ables at discrete time steps. We have obtained pseudo-experimental data from simulations

Fig 1. We assume the existence of a slow manifold M on which each fluid lives. We extract synthetic data as vectors

inRD from computational simulations. These data are possibly noisy, see the zoomed detail. An example sloshing

phenomenon is represented as the red line in phase space. Given the inherent high-dimensionality of the manifold,

nonlinear dimensionality reduction techniques will also be applied. This will project the data to a lower dimensionality

embedding space inRd , with d� D. We develop structure-preserving integration schemes to integrate the evolution

of the system in this low-order manifold. These are then mapped back to the physical space inRD
so as to obtain

meaningful results.

https://doi.org/10.1371/journal.pone.0234569.g001

https://doi.org/10.1371/journal.pone.0234569.g001
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performed by employing Smoothed Particle Hydrodynamics (SPH, [35]) for training and test.

Once it reaches the test phase, the twin learns previously unseen trajectories from experimental

data.

Here, we generalize the scope of our first work [4] to identify the dynamics of a wider data-

base. It has been specifically constructed with pseudo-experimental results of water, glycerine,

butter, honey, mayonnaise and chocolate. Our intention is to cover different viscosities and

densities, as well as behaviors. The different fluid constitutive models are sketched in Fig 2.

Chocolate, mayonnaise and blood are considered shear thinning [36] [37] [38] [39]. We

have selected the Herschel-Bulkley model [40] to reproduce their rheology. It follows the next

expression:

τðtÞ ¼ k _gnðtÞ þ τ0;

in which τ is the shear stress, k the consistency index, _γ the shear rate, n the flow index, and τ0

the yield stress.

We have simulated four different sloshing trajectories for each liquid assuming Smooth

Particle Hydrodynamics discretization [35], according to the parameters in Table 1. This

approach provides discrete data of the properties of each particle. Data have been extracted

Fig 2. Standard classification of the fluid families considered herein. In the case of Newtonian fluids, their

properties are constant over time and show a linear response. Their flow index n is then set to 1, and their yield stress

to τ0 = 0. In contrast, shear thinning fluids start flowing when the stimulus is greater than the yield stress τ0 > 0. For

these fluids, n> 1. In this work, fluids whose behavior can be assimilated to shear thinning have been considered.

Fluids that incorporate some kind of plastic behavior need for a special treatment and have not been considered yet.

https://doi.org/10.1371/journal.pone.0234569.g002

https://doi.org/10.1371/journal.pone.0234569.g002
https://doi.org/10.1371/journal.pone.0234569


from snapshots taken every 0.005 seconds to capture the important features of the dynamics

and avoid the effect of overfitting as well.

When learning Newtonian fluids, we only need the position rj, velocity vj and internal

energy Ej of each particle at discrete time instants. However, non-Newtonian fluids are not

fully described with these state variables [41]. Some of the liquids we attempt to describe here

have viscoelastic properties, and this behavior is captured by including the stress tensor τj—or

a related magnitude—of each particle in the set of state variables. The fluid is then character-

ized at each time by a vector of these particle variables, such as

S ¼ fz ¼ ðrj; vj;Ej; τj; j ¼ 1; 2; . . . ;MÞ 2 ðR3
� R3

� R� R6
Þ
M
g;

for every n> 1 equally spaced time steps in the interval (0, T] of each simulation. The fluid vol-

ume has been discretized into M = 2134 particles. If we have 13 degrees of freedom per parti-

cle, the full dimensionality of each snapshot vector is D = 27742.

Once the integrator has been built, we learn an unseen trajectory from a new vector of state

variables, which establishes the initial conditions to emulate the sloshing dynamics. When run-

ning the digital twin, this information comes from the scene.

We make use of computer vision techniques to track the movement of the glass. For these

purpose, we have added texture to it to track its features. See the details in the Appendix. This

information has to be converted to an interpretable input for the integrator. The simulations

of the database have been obtained by defining different input velocities of the glass to trigger

the sloshing. Therefore, we relate the initial state of the virtual fluid with the tracked velocity of

the container as an interpolation. With this information, we can perform the computation of

the next state of the liquid.

There are some features of the algorithm that also require data acquisition of the free sur-

face. Albeit the use of sensors is widely spread, image analysis is an attractive option for experi-

mental data acquisition. The use of RGB Depth cameras is common used for this purpose [42]

[43]. However, due to its lack of texture, it is a difficult task that could need to be supported

with CNN for accurate tracking [44].

We followed an approach similar to the one employed in [45]. We analyze the color gradi-

ent of the binarized frame (Fig 3). There is a noticeable change between the free surface and

the background. Therefore, the points in the boundary where there is a color gradient are con-

sidered free surface. These points are stored, tracked, and augmented in the image for user

interaction and verification (Fig 4).

Fluid clustering

The digital twin should be able to mimic the behavior of any type of fluid, not necessarily in

the database. Then, in future applications, it must perceive and recognize the fluid as well as

explain what it is watching in understandable terms for a human. This is called interpretable
machine learning [46].

Table 1. Characteristics of the fluids considered in this work.

Fluids k (Pa � s) n τ0 (Pa)

Glycerine 0.95 1 -

Blood 0.017 0.708 -

Mayonnaise 45.40 0.495 98.18

Melted chocolate 5.764 0.697 9.096

https://doi.org/10.1371/journal.pone.0234569.t001

https://doi.org/10.1371/journal.pone.0234569.t001
https://doi.org/10.1371/journal.pone.0234569


We expect to classify the fluid with only a few observations and, knowing which fluid it is—

or interpolating between the closest neighbors in the phase space—, make the calculations in

the appropriate reduced order manifold.

The high dimensionality of the problem would make unfeasible to perform the classifica-

tion as fast as the application requires. We address this problem by applying model order

reduction techniques. This allows us to perform the classification in a lower-dimensional man-

ifold. Dimensionality reduction is a common preprocessing step for classification tasks. This

process entails a noticeable time reduction in the classification. In addition, if the dataset has a

Fig 3. Example of frame binarization. Original frame (top) versus binarized one (bottom). The picture is transformed

firstly to gray scale for gentle binarization. Noise is also filtered to detect a smooth surface, which is highlighted in red

in the top figure.

https://doi.org/10.1371/journal.pone.0234569.g003

Fig 4. Free surface detection and tracking in video sequence. The points selected to belong to the free surface are

highlighted in red over the original frame for verification.

https://doi.org/10.1371/journal.pone.0234569.g004

https://doi.org/10.1371/journal.pone.0234569.g003
https://doi.org/10.1371/journal.pone.0234569.g004
https://doi.org/10.1371/journal.pone.0234569


lower dimensional structure, we avoid the noise of the large dimensional set, what results in an

improvement of the accuracy.

We choose again k-PCA to perform the reduction of our problem [31]. k-PCA enables us to

project the data onto a low dimensional manifold. In our case, and despite the smooth decay

in the eigenvalues, see Fig 5, some 3 dimensions have shown to provide with good clustering

results. The different types of fluids remain clustered in the new projection, as can be seen in

Fig 6. k-PCA is able to unveil the features that make the behavior of each fluid unique with

respect to the others. We expect this fact to be advantageous for the classification process.

In our case, we employ random forests [47] for classifying our dataset. This technique con-

sists of constructing several decision trees in different subspaces of the training set to generalize

the classification and, as a result, avoid the overfitting that usually appears in single regression

tree techniques.

We also apply k-fold cross validation as part of the learning process. The method suggests

to split the database into two parts, one assigned for training and the rest saved for testing.

This process is repeated iteratively k loops, changing the distribution data of training and test

sets, to improve the fitting.

We need enough data to recognize the underlying trend, but we also need to leave sufficient

for testing so as to avoid high variance error. According to this criteria, we establish a relation

of 80% of snapshots for training, and 20% for test, in our algorithm. We trained the model fol-

lowing a cross validation scheme in k = 5 iterations.

Overall, the results obtained from the classification algorithm showed a good performance.

High accuracy was achieved analyzing both global results as well as the error obtained for each

fluid individually (Table 2). With this result, we consider the model valid for our problem, as

well as for decision making applications.

Fig 5. This picture represents the evolution of the eigenvalues for the first 10 k-PCA modes. We distinguish three

modes that stand out with regard to the others. This fact justifies the reduction to the embedded manifold. As a result,

we aim to provide with a more manageable and efficient system for classification.

https://doi.org/10.1371/journal.pone.0234569.g005

https://doi.org/10.1371/journal.pone.0234569.g005
https://doi.org/10.1371/journal.pone.0234569


Augmented reality

The prediction performed by the integration scheme is presented to the user through aug-

mented reality (AR). It provides a user friendly interface from control and understanding.

This technology is usually employed for rigid representation, i.e. the virtual object does not

interact with any real stimulus. Our twin is deformable, and interacts actively with the scene.

We employ the tracking information previously obtained for precise placing of the aug-

mented liquid. In consequence, it continuously updates and shows real time connection and

interaction with the glass.

AR representation shows the position of the particles and the free surface. In addition,

it can augment the representation of the liquid showing additional information, such as the

velocity field.

Results and discussion

We have tested the online performance of the twin to evaluate the implementation of the algo-

rithm in conjunction with the computer vision techniques that we employ for data extraction.

Fig 6. By employing k-PCA we reach a manifold of 3 dimensions where the different fluids, represented by one

color each, remain clustered.

https://doi.org/10.1371/journal.pone.0234569.g006

Table 2. Results obtained from classification after random forest training with k-fold cross validation.

Individual Accuracy Water 99.17%

Glycerine 97.32%

Butter 92.88%

Blood 91.07%

Honey 91.07%

Mayonaise 91.07%

Chocolate 91.07%

Global Accuracy 95.93%

Precission 99.17%

Recall 99.17%

https://doi.org/10.1371/journal.pone.0234569.t002

https://doi.org/10.1371/journal.pone.0234569.g006
https://doi.org/10.1371/journal.pone.0234569.t002
https://doi.org/10.1371/journal.pone.0234569


We obtained positive results in the merging of both elements. Trajectory generation and aug-

mented representation is done online, and coupled with the video. As a result, we perform real

time calculation and representation.

The replica of the liquid has been also compared with a glass filled with a liquid of the same

type. Both containers are subjected to the same forces. Qualitatively, liquids are synchronized.

Nevertheless, the movement of the digital twin seems to be a bit more amplified.

While previous approaches in the field (notably [44] [2] [5]) report qualitative performance

measurements only, we have also tried to provide with quantifiable results to perform accu-

rately the experimental validation. We quantify the error in the reproduction of the free sur-

face reconstruction, defined as the integral of the differences between the heights regarding a

medium line, see Fig 7:

e ¼
1

l

Z

l
jhRðxÞ � hVðxÞjð Þdx; ð7Þ

with R and V representing the real (physical) height and the virtual one, respectively, see.

The resulting errors are shown in Table 3. Absolute value measurements are provided at

h(0) and h(l) in mm for comparison. The error is also expressed in mm. They remain adequate

according to the state-of-the-art in computer vision applications. The error grows with higher

amplitudes of slosh, see Fig 8. Some sources of error could root in the approximation per-

formed for velocity estimation. Remember that the pseudo experimental data with which

we have built the model came also from a numerical approximation, SPH. Nevertheless,

the resemblance is sufficient for learning a model, as well as corrections that will improve its

performance.

Fig 7. Representation of the quantifiable comparison of the real liquid and the replica. Free surface is defined as a

function of its height at different points. These heights are compared in a same snapshot to evaluate the reconstruction

error.

https://doi.org/10.1371/journal.pone.0234569.g007

Table 3. Numerical results of the experimental validation. Snapshot number refer to the ones shown in Fig 8.

WATER hR(0) hV(0) hR(l) hV(l) mean error (mm)

Snapshot 1 5.52 11.32 5.38 8.28 0.7572

Snapshot 2 4.77 7.58 3.089 11.35 1.5254

Snapshot 3 3.694 2.839 2.839 6.53 1.0031

GLYCERINE hR(0) hV(0) hR(l) hV(l) mean error (mm)

Snapshot 1 3.56 3.845 3.56 3.418 0.119

Snapshot 2 4.20 5.95 3.18 8.85 1.7428

Snapshot 3 3.11 3.53 2.54 7.77 1.249

https://doi.org/10.1371/journal.pone.0234569.t003

https://doi.org/10.1371/journal.pone.0234569.g007
https://doi.org/10.1371/journal.pone.0234569.t003
https://doi.org/10.1371/journal.pone.0234569


Conclussions and recommendations

In this paper we have presented and described a digital twin able to learn the sloshing dynam-

ics occurring within a glass. We have shown that it satisfactorily reproduces the dynamics that

a real stimulus would cause. The merge of online and realtime data acquisition, calculation

and result representation has enabled realistic interaction between the two mediums.

The digital twin connects with the scene trough computer vision techniques based on fea-

ture extraction to obtain the velocity of the container. This is the input of the simulations that

we have performed to obtain synthetic data with which the model has been built. Therefore,

we establish a straight relationship between scene data and interpretable inputs for the twin.

Realtime performance has been achieved through the use of model order reduction tech-

niques. k-PCA finds a space of 3-4 dimensions where the dynamics are embedded to per-

form the calculation with minimal loss of information. We have also proved the efficacy of

GENERIC to learn more complex behaviors, such as viscoelasticity, widening the options

that the twin offers.

While it has been difficult, in general, to obtain fully meaningful and quantitative compari-

sons with existing methods—that, in addition, focus on the pouring process, while we are

interested in the sloshing phenomenon—, our method guarantees by construction the fulfill-

ment of the laws of thermodynamics while bypassing the integration of Navier-Stokes equa-

tions. This has shown to provide very accurate results.

Undoubtedly, perception performance is a field of deep interest. New techniques constantly

appear for achieving new learning challenges. Given these tools, and the results obtained from

the classification training, new capabilities can be added to the twin. We expect to feed the

algorithm with data of the free surface of a real fluid so as to distinguish the liquid properties

of the liquid perceived. Also, the model could be corrected in case the liquid is unknown to go

a step further and transform the model into a hybrid twin.

Appendix—Stereo camera fundamentals

The camera employed in our application is a Zed Mini model from Stereo Labs (https://www.

stereolabs.com/zed-mini/). This camera incorporates a stereo system and an Inertial Measure-

ment Unit, IMU. The camera is able to instantaneously provide the user with its intrinsic and

extrinsic parameters, see Fig 9. This fact helps to speed up the computation of the inputs and

outputs of our digital twin, as well as its augmented reality reconstruction.

Fig 8. Snapshots employed for comparison between the real liquid and the digital twin. The free surface

reconstruction has been evaluated to compute the error.

https://doi.org/10.1371/journal.pone.0234569.g008

https://www.stereolabs.com/zed-mini/
https://www.stereolabs.com/zed-mini/
https://doi.org/10.1371/journal.pone.0234569.g008
https://doi.org/10.1371/journal.pone.0234569


The relationship between the 3D world and a 2D image, and viceversa, is build from the so-

called intrinsic and extrinsic parameters. Intrinsic parameters relate the 2D position of a point, in

pixel coordinates, with its 3D position with respect to the camera. Those parameters are the focal

length of right and left cameras, and pixel spacing sx and sy. They form the calibration matrix K.

On the other hand, extrinsic parameters are those that represent the camera’s rotation (R)

and translation (t) with regard to a reference coordinate system. With all this information, a

point can be mapped from the real world to the pixel coordinates, and viceversa.

Having prior knowledge of the camera’s calibration and position, the 3D estimation of every

point is performed through triangulation [48]. As mentioned before, the camera outputs the

intrinsic and extrinsic parameters at each frame. As a result, we know the projection of the 2D

features in the 3D real world system to perform any operation in the algorithm implemented.
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Feature extraction

Transparent objects, such us those made of glass, have always entailed an extreme difficulty for

feature extraction algorithms due to their lack of texture. Only recently techniques based on

Fig 9. The picture shows the functioning of the stereo system. The camera moves freely, and its movement is related

to the origin position through the extrinsic parameters. In computer vision, at least two images are required for the 3D

reconstruction of a point. The camera performs continuous triangulations so as to export the depth of each pixel

relating the 2D matches detected among right and left lenses.

https://doi.org/10.1371/journal.pone.0234569.g009

https://doi.org/10.1371/journal.pone.0234569.g009
https://doi.org/10.1371/journal.pone.0234569


deep convolutional neural networks, CNN, have been developed to overcome this problem

[49] [50].

In contrast, we aim to simplify the process for this application. Instead of using fiducial

markers [22] or object alignment, we have added texture to the glass. Little points were painted

in the glass to create points of interest that the feature detector could select. From the detection

of these features, or points of interest, we localize the center of masses of the glass projected to

its bottom surface.

We assume that we do not have prior knowledge of the position of the glass. We apply the

Shi-Tomasi algorithm [51] for feature extraction in the area where the glass is expected to be.

It finds the strongest, and more stable, features to track along the video sequence. The camera

straightly provides the 3D position of the selected points of interest. With those points, we

compute the center of masses of the glass projected to the bottom of the container. By tracking

that point, we obtain information of the position and velocity of the glass.

Supporting information

S1 Video. Digital twin recordings.
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37. Kumbár V, Nedomová Š, Ondruš#x00ED;ková S, Polcar A. Rheological behaviour of chocolate at dif-

ferent temperatures. Potravinarstvo. 2018; 12(1).

38. Elert G. The Physics Hypertextbook. https://physicsinfo. 2020;.

39. Smith M. Approximate viscosities of some common liquids. https://wwwmichael-smith-engineerscouk/

mse/uploads/resources/useful-info/General-Info/Viscosities-of-Common-Liquidspdf. 2020;.

40. Herschel WH, Bulkley R. Konsistenzmessungen von gummi-benzollösungen. Kolloid-Zeitschrift. 1926;
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