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Abstract
The trace regression model, a direct extension
of the well-studied linear regression model, al-
lows one to map matrices to real-valued outputs.
We here introduce an even more general model,
namely the partial-trace regression model, a fam-
ily of linear mappings from matrix-valued inputs
to matrix-valued outputs; this model subsumes the
trace regression model and thus the linear regres-
sion model. Borrowing tools from quantum infor-
mation theory, where partial trace operators have
been extensively studied, we propose a framework
for learning partial trace regression models from
data by taking advantage of the so-called low-rank
Kraus representation of completely positive maps.
We show the relevance of our framework with
synthetic and real-world experiments conducted
for both i) matrix-to-matrix regression and ii) pos-
itive semidefinite matrix completion, two tasks
which can be formulated as partial trace regres-
sion problems.

1. Introduction
Trace regression model. The trace regression model or,
in short, trace regression, is a generalization of the well-
known linear regression model to the case where input data
are matrices instead of vectors (Rohde & Tsybakov, 2011;
Koltchinskii et al., 2011; Slawski et al., 2015), with the
output still being real-valued. This model assumes, for the
pair of covariates (X, y), the following relation between
the matrix-valued random variable X and the real-valued
random variable y:

y = tr
(
B>∗ X

)
+ ε, (1)
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Figure 1. Illustration of the partial trace operation. The partial
trace operation applied to m ×m-blocks of a qm × qm matrix
gives a q × q matrix as an output.

where tr(·) denotes the trace, B∗ is some unknown ma-
trix of regression coefficients, and ε is random noise. This
model has been used beyond mere matrix regression for
problems such as phase retrieval (Candes et al., 2013), quan-
tum state tomography (Gross et al., 2010), and matrix com-
pletion (Klopp, 2011).

Given a sample S = {(Xi, yi)}`i=1, where Xi is a p1 × p2

matrix and yi ∈ R, and each (Xi, yi) is assumed to be
distributed as (X, y), the training task associated with sta-
tistical model (1) is to find a matrix B̂ that is a proxy to
B∗. To this end, Koltchinskii et al. (2011); Fan et al. (2019)
proposed to compute an estimation B̂ of B∗ as the solution
of the regularized least squares problem

B̂ = arg min
B

∑̀
i=1

(
yi − tr

(
B>Xi

))2
+ λ‖B‖1, (2)

where ‖ · ‖1 is the trace norm (or nuclear norm), which
promotes a low-rank B̂, a key feature for the authors to
establish bounds on the deviation of B̂ from B∗. Slawski
et al. (2015); Koltchinskii & Xia (2015) have considered the
particular case where p .

= p1 = p2 and B∗ is assumed to be
from S+

p , the cone of positive semidefinite matrices of order
p, and they showed that guarantees on the deviation of B̂
from B∗ continue to hold when B̂ is computed as

B̂ = arg min
B∈S+p

∑̀
i=1

(yi − tr (BXi))
2
. (3)

Here, the norm regularization of (2) is no longer present
and it is replaced by an explicit restriction for B̂ to be in
S+
p (as B∗). This setting is tied to the learning of completely

positive maps developed hereafter.
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Partial trace regression model. Here, we propose the
partial trace regression model, that generalizes the trace
regression model to the case when both inputs and outputs
are matrices, and we go a step farther from works that are
assuming either matrix-variate inputs (Zhou & Li, 2014;
Ding & Cook, 2014; Slawski et al., 2015; Luo et al., 2015)
or matrix/tensor-variate outputs (Kong et al., 2019; Li &
Zhang, 2017; Rabusseau & Kadri, 2016). Key to our work
is the so-called partial trace, explained in the following
section and depicted in Figure 1.

This novel regression model that maps matrix-to-matrix
is of interest for several application tasks. For instance,
in Brain-Computer Interfaces, covariance matrices are fre-
quently used as a feature for representing mental state of a
subject (Barachant et al., 2011; Congedo et al., 2013) and
those covariance matrices need to be transformed (Zanini
et al., 2018) into other covariance matrices to be discrimi-
native for some BCI tasks. Similarly in Computer Vision
and especially in the subfield of 3D Shape retrieval, co-
variance matrices are of interest as descriptors (Guo et al.,
2018; Hariri et al., 2017), while there is a surging interest
in deep learning methods for defining trainable layers with
covariance matrices as input and output (Huang & Van Gool,
2017; Brooks et al., 2019).

Contributions. We make the following contributions.
i) We introduce the partial trace regression model, a family
of linear predictors from matrix-valued inputs to matrix-
valued outputs; this model encompasses previously known
regression models, including the trace regression model and
thus the linear regression model; ii) borrowing concepts
from quantum information theory, where partial trace opera-
tors have been extensively studied, we propose a framework
for learning a partial trace regression model from data; we
take advantage of the low-rank Kraus representation of com-
pletely positive maps to cast learning as an optimization
problem which we are able to handle efficiently; iii) we
provide statistical guarantees for the model learned under
our framework, thanks to a provable estimation of pseudodi-
mension of the class of functions that we can envision; iv)
finally, we show the relevance of the proposed framework
for the tasks of matrix-to-matrix regression and positive
semidefinite matrix completion, both of them are amenable
to a partial trace regression formulation; our empirical re-
sults show that partial trace regression model yields good
performance, demonstrating wide applicability and effec-
tiveness.

2. Partial Trace Regression
Here, we introduce the partial trace regression model to en-
code linear mappings from matrix-valued spaces to matrix-
valued spaces. We specialize this setting to completely
positive maps, and show the optimization problem to which

Symbol Meaning

i, j, m, n, p, q integers
α, β, γ, . . . real numbers
X , Y ,H, . . . vector spaces1

x, y, k, . . . vectors (or functions)
X , Y , K, . . . matrices (or operators)
X, Y, K, . . . block matrices
Φ, Λ, Γ, . . . linear maps on matrices
> transpose

Table 1. Notational conventions used in the paper.

learning with the partial trace regression model translates,
together with a generalization error bound for the associated
learned model. In addition, we present how the problem
of (block) positive semidefinite matrix completion can be
cast as a partial trace regression problem.

2.1. Notations, Block Matrices and Partial Trace

Notations. Our notational conventions are summarized
in Table 1. For n,m ∈ N, Mn×m = Mn×m(R) denotes
the space of all n ×m real matrices. If n = m, then we
write Mn instead of Mn×n. If M is a matrix, Mij denotes
its (i, j)-th entry. For M ∈ Mn, M � 0 will be used
to indicate that M is positive semidefinite (PSD); we may
equivalently write M ∈ S+

n . Throughout, {(Xi, Yi)}li=1

denotes a training sample of l examples, with each (Xi, Yi)
assumed to be drawn IID from a fixed but unknown dis-
tribution on X × Y where, from now on, X .

= Mp and
Y .

= Mq .

Block matrices. We will make extensive use of the notion
of block matrices, i.e., matrices that can be partitioned into
submatrices of the same dimension. If M ∈ Mnm, the
number of block partitions of M directly depends on the
number of factors of n and m; to uniquely identify the
partition we are working with, we will always consider a
n × n block partition, where n will be clear from context
—the number of rows and columns of the matrix at hand will
thus be multiples of n. The set Mn(Mm) will then denote
the space of n× n block matrices M = [[Mij ]] whose i, j
entry is an element of Mm.2

Partial trace operators. Partial trace, extensively studied
and used in quantum computing (see, e.g,. Rieffel & Polak
2011, Chapter 10), generalizes the trace operation to block
matrices. The definition we work with is the following.

Definition 1 (Partial trace, see, e.g., Bhatia, 2003.) The
partial trace operator, denoted by trm(·), is the linear map

1We also use the standard notations such as Rn and Mn.
2The space Mn(Mm) is isomorphic to Mn ⊗Mm.
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from Mq(Mm) to Mq defined by

trm(M) =
(
tr(Mij)

)
, i, j = 1, . . . , q.

In other words, given a block matrix M of size qm× qm,
the partial trace is obtained by computing the trace of each
block of size m × m in the input matrix M, as depicted
in Figure 1. We note that in the particular case q = 1, the
partial trace is the usual trace.

Remark 1 (Alternative partial trace) The other way of
generalizing the trace operator to block matrices is the
so-called block trace (Filipiak et al., 2018), which sums the
diagonal blocks of block matrices. We do not use it here.

2.2. Model

We now are set to define the partial trace regression model.

Definition 2 (Partial trace regression model) The partial
trace regression model assumes for a matrix-valued covari-
ate pair (X,Y ), with X taking value in Mp and Y taking
value in Mq:

Y = trm
(
A∗XB

>
∗
)

+ ε, (4)

where A∗, B∗ ∈ Mqm×p are the unknown parameters of
the model and ε is some matrix-valued random noise.

This assumes a stochastic linear relation between the input
X and the corresponding output Y that, given an IID train-
ing sample {(Xi, Yi)}li=1 drawn according to (4), points to
the learning of a linear mapping Φ̂ : Mp →Mq of the form

Φ̂(X) = trm
(
ÂXB̂>

)
, (5)

where Â, B̂ ∈Mqm×p are the parameters to be estimated.

When q = 1, we observe that trm(A∗XB
>
∗ ) =

tr(A∗XB
>
∗ ) = tr(B>∗ A∗X), which is exactly the trace

regression model (1), with a parametrization of the regres-
sion matrix as B>∗ A∗.

We now turn our attention to the question as how to estimate
the matrix parameters of the partial trace regression model
while, as was done in (2) and (3), imposing some structure
on the estimated parameters, so for the learning to come
with statistical guarantees. As we will see, our solution to
this problem takes inspiration from the fields of quantum
information and quantum computing, and amounts to the
use of the Kraus representation of completely positive maps.

2.3. Completely Positive Maps, Kraus Decomposition

The space L(Mp,Mq) of linear maps from Mp to Mq is a
real vector space that has been thoroughly studied in the

fields of mathematics, physics, and more specifically quan-
tum computation and information (Bhatia, 2009; Nielsen &
Chuang, 2000; Størmer, 2012; Watrous, 2018).

Operators from L(Mp,Mq) that have special properties are
the so-called completely positive maps, a family that builds
upon the notion of positive operators.

Definition 3 (Positive maps, Bhatia, 2009) A linear map
Φ ∈ L(Mp,Mq) is positive if for all M ∈ S+

p , Φ(M) ∈ S+
q .

To define completely positive maps, we are going to deviate
a bit from the block matrix structure advocated before and
consider block matrices from Mm(Mp) and Mm(Mq).

Definition 4 (Completely positive maps, Bhatia, 2009) Φ ∈
L(Mp,Mq) is m-positive if the associated map Φm ∈
L(Mm(Mp),Mm(Mq)) which computes the (i, j)-th block
of Φm(M) as Φ(Mij) is positive.

Φ is completely positive if it is m-positive for any m ≥ 1.

The following theorem lays out the connection between
partial trace regression models and positive maps.

Theorem 1 (Stinespring representation, Watrous, 2018)
Let Φ ∈ L(Mp,Mq). Φ writes as Φ(X) = trm

(
AXA>

)
for some m ∈ N and A ∈ Mqm×p if and only if Φ is
completely positive.

This invites us to solve the partial trace learning problem by
looking for a map Φ̂ ∈ L(Mp,Mq) that writes as:

Φ̂(X) = trm(ÂXÂ>), (6)

where now, in comparison to the more general model of (5),
the operator Φ̂ to be estimated is a completely positive map
that depends on a sole matrix parameter Â. Restricting our-
selves to such maps might seem restrictive but i) this is noth-
ing but the partial trace version of the PSD contrained trace
regression model of (3), which allows us to establish statis-
tical guarantees, ii) the entailed optimization problem can
take advantage of the Kraus decomposition of completely
positive maps (see below) and iii) empirical performance is
not impaired by this modelling choice.

Now that we have decided to focus on learning completely
positive maps, we may introduce the last ingredient of our
model, the Kraus representation.

Theorem 2 (Kraus representation, Bhatia, 2009) Let Φ ∈
L(Mp,Mq) be a completely positive linear map. Then there
exist Aj ∈Mq×p, 1 ≤ j ≤ r, with r ≤ pq such that

∀X ∈Mp, Φ(X) =

r∑
j=1

AjXA
>
j . (7)
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The matrices Aj are called Kraus operators and r the Kraus
rank of Φ.

With such a possible decomposition, learning a completely
positive map Φ̂ can reduce to finding Kraus operators Aj ,
for some fixed hyperparameter r, where small values of
r correspond to low-rank Kraus decomposition (Aubrun,
2009; Lancien & Winter, 2017), and favor computational
efficiency and statistical guarantees. Given a sample
{(Xi, Yi)}li=1, the training problem can now be written
as:

arg min
Aj∈Mq×p

l∑
i=1

`
(
Yi,

r∑
j=1

AjXiA
>
j

)
, (8)

where ` is a loss function. The loss function we use in
our experiments is the square loss `(Y, Ŷ ) = ‖Y − Ŷ ‖2F ,
where ‖ · ‖F is the Frobenius norm. When ` is the square
loss and q = 1, problem (8) reduces to the PSD contrained
trace regression problem (3) , with a parametrization of the
regression matrix as

∑r
j=1A

>
j Aj .

Remark 2 Kraus and Stinespring representations can fully
characterize completely positive maps. It has been shown
that for a Kraus representation of rank r, there exists a Stine-
spring representation with dimensionm equal to r (Watrous,
2018, Theorem 2.22). Note that the Kraus representation
is rather computationally friendly compared to Stinespring
representation. It has a simpler form and is easier to store
and manipulate, as no need to create the matrix A of size
qm× p. It also allows us to derive a generalization bound
for partial trace regression, as we will see later.

Optimization. Assuming that the loss function `(·, ·) is
convex in its second argument, the resulting objective func-
tion is non-convex with respect to Aj . If we further assume
that the loss is coercive and differentiable, then the learn-
ing problem admits a solution that is potentially a local
minimizer. In practice, several classical approaches can be
applied to solve this problem. We have for instance tested
a block-coordinate descent algorithm (Luo & Tseng, 1992)
that optimizes one Aj at a time. However, given current
algorithmic tools, we have opted to solve the learning prob-
lem (8) using autodifferentiation (Baydin et al., 2017) and
stochastic gradient descent, since the model can be easily
implemented as a sum of product of matrices. This has the
advantage of being efficient and allows one to leverage on
efficient computational hardware, like GPUs.

Note that at this point, although not backed by theory,
we can consider multiple layers of mappings by com-
posing several mappings {Φk}. This way of composing
would extend the BiMap layer introduced by Huang &
Van Gool (2017) which limits their models to rank 1 Kraus
decomposition. Interestingly, they also proposed a ReLU-
like layer for PSD matrices that can be applicable to our

work as well. For two layers, this would boil down to
Φ2 ◦ Φ1(X) =

∑r2
j2=1A

(2)
j2

Γ[
∑r1
j1=1A

(1)
j XA

(1)>

j ] A
(2)>

j2
,

where Γ is a nonlinear activation that preserves positive
semidefiniteness. We investigate also this direction in our
experiments.

Generalization. We now examine the generalization prop-
erties of partial trace regression via low-rank Kraus decom-
position. Specifically, using the notion of pseudo-dimension,
we provide an upper bound on the excess-risk for the func-
tion class F of completely postive maps with low Kraus
rank, i.e.,

F = {Φ : Mp →Mq : Φ is completely positive and
its Kraus rank is equal to r}.

Recall that the expected loss of any hypothesis h ∈ F is
defined by R(h) = E(X,Y )

[
`
(
Y, h(X)

)]
and its empirical

loss by R̂(h) = 1
l

∑l
i=1 `

(
Yi, h(Xi)

)
.

The analysis presented here follows the lines of Srebro
(2004) in which generalization bounds were derived for
low-rank matrix factorization (see also Rabusseau & Kadri
(2016) where similar results were obtained for low-rank ten-
sor regression). In order to apply known results on pseudo-
dimension, we consider the class of real-valued functions F̃
with domain Mp× [q]× [q], where [q]

.
= {1, . . . , q}, defined

by

F̃ = {(X, s, t) 7→
(
Φ(X)

)
st

: Φ(X) =

r∑
j=1

AjXA
>
j }.

Lemma 3 The pseudo-dimension of the real-valued func-
tion class F̃ is upper bounded by pqr log( 8epq

r ).

We can now invoke standard generalization error bounds in
terms of the pseudodimension (Mohri et al., 2018, Theorem
10.6) to obtain:

Theorem 4 Let ` : Mq → R be a loss function satisfying

`(Y, Y ′) =
1

q2

∑
s,t

`′(Yst, Y
′
st)

for some loss function `′ : R→ R+ bounded by γ. Then for
any δ > 0, with probability at least 1 − δ over the choice
of a sample of size l, the following inequality holds for all
h ∈ F:

R(h) ≤ R̂(h)+γ

√
pqr log( 8epq

r ) log( l
pqr )

l
+γ

√
log
(

1
δ

)
2l

.

The proofs of Lemma 3 and Theorem 4 are provided in the
Supplementary Material. Theorem 4 shows that the Kraus
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rank r plays the role of a regularization parameter. Our
generalization bound suggests a trade-off between reduc-
ing the empirical error which may require a more complex
hypothesis set (large r), and controlling the complexity of
the hypothesis set which may increase the empirical er-
ror (small r).

2.4. Application to PSD Matrix Completion

Our partial trace model is designed to address the problem
of matrix-to-matrix regression. We now show how it can
also be applied to the problem of matrix completion. We
start by recalling how the matrix completion problem fits
into standard trace regression model. Let B∗ ∈ Mm be a
matrix whose entriesB∗ij are given only for some (i, j) ∈ Ω.
Low-rank matrix completion can be addressed by solving
the following optimization problem:

arg min
B

‖PΩ(B)− PΩ(B∗)‖2, s.t. rank(B) = r, (9)

where PΩ(B)ij = Bij if (i, j) ∈ Ω, 0 otherwise. This prob-
lem can be cast as a trace regression problem by considering
yij = PΩ(B∗)ij and Xij = Eij , where Eij , 1 ≤ i, j ≤ m,
are the matrix units of Mm. Indeed, it is easy to see that in
this case problem (9) is equivalent to

arg min
B

∑
(i,j)∈Ω

(
yij−tr(BXij)

)2
s.t. rank(B) = r. (10)

Since the partial trace regression is a generalization of the
trace regression model, one can ask what type of matrix
completion problems can be viewed as partial trace regres-
sion models. The answer to this question is given by the
following theorem.

Theorem 5 (Hiai & Petz, 2014, Theorem 2.49)
Let Φ : Mp →Mq be a linear mapping. Then the following
conditions are equivalent:

1. Φ is completely positive.

2. The block matrix M ∈Mp(Mq) defined by

Mij = Φ(Eij), 1 ≤ i, j ≤ p, (11)

is positive, where Eij are the matrix units of Mp.

Theorem 5 makes the connection between PSD block de-
composable matrices and completely positive maps. Our
partial trace regression formulation is based on learning
completely positive maps via low-rank Kraus decomposi-
tion, and thus can be applied to the problem of PSD matrix
completion. The most straightforward application of The-
orem 5 to PSD matrix completion is to consider the case
where the matrix is block-structured with missing blocks.

This boils down to solving the following optimization prob-
lem

arg min
Ak∈Mq×p

p∑
i,j=1

∥∥Yij −Φ(Xij)
∥∥2

F
s.t. Φ(·) =

r∑
k=1

Ak ·A>k ,

where ‖ · ‖F is the Frobenius norm, Yij are the observed
blocks of the matrix and Xij are the corresponding matrix
units. So, a completely positive map Φ can be learned
by our approach from the available blocks and then can
be used to predict the missing blocks. This would be a
natural approach to take into account local structures in
the matrix and then improve the completion performance.
This approach can be also applicable in situations where
no information about the block-decomposability of the data
matrix to be completed is available. In this case, the size of
the blocks q and the number of the blocks p can be viewed
as hyperparameters of the model, and can be tuned to fit
the data. Note that when q = 1, our method reduces to the
standard trace regression-based matrix completion.

3. Experiments
In this section we turn our attention to evaluating our pro-
posed partial trace regression (PTR) method. We con-
duct experiments on two tasks where partial trace regres-
sion can help, both in a simulated setting and exploit-
ing real data. In all the experiments, the PTR model
is implemented in a keras/Tensorflow framework and
learned with Adam with default learning rate (0.001) and
for 100 epochs. Batch size is typically 16. Our code
is available at https://github.com/Stef-hub/
partial_trace_kraus.

3.1. PSD to PSD Matrix Regression

We will now describe experiments where the learning prob-
lem can be easily described as learning a mapping between
two PSD matrices; first with simulated data and then ap-
plied to learning covariance matrices for Brain-Computer
Interfaces.

3.1.1. EXPERIMENTS ON SIMULATED DATA

Our first goal is to show the ability of our model to accu-
rately recover mappings conforming to its assumptions. We
randomly draw a set of matrices Xi and Ar, and build the
matrices Yi using Equation 7, for various Kraus ranks r, and
p, q the size of input and output spaces respectively. We
train the model with 100, 1000 and 10000 samples on two
simulated datasets with Kraus ranks 5 and 20, and show the
results for maps 20×20→ 10×10 and 100×100→ 40×40
in Figure 2. While 100 samples is not enough to get a good
estimation, with more data the PTR is able to accurately
represent the model with correct rank.

https://github.com/Stef-hub/partial_trace_kraus
https://github.com/Stef-hub/partial_trace_kraus
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Figure 2. PSD to PSD predictive performance (mean squared error)
of PTR as a function of its Kraus rank, on simulated data from map
20×20→ 10×10 (top) and map 100×100→ 40×40 (bottom).

We also aim to show, in this setting, a comparison of our
PTR to trace regression and two baselines that are commonly
used in multiple output regression tasks: the multivariate
regression where no rank assumptions are made (y = xB +
ε) and the reduced-rank multivariate regression (y = xB+ε
with a low-rank constraint on B). For these two methods,
B is a matrix mapping the input x to the output y, which
are the vectorization of the matrix-valued input X and the
matrix-valued output Y , respectively. We also compare
PTR to three tensor to tensor regression methods: the higher
order partial least squares (HOPLS) (Zhao et al., 2012)
and the tensor train and the Tucker tensor neural networks
(NN) (Novikov et al., 2015; Cao & Rabusseau, 2017).

All the models are trained using 10000 simulated examples
from map 20× 20→ 10× 10 generated from a model with
true Kraus rank 5. The results are shown in Table 2 on 1000
test samples where we display the best performance over
ranks from 1 to 100 (when applicable) in terms of mean
squared error (MSE). For the (reduced-rank) multivariate
regression experiments we needed to consider vectorisations
of the matrices, thus removing some of the relevant structure
of the output data. We note that reduced-rank multivariate
regression performs worse than multivariate regression since
the rank of multivariate regression is not related to the Kraus
rank. In this experiment, PTR performs similar to tensor
train NN and significantly better than all the other methods.

Table 2. Comparison of various regression models on PSD to PSD
task on simulated data with map 20 × 20 → 10 × 10 and true
Kraus rank of the model 5. We report the best performance among
various tested model ranks from 1 to 100.

Model MSE
Partial Trace Regression 0.001± 0.0008
Trace Regression 0.028± 0.0144
Multivariate Regression 0.058± 0.0134
Reduced-rank Multivariate Regression 0.245± 0.1023
HOPLS 1.602± 0.0011
Tensor Train NN 0.001± 0.0009
Tucker NN 0.595± 0.0252

Note that, in contrast to PTR, tensor train NN does not
preserve the PSD property.

We ran these experiments also with fewer examples (100
instead of 10000). In this case PTR performs better than
tensor train NN (0.007± 0.013 for PTR and 0.662± 0.364
for tensor train NN) and again better than the other baselines.

3.1.2. MAPPING COVARIANCE MATRICES FOR DOMAIN
ADAPTATION

In some applications like 3D shape recognition or Brain-
Computer Interfaces (Barachant et al., 2011; Tabia et al.,
2014), features take the form of covariance matrices and al-
gorithms taking into account the specific geometry of these
objects are needed. For instance, in BCI, "minimum dis-
tance to the mean (in the Riemannian sense)" classifier has
been shown to be a highly efficient classifier for categorizing
motor imagery tasks.

For these tasks, distribution shifts usually occur in-between
sessions of the same subject using the BCI. In such situa-
tions, one solution is to consider an optimal transport map-
ping of the covariance matrices from the source to the target
domain (the different sessions) (Yair et al., 2019; Courty
et al., 2016). Here, our goal is to learn such a covariance ma-
trix mapping and to perform classification using covariance
matrix from one session (the source domain) as training
data and those of the other session (the target domain) as
test data. For learning the mapping, we will consider only
matrices from the training session.

We adopt the experimental setting described by Yair et al.
(2019) for generating the covariance matrix. From the op-
timal transport-based mapping obtained in a unsupervised
way from the training session, we have couples of input-
output matrices of size 22 × 22 from which we want to
learn our partial trace regressor. While introducing noise
into the classification process, the benefit of such regression
function is to allow out-of-sample domain adaptation as in
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Table 3. Accuracy of a "minimum distance to the mean" classifier
on domain adaptation BCI task. We report the results for the same
subjects as in (Yair et al., 2019).

Subject NoAdapt FullAdapt OoSAdapt
1 73.66 73.66 72.24
3 65.93 72.89 68.86
7 53.42 64.62 59.20
8 73.80 75.27 73.06
9 73.10 75.00 76.89

Perrot et al. (2016). This means that we do not need to solve
an optimal transport problem every time a new sample (or a
batch of new samples) is available. In practice, we separate
all the matrices (about 270) from the training session in a
training/test group, and use the training examples (230 sam-
ples) for learning the covariance mapping. For evaluating
the quality of the learned mapping, we compare the classi-
fication performance of a minimum distance to the mean
classifier in three situations:

• No adaptation between domains is performed. The
training session data is used as is. The method is de-
noted as NoAdapt.

• All the matrices from the training session are mapped
using the OT mapping. This is a full adaptation ap-
proach, denotes as FullAdapt

• Our approach denoted as OoSAdapt (from Out of
Sample Adaptation) uses the 230 covariance matrices
mapped using OT and the other matrices mapped using
our partial trace regression model.

For our approach, we report classification accuracy for a
model of rank 20 and depth 1 trained using an Adam opti-
mize of learning rate 0.001 during 500 iterations. We have
also tested several other hypeparameters (rank and depth)
without much variations in the average performance.

Classification accuracy over the test set (the matrice from
the second session) is reported in Table 3. We first note
that for all subjects, domain adaptation helps in improving
performance. Using the estimated mapping instead of the
true one for projecting source covariance matrix into the
target domain, we expect a loss of performance with re-
spect to the FullAdapt method. Indeed, we observe that for
Subject 1 and 8, we occur small losses. For the other sub-
jects, our method allows to improve performance compared
to no domain adaptation while allowing for out-of-sample
classification. Interestingly, for Subject 9, using estimated
covariance matrices performs slightly better than using the
exact ones.

Figure 3. Completion performance on simulated 28× 28 matrix,
with p = 7 and q = 4. Top left, middle and right: original matrix,
original matrix with missing values, our result with rank 1 Kraus
decomposition. Bottom left, middle and right: Our results with
Kraus rank 5, 30 and 100.

Table 4. Comparison of partial trace regression and trace regression
and tensor train neural networks on (block) PSD matrix completion
on simulated 28× 28 matrix with missing blocks.

Model MSE
Partial Trace Regression 0.572± 0.019
Trace Regression 2.996± 1.078
Tensor Train NN 3.942± 1.463

3.2. PSD Matrix Completion

We now describe our experiments in the matrix completion
setting, first by illustrative examples with simulated data,
then more comprehensively in the setting of multi-view
kernel matrix completion.

3.2.1. EXPERIMENTS ON SIMULATED DATA

We consider the problem of matrix completion in two set-
tings: filling in fully missing blocks, and filling in individu-
ally missing values in a matrix. We perform our experiments
on full rank PSD matrices of size 28× 28.

We show the results on block completion in Figure 3, where
we have trained our partial trace regression model (without
stacking) with Kraus ranks 1, 5, 30 and 100. While using
Kraus rank 1 is not enough to retrieve missing blocs, rank 5
gives already reasonable results, and ranks 30 and 100 are
able to infer diagonal values that were totally missing from
the training blocks. Completion performance in terms of
mean squared error are reported in Table 4, showing that our
PTR method performs favorably against trace regression
and tensor train neural networks.

Figures 4 and 5 illustrate the more traditional completion
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Figure 4. Completion performance on simulated 28× 28 matrix,
with p = 7 and q = 4. Top row: target matrix and target matrix
with missing data. Bottom row: Our completion results with
depth=1 (left) and depth=2 (right).

Figure 5. Completion performance on simulated 28× 28 matrix,
with p = 7 and q = 4. Top row: target matrix and target matrix
with missing data. Bottom row: Our completion results with
depth=1 (left) and depth=2 (right).

task where 35% and 85% (respectively) of values in the
matrix are missing independently of the block structure.
We fix p and q to 7 and 4, respectively, and investigate
the effect that stacking the models has on the completion
performance. Note that p and q may be chosen via cross-
validation. With only a little missing data (Figure 4) there
is very little difference between the results obtained with
one-layer and two-layer models. However we observe that
for the more difficult case (Figure 5), stacking partial trace
regression models significantly improves the reconstruction
performance.

3.2.2. SIMILARITY MATRIX COMPLETION

For our last set of experiments, we evaluate our partial trace
regression model in the task of matrix completion on a multi-
view dataset, where each view contains missing samples.
This scenario occurs in many fields where the data comes

Figure 6. Sum of the matrix completion errors for trace regres-
sion (TR) and our partial trace regression (PTR), over the views of
the multiple features digits dataset as a function of missing samples
with model depths 1 and 2.

from various sensors of different types producing heteroge-
neous view data (Rivero et al., 2017). Following Huusari
et al. (2019), we consider the multiple features digits dataset,
available online.3 The task is to classify digits (0 to 9) from
six descriptions extracted from the images, such as Fourier
coefficients or Karhunen-Loéve coefficients. We selected 20
samples from all the 10 classes, and computed RBF kernels
for views with data samples in Rd, and Chi2 kernels for
views with data samples in Zd, resulting in six 200 × 200
kernel matrices. We then randomly introduced missing sam-
ples within views, leading to missing values (rows/columns)
into kernel matrices. We vary the level of total missing
samples in the whole dataset from 10% to 90%, by taking
care that all the samples are observed at least in one view,
and that all views have observed samples.

We first measure the matrix completion performance on re-
construction quality by computing

∑
v ‖Kv − K̂v‖F with

Kv the original kernel matrix for view v and K̂v the com-
pleted one. We then analyse the success of our method in
the classification task by learning an SVM classifier from a
simple average combination of input kernels. Here we com-
pare our partial trace regression method to two very simple
baselines of matrix completion, namely zero and mean inpu-
tation, as well as the more relevant CVKT method presented
in Huusari et al. (2019). We perform the matrix completion
with our algorithm with three block-structure configurations;
p, q = 20, 10, p, q = 10, 20, and finally with p, q = 200, 1,
which corresponds to trace regression. We consider both
depths 1 and 2 for our partial trace regression model, as well
as Kraus ranks 50, 100 and 200.

Figure 6 shows the sum of matrix completion errors∑
v ‖Kv − K̂v‖F for our method and the trace regression

method in various configurations. For depth 2, the partial
trace regression clearly outperforms the more simple trace
regression (p, q = 200, 1). With model depth 1 all the
methods perform similarly. It might be that the real data

3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Figure 7. SVM accuracy results on the digits dataset as functions of the amount of missing data samples. Left: the classification accuracies
with kernel matrices completed with the compared methods and with "full" kernel matrices for reference; Middle: The results of our
method separately w.r.t. the depth of the model; Right: The results of our method separately w.r.t the assumed Kraus rank.

considered in this experiment is more complex and non-
linear than our model assumes, thus stacking our models is
useful for the performance gain. However the traditional
trace regression does not seem to be able to capture the
important aspects of this data even in the stacked setting.

Figure 7 shows in the left panel the SVM classification ac-
curacies obtained by using the kernel matrices from various
completion methods, and detailed results focusing on our
method in the middle and right side panels. For these ex-
periments, we selected to use in SVMs the kernel matrices
giving the lowest completion errors. We observe that our
model provides excellent kernel completion since the classi-
fication accuracy is close to the performance of the setting
with no missing data. The stacked model seems to be able
to accurately capture the data distribution, giving rise to
very good classification performance. The middle panel
confirms the observations from Figure 6: the depth of our
model plays a crucial part on its performance, with depth 2
outperforming the depth 1 in almost every case, except the
choice of p, q = 200, 1 corresponding to trace regression.
The Kraus rank does not have a strong effect on classifi-
cation performance (right panel). Indeed, this justifies the
usage of our method in a low-rank setting.

4. Conclusion
In this paper, we introduced partial trace regression model,
a family of linear predictors from matrix-valued inputs to
matrix-valued outputs that generalizes previously proposed
models such as trace regression and linear regression. We
proposed a novel framework for estimating the partial trace
regression model from data by learning low-rank Kraus
decompositions of completely positive maps, and derived
an upper bound on the generalization error. Our empiri-
cal study with synthetic and real-world datasets shows the
promising performance of our proposed approach on the
tasks of matrix-to-marix regression and positive semidefi-
nite matrix completion.
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Supplementary Material
In this supplementary material, we prove Lemma 3 and
Theorem 4 in Section 2.3 of the main paper. Let us first
recall the definition of pseudo-dimension.

Definition 5 (Shattering Mohri et al., 2018, Def. 10.1)
Let G be a family of functions from X to R. A set
{x1, ..., xm} ⊂ X is said to be shattered by G if there
exist t1, ..., tm ∈ R such that,

f(x) =

∣∣∣∣∣∣∣

 sign(g(x1)− t1)

...
sign(g(xm)− tm)

 : g ∈ G


∣∣∣∣∣∣∣ = 2m.

Definition 6 (pseudo-dimension Mohri et al., 2018,
Def. 10.2)
Let G be a family of functions from X to R. Then, the
pseudo-dimension of G, denoted by Pdim(G), is the size
of the largest set shattered by G.

In the following we consider that the expected loss of any hy-
pothesis h ∈ F is defined by R(h) = E(X,Y )

[
`
(
Y, h(X)

)]
and its empirical loss by R̂(h) = 1

l

∑l
i=1 `

(
Y, h(X)

)
. To

prove Lemma 3 and Theorem 4, we need the following two
results.

Theorem 6 (Srebro, 2004, Theorem 35)
The number of sign configurations of m polynomials, each
of degree at most d, over n variables is at most

(
4edm
n

)n
for all m > n > 2.

Theorem 7 (Mohri et al., 2018, Theorem 10.6)
Let H be a family of real-valued functions and let G =
{x 7→ L(h(x), f(x)) : h ∈ H} be the family of loss func-
tions associated to H . Assume that the pseudo-dimension of
G is bounded by d and that the loss function L is bounded
by M . Then, for any δ > 0, with probability at least δ over
the choice of a sample of size m, the following inequality
holds for all h ∈ H:

R(h) ≤ R̂(h) +M

√
2d log

(
em
d

)
m

+M

√
log
(

1
δ

)
2m

.

5. Proof of Lemma 3
We now prove Lemma 3 in Section 2.3 of the main paper.

Lemma 3 The pseudo-dimension of the real-valued func-
tion class F̃ with domain Mp × [q]× [q] defined by

F̃ = {(X, s, t) 7→
(
Φ(X)

)
st

: Φ(X) =

r∑
j=1

AjXA
>
j }
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is upper bounded by pqr log( 8epq
r ).

Proof: It is well known that the pseudo-dimension of a
vector space of real-valued functions is equal to its dimen-
sion (Mohri et al., 2018, Theorem 10.5). Since F̃ is a
subspace of the p2q2-dimensional vector space{

(X, s, t) 7→
(
Φ(X)

)
st

: Φ ∈ L(Mp;Mq)
}

of real-valued functions with domain Mp × [q] × [q] the
pseudo-dimension of F̃ is bounded by p2q2.

Now, let m ≤ p2q2 and let {(Xk, sk, tk)}mk=1 be a set
of points that are pseudo-shattered by F̃ with thresh-
olds t1, · · · , tm ∈ R. Then for each binary labeling
(u1, · · · , um) ∈ {−,+}m, there exists Φ̃ ∈ F̃ such that
sign(Φ̃(Xk, sk, tk)− vk) = uk. Any function Φ̃ ∈ F̃ can
be written as

Φ̃(X, s, t) =
( r∑
j=1

AjXA
>
j

)
st
, (12)

where Aj ∈Mq×p,∀j ∈ [r]. If we consider the pqr entries
of Aj , j = 1, . . . , r, as variables, the set {Φ̃(Xk, sk, tk)−
vk}mk=1 can be seen (using Eq. 12) as a set ofm polynomials
of degree 2 over these variables. Applying Theorem 6 above,
we obtain that the number of sign configurations, which is

equal to 2m, is bounded by
(

8em
pqr

)pqr
. The result follows

since m ≤ p2q2. �

6. Proof of Theorem 4
In this section, we prove Theorem 4 in Section 2.3 of the
main paper.

Theorem 4 Let ` : Mq → R be a loss function satisfying

`(Y, Y ′) =
1

q2

∑
s,t

`′(Yst, Y
′
st)

for some loss function `′ : R→ R+ bounded by γ. Then for
any δ > 0, with probability at least 1 − δ over the choice
of a sample of size l, the following inequality holds for all
h ∈ F:

R(h) ≤ R̂(h)+γ

√
pqr log( 8epq

r ) log( l
pqr )

l
+γ

√
log
(

1
δ

)
2l

.

Proof: For any h : Mp → Mq we define h̃ : Mp × [q] ×
[q] → R by h̃(X, s, t) =

(
h(X)

)
st

. Let D denote the
distribution of the input-output data. We have

R(h) = E(X,Y )∼D[`(Y, h(X))]

=
1

q2

∑
s,t

E(X,Y )∼D[`′(Yst, h(X)st]

= E (X,Y )∼D
s,t∼U(q)

[`′(Yst, h̃(X, s, t))],

where U(q) denotes the discrete uniform distribution on [q].
It follows that R(h) = R(h̃). By the same way, we can
show that R̂(h) = R̂(h̃). The generalization bound is then
obtained using Theorem 7 above. �


