
HAL Id: hal-02885153
https://hal.science/hal-02885153

Preprint submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damping, Stabilization and Numerical Filtering for the
Modeling and the Simulation of time dependent PDEs

Jean-Paul Chehab

To cite this version:
Jean-Paul Chehab. Damping, Stabilization and Numerical Filtering for the Modeling and the Simu-
lation of time dependent PDEs. 2020. �hal-02885153�

https://hal.science/hal-02885153
https://hal.archives-ouvertes.fr


Damping, Stabilization and Numerical Filtering for the Modeling and

the Simulation of time dependent PDEs

June 30, 2020

Jean-Paul Chehab

Laboratoire LAMFA (UMR CNRS 7352), Université de Picardie Jules Verne
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Abstract

We present here different situations in which the filtering of high or low modes is used either
for stabilizing semi-implicit numerical schemes when solving nonlinear parabolic equations, either for
building adapted damping operators in the case of dispersive equation. We consider numerical filtering
provided by mutigrid-like techniques as well as the filtering resulting from operator with monotone
symbols. Our approach applies to several discretization techniques and we focus on finite elements
and finite differences. Numerical illustrations are given on Cahn-Hilliard, Korteweig-de-Vries and Ku-
ramoto Sivashinsky equations.
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1 Introduction

One of the particularly hard issues in hydrodynamics is the modeling of damping phenomena: according
to the physical situations, viscous (entire or fractional power of −∆), local or non local additional terms
(half-time or half-space derivative) have been proposed to represent the damping and the fitting with real
physical data still remains a challenge, we refer the reader, e.g., to [56, 57]. The mathematical analysis
of the long time behavior of the solutions of the resulting models is also essential to the understanding
of the underlying physics [23, 40, 41, 42, 43, 46]. Of course the derivation of appropriate and robust
numerical schemes is crucial to capture the dynamics and also to point out mathematical properties that
are difficult to establish, [15, 19, 31, 39]. It is to be noticed that the presence of a damping term can be
seen as a stabilization technique used in control theory, see [53, 58].

Let us look now to an apparently different topic: the conception of numerical solvers for nonlinear
parabolic equations. It is a classical technique to enhance the stability of semi-implicit time schemes
by adding a damping term (e.g. a proper dissipative term) while preserving the consistency of the dis-
cretization. Ideally, the stabilizing term must damp hardly the high frequency components (to prevent
blowing up oscillations) and slightly the low frequency ones (to preserve the consistency). The additional
stabilizing term is nothing else but a damping term and can be interpreted as a low-pass filter. This
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approach necessitates the ability to separate high and low mode components of signal and then to chose
or to design the damping/stabilizing operator through its symbol to obtain desired filtering properties.
This leads to the usage of two different time schemes, one for each set of components; multi-grid as well
as hierarchical-like methods including wavelets have been used in that direction, [14, 49, 50, 51].

We propose here to use relations between damping and stabilization when interpreted as low-pass or
high-pass filters, depending on the applications, for deriving new numerical schemes and also for building
damping operators: on the one hand we use damping techniques to stabilize semi-explicit time scheme
and on the other hand to build damping operator with proper filtering. To this end, we revisit some
topics that have been studied by Ezzeddine Zahrouni and his collaborators, and we include new material
and new perspectives.

The article is organized as follows: in Section 2 after recalling briefly the notion of filter, we describe
several techniques of separation of the scales that allow to decompose a given signal into a mean and
a fluctuant part when considering various discretization techniques. Then, in Section 3, we consider
very weak damping models for Korteweg-de-Vries equation in which the damping operator is presented
as a high-pass filter. In Section 4, we present a Bi-Grid method in finite elements aimed at stabilizing
semi explicit schemes for nonlinear reaction diffusion equations ; we interpret this method as a low-pass
filter stabilization; an application to 2D Cahn-Hilliard System in finite elements is proposed together
with stability results and numerical illustrations. Finally, in Section 5, we propose new perspectives
by exchanging the rules deriving directly, on the one hand, a stabilization technique with low pass-
filters operators and, on the other hand, we build numerical damping modeling by using Numerical
filters of multi-grid type. Korteweg-de Vries and Kuramoto-Sivashinki equations are simulated with these
techniques. The numerical computations have been realized using both Matlab R© and FreeFem++ [38].

2 Filters and separation of the scales

2.1 Filters in the Fourier Case

When dealing with Fourier-like analysis, one can express a sufficiently regular function u belonging to H,
a proper Hilbert space, as the converging sum of linear combinations (wk)k≥1 a proper Hilbertian basis
of H:

u =
+∞∑
k=1

ûkwk.

A filter operator F can be defined as function φ(.) of the frequencies λk, k ≥ 1,

F(u) =
∑
k∈Nd

φ(λk)ûkwk, (1)

where λk is the wave number sequence, generally eigenvalues of a bounded operator with compact inverse.
In numerous applications, the function φ is tuned in order to obtain a given effect. The simplest one is a
bandwidth pass consisting in taking small values of φ(λk) for λk ∈ [λ,Λ] and this is applied in situations
of practical interest (signal processing for sound or image), the effective choice of φ being governed by
physical considerations.
However, in many practical situations φ is not available but can be approached by a piecewise function in

the frequency space as φ(λ) =
∑
k∈Nd

akχN1(k)≤λ≤N2(k), with
⋃
k∈N

[N1(k), N2(k)] = N, N1(k) < N2(k), ∀k ≥

1. The coefficient ak could be tuned or in some situation computed optimally (e.g. in the least square
sense) to fit a desired effect, for instance a given final solution, see Figure (1) hereafter.
When dealing with PDEs on bounded domain, it is usual to build the Hilbert basis as normed eigenfunc-
tions of an elliptic operator D:
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Figure 1: Different filters

• D = −∆ in H = H1
0(Ω) when considering homogeneous Dirichlet Boundary Conditions

• D = αId−∆ in H = H1(Ω), α > 0 when considering homogeneous Neumann Boundary Conditions

• D = −∆ in H =

{
u ∈ H1(Ω)/

∫
Ω
udx = 0

}
when considering periodic or homogeneous Neumann

Boundary Conditions

Remark 2.1. Of course, similar filters can be built when using orthogonal polynomials.

We now describe the building of filters in general situations (spectral as well as non spectral discretiza-
tion methods).

2.2 Separation of the scales in Spectral case

When spectral methods (Fourier or not) are used, the separation of the low and of the high frequency
components is natural when one uses the expansion of the signal in the proper orthogonal basis. Indeed,
let (pk)k≥0 be a family of (algebraic or trigonometric) polynomials on I, say

∫
I pkp`ωdx = 0 when k 6= `,

for a given weight function ω. We obtain both a separation of the scales in space (in the least square
sense) and a separation of the frequencies:

• approximation result: u '
N∑
k=1

ûkpk, since pk is an hilbertian basis of L2(I), |I| < +∞

uN =

N∑
k=1

ûkpk =

N/2∑
k=1

ûkpk︸ ︷︷ ︸ +

N∑
k=N/2+1

ûkpk︸ ︷︷ ︸
Y Z

For regular u, by the convergence of the serie, for N large enough, we have ‖Z‖ � ‖Y ‖.

• all the roots of pk are simple and alternates from pk to pk+1; they belong all in I: as a consequence
pk oscillate more and more in I as k → +∞ hence the separation in frequencies, as illustrated in
Figure (2).
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Therefore, Y , the low mode part of u, carries the main part of the energy while the fluctuant part, Z, is
a small correction containing the high mode components.
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Figure 2: Different basis of orthogonal polynomials

2.3 Separation of the scales in Hierarchical methods: Finite Elements and Wavelets

2.3.1 Finite elements

The generation of the different scales is realized by using hierarchical methods, we refer, e.g., to Bank and
Yserentant [4, 64] for a detailed description. Consider an initial (coarse) triangulation T0 of a polygonal
domain Ω: we first build a family of nested triangulations {T0, T1,..., TN} subdivising any triangle of Tk in
four congruent triangles leading then to the new triangulation Tk+1, see Figure (3) Now, let Sk the finite
elements space on the triangulation Tk of Ω and let Sk be the interpolation operator on the nodes of Tk.
We define V0 = S0 and Vk, k ≥ 1, the subspace of functions that belong in Sk and vanish at the nodes of
Tk−1. We can decompose in that way a function u ∈ SN as

u = I0u+
N∑
k=1

(Ik − Ik−1)u.

SN is then the direct sum of V0, V1,..., VN . The hierarchical basis SN is define as the set of nodal bases of
Vk. The quantities Y and Z are defined by

Y = I0u et Z =
N∑
k=1

(Ik − Ik−1)u. (2)

The Z components are interpolation error, they are associated to small components and also they contain
the high frequency components of the solution: by a Shannon-type argument the coarse sparse can only
capture the low-frequency components, a priori estimates of energy type are given in [4, 64]).
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Figure 3: Hierarchy of the triangles

2.3.2 Wavelets

When the data is a function (or signal) the wavelet decomposition allows a decomposition in terms of
details of different levels, see e.g. [14] for a more detailed practical description of interpolating wavelet
and [24] as a monography. We proceed in two steps, similarly to the hierarchical basis in finite elements:

1. Multiresolution Analysis
Let a Vj ⊂ L2(R) a sequence of functional spaces such that:

• ∩Vj = L2(R) i.e. lim
j→+∞

‖f − Pjf‖2 = 0 where PJ is the orthogonal projection of f on Vj .

• there exists a function φ (scale function) such that

φj,k(x) = 2j/2φ(2jx− k)

is a Riesz basis.

2. Wavelet basis (orthonormal case)

• φj,k are an orthonormal basis such that

Pjf =
∑
k∈Z

(f, φj,k)φj,k

• We define the wavelet ψ by

ψ =
∑
k∈Z

αkφ(2x− k).
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The sequence ψj,k is an orthonormal basis of Wj = Vj+1 \ Vj ; we write then

Qjf = (Pj+1 − Pj)f =
∑
k∈Z

, (f, ψj,k)ψj,k

so
f = P0f +

∑
j

∑
k∈Z

(f, ψj,k)ψj,k,

where (., .) denotes the scalar product in L2. The coefficients (f, ψj,k) are the details, they represent
the fluctuations at the scale j. The term P0f is of the order of the physical solution are represent
the large eddies, it is also carried by low frequencies.

2.4 Separation of the scales with a Multigrid approach in Finite Elements

We consider two levels of discretization (the bi-grid case). As for the Hierarchical finite elements, the two
steps to consider to build the separation of the high and the low mode components are based on the use
of coarse and fine grids (or spaces) WH and Vh respectively; h denotes the is the meshsize of triangulation
attached to Vh and H is the meshsize of triangulation attached to WH . Here again, the high modes can
be represented in Vh while only low modes can be captured in WH .

To extract the high mode part of a function uh ∈ Vh assumed to be regular enough, we write u as

uh = ũh + zh. (3)

Here ũh is the mean part of the solution, zh = uh− ũh ∈ Vh represents the fluctuant part which carries the
high mode components of the solution uh ∈ Vh; we will see hereafter that it is not necessary to simulate
zh in the schemes thanks to a low-pass filter balance. As discussed above, this decomposition can be
obtained by using several embedded approximation spaces, as in the hierarchical methods but here we
can avoid to build a hierarchical basis. We propose the following procedure: consider Vh (resp. WH) the
fine (resp. the coarse) finite elements space. We introduce the prolongation operator P : WH → Vh by

(uH − P(uH), φh) = 0,∀φh ∈ Vh. (4)

Using the previous notations we write Y = ũh = P(uH) and Z = zh.
It is important to note that the embedding WH ⊂ Vh is not mandatory and it is a first advantage as

respect to hierarchical methods; of course compatibility conditions on WH and Vh has to be satisfied to
insure that the prolongation is uniquely defined. More precisely if we denote by (φi)

N
i=1 and (ψj)

M
j=1 two

bases of Vh and of WH respectively (M < N), we can define the matrix Bh
H as (Bh

H)i,j = (φi, ψj), i =
1, · · · , N, j = 1, · · · ,M . The prolongation step can be written as

MhP(uH) = Bh
HuH ,

where Mh is the mass matrix relative to (φi)
N
i=1 .Consequently P(uH) is uniquely defined whenever the

rank of Bh
H is maximal, say rank(Bh

H) = M . We represent in Figure (4) resp. the low and the high mode
components (resp. Y and Z) attached to the function u(x, y) = cos

(
5(1−x2− y2)

)
on the unit disk when

using P2 Finite Elements. We observe that while Y captures accurately the function, Z is a small and
oscillating fluctuant part; in Figure (5) we have represented the magnitude of the Fourier coefficients of
u and those of Z and we observe that Z is indeed supported by the high components.

To give a ground to the previous description, recall the following results for which we refer to [1] for
a detailled presentation.

6



Proposition 2.2. Let WH and Vh be two FEM spaces built on C0 reference elements. Assume that ∀uH ∈
WH , ((uH , φh) = 0,∀φh ∈ Vh ⇒ uH = 0) Then, Bh

H is injective. Moreover, there exists two constants β
and αhH > 0 such that 0 < αhH < β ≤ 1 and

αhH‖uH‖ ≤ ‖P(uH)‖ ≤ β‖uH‖,∀uH ∈WH . (5)

Proposition 2.3. Let WH and Vh be two FEM spaces that we assume to be of class C0 and associated to
nested regular triangulations of Ω, a regular bounded open set of Rn; (K,P,Σ)is the reference element. For
u ∈ Hk+1(Ω) (the Sobolev space of order k+ 1), we denote by uh = Πhu and uH = ΠHu the P-interpolate
of u in Vh and WH respectively. We assume that Pk ⊂ P . We have the following estimate:

‖uh − PuH‖L2(Ω) ≤ CHk+1‖u‖Hk+1(Ω).

An important issue is the concentration of the main computational effort on the coarsest (yet lower
dimensional) subspace WH ⊂ Vh especially when dim(WH) < dim(Vh).

2.5 Low-Pass filtering in finite differences: a signal processing approach

For the sake of simplicity consider a problem that we discretize in finite differences on a cartesian periodic
domain.
We here give a version of stabilized scheme when using numerical filters; we point out the stabilization
effect brought by the presence of these numerical filters in Section 5. In particular the filter will be
implemented explicitly in the numerical scheme as an additional explicit (numerical) operator; usually
the filtering is used as a post-treatment to stabilize the computations, see e.g. [10].

We first consider the 1D case and periodic boundary conditions. We define 2N regularly spaced points
xi = ih, i = 0, · · · 2N − 1 with h = 1

N . We start by defining the 2mth order interpolation scheme that

associates to every u(xi) of odd indice (i = 2p− 1) a proper mean value of the function u computed with
only values of u at odd indices (u(2i± 2p)), namely

u2i−2 =
m−1∑
p=0

ap
u2i−2p−1 + u2i+2p+1

2
. (6)

For a regular function u, we have

u(x2i)−
m−1∑
p=0

ap
u(x2i−2p−1) + u(x2i+2p+1)

2
= O(h2m). (7)

At this point, we define the matrix F as

F2i−1,2i−1 = 1, i = 1, · · · , N,

F2i,2i−2p−1 =
ap
2 , i = 1, · · · , N, p = 0, · · · ,m,

F2i,2i+2p+1 =
ap
2 , i = 1, · · · , N, p = 0, · · · ,m.

Using Taylor expansion, we find that he coefficients ap are computed as the solution of the linear system

V a = b
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Figure 4: 3D output and iso-values for u(x, y) = cos
(
5(1 − x2 − y2)

)
on the unit disk. Top-left the zh

components and Bottom-left the function u with P2 elements. Bottom right: Eigenfunction (Fourier)
coefficients on the fine mesh for the original function and the associated correction.

with

V =


1 1 1 · · · 1
1 4 9 · · · m2

...
...

1 22m−2 m2m−2

 and b =


1
0
...
...
0


The matrix G = Id− F ∈Mn(R) is a numerical low-pass filter.

At this point we formulate the following remarks:

• first, we used here for simplicity periodic boundary conditions. This technique could be applied in
more general situation, e.g. with homogeneous Dirichlet or Neumann boundary conditions using
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compact interpolation schemes to filter, see Lele [48],

• we here proceed as in multigrid frameworks considering two levels of discretization: given h = 1
2n ,

the coarse grid G2h = {xi = 2hi, i = 0, · · ·n− 1} and the fine grid Gh = {xi = ih, i = 0, · · · 2n− 1}.
The filtering consists in computing proper local average of the function u at the grid points of
Gh ⊂ G2h using formula 6 and to leave unchanged the values of u at the grid points of G2h; the
resulting vector ū carries low frequencies components of u the high ones are smoothed by the average
procedure ; the resulting signal z = u− ū is a high modes correction of ū to u, of small amplitude
for u sufficiently regular, the average being computed such that (7) is satisfied.
When considering periodic boundary conditions, the filtering procedure consists in sampling a func-
tion on given regular grid points composed of both coarse grid points (that belong on G2h and that
are referred by ×) and of complementary grid points (that belong on Gh \G2h and that are referred
by o), see hereafter. The signal Fu coincide with u on G2h, and the values on Gh \G2h are replaced
by the local average values (6). The fluctuant part of the signal u is u− Fu.

× o × o × o × o

• It has to be noticed that this procedure can be repeated recursively using nested grids G` = Gh ⊂
G`−1 = G2h ⊂ ... ⊂ G0 = G2`h; G0 being the coarsest grid and G` the finest grid. The filtering
(6) is then applied successively between two consecutive grid levels Gj and Gj−1 as in the bi-grid
case defining several level of high modes correction zj ∈ Gj . This approach led to the Incremental
Unknown (IU) method which consists in reorganizing the unknowns in coarse grid values Y and in
the sequence of the grid corrections correction zj Gj \Gj−1, j = 1, · · · , `, and to treat numerically
each bloc of components with a different scheme, see [18] and the references therein.

As an illustration, we give hereafter in Figure 6 the decomposition of the signal u(x) = sin(2πx) +
sin(6πx) + sin(12πx) + 0.1 sin(20πx) + 0.1 sin(30πx) + 0.1 sin(120πx) into its low and high frequency
components when using the numerical filtering This procedure can be extended to 2D and 3D case when
considering cartesian domains. We display hereafter in Figure 7 the symbolic location of Coarse grid
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Figure 6: Decomposition of the signal u(x) = sin(2πx) + sin(6πx) + sin(12πx) + 0.1 sin(20πx) +
0.1 sin(30πx) + 0.1 sin(120πx), N = 100,m = 8

points (×) and of complementary grid points (o) in 2D when considering various Boundary conditions:
periodic, homogeneous Dirichlet and homogeneous Neumann.

2.6 Separation of the scales and Multilevel Methods

The separation of the scale provided, e.g. by one of the techniques described above is lead to build new
numerical schemes in which low mode and high modes components of the solution are treated differently.
When spectral discretization techniques are used, the decomposition of the solution into low and high
mode components is clear and different bandwidth of frequencies can be considered to distinguish several
levels of details; this approach has been applied for Burgers and Navier-Stokes equations, we refer to
[26, 29, 29] for general presentations. When non spectral discretization are used, the separation sales
can be obtained by using hierachical approaches: the transfer matrix associated is used both as a pre-
conditioner of the stiffness matrices and also to generate different levels of scales, from the coarsest one
associated to the lower frequencies whose the elements are of the order of the physical solution to the
finest one whose the elements are built as proper interpolation errors and which contains the high mode
components. We refer to the non-exhaustive list of references: Hierarchical basis in Finite elements
[12, 13, 27, 49, 50, 51, 64], Wavelets and Incremental Unknowns [14, 16, 17, 18, 59] for finite differences
or finite volume[3, 37].
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Figure 7: Dirichlet BC (Top Left), Neumannn BC (Top Right), Periodic BC (Bottom). The original
values are given at grid points ×, interpolated values are computed at grid points o. The boundary points
are marked by a dot, in the Dirichlet case.

3 Damping modeling for Dispersive PDEs by High pass-like Filtering

3.1 The asymptotic models and various dampings

We concentrate on the Korteweg-de-Vries model which is obtained from Euler’s equations by selecting a
particular physical regime: small amplitude elevation, large wavelength, unidirectional propagation, see
[52], it addresses then to low frequency regimes. The long time behavior of dissipative asymptotic models
is still an important issue: the capture of damping rates in several norms, the measure of regularization
effects, the evidence of complex asymptotic dynamics just to name but a few are important question to
consider to understand natural phenomena. Mostly, several of these questions are still open and the nu-
merical simulation is a way to capture some properties, to select pertinent models and to develop strategies.

We here focus on KdV equations on the torus T = T(0, L); other dispersive models such as BBM
(Bona-Benjamin-Mahony) or BO (Benjamin-Ono) equations could could also studied following a similar
approach, we refer the reader to [39].
Damped Korteweg-de Vries equations appear in different physical situations, they can be expressed in a
large generality as

ut + L(u) + uxxx + uux = 0, x ∈ T, t > 0, (8)

where L is a linear operator, defined on a Hilbert space V , subspace of L2 and satisfying∫ L

0
L(v)vdx ≥ 0, (9)

for all function v ∈ V , regular enough, in such a way the L2-norm of the solution is decreasing in time as

1

2

d|u|2L2

dt
+

∫ L

0
L(v)vdx = 0. (10)
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We find in the litterature different choices for L, depending on the physical situations:

• in their celebrated article, [56], Ott and Sudan have proposed a damped KdV equation as a model
of Landau damping for ion acoustic wave, the (linear) damping being nonlocal, and in [57] they
have presented different models of damping taking L(u) = |D|αu, where |D| =

√
−∆;

• in [28] Dias and Dutykh have considered the operators

L(u) = −νuxx +

√
ν

2

∫ t

0

ut(s)√
t− s

ds, (11)

L(u) = −νuxx −
√
ν

2

∫ t

0

ux(s)√
t− s

ds, (12)

respectively, to model natural damping of water waves, mathematical analysis and simulations can
be found also in [15, 23, 31] in which

ut + uxxx + uux − νuxx −
√
ν√
π

∫ t

0

ux(s)√
t− s

ds = 0, (13)

was considered. The mathematical analysis is given in [23] and a numerical study is presented in
[31].

• A localized damping in space corresponds to

L(u)(x, t) = χ[a,b]u,

where 0 < a < b < L. This situation have been studied in the context of the stabilization of
KdV equations, when the domain is the torus T [53] or the half line R+ and L = χ[a0,+∞[ with
a0 > 0, [58]; they proved the exponential decay of the solutions in time in proper Sobolev norms;
this exponential rate of convergence (after a transient time) is captured numerically in [20].

3.2 Very weak Dampings as High-pass filters

We begin by defining as we mean by a weak damping operator:

Definition 3.1. L is said to be a weak damping operator for KdV equation

ut + uxxx + L[u] + uux = 0, x ∈ T, t > 0, (14)

u(x, 0) = u0(x), (15)

if there exists c > 0 such as

0 ≤
∫
L[u]udx ≤ c‖u‖2L2∀u ∈ L2(T).

The case L = γId, with γ > 0 corresponds to a weak damping model. In this situation we have for
sufficiently regular solutions

1

2

d‖u‖2L2

dt
+ γ‖u‖2L2 = 0,

so the L2-norm of the solution is exponentially damped in time.

Consider now the forced equations, say

ut + uxxx + L[u] + uux = f, x ∈ T, t > 0 (16)

u(x, 0) = u0(x) (17)
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This damping has not a regularizing effect at finite time but, as proved by Ghidaglia [40, 41] and Goubet
[42, 43]. Namely, it allows the equation to posses a finite dimensional attractor which is in a more regular
space than the initial data: this is the asymptotic regularization property. Rosa and Cabral presented
in [15] numerical evidences of a non trivial long time dynamics for moderate values of γ, time periodic
solutions of various cycle length were computed.

A natural question is the following: do we still have the phenomena proven/ pointed out by Ghidaglia,
Goubet, Rosa and Cabral for even more weak dampings? At this point we introduce the notion of a very
weak damping:

Definition 3.2. L is said to be a very weak damping operator for KdV equation

ut + uxxx + L[u] + uux = f, x ∈ T, t > 0, (18)

u(x, 0) = u0(x), (19)

if
∃c > 0 s.t. (L[u], u)L2 ≤ c|u|2L2 and 6 ∃d > 0(L[u], u)L2 ≥ d|u|2L2 .

A way to build such damping operators was proposed in [19, 20] as follows: given a sequence of strictly
positive real numbers (γk)k∈Z, we define

L[u] = Lγ(u) =
∑
k∈Z

γkûke
2iπkx
L . (20)

Of course, if the sequence γk is bounded from below, say γk ≥ γ > 0, the damping is exponential as
before, so a special attention is then given to the case:

lim
k→+∞

γk = 0.

The damping is here then weaker than when γk = γ and can be interpreted as a high-pass filter. Indeed

• when considering a steady problem Lγu is a low-pass filter since it damps the high-frequencies: in
the ideal filter case, we take γk = 1 for |k| ≤ M and γk = 0 for |k| > M . Then Lγu selects only
the low frequencies of u. We will consider rather the situation lim

k→+∞
γk = 0, the hypothesis γk > 0

being important to establish the decay in time.

• for the evolutive case (the roles are exchanged): looking on the linear part of the equation

ut + uxxx + Lγu = 0

we have ûk(t) = e(−i( 2πk
L

)3−γk)tûk(0) so the low frequencies are much more damped as the high ones
since lim

k→+∞
γk = 0; Figure (8) hereafter illustrates the low-pass filter and its transformation into

high-pass filters when taking its negative exponential transformation.

At this point we recall the following results on the decay of the solution in the L2-norm and we refer the
reader to [19] for more details.

Proposition 3.3 (Convergence of the solutions to zero). We define the energy space Hγ(T) = {u ∈
L2(T)/

∑
k∈Z

γk|ûk|2 < +∞}.
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Figure 8: Low-pass filters (left) - Exponential of low pass filters = high-pass filter(right)

• Consider the The linear Homogeneous equation

ut + Lγu = 0

Assume that γk > 0, ∀k ∈ Z and that u0 ∈ Hβ/γ. Then : |u|2β 6 e−1

2t |u0|2β
γ

More generally, assume that γk ∈ [0, 1],∀k ∈ Z and that u0 ∈ H 1
γs

.

Then, for every s > 0, |u|2L2 6 min

(
e−s

( s
2t

)s
|u0|21

γs
, |u0|2L2

)
• Consider now the the nonlinear Homogeneous equation Assume that ū(0) = 0 and γk > 0 then

i. lim
t→+∞

|u|L2 = 0.

ii. In addition, if ū(0) = 0 and if ∃c > 0 such that γk ≥ c > 0,∀k ∈ Z then |u|L2 ≤ κe−ct|u|2L.

Remark 3.4. These results show that when γk > 0, lim
k→+∞

γk = 0, orbit converge to 0 in L2, but it can be

at an arbitrary slow rate, it depends on how γk converge to 0 as k goes to infinity.

An important issue of the design of very weak damping is the preventing of the blow up in supercritical
cases. Consider the Generalized KdV equation (GKdV)

ut + uxxx + upux = 0, x ∈ T, t > 0 (21)

u(x, 0) = u0(x) (22)

This equation is known to present finite time blow up solutions when p ≥ 4, see [5, 6], for particular
initial data (called Blowing Up Initial Data or BUID). It is then interesting to try to compute (at least
numerically) a very weak operator that, for a given BUID, prevents the blow up. Pierre Garnier in [39]
built a very weak damping as a band-width filter using a Fourier discretization in space; the damping is

constant per bandwidth (Lγ(u) =
∑
k∈Nd

akχN1(k)≤|k|≤N2(k)ûke
2iπkx
L ) and is computed by dichotomy as the

lowest possible level (lowest values of ak > 0). The damping depends on the initial data. We recall that
a soliton for GKdV is given by

ϕ(x, t) =

(
(p+ 1)(p+ 2)(c− 1)

2

)1/p

cosh−2/p

(
±
√

(c− 1)

4
p(x− ct− d)

)
.
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The choice of a initial data for simulating a blow up is commonly a perturbed soliton:

u0(x) = σϕ(x, 0),

with σ = 1.01 or σ = 0.99 (see [47, 39]).

4 Stabilization techniques for Parabolic Equations by low pass- like
filtering

4.1 The different approaches in finite elements

When considering parabolic equations, it is well known that the stability of a time marching scheme is
governed by its capability to contain the propagation of the high frequency components of the solution.
Usually the explicit or semi explicit time schemes require les computational effort than the fully explicit
ones but they suffers from a hard time step limitation to prevent the instability caused by the expansion
of the high mode components. A way to obtain a good compromise between a fast iteration (explicit or
semi implicit scheme) and stability (fully implicit schemes) is to add to the first ones a stabilizing term.

u(k+1) − u(k)

∆t
+Au(k+1) + f(uk) = 0, (23)

There exist many different stabilization procedures that can be applied to a large variety of schemes used
for reaction-diffusion equations, see, e.g. [55, 32, 62], particularly those based on hyperbolic perturbations
that we will not consider here.

• parabolic perturbation (first order stabilization)

u(k+1) − u(k)

∆t
+Au(k+1) + τ(u(k+1) − u(k)) + f(uk) = 0, (24)

The stabilization term can be written as τ∆tu
(k+1) − u(k)

∆t and then appears as a first order pertur-
bation which increases the dissipation

• hyperbolic perturbation (second order stabilization)

u(k+1) − u(k)

∆t
+Au(k+1) + τ(u(k+1) − 2u(k) + u(k−1)) + f(uk) = 0, (25)

The stabilization term can be written as τ(∆t2)u
(k+1) − 2u(k) + u(k−1)

(∆t)2 and then appears as a sec-

ond order perturbation which increases the dissipation since the scheme corresponds to the time
discretization of a damped nonlinear wave equation:

∂u

∂t
+ τ(∆t)2∂

2u

∂t2
+ f(u) = 0.

A more accurate scheme can be obtained using a Gear method as

3u(k+1) − 4u(k) + u(k−1)

2∆t
+Au(k+1) + τ(u(k+1) − 2u(k) + u(k−1)) + f(uk) = 0. (26)
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4.2 Low-Pass filtering for Nonlinear Parabolic Equations: a bi-Grid approach in
finite elements

We her follow. [1, 62]. For the sake of simplicity, consider the finite element approximation to the heat
equation by forward Euler’s method:

(uk+1
h , φh) + ∆t(∇ukh,∇φh) = (ukh, φh) + ∆tτ(f, φh), ∀φh ∈ Vh. (27)

This scheme has a restrictive stability condition due to its weak capability to contains the high frequency
components propagation and the addition of a proper damping term is necessary to enhance the stability
of the scheme. Following [1, 62], we propose to add the term τ∆t(uk+1

h − ukh, φh), where τ > 0 is a
stabilizing parameter to be tuned. The new scheme reads as

(uk+1
h − ukh, φh) + τ∆t(uk+1

h − ukh, φh) + ∆t(∇ukh,∇φh) = ∆tτ(f, φh), ∀φh ∈ Vh. (28)

It can be proved that for τ > 0, larger time steps can be taken and for τ large enough values of τ the
new scheme is unconditionnally stable. However, an important drawback is that the dynamics of all the
components fo the solution are slowed down while only the high mode components need to be damped
to enhance the stability, see [1]. A solution is then to damp only the high mode components zk+1

h − zkh of

uk+1
h − ukh: they can be computed using two grids as described in Section 2. We find directly

zk+1
h − zkh = uk+1

h − ukh − (ũk+1
h − ũkh).

Using the definition of ũkh, it follows that (ũk+1
h − ũkh, φh) = (uk+1

H − ukH , φh) and then

(zk+1
h − zkh, φh) = (uk+1

h − ukh − (uk+1
H − ukH), φh).

It is then non necessary to computed the z components.

Now, and as underlined above, one of the goals of the bi-grid method is to save computational time.
To this end the computational effort is concentrated on a coarse finite elements space WH (of lower
dimension) by using implicit and unconditionally time schemes and to simplify the computation of the
fine finite elements space Vh (of higher dimension) by using semi-implicit (yet fast) scheme, a gain of CPU
time is then expected. The weak stability of the semi-implicit scheme has to be compensated by using a
stabilization that we propose to apply only to the high modes components z (of the solution), which are
at the origin of the instabilities.

(uk+1
h , φh) + ∆t(∇uk+1

h ,∇φh) + ∆tτ(uk+1
h − ukh, φh)

= (ukh, φh) + ∆tτ(uk+1
H − ukH , φh), ∀φh ∈ Vh.

This scheme extends naturally to the nonlinear case:

Algorithm 1 Two-grid Stabilized Reaction diffusion equation with correction

1: u0
h, u

0
H given

2:

3: for k = 0, 1, · · · do
4: Solve (uk+1

H , ψH) + ∆t(∇uk+1
H ,∇ψH) = (ukH , ψH), ∀ψH ∈WH

5: +∆t(f(uk+1
H ), ψH)

6: Solve (1 + ∆tτ)(δkh, φh) + ∆t(∇δk+1
h ,∇φh) = ∆tτ(uk+1

H − ukH , φh)
7: −∆t(f(ukh), φh)∀φh ∈ Vh
8: Set uk+1

h = δkh + ukh
9: end for
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We now consider an embedded sequence of finite element spaces, from the coarsest Vh0 to the finest
Vhm , with

Vh0 ⊂ Vh1 ⊂ · · · ⊂ Vhm
In the present work we will concentrate only to the bi-grid case but we can give hereafter the extension
of the stabilized method to the multigrid case.

Algorithm 2 Multi-grid scheme:

1: for k = 0, 1, · · · do

2: Solve in Vh0 (
uk+1
h0
−ukh0

∆t , ψh0) + (∇uk+1
h0

,∇, ψh0) + (f(ukh0), ψh0) =
0, ∀ψh0 ∈ Vh0

3: for j = 1, · · ·m do
4: Solve in Vhm

(1 + τj∆t)(u
k+1
hj
− ukhj , φhj ) + ∆t(∇uk+1

hj
,∇φhj )

−τj∆t(uk+1
hj−1
− ukhj−1

, φhj ) + ∆t(f(ukhj ), φhj ) = 0,∀φhj ∈ Vhj

5: end for
6: end for

4.3 Application to Cahn-Hilliard Equation

4.3.1 The bi-grid scheme

We consider the Cahn-Hilliard equation

∂u

∂t
+ ∆2u− 1

ε2
∆f(u) = 0, x ∈ Ω, t > 0. (29)

Here f(u) = u3 − u is the Landau potential, F (u) = 1
4(u2 − 1)2 its primitive and ∆2 is the bi-laplacean.

This equation is completed with homogeneous Neumann Boundary conditions

∂u
∂n

= 0,
∂(∆u− 1

ε2
f(u))

∂n
= 0. Essential properties are

• the conservation of the mass

ū =

∫
Ω
u(x, t)dx =

∫
Ω
u0(x)dx, (30)

• the decay in time of the energy

∂E(u)

∂t
= −

∫
Ω
|∇(−∆u+

1

ε2
f(u))|2dx ≤ 0, (31)

where we have set E(u) = 1
2

∫
Ω
|∇u|2dx+

1

ε2

∫
Ω
F (u)dx. To approximate the weak solution it is classical

to first considering the equivalent system

∂u
∂t
−∆µ = 0, x ∈ Ω, t > 0,

µ = −∆u+ 1
ε2
f(u), x ∈ Ω, t > 0,

(32)
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and the to the mixed variational framework

(
∂u

∂t
, ψ) + (∇µ,∇ψ) = 0, ∀ψ ∈ V, (33)

(µ, φ) = (∇u,∇φ) +
1

ε2
(f(u), φ), ∀φ ∈W. (34)

First, we define our reference scheme that will used on the coarse space. It is obtain as follows: the
discretization in space is realized by a finite elements method, using P1 or P2 elements; for the time
marching scheme we chose the celebrated Eyre’s splitting [35] which is unconditionally stable.

Algorithm 3 One grid scheme (Eyre’s splitting):

1: for k = 0, 1, · · · do

2: Solve (
uk+1
H − ukH

∆t , ψH) + (∇µn+1
H ,∇ψH)

3: −(µn+1
H , φH)+(∇un+1

H ,∇φH)+ 1
ε2

((uk+1
H )3−ukH , φH) = 0,∀(ψH , φH) ∈

VH ×WH

4: end for

We now can derive the associated two-grids stabilized scheme:

Algorithm 4 Bi-grid Stabilized Cahn-Hilliard

1: u0
h, u

0
H given

2: for k = 0, 1, · · · do
3: Solve in VH ×WH

4: (uk+1
H − ukH , ψH) + ∆t(∇µk+1

H ,∇ψH) = 0, ∀ψH ∈ VH
5: (∇uk+1

H ,∇φH) + 1
ε2

((uk+1
H )3 − ukH), φH) = (µk+1

H ,∇φH), ∀φH ∈WH

6: Solve in Vh ×Wh

7: (uk+1
h − ukh, ψh) + ∆t(∇µk+1

h ,∇ψh) = 0, ∀ψh ∈ Vh
8: (∇uk+1

h ,∇φh) + τ(uk+1
h − ukh, φh) + 1

ε2
(f(ukh), φh) = (µk+1

h , φh) + τ(uk+1
H −

ukH , φh), ∀φh ∈Wh

9: end for

Before establishing the stability in energy for the scheme 4, we prove the following result:

Proposition 4.1. Assume that (u0
H , 1) = 0. Assume that (1, 1) ∈ VH×WH . Then the sequences (ukH , µ

k
H)

generated by algorithm 3 (one-grid scheme) satisfies the properties:

• (ukH , 1) = 0,∀k ≥ 0,

• E(uk+1
H ) ≤ E(uk+1

H ) ∀k ≥ 0,

• ∃C > 0/
k∑
j=0

‖uj+1
H − ujH‖

2
L2(Ω) ≤

2

C
E(u0

H).

Proof. Taking φH = 1 in algo. 3 we find directly

(
uk+1
H − ukH

∆t
, 1) = 0, ∀k ≥ 0. (35)

The first assertion is obtained by induction, using the hypothesis (u0
H , 1) = 0.
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We now establish the energy diminishing for (ukH , µ
k
H). We take φH = µk+1

H and ψH = uk+1
H −ukH . We

obtain

∆t‖∇µkH‖2L2(Ω) + (∇uk+1
H ,∇(uk+1

H − ukH)) +
1

ε2
((uk+1

H )3 − ukH , uk+1
H − ukH) = 0.

Now using parallelogram identity together with the inequality

(a3 − b)(a− b) ≥ (a2 − 1)4

4
− (b2 − 1)4

4
,

we find, after the usual simplifications

∆t‖∇µk+1
H ‖2L2(Ω) + 1

2

(
‖∇uk+1

H ‖2L2(Ω) − ‖∇u
k
H‖2L2(Ω) + ‖∇(uk+1

H − ukH)‖2L2(Ω)

)
+ 1
ε2

(F (uk+1
H )− F (ukH), 1) = 0.

(36)

So
∆t‖∇µk+1

H ‖2L2(Ω) + 1
2‖∇(uk+1

H − ukH)‖2L2(Ω) + E(uk+1
H ) = E(ukH). (37)

The scheme 3 is then unconditionally stable and is also discrete energy diminishing. We now derive
bounds: summing all these relations for j = 0, . . . , k, we obtain

∆t
k∑
j=0

‖∇µj+1
H ‖2L2(Ω) +

1

2

k∑
j=0

‖∇(uj+1
H − ujH)‖2L2(Ω) + E(uk+1

H )− E(u0
H) = 0. (38)

Now, since (ukH) is a null mean value sequence of functions, we can use Poincaré inequality in space
Ḣ1(Ω) =

{
u ∈ H1(Ω)/

∫
Ω udx = 0

}
: there exists C > 0 such that

‖uj+1
H − ujH‖

2
L2(Ω) ≤ C‖∇(uj+1

H − ujH)‖2L2(Ω),∀j = 0, · · · , k.

It follows
k∑
j=0

‖uj+1
H − ujH‖

2
L2(Ω) ≤ C

k∑
j=0

‖∇(uj+1
H − ujH)‖2L2(Ω), (39)

then
k∑
j=0

‖uj+1
H − ujH‖

2
L2(Ω) ≤

2

C
E(u0

H). (40)

We now can establish stability results for algorithm 4

Proposition 4.2. Let f ∈ C1(R,R) and F its primitive. We make the following assumptions:

• L = ‖f ′‖∞ < +∞,

• F ≥ 0 on R,

•
∫

Ω
u0
Hdx = 0 =

∫
Ω
u0
hdx.

• τ ≥ L
ε2

.

Then, there exists κ > 0 depending only on Ω, E(u0
h), E(u0

H) and τ such that

E(uk+1
h ) ≤ κ,∀k ≥ 0.

Scheme 4 is then energy stable.
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Proof. Let k be fixed. We take φh = µk+1
h and ψh = uk+1

h − ukh. We find

∆t‖∇µk+1
h ‖2L2(Ω) + 1

2

(
‖∇uk+1

h ‖2L2(Ω) − ‖∇u
k
h‖2L2(Ω) + ‖∇(uk+1

h − ukh)‖2L2(Ω)

)
+τ‖uk+1

h − ukh‖2L2(Ω) + 1
ε2

(F (uk+1
H )− F (ukH), 1)

+ 1
2ε2

(f ′(ζh)(uk+1
h − ukh), (uk+1

h − ukh)) = τ(uk+1
H − ukH , u

k+1
h − ukh).

(41)

We use Holder then Young’s inequalities

∆t‖∇µk+1
h ‖2L2(Ω) + 1

2‖∇(uk+1
h − ukh)‖2L2(Ω) + τ‖uk+1

h − ukh‖2L2(Ω)

+E(uk+1
h )− E(ukh)

≤ L
2ε2
‖uk+1

h − ukh‖2L2(Ω) + τ
2‖u

k+1
H − ukH‖2L2(Ω) + τ

2‖u
k+1
h − ukh‖2L2(Ω).

Here L = ‖f ′‖∞. Letting γ = 1
2

(
τ − L

ε2

)
≥ 0 (according to the hypothesis), we infer

∆t‖∇µk+1
h ‖2L2(Ω) + 1

2‖∇(uk+1
h − ukh)‖2L2(Ω) + γ‖uk+1

h − ukh‖2L2(Ω)

+E(uk+1
h )− E(ukh) ≤ τ

2‖u
k+1
H − ukH‖2L2(Ω).

Finally, summing these relations for j = 0, . . . k, we haveγ k∑
j=0

‖uj+1
h − ujh‖

2
L2(Ω) + ∆t

k∑
j=0

‖∇µj+1
h ‖2L2(Ω) +

1

2

k∑
j=0

‖∇(uj+1
h − ujh)‖2L2(Ω)


+E(uk+1

h ) ≤ E(u0
h) + τ

2
∑k

j=0 ‖u
j+1
H − ujH‖2L2(Ω).

(42)

At this point, we use (40) and obtain
E(uk+1

h ) ≤ κ, (43)

with κ = E(u0
h) + τ

CE(u0
H).

4.3.2 Numerical illustration

We first describe the implementation of the fixed point iteration. We compute uk+1
H from ukH as follows:

Algorithm 5 Implementation of Eyre’s splitting:

1: Set uk,0H = ukh
2: for m = 0, 1, · · · do

3: Solve (
u

(k,m+1)
H − u(k)

H
∆t , ψH)+(∇uk,m+1

H ,∇ψH)+ 1
ε2

((uk,mH )2(uk,m+1
H )−

ukH , ψH) = 0, ∀ψH ∈WH .
4: end for
5: Set uk+1

H = uk,m+1
h

An acceleration of the fixed point is needed for obtaining the convergence without practical restrictions
on ∆t. To this end we will use Lemaréchal’s acceleration. For a better clarity, let us first write Picard’s
iterates as follows: we denote by Φk(vH , u

k
H) the application which to ukH associates the solution u∗H ∈WH

of the variational problem u∗H

(
u∗H − ukH

∆t
, ψH) + (∇u∗H ,∇ψH) +

1

ε2
((vH)2(u∗H)− ukH , ψH) = 0,∀ψH ∈WH
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The solution u∗H is then defined as u∗H = Φ(u∗H , u
(k)
H ). The Picard iterates consist in generating the

sequence v
(m)
H ∈WH as follows:

v0 = ukh,

for m = 0, . . .

v
(m+1)
H = Φ(v

(m)
H , ukH).

(44)

Unfortunately, in practice, this fixed point method converges only for very small values of ∆t. To enhance
the stability region, and then to allow to take larger values of ∆t, we use the ∆κ acceleration procedure
introduced in [11] and applied in [1, 2, 21] for Allen-Cahn’s, weakly damped Schrödinger and BBM
equations respectively. In two words, the ∆κ procedure consists in replacing the Picard iterates by

v0 = ukh,

for m = 0, . . .

v(m+1) = v(m) − (−1)κακm∆k
Φv

(m);

(45)

where ∆κ
Φv

(m) =
κ∑
j=0

Cκj (−1)κ−jΦ(j)(v(m), uk), Cκj =
κ!

j!(κ− j)!
is the binomial cœfficient and Φ(j) denotes

the jth composition of φ with itself. We have

ακm = (−1)κ
< ∆1

Φv
(m),∆κ+1

Φ v(m) >

< ∆κ+1
Φ v(m),∆κ+1

Φ v(m) >
, (46)

where < ., . > denotes the euclidean scalar product in Rn, see [11]. These acceleration procedures have
been applied with the ∆1 (Lemaréchal’s method [54] corresponding to κ = 1).

We show below in Figures (9), (10), (11) respectively the fine and the coarse meshes, the initial and
the final solution and the time evolution of the Energy and of the mean value of the solution (which are
not affected by the stabilization).

Figure 9: Coarse and fine Meshes

5 Exchange of the rules: stabilization with low pass-filters operators
and Damping modeling using Numerical filters

We here propose to exchange the rule: in the one hand, use a low-pass filter operator to stabilize explicit
and semi-explicit schemes for the solution of parabolic equations and, in the other hand, apply the bi-grid
approach to build effective damping models for nonlinear dispersive equations.
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Figure 10: P2 Elements. ε = 0.08, ∆t = 1.e− 4, τ = 4ε2, T = 0.012. Initial and Final Solution
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Figure 11: P2 Elements. ε = 0.08, ∆t = 1.e− 4, τ = 4ε2, T = 0.012. Energy and mass vs time

5.1 Damping modeling using Numerical filters

We describe here a method to approach the symbol of a damping operator by a constant-wise function.
Consider the evolution system

∂u

∂t
+Au+ F (u) = 0, (47)

which is valid in absence of damping phenomena. We would like to identify a damping operator by fitting
a set of experimental data with the enhanced model

∂u

∂t
+Au+ F (u) + Bu = 0, (48)

where B represents the (unknown) damping operator; B is assumed to be time independent, auto-adjoint
and positive definite. When discretizing in space the last system we get

du

dt
+Au+ F (u) +Bu = 0. (49)

Assume that we have at out disposal measured physical data W (t) at discrete times tk ∈ [0, T ]. We
would like to compute B in such a way to fit with W . To this end we consider an unconditionally stable
time marching scheme, e.g.

wk+1 − wk

∆t
+Awk+1 + F (wk+1) +Bwk+1 = 0,

with B, a semi definite positive matrix (SDP), to be computed such that the above relation holds for all
0 ≤ k∆t ≤ T = N∆t. We denote by WB the sequence generated by this scheme. The matrix B that fits
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optimally the data is given as the solution of an inverse problem in the least square sense:

Bopt = Arg min
B SDP

N∑
k=0

‖wkB −W (k∆t)‖2.

Of course, this approach suffers from very important drawbacks: firstly, it needs to recompute totally
matrix B when changing the discretization space and, secondly, it is rather hard to interpret the computed
matrix Bopt in terms of operators. As a simple illustration consider the linear case (F (.) = 0). The
sequence wk is supposed to be known as well as the matrix A. We have formally the relations

Bwk+1 = −
(
wk+1 − wk

∆t
+Awk+1

)
= Rk+1,

so
Bwk+1(wk+1)T = Rk+1(wk+1)T .

Summing these relations we get

B
m∑
k=1

wk+1(wk+1)T =
m∑
k=1

Rk+1(wk+1)T .

Consequently, a necessary and sufficient condition for computing B uniquely is that the matrix Tm =
m∑
k=1

wk+1(wk+1)T is full rank, implying to take m ≥ n. The practical computation of B can be tricky (B

is often ill-conditioned) and expansive in CPU time. Finally, all the computations have to be repeated
when changing the discretization, e.g., the number of degree of freedom.

For these reasons, we propose a way to approach the symbol of B by fitting a diagonal ansatz of
B on frequency band-width: the symbol of B is intrinsic to the operator and do not depend on the
chosen discretization. A way to achieve this strategy is to use a multi-grid approach based on embedded
approximation spaces, from the coarsest one to the finest one. We present hereafter the feasibility of the
approach considering a given two band-witdth damping operator.

5.2 Filters with Bi-grid scheme in finite elements

A simple bandwidth filtering can be implemented as follows: let τ1 and τ2, two strictly positive constants,
τ1 is the damping parameter attached to the low modes and τ2 is the damping parameter attached to the
high ones.

Algorithm 6 Bi-grid scheme: simplified implementation of Scheme 4.1

1: for k = 0, 1, · · · do

2: Solve in WH (
uk+1
H − ukH

∆t , ψH) + τ0(uk+1
H ,ΨH) + (∇un+1

H ,∇ψH) +

(f(ukH), ψH) = 0,∀ψH ∈WH

3: Solve in Vh

(uk+1
h − ukh, φh) + τ0∆t(uk+1

h , φh) + ∆t(∇uk+1
h ,∇φh)

−τ0∆t(uk+1
H , φh) + ∆t(f(ukh), φh) = 0, ∀φh ∈ Vh

4: end for
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More generally, we can consider an embedded sequence of finite element spaces, from the coarsest Vh0
to the finest Vhm , with

Vh0 ⊂ Vh1 ⊂ · · · ⊂ Vhm .

We derive the scheme:

Algorithm 7 Multi-grid scheme:

1: for k = 0, 1, · · · do

2: Solve in Vh0 (
uk+1
h0
−ukh0

∆t , ψh0) + τ0(uk+1
h0

, ψh0) + (∇uk+1
h0

,∇, ψh0) +

(f(ukh0), ψh0) = 0,∀ψh0 ∈ Vh0
3: for j = 1, · · ·m do
4: Solve in Vhm

(uk+1
hj
− ukhj , φhj ) + τj∆t(u

k+1
hj

, φhj ) + ∆t(∇uk+1
hj

,∇φhj )

−τj∆t(uk+1
hj−1

, φhj ) + ∆t(f(ukhj ), φhj ) = 0, ∀φhj ∈ Vhj

5: end for
6: end for

5.3 Modelling with piecewise filter damping

5.3.1 A toy model

We want to mimmic the effect of the damping operator Lγ used in very weak damped KdV Equation:

Lγu =
∑
k∈Z

γkûkwk. Consider the ODE

du

dt
+ Lγu = 0.

For simplicity assume that γk =

{
τ0, |k| ≤ N1

τ1, |k| > N1
τ0 is the damping parameter attached to the low modes

and τ1 is the damping parameter attached to the high ones. Decompose uh = ũh + zh.

We introduce the method using Euler time marching scheme. The damping of the law mode compo-
nents is first computed on the coarse space Wh as

(
uk+1
H − ukH

∆t
, ψH) + τ0(uk+1

H , ψH) = 0, ∀ψH ∈WH

then (ũh − uk+1
H , φh) = 0, ∀φh ∈ Vh.

The high modes zh components are damped in Vh with rate τ1

(
zk+1
h − zkh

∆t
, φh) + τ1(zk+1

h ,Φh) = 0,∀φh ∈ Vh,

while the low mode ũh on Vh are damped with rate τ0 as

(
ũk+1
h − ũkh

∆t
, φh) + τ0(ũk+1

h , φh) = 0,∀φh ∈ Vh.
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Summing these two relations, we obtain (after using the relations ”uh = ũh + zh” and (ũh − uk+1
H , φh) =

0, ∀φh ∈ Vh)

(
uk+1
h − ũkh

∆t
, φh) + τ1(uk+1

h , φh) = (τ1 − τ0)(uk+1
H , φh),∀φh ∈ Vh,

We give hereafter in Figure (12) a simple illustration of the toy model dynamics for (τ0, τ1) = (10, 100)
and (τ0, τ1) = (100, 0.10). We observe the damping is indeed at different rates for the high mode com-
ponents and for the low ones. The above scheme can be extended in a more general situation in the
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Figure 12: u0 = cos(2πx/L)+cos(6πx/L)+cos(12πx/L)+cos(20πx/L), (τ0, τ1) = (10, 100) (left) (τ0, τ1) =
(100, 0.10) (right), ∆t = 1.e− 1, T = 10, L = 100

nonlinear case: consider the equation

du

dt
+ Lγu+ f(u) = 0.

The derivation of the bi-grid scheme is similar as above. First, we write the scheme on WH

(
uk+1
H − ukH

∆t
, ψH) + τ0(uk+1

H , ψH) + (f(uk+1
H ), ψH) = 0, ∀ψH ∈WH .

ũk+1
h is defined as (ũk+1

h − uk+1
H , φh) = 0, ∀φh ∈ Vh.

Now, we write both the equation satisfied by the zh and the ũh components:
First, the high modes zh components are damped in Vh with rate τ1

(
zk+1
h − zkh

∆t
, φh) + τ1(zk+1

h , φh) + (f(ukh)− f̃(ukh), φh) = 0, ∀φh ∈ Vh,

while the low mode ũh on Vh are damped with rate τ0 as

(
ũk+1
h − ũkh

∆t
, φh) + τ0(ũk+1

h , φh) + (f̃(ukh), φh) = 0, ∀φh ∈ Vh,

By summing these two relations, we obtain

(
uk+1
h − ũkh

∆t
, φh) + τ1(uk+1

h , φh) + (f(ukh), φh) = (τ1 − τ0)(uk+1
H , φh),∀φh ∈ Vh.

5.3.2 Application to KdV equation

We consider here the periodic KdV equation on T(0, L)

ut + uxxx + uux = 0, x ∈ T, t > 0, (50)

u(x, 0) = u0(x). (51)
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This equation possesses the soliton

ϕ(x, t) =
A

cosh2(κ2 ((x− x0 − ct))))
,

with A = 0.8, κ =
√
A
3 , c = κ2 and x0 = L

2 . The initial data for simulating is then u0(x) = ϕ(x, 0).
To apply the damping technique presented above for the Toy problem, we will use finite elements for

the space discretization together with a Sanz-Serna scheme for the time marching . We obtain the system

Algorithm 8 KdV System

1: for k = 0, 1, · · · do

2: Find (u
(k+1)
h , v

(k+1)
h ) ∈ Vh × Vh

(uk+1
h − ukh, φh)−∆t(∂x

v
(k+1)
h + v

(k)
h

2 , ∂xφh) + ∆t
2 (∂x(

u
(k+1)
h + u

(k)
h

2 )2, φh)

+(∂xu
(k+1)
h , ψh)− (v

(k+1)
h , ψh) = 0, ∀(φh, ψh) ∈ Vh × Vh

3: end for

The presentation of the scheme as a system allows to use P1 finite elements. We can now apply the bi-grid
filter approach described above to obtain a damped system, with different dampings for the low and the
high frequency components:

Algorithm 9 Bi-grid scheme damped KdV equation

1: for k = 0, 1, · · · do

2: Find (u
(k+1)
H , w

(k+1)
H ) ∈WH ×WH

(uk+1
H − ukH , φH)−∆t(∂x

v
(k+1)
H + v

(k)
H

2 , ∂xφH) + ∆t
2 (∂x(

u
(k+1)
H + u

(k)
H

2 )2, φH)

+∆tτ0(
u

(k+1)
H + u

(k)
H

2 , φH) + (∂xu
(k+1)
H , ψh)− (v

(k+1)
H , ψH) = 0, ∀(φH , ψH) ∈WH ×WH

3: Find (u
(k+1)
h , v

(k+1)
h ) ∈ Vh × Vh

(uk+1
h − ukh, φh)−∆t(∂x

v
(k+1)
h + v

(k)
h

2 , ∂xφh) + ∆t
2 (∂x(

u
(k)
h + ũ

(k+1)
h

2 )2, φh)

+∆tτ1(
u

(k+1)
h + u

(k)
h

2 , φh)−∆tτ1(
u

(k+1)
H + u

(k)
H

2 , φh) + ∆tτ0(
u

(k+1)
H + u

(k)
H

2 , φh)

+(∂xu
(k+1)
h , ψh)− (v

(k+1)
h , ψh) = 0, ∀(φh, ψh) ∈ Vh × Vh

4: end for

As a simple illustration, we consider the two following situations to underline the low mode regime
of the KdV model representing the time evolution of the two first invariants the L2 norm and the mean
value:

• We take (τ0, τ1) = (0, 0): the KdV equation is not damped and both the mean value and the L2-norm
of the solution are conserved, see Figure 13
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• We take (τ0, τ1) = (0, 100): only the high mode components are damped. Since the KdV model is
derived as a low mode approximation, there is almost not damping, see Figure 14

• We take (τ0, τ1) = (100, 1): the low mode are hardly damped as respect to the high ones. Figure 15

In all cases, the observations agree with those of [19] in Fourier case.
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Figure 13: KdV (τ0, τ1) = (0, 0), P1 Elements. ∆t = 1.e− 2, T = 40. mass and L2-norm vs time
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5.4 Stabilization with low pass-filters operators : a signal processing Low-pass filter-
ing for Parabolic equations

We here use the separation of the scale provided by the numerical filtering presented in Section 2.5.
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The matrix G = Id− F ∈Mn(R) is a numerical high-pass filter. Therefore, the damping of the high
frequency components can be obtained from scheme (24) as

U (k+1) − U (k)

∆t
+ τG(U (k+1) − U (k)) +AU (k) = f. (52)

5.4.1 Stabilized Schemes

At this point, we can propose the following explicit stabilized scheme

Algorithm 10 : Explicit-Stabilized with Numerical filtering

1: for k = 0, 1, · · · do
2: Solve (Id+ τ∆tG)δ(k) = ∆t(f −Au(k))
3: Set u(k+1) = u(k) + δ(k)

4: end for

We can give now the ”good” generic properties to be satisfied by G

• Damping :< Gu, u >≥ 0, ∀u ∈ Rn

• High-Mode components approximation: let u ∈ C2p+2, we let ui = u(xi), i = 1, · · ·n, u = (u1, · · · , un)T .

– ∃C > 0 independent on u and h such that ‖G‖ ≤ Ch2p‖u‖
– if u is high mode supported ‖Gu− u‖ is ”small”

We will discuss on that aspect elsewhere and concentrate in the present work on numerical evidences.

As a simple illustration, consider the numerical solution of the Heat equation by Algorithm 11. To
appreciate the stabilization brought by the high mode damping, we compare both the stability region and
the evolution of the error (in L∞-norm) for the scheme ?? when

• G = 0 which gives the Forward Euler’s scheme

• G = A which gives the Backward Euler’s scheme

• G = Id which gives the globally stabilized Forward Euler’s scheme

• G = Id− F which gives the high frequency stabilized Forward Euler’s scheme, say Algorithm 11

We also compare the results with the second order stabilized scheme (hyperbolic stabilization 25).

u(k+1) − u(k)

∆t
+Au(k+1) + τ(u(k+1) − 2u(k) + u(k−1)) = f(k∆t). (53)

We simulate the exact solution u(x, t) = (sin(2πx)+0.1 sin(4πx)+0.1 sin(10πx)+0.1 sin(16πx)) exp(sin(t));
the parameters are n = 100,m = 4,∆t = 9.95 10−5, τ = 1.6 104 First of all we remark that the stability
region of the Backward Euler scheme is enhanced thanks to the the stabilization procedure: indeed while
the times step limitation of the fully explicit scheme is

0 < ∆t <
2

ρ(A)
= 5. 10−5,

we can choose a nearly double time step for the stabilized schemes: ∆t = 9.95 10−5. We report hereafter
in Figure (16) the time evolution of the error for the schemes Backward Euler’s, First order high frequency
stabilized, second order stabilized and fully stabilized. We remark that the error of the fully stabilized
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scheme is important while the curves corresponding to the three other schemes are superposed at a
satisfactory level.

As a second illustration, we consider the Kuramoto-Sivashinsky equation (KSE) which describes the
propagation of a flam front in some physical situations. We consider this equation on the torus T = [0, L]:

ut + uxxxx + uxx +
1

2
(ux)2 = 0, x ∈]0, L[, t > 0, (54)

u(0, x) = u0(x), x ∈]0, L[, (55)

∂ju

∂xj
(t, x+ L) =

∂ju

∂xj
(t, x), j = 0, . . . , 3. (56)

The terms uxxxx and uxx are in competition, their sum brings a global dissipation when all the eigenvalues
of ∂xxxx dominate those of −∂xx, say when 2π

L ≥ 1 or equivalently L ≤ 2π; for larger values of L, a finite
and consecutive number of eigenvalues of ∂xxxx + ∂xx are strictly negative; L appears as a bifurcation
parameter and for large values, chaotic dynamics is observed, we refer to [45, 63, 65]. We now consider
the numerical simulations using as above finite differences for the space discretisation: the differential
operators are discretized high compact schemes [48]. We will denote by A2j the discretization matrix of
∂xxxx + ∂xx by a scheme of order 2j. We now consider the following semi-explicit three schemes:

Algorithm 11 : Explicit-Stabilized schemes for KSE

1: for k = 0, 1, · · · do
2: Solve (Id+ τ∆tM)δ(k) = −∆t(f(uk) +A2ju

(k))
3: Set u(k+1) = u(k) + δ(k)

4: end for

The pratical choices for matrix M are the following:

• M = A2j which gives the Backward Euler’s semi-implicite scheme or the classical IMEX scheme

• M = τ(Id− F ) +A2 which gives high frequency (HF) stabilized Forward Euler’s scheme
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An additional HF stabilized scheme extending the second order stabilization one will be also used:

u(k+1) − u(k)

∆t
+ τ(Id− F )

(
u(k+1) − 2u(k) + u(k−1)

)
+A2(u(k+1) − u(k)) = −f(uk)−A2ju

(k).

In the implicit linear part, we use A2 (which is a sparse matrix) instead of A2j (which is dense once j ≥ 2)
to accelerate the resolution at each time step, as also proposed in [8, 9] for Navier-Stokes and phase fields
equations. We did not reported the results for the global stabilized (corresponding to M = τId + A2)
because the dynamics is frozen by the stabilization.

We give hereafter in Figures (17) and (18) the computed KSE solution at final time T = 140 (both
low and high mode components) together with the time evolution of the mean value, 6th order compact
schemes are used. The results agree with those of [14, 65].

Figure 17: KSE Low and high frequency components of the solution at final time T = 140 (left), time
evolution of the mean value (right) - n = 128, m = 8, ∆t = 0.01, L = 10 (line 1, L = 20 (line 2)

6 Conclusion and Perspectives

The decomposition of numerical approximations of solutions of dissipative or dispersive PDEs into low
modes and high modes components can be simply done in various situations (Spectral, Finite Elements,
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Figure 18: KSE Low and high frequency components of the solution at final time T = 140 (left), time
evolution of the mean value (right) - ∆t = 0.01. Line 1: L = 50, n = 128, m = 8; line 2: L = 100,
n = 256, m = 10

Finite Differences as presented in Section 2; it allows to develop new numerical schemes (using high mode
stabilization) but also to design new damping models. As a possible perspectives, we propose to study and
implement the multi-grid versions of both stabilized times schemes (algorithm 4) and damped (algorithms
9) with a band width approach. In the particular context of the modeling of the damping of hydrodynamic
equations (but not only) the building of a damping operator via a band width approximation of its symbol
using a multi-grid approach seems an interesting option. Damping parameter could be computed optimally
to satisfy given criteria; for example recovering a very weak damping operator as the one proposed by
Garnier [39] to prevent blow up in Generalized KdV equations in the supercritical case could be an
interesting issue. Finally, the damping/stabilization technique presented here could be of interest when
considering other dispersive equations such as those of Nonlinear Schrodinger Equation type, e.g. taking
advantage of the works [36, 44].
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pour les équations d’ondes non-linéaires. (French) [Scale separation and multilevel schemes for non-
linear wave equations] CANUM 2008, 180–208, ESAIM Proc., 27.

[15] M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265–278.

[16] J.-P. Chehab and B. Costa, Multiparameter methods for evolutionary equations , Numerical Algo-
rithms, 34 (2003), 245-257

[17] J.-P. Chehab and B. Costa, Multiparameter extensions of iterative processes rapport technique du
laboratoire de mathmatiques d’Orsay, 2002

[18] J.-P. Chehab and B. Costa, Time explicit schemes and finite differences splittings , Journal of Scien-
tific Computing, 20, 2 (2004), pp 159-189.

32

http://www.math.uic.edu/~bona/papers/boussineq-paper.pdf


[19] J.-P. Chehab and G. Sadaka Numerical Study of a family of dissipative KdV equations, Commun.
Pure Appl. Anal. 12 (2013), no. 1, 519–546.

[20] J.-P. Chehab and G. Sadaka, On Damping Rates of dissipative KdV equations, Discrete Contin. Dyn.
Syst. Ser. S 6 (2013), no. 6, 1487-1506

[21] J.-P. Chehab, P. Garnier and Y. Mammeri, Long-time behavior of solutions of a BBM equation with
generalized damping, Discr. Cont. Dyn. Syst. B, n 7, september 2015, Pages : 1897 - 1915

[22] J.-P. Chehab, P. Garnier and Y. Mammeri, Numerical solution of the generalized Kadomtsev-
Petviashvili equations with compact finite difference schemes, submitted

[23] M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with
nonlocal viscous dispersive term, Discrete and Continuous Dynamical Systems, 27 (2010), 1473–1492.

[24] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier, 2003.

[25] B. Costa, L. Dettori, D. Gottlieb, R. Temam. Time marching techniques for the nonlinear Galerkin
method. SIAM J. SC. comp., 23, (2001), 1, 46–65.

[26] B. Costa. L. Dettori, D. Gottlieb and R. Temam, Time marching techniques for the nonlinear Galerkin
method, SIAM J. SC. comp., 23, (2001), 1, 46-65.

[27] A. Debussche, J. Laminie, E. Zahrouni, A dynamical multi-level scheme for the Burgers equation:
wavelet and hierarchical finite element. J. Sci. Comput. 25 (2005), no. 3, 445–497.

[28] F. Dias and D. Dutykh, Viscous potentiel free-surface flows in a fluid layer of finite depth, C. R.
Math. Acad. Sci. Paris, 345 (2007), 113–118.

[29] T. Dubois, F. Jauberteau, R. Temam. Dynamic Multilevel Methods and the Numerical Simulation
of Turbulence. Cambridge University Press (1998)

[30] T. Dubois, F. Jauberteau, R. Temam. Incremental Unknowns, Multilevel Methods and the Numerical
Simulation of Turbulence. Comp. Meth. in Appl. Mech. and Engrg. (CMAME), Elsevier Science
Publishers (North-Holland).

[31] S. Dumont and J.-B. Duval, Numerical investigation of asymptotical properties of solutions to models
for waterwaves with non local viscosity, International Journal of Numerical Analysis and Modeling,
to appear, (2012).

[32] S. Gasparin, J. Berger, D. Dutykh, N. Mendes. Stable explicit schemes for simulation of nonlinear
moisture transfer in porous materials, J. of Build. Perf. Sim., (2017), Volume 11, 2018 - Issue 2, pp
129–144.

[33] H. Emmerich. The Diffuse Interface Approach in Materials Science Thermodynamic. Concepts and
Applications of Phase-Field Models. Lecture Notes in Physics Monographs, Springer, Heidelberg,
2003.

[34] A. Ern, J.-L. Guermond. Theory and Practice of Finite Elements. Applied Mathematical Science,
159, Springer-Verlag, New-York, 2004.

[35] D. J. Eyre. Unconditionallly Stable One-step Scheme for Gradient Systems. June 1998, unpublished,
http://www.math.utah.edu/eyre/research/methods/stable.ps.

[36] Ezzoug, Emna; Goubet, Olivier; Zahrouni, Ezzeddine Semi-discrete weakly damped nonlinear 2-D
Schrdinger equation. Differential Integral Equations 23 (2010), no. 3-4, 237–252.

33



[37] S. Faure, J. Laminie, R. Temam, Finite volume discretization and multilevel methods in flow prob-
lems. J. Sci. Comput. 25 (2005), no. 1-2, 231–261.

[38] FreeFem++ page. http://www.freefem.org

[39] P. Garnier, Frequency damping to prevent the blow-up of the Korteweg-de Vries equation, CPAA

[40] J-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional
dynamical system in the long time, J. Diff. Eq., 74 (1988), 369–390.

[41] J-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equa-
tions, J. Diff. Eq., 110 (1994), 356–359.

[42] O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations,
Discrete Contin. Dynam. Systems, 6 (2000), 625–644.

[43] O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV
equation on the real line , J. Differential Equations 185 (2002), 25–53.

[44] Goubet, Olivier; Zahrouni, Ezzeddine On a time discretization of a weakly damped forced nonlinear
Schrdinger equation. Commun. Pure Appl. Anal. 7 (2008), no. 6, 1429-1442.

[45] J. M. Hyman, B. Nikolaenko, The Kuramoto-Sivashinky equation: a bridge between PDE’s and
Dynamical Systems, Physica 18 D (1986) 113-126

[46] M. Jolly and R. Rosa and R. Temam, Accurate computations on inertial manifolds, Siam J. Sc.
Comput, Vol.22(6), pp 2216–2238, (2001).

[47] C. Klein, R. Peter, Numerical study of blow-up and dispersive shocks in solutions to generalized
Korteweg-de Vries equations. Phys. D 304/305 (2015), 52–78

[48] S. Lele, Compact Difference Schemes with Spectral Like resolution, J. Comp. Phys., 103, (1992),
16–42

[49] M. Marion and R. Temam, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26,
1989,1139-1157.

[50] M. Marion and R. Temam, Nonlinear Galerkin Methods ; The Finite elements case, Numerische
Mathematik, 57, 1990 , 205-226.

[51] M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite
elements SIAM Journal on Numerical Analysis, Volume 32 Issue 4, Aug. 1995 Pages 1170-1184

[52] A. Miranville and R. Temam, “Mathematical Modeling in Continuum Mechanics,” Second edition,
Cambridge University Press, Cambridge, 2005.

[53] C. Laurent, L. Rosier and B.-Y. Zhang, Control stabilization of the Korterweg-de Vries equation in
a periodic domain, Comm. PDE, 35 (2010), 707–744.
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