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We present here different situations in which the filtering of high or low modes is used either for stabilizing semi-implicit numerical schemes when solving nonlinear parabolic equations, either for building adapted damping operators in the case of dispersive equation. We consider numerical filtering provided by mutigrid-like techniques as well as the filtering resulting from operator with monotone symbols. Our approach applies to several discretization techniques and we focus on finite elements and finite differences. Numerical illustrations are given on Cahn-Hilliard, Korteweig-de-Vries and Kuramoto Sivashinsky equations.

Introduction

One of the particularly hard issues in hydrodynamics is the modeling of damping phenomena: according to the physical situations, viscous (entire or fractional power of -∆), local or non local additional terms (half-time or half-space derivative) have been proposed to represent the damping and the fitting with real physical data still remains a challenge, we refer the reader, e.g., to [START_REF] Ott | Nonlinear theory of ion acoustic wave with Landau damping[END_REF][START_REF] Ott | Damping of solitary waves[END_REF]. The mathematical analysis of the long time behavior of the solutions of the resulting models is also essential to the understanding of the underlying physics [START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF][START_REF] Ghidaglia | Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time[END_REF][START_REF] Ghidaglia | A note on the strong convergence towards attractors for damped forced KdV equations[END_REF][START_REF] Goubet | Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations[END_REF][START_REF] Goubet | Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line[END_REF][START_REF] Jolly | Accurate computations on inertial manifolds[END_REF]. Of course the derivation of appropriate and robust numerical schemes is crucial to capture the dynamics and also to point out mathematical properties that are difficult to establish, [START_REF] Cabral | Chaos for a damped and forced KdV equation[END_REF][START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF][START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity[END_REF][START_REF] Garnier | Frequency damping to prevent the blow-up of the Korteweg-de Vries equation[END_REF]. It is to be noticed that the presence of a damping term can be seen as a stabilization technique used in control theory, see [START_REF] Laurent | Control stabilization of the Korterweg-de Vries equation in a periodic domain[END_REF][START_REF] Pazoto | Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line[END_REF].

Let us look now to an apparently different topic: the conception of numerical solvers for nonlinear parabolic equations. It is a classical technique to enhance the stability of semi-implicit time schemes by adding a damping term (e.g. a proper dissipative term) while preserving the consistency of the discretization. Ideally, the stabilizing term must damp hardly the high frequency components (to prevent blowing up oscillations) and slightly the low frequency ones (to preserve the consistency). The additional stabilizing term is nothing else but a damping term and can be interpreted as a low-pass filter. This approach necessitates the ability to separate high and low mode components of signal and then to chose or to design the damping/stabilizing operator through its symbol to obtain desired filtering properties. This leads to the usage of two different time schemes, one for each set of components; multi-grid as well as hierarchical-like methods including wavelets have been used in that direction, [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF][START_REF] Marion | Nonlinear Galerkin Methods[END_REF][START_REF] Marion | Nonlinear Galerkin Methods ; The Finite elements case[END_REF][START_REF] Marion | Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[END_REF].

We propose here to use relations between damping and stabilization when interpreted as low-pass or high-pass filters, depending on the applications, for deriving new numerical schemes and also for building damping operators: on the one hand we use damping techniques to stabilize semi-explicit time scheme and on the other hand to build damping operator with proper filtering. To this end, we revisit some topics that have been studied by Ezzeddine Zahrouni and his collaborators, and we include new material and new perspectives.

The article is organized as follows: in Section 2 after recalling briefly the notion of filter, we describe several techniques of separation of the scales that allow to decompose a given signal into a mean and a fluctuant part when considering various discretization techniques. Then, in Section 3, we consider very weak damping models for Korteweg-de-Vries equation in which the damping operator is presented as a high-pass filter. In Section 4, we present a Bi-Grid method in finite elements aimed at stabilizing semi explicit schemes for nonlinear reaction diffusion equations ; we interpret this method as a low-pass filter stabilization; an application to 2D Cahn-Hilliard System in finite elements is proposed together with stability results and numerical illustrations. Finally, in Section 5, we propose new perspectives by exchanging the rules deriving directly, on the one hand, a stabilization technique with low passfilters operators and, on the other hand, we build numerical damping modeling by using Numerical filters of multi-grid type. Korteweg-de Vries and Kuramoto-Sivashinki equations are simulated with these techniques. The numerical computations have been realized using both Matlab R and FreeFem++ [38].

2 Filters and separation of the scales

Filters in the Fourier Case

When dealing with Fourier-like analysis, one can express a sufficiently regular function u belonging to H, a proper Hilbert space, as the converging sum of linear combinations (w k ) k≥1 a proper Hilbertian basis of H:

u = +∞ k=1 ûk w k .
A filter operator F can be defined as function φ(.) of the frequencies λ k , k ≥ 1,

F(u) = k∈N d φ(λ k )û k w k , (1) 
where λ k is the wave number sequence, generally eigenvalues of a bounded operator with compact inverse. In numerous applications, the function φ is tuned in order to obtain a given effect. The simplest one is a bandwidth pass consisting in taking small values of φ(λ k ) for λ k ∈ [λ, Λ] and this is applied in situations of practical interest (signal processing for sound or image), the effective choice of φ being governed by physical considerations. However, in many practical situations φ is not available but can be approached by a piecewise function in the frequency space as φ(λ) =

k∈N d a k χ N 1 (k)≤λ≤N 2 (k) , with k∈N [N 1 (k), N 2 (k)] = N, N 1 (k) < N 2 (k), ∀k ≥ 1.
The coefficient a k could be tuned or in some situation computed optimally (e.g. in the least square sense) to fit a desired effect, for instance a given final solution, see Figure [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF] hereafter.

When dealing with PDEs on bounded domain, it is usual to build the Hilbert basis as normed eigenfunctions of an elliptic operator D: Of course, similar filters can be built when using orthogonal polynomials.

We now describe the building of filters in general situations (spectral as well as non spectral discretization methods).

Separation of the scales in Spectral case

When spectral methods (Fourier or not) are used, the separation of the low and of the high frequency components is natural when one uses the expansion of the signal in the proper orthogonal basis. Indeed, let (p k ) k≥0 be a family of (algebraic or trigonometric) polynomials on I, say I p k p ωdx = 0 when k = , for a given weight function ω. We obtain both a separation of the scales in space (in the least square sense) and a separation of the frequencies:

• approximation result: u N k=1 ûk p k , since p k is an hilbertian basis of L 2 (I), |I| < +∞ u N = N k=1 ûk p k = N/2 k=1 ûk p k + N k=N/2+1 ûk p k Y Z
For regular u, by the convergence of the serie, for N large enough, we have Z Y .

• all the roots of p k are simple and alternates from p k to p k+1 ; they belong all in I: as a consequence p k oscillate more and more in I as k → +∞ hence the separation in frequencies, as illustrated in Figure [START_REF] Abounouh | Discrete Schrodinger equations and dissipative dynamical systems[END_REF].

Therefore, Y , the low mode part of u, carries the main part of the energy while the fluctuant part, Z, is a small correction containing the high mode components. 

Finite elements

The generation of the different scales is realized by using hierarchical methods, we refer, e.g., to Bank and Yserentant [START_REF] Bank | Hierarchical bases and the finite element method[END_REF][START_REF] Yserentant | On multilevel splitting of finite element spaces[END_REF] for a detailed description. Consider an initial (coarse) triangulation T 0 of a polygonal domain Ω: we first build a family of nested triangulations {T 0 , T 1, ..., T N } subdivising any triangle of T k in four congruent triangles leading then to the new triangulation T k+1 , see Figure (3) Now, let S k the finite elements space on the triangulation T k of Ω and let S k be the interpolation operator on the nodes of T k . We define V 0 = S 0 and V k , k ≥ 1, the subspace of functions that belong in S k and vanish at the nodes of T k-1 . We can decompose in that way a function u ∈ S N as

u = I 0 u + N k=1 (I k -I k-1 ) u. S N is then the direct sum of V 0 , V 1, ..., V N .
The hierarchical basis S N is define as the set of nodal bases of V k . The quantities Y and Z are defined by

Y = I 0 u et Z = N k=1 (I k -I k-1 ) u. (2) 
The Z components are interpolation error, they are associated to small components and also they contain the high frequency components of the solution: by a Shannon-type argument the coarse sparse can only capture the low-frequency components, a priori estimates of energy type are given in [START_REF] Bank | Hierarchical bases and the finite element method[END_REF][START_REF] Yserentant | On multilevel splitting of finite element spaces[END_REF]). 

Wavelets

When the data is a function (or signal) the wavelet decomposition allows a decomposition in terms of details of different levels, see e.g. [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF] for a more detailed practical description of interpolating wavelet and [START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF] as a monography. We proceed in two steps, similarly to the hierarchical basis in finite elements:

1. Multiresolution Analysis Let a V j ⊂ L 2 (R) a sequence of functional spaces such that:

• ∩V j = L 2 (R) i.e. lim j→+∞ f -P j f 2 = 0 where P J is the orthogonal projection of f on V j .

• there exists a function φ (scale function) such that

φ j,k (x) = 2 j/2 φ(2 j x -k)
is a Riesz basis.

Wavelet basis (orthonormal case)

• φ j,k are an orthonormal basis such that

P j f = k∈Z (f, φ j,k )φ j,k • We define the wavelet ψ by ψ = k∈Z α k φ(2x -k).
The sequence ψ j,k is an orthonormal basis of W j = V j+1 \ V j ; we write then

Q j f = (P j+1 -P j )f = k∈Z , (f, ψ j,k )ψ j,k so f = P 0 f + j k∈Z (f, ψ j,k )ψ j,k ,
where (., .) denotes the scalar product in L 2 . The coefficients (f, ψ j,k ) are the details, they represent the fluctuations at the scale j. The term P 0 f is of the order of the physical solution are represent the large eddies, it is also carried by low frequencies.

Separation of the scales with a Multigrid approach in Finite Elements

We consider two levels of discretization (the bi-grid case). As for the Hierarchical finite elements, the two steps to consider to build the separation of the high and the low mode components are based on the use of coarse and fine grids (or spaces) W H and V h respectively; h denotes the is the meshsize of triangulation attached to V h and H is the meshsize of triangulation attached to W H . Here again, the high modes can be represented in V h while only low modes can be captured in W H .

To extract the high mode part of a function u h ∈ V h assumed to be regular enough, we write u as

u h = ũh + z h . (3) 
Here ũh is the mean part of the solution, z h = u h -ũh ∈ V h represents the fluctuant part which carries the high mode components of the solution u h ∈ V h ; we will see hereafter that it is not necessary to simulate z h in the schemes thanks to a low-pass filter balance. As discussed above, this decomposition can be obtained by using several embedded approximation spaces, as in the hierarchical methods but here we can avoid to build a hierarchical basis. We propose the following procedure: consider V h (resp. W H ) the fine (resp. the coarse) finite elements space. We introduce the prolongation operator P :

W H → V h by (u H -P(u H ), φ h ) = 0, ∀φ h ∈ V h . (4) 
Using the previous notations we write Y = ũh = P(u H ) and Z = z h . It is important to note that the embedding W H ⊂ V h is not mandatory and it is a first advantage as respect to hierarchical methods; of course compatibility conditions on W H and V h has to be satisfied to insure that the prolongation is uniquely defined. More precisely if we denote by (φ i ) N i=1 and (ψ j ) M j=1 two bases of V h and of W H respectively (M < N ), we can define the matrix

B h H as (B h H ) i,j = (φ i , ψ j ), i = 1, • • • , N, j = 1, • • • , M .
The prolongation step can be written as

M h P(u H ) = B h H u H ,
where M h is the mass matrix relative to (φ i ) N i=1 .Consequently P(u H ) is uniquely defined whenever the rank of B h H is maximal, say rank(B h H ) = M . We represent in Figure (4) resp. the low and the high mode components (resp. Y and Z) attached to the function u(x, y) = cos 5(1 -x 2 -y 2 ) on the unit disk when using P 2 Finite Elements. We observe that while Y captures accurately the function, Z is a small and oscillating fluctuant part; in Figure [START_REF] Bona | Existence of solutions to the Korteweg-de Vries initial value problem[END_REF] we have represented the magnitude of the Fourier coefficients of u and those of Z and we observe that Z is indeed supported by the high components.

To give a ground to the previous description, recall the following results for which we refer to [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF] for a detailled presentation. Proposition 2.2. Let W H and V h be two FEM spaces built on C 0 reference elements. Assume that ∀u

H ∈ W H , ((u H , φ h ) = 0, ∀φ h ∈ V h ⇒ u H = 0) Then, B h
H is injective. Moreover, there exists two constants β and α h H > 0 such that 0 < α h H < β ≤ 1 and

α h H u H ≤ P(u H ) ≤ β u H , ∀u H ∈ W H . (5) 
Proposition 2.3. Let W H and V h be two FEM spaces that we assume to be of class C 0 and associated to nested regular triangulations of Ω, a regular bounded open set of R n ; (K, P, Σ)is the reference element. For u ∈ H k+1 (Ω) (the Sobolev space of order k + 1), we denote by u h = Π h u and u H = Π H u the P-interpolate of u in V h and W H respectively. We assume that P k ⊂ P . We have the following estimate:

u h -Pu H L 2 (Ω) ≤ CH k+1 u H k+1 (Ω) .
An important issue is the concentration of the main computational effort on the coarsest (yet lower dimensional) subspace W H ⊂ V h especially when dim(W H ) < dim(V h ).

Low-Pass filtering in finite differences: a signal processing approach

For the sake of simplicity consider a problem that we discretize in finite differences on a cartesian periodic domain. We here give a version of stabilized scheme when using numerical filters; we point out the stabilization effect brought by the presence of these numerical filters in Section 5. In particular the filter will be implemented explicitly in the numerical scheme as an additional explicit (numerical) operator; usually the filtering is used as a post-treatment to stabilize the computations, see e.g. [START_REF] Brachet | Schémas compacts hermitiens sur la sphère -Applications en climatologie et océanographie numérique[END_REF].

We first consider the 1D case and periodic boundary conditions. We define 2N regularly spaced points

x i = ih, i = 0, • • • 2N -1 with h = 1
N . We start by defining the 2mth order interpolation scheme that associates to every u(x i ) of odd indice (i = 2p -1) a proper mean value of the function u computed with only values of u at odd indices (u(2i ± 2p)), namely

u 2i-2 = m-1 p=0 a p u 2i-2p-1 + u 2i+2p+1 2 . ( 6 
)
For a regular function u, we have

u(x 2i ) - m-1 p=0 a p u(x 2i-2p-1 ) + u(x 2i+2p+1 ) 2 = O(h 2m ). ( 7 
)
At this point, we define the matrix F as

             F 2i-1,2i-1 = 1, i = 1, • • • , N, F 2i,2i-2p-1 = a p 2 , i = 1, • • • , N, p = 0, • • • , m, F 2i,2i+2p+1 = a p 2 , i = 1, • • • , N, p = 0, • • • , m.
Using Taylor expansion, we find that he coefficients a p are computed as the solution of the linear system with

V a = b
V =        1 1 1 • • • 1 1 4 9 • • • m 2 . . . . . . 1 2 2m-2 m 2m-2        and b =         1 0 . . . . . . 0         The matrix G = Id -F ∈ M n (R) is a numerical low-pass filter.
At this point we formulate the following remarks:

• first, we used here for simplicity periodic boundary conditions. This technique could be applied in more general situation, e.g. with homogeneous Dirichlet or Neumann boundary conditions using compact interpolation schemes to filter, see Lele [START_REF] Lele | Compact Difference Schemes with Spectral Like resolution[END_REF],

• we here proceed as in multigrid frameworks considering two levels of discretization: given h = 1 2n , the coarse grid

G 2h = {x i = 2hi, i = 0, • • • n -1} and the fine grid G h = {x i = ih, i = 0, • • • 2n -1}.
The filtering consists in computing proper local average of the function u at the grid points of G h ⊂ G 2h using formula 6 and to leave unchanged the values of u at the grid points of G 2h ; the resulting vector ū carries low frequencies components of u the high ones are smoothed by the average procedure ; the resulting signal z = u -ū is a high modes correction of ū to u, of small amplitude for u sufficiently regular, the average being computed such that (7) is satisfied. When considering periodic boundary conditions, the filtering procedure consists in sampling a function on given regular grid points composed of both coarse grid points (that belong on G 2h and that are referred by ×) and of complementary grid points (that belong on G h \ G 2h and that are referred by o), see hereafter. The signal F u coincide with u on G 2h , and the values on G h \ G 2h are replaced by the local average values [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF]. The fluctuant part of the signal u is u -F u.

× o × o × o × o
• It has to be noticed that this procedure can be repeated recursively using nested grids

G = G h ⊂ G -1 = G 2h ⊂ ... ⊂ G 0 = G 2 h
; G 0 being the coarsest grid and G the finest grid. The filtering ( 6) is then applied successively between two consecutive grid levels G j and G j-1 as in the bi-grid case defining several level of high modes correction z j ∈ G j . This approach led to the Incremental Unknown (IU) method which consists in reorganizing the unknowns in coarse grid values Y and in the sequence of the grid corrections correction z j G j \ G j-1 , j = 1, • • • , , and to treat numerically each bloc of components with a different scheme, see [START_REF] Chehab | Time explicit schemes and finite differences splittings[END_REF] and the references therein.

As an illustration, we give hereafter in Figure 6 the decomposition of the signal u(x) = sin(2πx) + sin(6πx) + sin(12πx) + 0.1 sin(20πx) + 0.1 sin(30πx) + 0.1 sin(120πx) into its low and high frequency components when using the numerical filtering This procedure can be extended to 2D and 3D case when considering cartesian domains. We display hereafter in Figure 7 

Separation of the scales and Multilevel Methods

The separation of the scale provided, e.g. by one of the techniques described above is lead to build new numerical schemes in which low mode and high modes components of the solution are treated differently.

When spectral discretization techniques are used, the decomposition of the solution into low and high mode components is clear and different bandwidth of frequencies can be considered to distinguish several levels of details; this approach has been applied for Burgers and Navier-Stokes equations, we refer to [START_REF] Costa | Time marching techniques for the nonlinear Galerkin method[END_REF][START_REF] Dubois | Dynamic Multilevel Methods and the Numerical Simulation of Turbulence[END_REF][START_REF] Dubois | Dynamic Multilevel Methods and the Numerical Simulation of Turbulence[END_REF] for general presentations. When non spectral discretization are used, the separation sales can be obtained by using hierachical approaches: the transfer matrix associated is used both as a preconditioner of the stiffness matrices and also to generate different levels of scales, from the coarsest one associated to the lower frequencies whose the elements are of the order of the physical solution to the finest one whose the elements are built as proper interpolation errors and which contains the high mode components. We refer to the non-exhaustive list of references: Hierarchical basis in Finite elements [START_REF] Calgaro | Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization[END_REF][START_REF] Calgaro | On a multilevel approach for the two-dimensional Navier-Stokes equations with finite elements. Finite elements in fluids[END_REF][START_REF] Debussche | A dynamical multi-level scheme for the Burgers equation: wavelet and hierarchical finite element[END_REF][START_REF] Marion | Nonlinear Galerkin Methods[END_REF][START_REF] Marion | Nonlinear Galerkin Methods ; The Finite elements case[END_REF][START_REF] Marion | Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[END_REF][START_REF] Yserentant | On multilevel splitting of finite element spaces[END_REF], Wavelets and Incremental Unknowns [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF][START_REF] Chehab | Multiparameter methods for evolutionary equations[END_REF][START_REF] Chehab | Multiparameter extensions of iterative processes rapport technique du laboratoire de mathmatiques d'Orsay[END_REF][START_REF] Chehab | Time explicit schemes and finite differences splittings[END_REF][START_REF] Poullet | Staggered incremental unknowns for solving Stokes and generalized Stokes problems[END_REF]] for finite differences or finite volume [START_REF] Adamy | A multilevel method for finite volume discretization of the two-dimensional nonlinear Shallow-Water equations[END_REF][START_REF] Faure | Finite volume discretization and multilevel methods in flow problems[END_REF]. 3 Damping modeling for Dispersive PDEs by High pass-like Filtering
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The asymptotic models and various dampings

We concentrate on the Korteweg-de-Vries model which is obtained from Euler's equations by selecting a particular physical regime: small amplitude elevation, large wavelength, unidirectional propagation, see [START_REF] Miranville | Mathematical Modeling in Continuum Mechanics[END_REF], it addresses then to low frequency regimes. The long time behavior of dissipative asymptotic models is still an important issue: the capture of damping rates in several norms, the measure of regularization effects, the evidence of complex asymptotic dynamics just to name but a few are important question to consider to understand natural phenomena. Mostly, several of these questions are still open and the numerical simulation is a way to capture some properties, to select pertinent models and to develop strategies.

We here focus on KdV equations on the torus T = T(0, L); other dispersive models such as BBM (Bona-Benjamin-Mahony) or BO (Benjamin-Ono) equations could could also studied following a similar approach, we refer the reader to [START_REF] Garnier | Frequency damping to prevent the blow-up of the Korteweg-de Vries equation[END_REF]. Damped Korteweg-de Vries equations appear in different physical situations, they can be expressed in a large generality as

u t + L(u) + u xxx + uu x = 0, x ∈ T, t > 0, ( 8 
)
where L is a linear operator, defined on a Hilbert space V , subspace of L 2 and satisfying

L 0 L(v)vdx ≥ 0, (9) 
for all function v ∈ V , regular enough, in such a way the L 2 -norm of the solution is decreasing in time as 1 2

d|u| 2 L 2 dt + L 0 L(v)vdx = 0. ( 10 
)
We find in the litterature different choices for L, depending on the physical situations:

• in their celebrated article, [START_REF] Ott | Nonlinear theory of ion acoustic wave with Landau damping[END_REF], Ott and Sudan have proposed a damped KdV equation as a model of Landau damping for ion acoustic wave, the (linear) damping being nonlocal, and in [START_REF] Ott | Damping of solitary waves[END_REF] they have presented different models of damping taking L(u) = |D| α u, where |D| = √ -∆;

• in [START_REF] Dias | Viscous potentiel free-surface flows in a fluid layer of finite depth[END_REF] Dias and Dutykh have considered the operators

L(u) = -νu xx + ν 2 t 0 u t (s) √ t -s ds, (11) 
L(u) = -νu xx - ν 2 t 0 u x (s) √ t -s ds, (12) 
respectively, to model natural damping of water waves, mathematical analysis and simulations can be found also in [START_REF] Cabral | Chaos for a damped and forced KdV equation[END_REF][START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF][START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity[END_REF] in which

u t + u xxx + uu x -νu xx - √ ν √ π t 0 u x (s) √ t -s ds = 0, (13) 
was considered. The mathematical analysis is given in [START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF] and a numerical study is presented in [START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity[END_REF].

• A localized damping in space corresponds to

L(u)(x, t) = χ [a,b] u,
where 0 < a < b < L. This situation have been studied in the context of the stabilization of KdV equations, when the domain is the torus T [START_REF] Laurent | Control stabilization of the Korterweg-de Vries equation in a periodic domain[END_REF] or the half line R + and L = χ [a 0 ,+∞[ with a 0 > 0, [START_REF] Pazoto | Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line[END_REF]; they proved the exponential decay of the solutions in time in proper Sobolev norms; this exponential rate of convergence (after a transient time) is captured numerically in [START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF].

Very weak Dampings as High-pass filters

We begin by defining as we mean by a weak damping operator: Definition 3.1. L is said to be a weak damping operator for KdV equation

u t + u xxx + L[u] + uu x = 0, x ∈ T, t > 0, (14) 
u(x, 0) = u 0 (x), (15) 
if there exists c > 0 such as

0 ≤ L[u]udx ≤ c u 2 L 2 ∀u ∈ L 2 (T).
The case L = γId, with γ > 0 corresponds to a weak damping model. In this situation we have for sufficiently regular solutions 1 2

d u 2 L 2 dt + γ u 2 L 2 = 0,
so the L 2 -norm of the solution is exponentially damped in time.

Consider now the forced equations, say

u t + u xxx + L[u] + uu x = f, x ∈ T, t > 0 (16) u(x, 0) = u 0 (x) (17) 
This damping has not a regularizing effect at finite time but, as proved by Ghidaglia [START_REF] Ghidaglia | Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time[END_REF][START_REF] Ghidaglia | A note on the strong convergence towards attractors for damped forced KdV equations[END_REF] and Goubet [START_REF] Goubet | Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations[END_REF][START_REF] Goubet | Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line[END_REF]. Namely, it allows the equation to posses a finite dimensional attractor which is in a more regular space than the initial data: this is the asymptotic regularization property. Rosa and Cabral presented in [START_REF] Cabral | Chaos for a damped and forced KdV equation[END_REF] numerical evidences of a non trivial long time dynamics for moderate values of γ, time periodic solutions of various cycle length were computed.

A natural question is the following: do we still have the phenomena proven/ pointed out by Ghidaglia, Goubet, Rosa and Cabral for even more weak dampings? At this point we introduce the notion of a very weak damping: Definition 3.2. L is said to be a very weak damping operator for KdV equation

u t + u xxx + L[u] + uu x = f, x ∈ T, t > 0, ( 18 
) u(x, 0) = u 0 (x), ( 19 
)
if ∃c > 0 s.t. (L[u], u) L 2 ≤ c|u| 2 L 2 and ∃d > 0(L[u], u) L 2 ≥ d|u| 2 L 2 .
A way to build such damping operators was proposed in [START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF][START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF] as follows: given a sequence of strictly positive real numbers (γ k ) k∈Z , we define

L[u] = L γ (u) = k∈Z γ k ûk e 2iπkx L . (20) 
Of course, if the sequence γ k is bounded from below, say γ k ≥ γ > 0, the damping is exponential as before, so a special attention is then given to the case:

lim k→+∞ γ k = 0.
The damping is here then weaker than when γ k = γ and can be interpreted as a high-pass filter. Indeed

• when considering a steady problem L γ u is a low-pass filter since it damps the high-frequencies: in the ideal filter case, we take γ k = 1 for |k| ≤ M and γ k = 0 for |k| > M . Then L γ u selects only the low frequencies of u. We will consider rather the situation lim k→+∞ γ k = 0, the hypothesis γ k > 0 being important to establish the decay in time.

• for the evolutive case (the roles are exchanged): looking on the linear part of the equation

u t + u xxx + L γ u = 0
we have ûk (t) = e (-i( 2πk L ) 3 -γ k )t ûk (0) so the low frequencies are much more damped as the high ones since lim k→+∞ γ k = 0; Figure [START_REF] Brachet | Stabilized Times Schemes for High Accurate Finite Differences Solutions of Nonlinear Parabolic Equations[END_REF] hereafter illustrates the low-pass filter and its transformation into high-pass filters when taking its negative exponential transformation.

At this point we recall the following results on the decay of the solution in the L 2 -norm and we refer the reader to [START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF] for more details. Proposition 3.3 (Convergence of the solutions to zero). We define the energy space Hγ(T) • Consider the The linear Homogeneous equation

= {u ∈ L 2 (T)/ k∈Z γ k | u k | 2 < +∞}.
u t + L γ u = 0
Assume that γ k > 0, ∀k ∈ Z and that u 0 ∈ H β/γ . Then :

|u| 2 β e -1 2t |u 0 | 2 β γ
More generally, assume that γ k ∈ [0, 1], ∀k ∈ Z and that u 0 ∈ H 1 γ s . Then, for every s > 0, |u| 2

L 2 min e -s s 2t s |u 0 | 2 1 γ s , |u 0 | 2 L 2
• Consider now the the nonlinear Homogeneous equation Assume that ū(0) = 0 and γ k > 0 then i. lim

t→+∞ |u| L 2 = 0.
ii. In addition, if ū(0) = 0 and if ∃c > 0 such that

γ k ≥ c > 0, ∀k ∈ Z then |u| L 2 ≤ κe -ct |u| 2 L .
Remark 3.4. These results show that when γ k > 0, lim k→+∞ γ k = 0, orbit converge to 0 in L 2 , but it can be at an arbitrary slow rate, it depends on how γ k converge to 0 as k goes to infinity.

An important issue of the design of very weak damping is the preventing of the blow up in supercritical cases. Consider the Generalized KdV equation (GKdV)

u t + u xxx + u p u x = 0, x ∈ T, t > 0 (21) u(x, 0) = u 0 (x) ( 22 
)
This equation is known to present finite time blow up solutions when p ≥ 4, see [START_REF] Bona | Existence of solutions to the Korteweg-de Vries initial value problem[END_REF][START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF], for particular initial data (called Blowing Up Initial Data or BUID). It is then interesting to try to compute (at least numerically) a very weak operator that, for a given BUID, prevents the blow up. Pierre Garnier in [START_REF] Garnier | Frequency damping to prevent the blow-up of the Korteweg-de Vries equation[END_REF] built a very weak damping as a band-width filter using a Fourier discretization in space; the damping is constant per bandwidth (L γ (u) =

k∈N d a k χ N 1 (k)≤|k|≤N 2 (k) ûk e 2iπkx 
L
) and is computed by dichotomy as the lowest possible level (lowest values of a k > 0). The damping depends on the initial data. We recall that a soliton for GKdV is given by

ϕ(x, t) = (p + 1)(p + 2)(c -1) 2 1/p cosh -2/p ± (c -1) 4 p(x -ct -d) .
The choice of a initial data for simulating a blow up is commonly a perturbed soliton:

u 0 (x) = σϕ(x, 0),
with σ = 1.01 or σ = 0.99 (see [START_REF] Klein | Numerical study of blow-up and dispersive shocks in solutions to generalized Korteweg-de Vries equations[END_REF][START_REF] Garnier | Frequency damping to prevent the blow-up of the Korteweg-de Vries equation[END_REF]).

4 Stabilization techniques for Parabolic Equations by low pass-like filtering

The different approaches in finite elements

When considering parabolic equations, it is well known that the stability of a time marching scheme is governed by its capability to contain the propagation of the high frequency components of the solution.

Usually the explicit or semi explicit time schemes require les computational effort than the fully explicit ones but they suffers from a hard time step limitation to prevent the instability caused by the expansion of the high mode components. A way to obtain a good compromise between a fast iteration (explicit or semi implicit scheme) and stability (fully implicit schemes) is to add to the first ones a stabilizing term.

u (k+1) -u (k) ∆t + Au (k+1) + f (u k ) = 0, (23) 
There exist many different stabilization procedures that can be applied to a large variety of schemes used for reaction-diffusion equations, see, e.g. [START_REF] Mendes | Explicit Schemes with Improved CFL Condition[END_REF][START_REF] Gasparin | Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials[END_REF][START_REF] Shen | Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations[END_REF], particularly those based on hyperbolic perturbations that we will not consider here.

• parabolic perturbation (first order stabilization)

u (k+1) -u (k) ∆t + Au (k+1) + τ (u (k+1) -u (k) ) + f (u k ) = 0, (24) 
The stabilization term can be written as τ ∆t u (k+1) -u (k) ∆t and then appears as a first order perturbation which increases the dissipation

• hyperbolic perturbation (second order stabilization)

u (k+1) -u (k) ∆t + Au (k+1) + τ (u (k+1) -2u (k) + u (k-1) ) + f (u k ) = 0, (25) 
The stabilization term can be written as τ (∆t 2 ) u (k+1) -2u (k) + u (k-1) (∆t) 2 and then appears as a second order perturbation which increases the dissipation since the scheme corresponds to the time discretization of a damped nonlinear wave equation:

∂u ∂t + τ (∆t) 2 ∂ 2 u ∂t 2 + f (u) = 0.
A more accurate scheme can be obtained using a Gear method as

3u (k+1) -4u (k) + u (k-1) 2∆t + Au (k+1) + τ (u (k+1) -2u (k) + u (k-1) ) + f (u k ) = 0. ( 26 
)
4.2 Low-Pass filtering for Nonlinear Parabolic Equations: a bi-Grid approach in finite elements

We her follow. [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF][START_REF] Shen | Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations[END_REF]. For the sake of simplicity, consider the finite element approximation to the heat equation by forward Euler's method:

(u k+1 h , φ h ) + ∆t(∇u k h , ∇φ h ) = (u k h , φ h ) + ∆tτ (f, φ h ), ∀φ h ∈ V h . (27) 
This scheme has a restrictive stability condition due to its weak capability to contains the high frequency components propagation and the addition of a proper damping term is necessary to enhance the stability of the scheme. Following [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF][START_REF] Shen | Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations[END_REF], we propose to add the term τ ∆t(u k+1 h -u k h , φ h ), where τ > 0 is a stabilizing parameter to be tuned. The new scheme reads as

(u k+1 h -u k h , φ h ) + τ ∆t(u k+1 h -u k h , φ h ) + ∆t(∇u k h , ∇φ h ) = ∆tτ (f, φ h ), ∀φ h ∈ V h . (28) 
It can be proved that for τ > 0, larger time steps can be taken and for τ large enough values of τ the new scheme is unconditionnally stable. However, an important drawback is that the dynamics of all the components fo the solution are slowed down while only the high mode components need to be damped to enhance the stability, see [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF]. A solution is then to damp only the high mode components

z k+1 h -z k h of u k+1 h -u k
h : they can be computed using two grids as described in Section 2. We find directly

z k+1 h -z k h = u k+1 h -u k h -(ũ k+1 h -ũk h ).
Using the definition of ũk h , it follows that (ũ

k+1 h -ũk h , φ h ) = (u k+1 H -u k H , φ h ) and then (z k+1 h -z k h , φ h ) = (u k+1 h -u k h -(u k+1 H -u k H ), φ h ).
It is then non necessary to computed the z components. Now, and as underlined above, one of the goals of the bi-grid method is to save computational time. To this end the computational effort is concentrated on a coarse finite elements space W H (of lower dimension) by using implicit and unconditionally time schemes and to simplify the computation of the fine finite elements space V h (of higher dimension) by using semi-implicit (yet fast) scheme, a gain of CPU time is then expected. The weak stability of the semi-implicit scheme has to be compensated by using a stabilization that we propose to apply only to the high modes components z (of the solution), which are at the origin of the instabilities.

(u k+1 h , φ h ) + ∆t(∇u k+1 h , ∇φ h ) + ∆tτ (u k+1 h -u k h , φ h ) = (u k h , φ h ) + ∆tτ (u k+1 H -u k H , φ h ), ∀φ h ∈ V h .
This scheme extends naturally to the nonlinear case:

Algorithm 1 Two-grid Stabilized Reaction diffusion equation with correction

1: u 0 h , u 0 H given 2: 3: for k = 0, 1, • • • do 4: Solve (u k+1 H , ψ H ) + ∆t(∇u k+1 H , ∇ψ H ) = (u k H , ψ H ), ∀ψ H ∈ W H 5: +∆t(f (u k+1 H ), ψ H ) 6: Solve (1 + ∆tτ )(δ k h , φ h ) + ∆t(∇δ k+1 h , ∇φ h ) = ∆tτ (u k+1 H -u k H , φ h ) 7: -∆t(f (u k h ), φ h )∀φ h ∈ V h 8: Set u k+1 h = δ k h + u k h 9: end for
We now consider an embedded sequence of finite element spaces, from the coarsest V h 0 to the finest V hm , with

V h 0 ⊂ V h 1 ⊂ • • • ⊂ V hm
In the present work we will concentrate only to the bi-grid case but we can give hereafter the extension of the stabilized method to the multigrid case.

Algorithm 2 Multi-grid scheme:

1: for k = 0, 1, • • • do 2:
Solve in V h 0 (

u k+1 h 0 -u k h 0 ∆t , ψ h 0 ) + (∇u k+1 h 0 , ∇, ψ h 0 ) + (f (u k h 0 ), ψ h 0 ) = 0, ∀ψ h 0 ∈ V h 0 3: for j = 1, • • • m do 4: Solve in V hm (1 + τ j ∆t)(u k+1 h j -u k h j , φ h j ) + ∆t(∇u k+1 h j , ∇φ h j ) -τ j ∆t(u k+1 h j-1 -u k h j-1 , φ h j ) + ∆t(f (u k h j ), φ h j ) = 0, ∀φ h j ∈ V h j 5:
end for 6: end for

Application to Cahn-Hilliard Equation

The bi-grid scheme

We consider the Cahn-Hilliard equation

∂u ∂t + ∆ 2 u - 1 2 ∆f (u) = 0, x ∈ Ω, t > 0. ( 29 
)
Here f (u) = u 3 -u is the Landau potential, F (u) = 1 4 (u 2 -1) 2 its primitive and ∆ 2 is the bi-laplacean. This equation is completed with homogeneous Neumann Boundary conditions

∂u ∂n = 0, ∂(∆u -1 2 f (u)) ∂n = 0. Essential properties are • the conservation of the mass ū = Ω u(x, t)dx = Ω u 0 (x)dx, (30) 
• the decay in time of the energy

∂E(u) ∂t = - Ω |∇(-∆u + 1 2 f (u))| 2 dx ≤ 0, ( 31 
)
where we have set

E(u) = 1 2 Ω |∇u| 2 dx + 1 2 Ω
F (u)dx. To approximate the weak solution it is classical to first considering the equivalent system

∂u ∂t -∆µ = 0, x ∈ Ω, t > 0, µ = -∆u + 1 2 f (u), x ∈ Ω, t > 0, ( 32 
)
and the to the mixed variational framework

( ∂u ∂t , ψ) + (∇µ, ∇ψ) = 0, ∀ψ ∈ V, ( 33 
) (µ, φ) = (∇u, ∇φ) + 1 2 (f (u), φ), ∀φ ∈ W. (34) 
First, we define our reference scheme that will used on the coarse space. It is obtain as follows: the discretization in space is realized by a finite elements method, using P 1 or P 2 elements; for the time marching scheme we chose the celebrated Eyre's splitting [START_REF] Eyre | Unconditionallly Stable One-step Scheme for Gradient Systems[END_REF] which is unconditionally stable.

Algorithm 3 One grid scheme (Eyre's splitting):

1: for k = 0, 1, • • • do 2:
Solve (

u k+1 H -u k H ∆t , ψ H ) + (∇µ n+1 H , ∇ψ H ) 3: -(µ n+1 H , φ H )+(∇u n+1 H , ∇φ H )+ 1 2 ((u k+1 H ) 3 -u k H , φ H ) = 0, ∀(ψ H , φ H ) ∈ V H × W H 4: end for
We now can derive the associated two-grids stabilized scheme:

Algorithm 4 Bi-grid Stabilized Cahn-Hilliard 1: u 0 h , u 0 H given 2: for k = 0, 1, • • • do 3: Solve in V H × W H 4: (u k+1 H -u k H , ψ H ) + ∆t(∇µ k+1 H , ∇ψ H ) = 0, ∀ψ H ∈ V H 5: (∇u k+1 H , ∇φ H ) + 1 2 ((u k+1 H ) 3 -u k H ), φ H ) = (µ k+1 H , ∇φ H ), ∀φ H ∈ W H 6: Solve in V h × W h 7: (u k+1 h -u k h , ψ h ) + ∆t(∇µ k+1 h , ∇ψ h ) = 0, ∀ψ h ∈ V h 8: (∇u k+1 h , ∇φ h ) + τ (u k+1 h -u k h , φ h ) + 1 2 (f (u k h ), φ h ) = (µ k+1 h , φ h ) + τ (u k+1 H - u k H , φ h ), ∀φ h ∈ W h 9: end for
Before establishing the stability in energy for the scheme 4, we prove the following result:

Proposition 4.1. Assume that (u 0 H , 1) = 0. Assume that (1, 1) ∈ V H ×W H .
Then the sequences (u k H , µ k H ) generated by algorithm 3 (one-grid scheme) satisfies the properties:

• (u k H , 1) = 0, ∀k ≥ 0, • E(u k+1 H ) ≤ E(u k+1 H ) ∀k ≥ 0, • ∃C > 0/ k j=0 u j+1 H -u j H 2 L 2 (Ω) ≤ 2 C E(u 0 H ).
Proof. Taking φ H = 1 in algo. 3 we find directly

( u k+1 H -u k H ∆t , 1) = 0, ∀k ≥ 0. ( 35 
)
The first assertion is obtained by induction, using the hypothesis (u 0 H , 1) = 0.

We now establish the energy diminishing for (u k H , µ k H ). We take

φ H = µ k+1 H and ψ H = u k+1 H -u k H . We obtain ∆t ∇µ k H 2 L 2 (Ω) + (∇u k+1 H , ∇(u k+1 H -u k H )) + 1 2 ((u k+1 H ) 3 -u k H , u k+1 H -u k H ) = 0.
Now using parallelogram identity together with the inequality

(a 3 -b)(a -b) ≥ (a 2 -1) 4 4 - (b 2 -1) 4 4 ,
we find, after the usual simplifications

∆t ∇µ k+1 H 2 L 2 (Ω) + 1 2 ∇u k+1 H 2 L 2 (Ω) -∇u k H 2 L 2 (Ω) + ∇(u k+1 H -u k H ) 2 L 2 (Ω) + 1 2 (F (u k+1 H ) -F (u k H ), 1) = 0. ( 36 
) So ∆t ∇µ k+1 H 2 L 2 (Ω) + 1 2 ∇(u k+1 H -u k H ) 2 L 2 (Ω) + E(u k+1 H ) = E(u k H ). ( 37 
)
The scheme 3 is then unconditionally stable and is also discrete energy diminishing. We now derive bounds: summing all these relations for j = 0, . . . , k, we obtain

∆t k j=0 ∇µ j+1 H 2 L 2 (Ω) + 1 2 k j=0 ∇(u j+1 H -u j H ) 2 L 2 (Ω) + E(u k+1 H ) -E(u 0 H ) = 0. ( 38 
)
Now, since (u k H ) is a null mean value sequence of functions, we can use Poincaré inequality in space Ḣ1 (Ω) = u ∈ H 1 (Ω)/ Ω udx = 0 : there exists C > 0 such that

u j+1 H -u j H 2 L 2 (Ω) ≤ C ∇(u j+1 H -u j H ) 2 L 2 (Ω) , ∀j = 0, • • • , k. It follows k j=0 u j+1 H -u j H 2 L 2 (Ω) ≤ C k j=0 ∇(u j+1 H -u j H ) 2 L 2 (Ω) , (39) 
then

k j=0 u j+1 H -u j H 2 L 2 (Ω) ≤ 2 C E(u 0 H ). ( 40 
)
We now can establish stability results for algorithm 4

Proposition 4.2. Let f ∈ C 1 (R, R) and F its primitive. We make the following assumptions:

• L = f ∞ < +∞, • F ≥ 0 on R, • Ω u 0 H dx = 0 = Ω u 0 h dx. • τ ≥ L 2 .
Then, there exists κ > 0 depending only on Ω, E(u 0 h ), E(u 0 H ) and τ such that

E(u k+1 h ) ≤ κ, ∀k ≥ 0.
Scheme 4 is then energy stable.

Proof. Let k be fixed. We take

φ h = µ k+1 h and ψ h = u k+1 h -u k h . We find ∆t ∇µ k+1 h 2 L 2 (Ω) + 1 2 ∇u k+1 h 2 L 2 (Ω) -∇u k h 2 L 2 (Ω) + ∇(u k+1 h -u k h ) 2 L 2 (Ω) +τ u k+1 h -u k h 2 L 2 (Ω) + 1 2 (F (u k+1 H ) -F (u k H ), 1) + 1 2 2 (f (ζ h )(u k+1 h -u k h ), (u k+1 h -u k h )) = τ (u k+1 H -u k H , u k+1 h -u k h ). ( 41 
)
We use Holder then Young's inequalities

∆t ∇µ k+1 h 2 L 2 (Ω) + 1 2 ∇(u k+1 h -u k h ) 2 L 2 (Ω) + τ u k+1 h -u k h 2 L 2 (Ω) +E(u k+1 h ) -E(u k h ) ≤ L 2 2 u k+1 h -u k h 2 L 2 (Ω) + τ 2 u k+1 H -u k H 2 L 2 (Ω) + τ 2 u k+1 h -u k h 2 L 2 (Ω) .
Here L = f ∞ . Letting γ = 1 2 τ -L 2 ≥ 0 (according to the hypothesis), we infer

∆t ∇µ k+1 h 2 L 2 (Ω) + 1 2 ∇(u k+1 h -u k h ) 2 L 2 (Ω) + γ u k+1 h -u k h 2 L 2 (Ω) +E(u k+1 h ) -E(u k h ) ≤ τ 2 u k+1 H -u k H 2 L 2 (Ω) .
Finally, summing these relations for j = 0, . . . k, we have

  γ k j=0 u j+1 h -u j h 2 L 2 (Ω) + ∆t k j=0 ∇µ j+1 h 2 L 2 (Ω) + 1 2 k j=0 ∇(u j+1 h -u j h ) 2 L 2 (Ω)   +E(u k+1 h ) ≤ E(u 0 h ) + τ 2 k j=0 u j+1 H -u j H 2 L 2 (Ω) . (42) 
At this point, we use [START_REF] Ghidaglia | Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time[END_REF] and obtain

E(u k+1 h ) ≤ κ, (43) 
with κ = E(u 0 h ) + τ C E(u 0 H ).

Numerical illustration

We first describe the implementation of the fixed point iteration. We compute u k+1 H from u k H as follows:

Algorithm 5 Implementation of Eyre's splitting:

1: Set u k,0 H = u k h 2: for m = 0, 1, • • • do 3: Solve ( u (k,m+1) H -u (k) H ∆t , ψ H ) + (∇u k,m+1 H , ∇ψ H ) + 1 2 ((u k,m H ) 2 (u k,m+1 H ) - u k H , ψ H ) = 0, ∀ψ H ∈ W H . 4: end for 5: Set u k+1 H = u k,m+1 h
An acceleration of the fixed point is needed for obtaining the convergence without practical restrictions on ∆t. To this end we will use Lemaréchal's acceleration. For a better clarity, let us first write Picard's iterates as follows: we denote by Φ k (v H , u k H ) the application which to u k H associates the solution

u * H ∈ W H of the variational problem u * H ( u * H -u k H ∆t , ψ H ) + (∇u * H , ∇ψ H ) + 1 2 ((v H ) 2 (u * H ) -u k H , ψ H ) = 0, ∀ψ H ∈ W H The solution u * H is then defined as u * H = Φ(u * H , u (k) 
H ). The Picard iterates consist in generating the sequence v (m) H ∈ W H as follows:

v 0 = u k h , for m = 0, . . . v (m+1) H = Φ(v (m) H , u k H ). (44) 
Unfortunately, in practice, this fixed point method converges only for very small values of ∆t. To enhance the stability region, and then to allow to take larger values of ∆t, we use the ∆ κ acceleration procedure introduced in [START_REF] Brezinski | Nonlinear hybrid procedures and fixed point iterations[END_REF] and applied in [START_REF] Abboud | A Stabilized bi-grid method for Allen-Cahn equation in Finite Elements[END_REF][START_REF] Abounouh | Discrete Schrodinger equations and dissipative dynamical systems[END_REF][START_REF] Chehab | Long-time behavior of solutions of a BBM equation with generalized damping[END_REF] for Allen-Cahn's, weakly damped Schrödinger and BBM equations respectively. In two words, the ∆ κ procedure consists in replacing the Picard iterates by

v 0 = u k h , for m = 0, . . . v (m+1) = v (m) -(-1) κ α κ m ∆ k Φ v (m) ; (45) 
where

∆ κ Φ v (m) = κ j=0 C κ j (-1) κ-j Φ (j) (v (m) , u k ), C κ j = κ! j!(κ -j)!
is the binomial coefficient and Φ (j) denotes the j th composition of φ with itself. We have

α κ m = (-1) κ < ∆ 1 Φ v (m) , ∆ κ+1 Φ v (m) > < ∆ κ+1 Φ v (m) , ∆ κ+1 Φ v (m) > , (46) 
where < ., . > denotes the euclidean scalar product in R n , see [START_REF] Brezinski | Nonlinear hybrid procedures and fixed point iterations[END_REF]. These acceleration procedures have been applied with the ∆ 1 (Lemaréchal's method [START_REF]Une méthode de résolution de certains systèmes non linéaires bien posés[END_REF] corresponding to κ = 1). We show below in Figures [START_REF] Brachet | Fast and Stable Schemes for Phase Fields Models[END_REF], [START_REF] Brachet | Schémas compacts hermitiens sur la sphère -Applications en climatologie et océanographie numérique[END_REF], [START_REF] Brezinski | Nonlinear hybrid procedures and fixed point iterations[END_REF] respectively the fine and the coarse meshes, the initial and the final solution and the time evolution of the Energy and of the mean value of the solution (which are not affected by the stabilization). We here propose to exchange the rule: in the one hand, use a low-pass filter operator to stabilize explicit and semi-explicit schemes for the solution of parabolic equations and, in the other hand, apply the bi-grid approach to build effective damping models for nonlinear dispersive equations. 

Damping modeling using Numerical filters

We describe here a method to approach the symbol of a damping operator by a constant-wise function. Consider the evolution system

∂u ∂t + Au + F (u) = 0, (47) 
which is valid in absence of damping phenomena. We would like to identify a damping operator by fitting a set of experimental data with the enhanced model

∂u ∂t + Au + F (u) + Bu = 0, (48) 
where B represents the (unknown) damping operator; B is assumed to be time independent, auto-adjoint and positive definite. When discretizing in space the last system we get

du dt + Au + F (u) + Bu = 0. ( 49 
)
Assume that we have at out disposal measured physical data W (t) at discrete times t k ∈ [0, T ]. We would like to compute B in such a way to fit with W . To this end we consider an unconditionally stable time marching scheme, e.g.

w k+1 -w k ∆t + Aw k+1 + F (w k+1 ) + Bw k+1 = 0,
with B, a semi definite positive matrix (SDP), to be computed such that the above relation holds for all 0 ≤ k∆t ≤ T = N ∆t. We denote by W B the sequence generated by this scheme. The matrix B that fits optimally the data is given as the solution of an inverse problem in the least square sense:

B opt = Arg min B SDP N k=0 w k B -W (k∆t) 2 .
Of course, this approach suffers from very important drawbacks: firstly, it needs to recompute totally matrix B when changing the discretization space and, secondly, it is rather hard to interpret the computed matrix B opt in terms of operators. As a simple illustration consider the linear case (F (.) = 0). The sequence w k is supposed to be known as well as the matrix A. We have formally the relations

Bw k+1 = - w k+1 -w k ∆t + Aw k+1 = R k+1 , so Bw k+1 (w k+1 ) T = R k+1 (w k+1 ) T .
Summing these relations we get

B m k=1 w k+1 (w k+1 ) T = m k=1 R k+1 (w k+1 ) T .
Consequently, a necessary and sufficient condition for computing B uniquely is that the matrix T m = m k=1 w k+1 (w k+1 ) T is full rank, implying to take m ≥ n. The practical computation of B can be tricky (B is often ill-conditioned) and expansive in CPU time. Finally, all the computations have to be repeated when changing the discretization, e.g., the number of degree of freedom. For these reasons, we propose a way to approach the symbol of B by fitting a diagonal ansatz of B on frequency band-width: the symbol of B is intrinsic to the operator and do not depend on the chosen discretization. A way to achieve this strategy is to use a multi-grid approach based on embedded approximation spaces, from the coarsest one to the finest one. We present hereafter the feasibility of the approach considering a given two band-witdth damping operator.

Filters with Bi-grid scheme in finite elements

A simple bandwidth filtering can be implemented as follows: let τ 1 and τ 2 , two strictly positive constants, τ 1 is the damping parameter attached to the low modes and τ 2 is the damping parameter attached to the high ones.

Algorithm 6 Bi-grid scheme: simplified implementation of Scheme 4.1

1: for k = 0, 1, • • • do 2: Solve in W H ( u k+1 H -u k H ∆t , ψ H ) + τ 0 (u k+1 H , Ψ H ) + (∇u n+1 H , ∇ψ H ) + (f (u k H ), ψ H ) = 0, ∀ψ H ∈ W H 3: Solve in V h (u k+1 h -u k h , φ h ) + τ 0 ∆t(u k+1 h , φ h ) + ∆t(∇u k+1 h , ∇φ h ) -τ 0 ∆t(u k+1 H , φ h ) + ∆t(f (u k h ), φ h ) = 0, ∀φ h ∈ V h 4: end for
More generally, we can consider an embedded sequence of finite element spaces, from the coarsest V h 0 to the finest V hm , with

V h 0 ⊂ V h 1 ⊂ • • • ⊂ V hm .
We derive the scheme:

Algorithm 7 Multi-grid scheme:

1: for k = 0, 1, • • • do 2:
Solve in V h 0 (

u k+1 h 0 -u k h 0 ∆t , ψ h 0 ) + τ 0 (u k+1 h 0 , ψ h 0 ) + (∇u k+1 h 0 , ∇, ψ h 0 ) + (f (u k h 0 ), ψ h 0 ) = 0, ∀ψ h 0 ∈ V h 0 3: for j = 1, • • • m do 4: Solve in V hm (u k+1 h j -u k h j , φ h j ) + τ j ∆t(u k+1 h j , φ h j ) + ∆t(∇u k+1 h j , ∇φ h j ) -τ j ∆t(u k+1 h j-1 , φ h j ) + ∆t(f (u k h j ), φ h j ) = 0, ∀φ h j ∈ V h j 5:
end for 6: end for 5.3 Modelling with piecewise filter damping

A toy model

We want to mimmic the effect of the damping operator L γ used in very weak damped KdV Equation:

L γ u = k∈Z γ k ûk w k . Consider the ODE du dt + L γ u = 0.
For simplicity assume that γ k = τ 0 , |k| ≤ N 1 τ 1 , |k| > N 1 τ 0 is the damping parameter attached to the low modes and τ 1 is the damping parameter attached to the high ones. Decompose u h = ũh + z h .

We introduce the method using Euler time marching scheme. The damping of the law mode components is first computed on the coarse space W h as

( u k+1 H -u k H ∆t , ψ H ) + τ 0 (u k+1 H , ψ H ) = 0, ∀ψ H ∈ W H then (ũ h -u k+1 H , φ h ) = 0, ∀φ h ∈ V h .
The high modes z h components are damped in V h with rate τ 1

( z k+1 h -z k h ∆t , φ h ) + τ 1 (z k+1 h , Φ h ) = 0, ∀φ h ∈ V h ,
while the low mode ũh on V h are damped with rate τ 0 as

( ũk+1 h -ũk h ∆t , φ h ) + τ 0 (ũ k+1 h , φ h ) = 0, ∀φ h ∈ V h .
Summing these two relations, we obtain (after using the relations "u h = ũh + z h " and

(ũ h -u k+1 H , φ h ) = 0, ∀φ h ∈ V h ) ( u k+1 h -ũk h ∆t , φ h ) + τ 1 (u k+1 h , φ h ) = (τ 1 -τ 0 )(u k+1 H , φ h ), ∀φ h ∈ V h ,
We give hereafter in Figure [START_REF] Calgaro | Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization[END_REF] a simple illustration of the toy model dynamics for (τ 0 , τ 1 ) = (10, 100) and (τ 0 , τ 1 ) = (100, 0.10). We observe the damping is indeed at different rates for the high mode components and for the low ones. The above scheme can be extended in a more general situation in the 

du dt + L γ u + f (u) = 0.
The derivation of the bi-grid scheme is similar as above. First, we write the scheme on W H

( u k+1 H -u k H ∆t , ψ H ) + τ 0 (u k+1 H , ψ H ) + (f (u k+1 H ), ψ H ) = 0, ∀ψ H ∈ W H . ũk+1 h is defined as (ũ k+1 h -u k+1 H , φ h ) = 0, ∀φ h ∈ V h
. Now, we write both the equation satisfied by the z h and the ũh components:

First, the high modes z h components are damped in V h with rate τ 1

( z k+1 h -z k h ∆t , φ h ) + τ 1 (z k+1 h , φ h ) + (f (u k h ) -f (u k h ), φ h ) = 0, ∀φ h ∈ V h ,
while the low mode ũh on V h are damped with rate τ 0 as

( ũk+1 h -ũk h ∆t , φ h ) + τ 0 (ũ k+1 h , φ h ) + ( f (u k h ), φ h ) = 0, ∀φ h ∈ V h ,
By summing these two relations, we obtain

( u k+1 h -ũk h ∆t , φ h ) + τ 1 (u k+1 h , φ h ) + (f (u k h ), φ h ) = (τ 1 -τ 0 )(u k+1 H , φ h ), ∀φ h ∈ V h .

Application to KdV equation

We consider here the periodic KdV equation on T(0, L)

u t + u xxx + uu x = 0, x ∈ T, t > 0, (50) u 
(x, 0) = u 0 (x). ( 51 
)
This equation possesses the soliton

ϕ(x, t) = A cosh 2 ( κ 2 ((x -x 0 -ct))))
, with A = 0.8, κ = A 3 , c = κ 2 and x 0 = L 2 . The initial data for simulating is then u 0 (x) = ϕ(x, 0). To apply the damping technique presented above for the Toy problem, we will use finite elements for the space discretization together with a Sanz-Serna scheme for the time marching . We obtain the system

Algorithm 8 KdV System 1: for k = 0, 1, • • • do 2:
Find (u

(k+1) h , v (k+1) h ) ∈ V h × V h (u k+1 h -u k h , φ h ) -∆t(∂ x v (k+1) h + v (k) h 2 , ∂ x φ h ) + ∆t 2 (∂ x ( u (k+1) h + u (k) h 2 ) 2 , φ h ) +(∂ x u (k+1) h , ψ h ) -(v (k+1) h , ψ h ) = 0, ∀(φ h , ψ h ) ∈ V h × V h 3: end for
The presentation of the scheme as a system allows to use P 1 finite elements. We can now apply the bi-grid filter approach described above to obtain a damped system, with different dampings for the low and the high frequency components:

Algorithm 9 Bi-grid scheme damped KdV equation

1: for k = 0, 1, • • • do 2:
Find (u

(k+1) H , w (k+1) 
H ) ∈ W H × W H (u k+1 H -u k H , φ H ) -∆t(∂ x v (k+1) H + v (k) H 2 , ∂ x φ H ) + ∆t 2 (∂ x ( u (k+1) H + u (k) H 2 ) 2 , φ H ) +∆tτ 0 ( u (k+1) H + u (k) H 2 , φ H ) + (∂ x u (k+1) H , ψ h ) -(v (k+1) H , ψ H ) = 0, ∀(φ H , ψ H ) ∈ W H × W H 3: Find (u (k+1) h , v (k+1) h ) ∈ V h × V h (u k+1 h -u k h , φ h ) -∆t(∂ x v (k+1) h + v (k) h 2 , ∂ x φ h ) + ∆t 2 (∂ x ( u (k) h + ũ(k+1) h 2 ) 2 , φ h ) +∆tτ 1 ( u (k+1) h + u (k) h 2 , φ h ) -∆tτ 1 ( u (k+1) H + u (k) H 2 , φ h ) + ∆tτ 0 ( u (k+1) H + u (k) H 2 , φ h ) +(∂ x u (k+1) h , ψ h ) -(v (k+1) h , ψ h ) = 0, ∀(φ h , ψ h ) ∈ V h × V h 4: end for
As a simple illustration, we consider the two following situations to underline the low mode regime of the KdV model representing the time evolution of the two first invariants the L 2 norm and the mean value:

• We take (τ 0 , τ 1 ) = (0, 0): the KdV equation is not damped and both the mean value and the L 2 -norm of the solution are conserved, see Figure 13 • We take (τ 0 , τ 1 ) = (0, 100): only the high mode components are damped. Since the KdV model is derived as a low mode approximation, there is almost not damping, see Figure 14 • We take (τ 0 , τ 1 ) = (100, 1): the low mode are hardly damped as respect to the high ones. Figure 15 In all cases, the observations agree with those of [START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF] in Fourier case. We here use the separation of the scale provided by the numerical filtering presented in Section 2.5.

The matrix G = Id -F ∈ M n (R) is a numerical high-pass filter. Therefore, the damping of the high frequency components can be obtained from scheme [START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF] as

U (k+1) -U (k) ∆t + τ G(U (k+1) -U (k) ) + AU (k) = f. (52) 

Stabilized Schemes

At this point, we can propose the following explicit stabilized scheme Algorithm 10 : Explicit-Stabilized with Numerical filtering

1: for k = 0, 1, • • • do 2: Solve (Id + τ ∆tG)δ (k) = ∆t(f -Au (k) ) 3:
Set u (k+1) = u (k) + δ (k) 4: end for We can give now the "good" generic properties to be satisfied by G • Damping :< Gu, u >≥ 0, ∀u ∈ R n

• High-Mode components approximation: let u ∈ C 2p+2 , we let

u i = u(x i ), i = 1, • • • n, u = (u 1 , • • • , u n ) T .
-∃C > 0 independent on u and h such that G ≤ Ch 2p u if u is high mode supported Gu -u is "small" We will discuss on that aspect elsewhere and concentrate in the present work on numerical evidences.

As a simple illustration, consider the numerical solution of the Heat equation by Algorithm 11. To appreciate the stabilization brought by the high mode damping, we compare both the stability region and the evolution of the error (in L ∞ -norm) for the scheme ?? when • G = 0 which gives the Forward Euler's scheme • G = A which gives the Backward Euler's scheme • G = Id which gives the globally stabilized Forward Euler's scheme • G = Id -F which gives the high frequency stabilized Forward Euler's scheme, say Algorithm 11 We also compare the results with the second order stabilized scheme (hyperbolic stabilization 25).

u (k+1) -u (k) ∆t + Au (k+1) + τ (u (k+1) -2u (k) + u (k-1) ) = f (k∆t). ( 53 
)
We simulate the exact solution u(x, t) = (sin(2πx)+0.1 sin(4πx)+0.1 sin(10πx)+0.1 sin(16πx)) exp(sin(t)); the parameters are n = 100, m = 4, ∆t = 9.95 10 -5 , τ = 1.6 10 4 First of all we remark that the stability region of the Backward Euler scheme is enhanced thanks to the the stabilization procedure: indeed while the times step limitation of the fully explicit scheme is 0 < ∆t < 2 ρ(A) = 5. 10 -5 , we can choose a nearly double time step for the stabilized schemes: ∆t = 9.95 10 -5 . We report hereafter in Figure [START_REF] Chehab | Multiparameter methods for evolutionary equations[END_REF] the time evolution of the error for the schemes Backward Euler's, First order high frequency stabilized, second order stabilized and fully stabilized. We remark that the error of the fully stabilized scheme is important while the curves corresponding to the three other schemes are superposed at a satisfactory level. As a second illustration, we consider the Kuramoto-Sivashinsky equation (KSE) which describes the propagation of a flam front in some physical situations. We consider this equation on the torus T = [0, L]:

u t + u xxxx + u xx + 1 2 (u x ) 2 = 0, x ∈]0, L[, t > 0, (54) 
u(0, x) = u 0 (x),

x ∈]0, L[, (55) ∂ j u ∂x j (t, x + L) = ∂ j u ∂x j (t, x), j = 0, . . . , 3.

(

) 56 
The terms u xxxx and u xx are in competition, their sum brings a global dissipation when all the eigenvalues of ∂ xxxx dominate those of -∂ xx , say when 2π L ≥ 1 or equivalently L ≤ 2π; for larger values of L, a finite and consecutive number of eigenvalues of ∂ xxxx + ∂ xx are strictly negative; L appears as a bifurcation parameter and for large values, chaotic dynamics is observed, we refer to [START_REF] Hyman | The Kuramoto-Sivashinky equation: a bridge between PDE's and Dynamical Systems[END_REF][START_REF] Temam | Infinite Dimensional Dynamical Systems in Mechanics and Physics[END_REF][START_REF] Zhang | Un schéma de semi-discrétisation en temps pour des systèmes différentiels discrétisés en espace par la méthode de Fourier[END_REF]. We now consider the numerical simulations using as above finite differences for the space discretisation: the differential operators are discretized high compact schemes [START_REF] Lele | Compact Difference Schemes with Spectral Like resolution[END_REF]. We will denote by A 2j the discretization matrix of ∂ xxxx + ∂ xx by a scheme of order 2j. We now consider the following semi-explicit three schemes: Solve (Id + τ ∆tM )δ (k) = -∆t(f (u k ) + A 2j u (k) )

3:

Set u (k+1) = u (k) + δ (k) 4: end for

The pratical choices for matrix M are the following:

• M = A 2j which gives the Backward Euler's semi-implicite scheme or the classical IMEX scheme • M = τ (Id -F ) + A 2 which gives high frequency (HF) stabilized Forward Euler's scheme Finite Differences as presented in Section 2; it allows to develop new numerical schemes (using high mode stabilization) but also to design new damping models. As a possible perspectives, we propose to study and implement the multi-grid versions of both stabilized times schemes (algorithm 4) and damped (algorithms 9) with a band width approach. In the particular context of the modeling of the damping of hydrodynamic equations (but not only) the building of a damping operator via a band width approximation of its symbol using a multi-grid approach seems an interesting option. Damping parameter could be computed optimally to satisfy given criteria; for example recovering a very weak damping operator as the one proposed by Garnier [START_REF] Garnier | Frequency damping to prevent the blow-up of the Korteweg-de Vries equation[END_REF] to prevent blow up in Generalized KdV equations in the supercritical case could be an interesting issue. Finally, the damping/stabilization technique presented here could be of interest when considering other dispersive equations such as those of Nonlinear Schrodinger Equation type, e.g. taking advantage of the works [START_REF] Ezzoug | Ezzeddine Semi-discrete weakly damped nonlinear 2-D Schrdinger equation[END_REF][START_REF] Goubet | On a time discretization of a weakly damped forced nonlinear Schrdinger equation[END_REF].
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 4 Figure 4: 3D output and iso-values for u(x, y) = cos 5(1 -x 2 -y 2 ) on the unit disk. Top-left the z h components and Bottom-left the function u with P 2 elements. Bottom right: Eigenfunction (Fourier) coefficients on the fine mesh for the original function and the associated correction.
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 5 Figure 5: Function u(x, y) = cos 5(1 -x 2 -y 2 ) on the unit disk. Eigenfunction (Fourier) coefficients on the fine mesh for the original function and the associated correction.
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 6 Figure 6: Decomposition of the signal u(x) = sin(2πx) + sin(6πx) + sin(12πx) + 0.1 sin(20πx) + 0.1 sin(30πx) + 0.1 sin(120πx), N = 100, m = 8
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 7 Figure 7: Dirichlet BC (Top Left), Neumannn BC (Top Right), Periodic BC (Bottom). The original values are given at grid points ×, interpolated values are computed at grid points o. The boundary points are marked by a dot, in the Dirichlet case.
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 8 Figure 8: Low-pass filters (left) -Exponential of low pass filters = high-pass filter(right)
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 10112 Figure 10: P 2 Elements. = 0.08, ∆t = 1.e -4, τ = 4 2 , T = 0.012. Initial and Final Solution
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 212 Figure 12: u 0 = cos(2πx/L)+cos(6πx/L)+cos(12πx/L)+cos(20πx/L), (τ 0 , τ 1 ) = (10, 100) (left) (τ 0 , τ 1 ) = (100, 0.10) (right), ∆t = 1.e -1, T = 10, L = 100
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 13 Figure 13: KdV (τ 0 , τ 1 ) = (0, 0), P 1 Elements. ∆t = 1.e -2, T = 40. mass and L 2 -norm vs time
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 142 Figure 14: KdV (τ 0 , τ 1 ) = (0, 100) Low pass damping, P 1 Elements. ∆t = 1.e -2, T = 40. mass and L 2 -norm vs time
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 15 Figure 15: KdV (τ 0 , τ 1 ) = (0, 100) Low pass damping, P 1 Elements. ∆t = 1.e -2, T = 4. mass and L 2 -norm vs time
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 16 Figure 16: Heat Equation n = 100, m = 4, ∆t = 9.95 10 -5 , τ = 1.6 10 4
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 11 Explicit-Stabilized schemes for KSE1: for k = 0, 1, • • • do 2:
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 18 Figure 18: KSE Low and high frequency components of the solution at final time T = 140 (left), time evolution of the mean value (right) -∆t = 0.01. Line 1: L = 50, n = 128, m = 8; line 2: L = 100, n = 256, m = 10

An additional HF stabilized scheme extending the second order stabilization one will be also used:

In the implicit linear part, we use A 2 (which is a sparse matrix) instead of A 2j (which is dense once j ≥ 2) to accelerate the resolution at each time step, as also proposed in [START_REF] Brachet | Stabilized Times Schemes for High Accurate Finite Differences Solutions of Nonlinear Parabolic Equations[END_REF][START_REF] Brachet | Fast and Stable Schemes for Phase Fields Models[END_REF] for Navier-Stokes and phase fields equations. We did not reported the results for the global stabilized (corresponding to M = τ Id + A 2 ) because the dynamics is frozen by the stabilization.

We give hereafter in Figures [START_REF] Chehab | Multiparameter extensions of iterative processes rapport technique du laboratoire de mathmatiques d'Orsay[END_REF] and ( 18) the computed KSE solution at final time T = 140 (both low and high mode components) together with the time evolution of the mean value, 6th order compact schemes are used. The results agree with those of [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF][START_REF] Zhang | Un schéma de semi-discrétisation en temps pour des systèmes différentiels discrétisés en espace par la méthode de Fourier[END_REF]. 

Conclusion and Perspectives

The decomposition of numerical approximations of solutions of dissipative or dispersive PDEs into low modes and high modes components can be simply done in various situations (Spectral, Finite Elements,