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ABSTRACT

The generation and propagation of waves in a viscous flow
solver are indispensable part of naval computational fluid dy-
namic (CFD) applications. This paper presents numerical sim-
ulations of two-dimensional wave propagation in the framework
of two-phase finite volume method (FVM) with different tempo-
ral discretization schemes. Implicit Euler, Crank-Nicolson(CN)
and second-order backward temporal discretization schemes are
compared by using viscous flow solver based on the open source
library OpenFOAM. The combinations of each temporal dis-
cretization scheme and explicit limiter are used for the formu-
lation of the Volume Of Fluid (VOF) field convection equation.
A new formulation using the second-order backward temporal
discretization scheme with explicit limiter are investigated. Two-
dimensional periodic domains are considered to compare differ-
ent time-stepping methods. Also, five different refinement levels
of meshes are used to study the convergence properties of each
method. The non-linear wave is generated with stream func-
tion wave theory using ’foamStar’, which is a specialized Open-
FOAM library package developed by Bureau Veritas in collabo-
ration with École Centrale de Nantes.

INTRODUCTION

The number of applications of computational fluid dynamic
(CFD) in naval and offshore field has increased significantly
for decades. Accurate wave generation and propagation is one
of the most important components of naval and offshore CFD
applications. However, with a free-surface URANS (Unsteady
Reynolds-Averaged Navier-Stokes) solver, it is sometime diffi-
cult to generate, propagate and maintain the desired wave for
long simulation runs. Moreover, the order of convergence ob-
tained in space and time in a wave propagation problem often
less then the expected theoretical value.

Previous study [1] focused on the order of convergence of
the interface treatment and spatial schemes. As a continuous
research, the present study aims to analyze the effect of dif-
ferent temporal discretization algorithms. Three type of time-
stepping methods are investigated. These are implicit Euler
(Euler) scheme, Crank-Nicolson (CN) scheme and second-order
backward finite difference (BFD2) scheme. An implementation
of these schemes exists already in OpenFOAM. In addition, the
study on Euler and CN schemes with MULES (Multidimensional
Universal Limiter for Explicit Solver [2]) is already exist [3].
However, there is no formulations for BFD2 in MULES. There-

1



fore, a new formulation for bounded convection of Volume Of
Fluid (VOF) field using BFD2 time-stepping method with ex-
plicit limiter are suggested in this paper. All works done in
this paper are based on open-source c++ code package Open-
FOAM [4] with wave generation library [5].

Governing equations
The typical flow model for incompressible two-phase New-

tonian flow can be derived into the following form of momentum
and continuity equations:

∂ (ρu)
∂ t

+∇•(ρuu)−∇•(µ(∇u))−∇u•∇µ =

−∇prgh − (g•x)∇ρ +σκ ∇α

(1)

∇•u = 0 (2)

where u is the continuous velocity field; ρ is the averaged density
field (ρair = 1.0 Kg/m2, ρwater = 1000 Kg/m2); µ is the averaged
dynamic viscosity (µair = 1.0× 10−5 Ns/m2, µair = 1.0× 10−3

Ns/m2); g is the gravitational field vector ((0,0,−9.81) m/s2); x
is the position vector from reference to cell center; prgh is the
dynamic pressure. The surface tension is considered negligible
(σκ = 0) in this study. The velocity and pressure coupling is
resolved transiently using PISO algorithm [6, 7].

The VOF method with phase indicator function α is used.
Thus, α = 1 at fully submerged cell and α = 0 in the air and the
averaged density is computed as ρ = αρwater +(1−α)ρair. The
VOF convection equation with artificial compression term is:

∂ (α)

∂ t
+∇•(uα)+∇•(urα(1−α)) = 0 (3)

where, ur is the relative velocity between air and water at the
interface. The third term on the left-hand-side is the compression
term which artificially compress the VOF field to minimize the
smearing [8, 9].

A careful treatment is required for the discretization of
Eq. (3) due to the discontinuous property of the VOF field [1].
Eq. (4) shows the finite volume (FV) representation of Eq. (3).

d(VPα)

dt
+∑

f
[φα f +φrα f (1−α f )]UB = 0

F(φ ,φr,αP, ’scheme’) = [φα f +φrα f (1−α f )]

(4)

FIGURE 1. COMPUTAIONAL ALGORITHM FOR VOF CON-
VECTION

The subscript P is cell-averaged value and subscript f is
face-averaged value. The subscripts BD and UB indicate the
bounded and unbounded value, respectively. The definition of
bounded/unbounded are to be determined from the spatial dis-
cretization schemes. The word ’scheme’ in Eq.(4) indicates the
dependency of the cell-to-face interpolation scheme.

The computational algorithm to solve the Eq.(4) is illus-
trated in Fig. 1. To solve the VOF field accurately while sat-
isfying the the boundedness criteria, two steps are required.
These are named Predictor step and Corrector step. In the Pre-
dictor step, bounded intermediate VOF field is computed with
bounded(upwind) flux, which gives minimum spatial order and
accuracy. In the Corrector step, the correction flux is obtained
by subtracting the bounded flux from the higher-order flux. Then,
MULES limit the correction flux and maximize the available flux
using boundedness criteria and the information of neighbor cells.
Finally, the intermediate VOF and bounded flux is corrected by
limited correction flux to increase the order of accuracy. The
Corrector step has a iteration named MULES loop (Fig. 1) which
help to find the middle ground between boundedness and order
of accuracy. Since the formulations of VOF convection algo-
rithm are differ from the time integration scheme, the Predictor
step and Corrector step for each temporal scheme are given in
details.
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MULES with Euler scheme
By applying Implicit Euler temporal discretization, Eq.(4)

can be transform into Eq.(5), where h is the current time-step.

(VPαP)
t+h − (VPαP)

t

h
+∑

f
[φα f +φrα f (1−α f )]

t+h
UB = 0 (5)

An intermediate VOF-field α∗ is introduced and the Eq.(5) is
separated into Eq.(6) (Predictor) and Eq.(7) (Corrector).

(V t+h
P α∗

P)− (VPαP)
t

h
+∑

f
[φ t+h

α
∗
f ]BD = 0

F t+h
BD = [φ t+h

α
∗
f ]BD

(6)

Eq.(6) solves intermediate VOF field with bounded (Upwind)
discretization scheme. Note that the artificial compression term
is not included for the Predictor step.

(V t+h
P α∗∗

P )− (V t
Pα∗

P)

h
+∑

f
λ (F t+h

UB −F t+h
BD ) = 0

F t+h
UB = [φ t+h

α
∗
f +φ

t+h
r α

∗
f (1−α

∗
f )]UB

(7)

Eq.(7) correct the intermediate VOF field with MULES limier λ .
It is solved iteratively and stop at a user-defined number of itera-
tions. The variables α∗∗

P , α∗
P and F t+h

BD are the iterative variables
inside the MULES loop. At the end of iteration, the VOF field
update to α∗

P := α∗∗
P and the bounded flux update to Eq.(8).

F t+h
BD := F t+h

BD +λ (F t+h
UB −F t+h

BD ) (8)

MULES with Crank-Nicolson scheme
The formulation of Crank-Nicolson method with MULES

limiter is discussed in this section. The application of the Crank-
Nicolson scheme to Eq.(4) yields Eq.(9).

(V t+h
P α

t+h
P )− (VPαP)

t

h
+∑

f
[CCNF t+h

UB +(1−CCN)F t
UB] = 0

F t+h
UB = [φα f +φrα f (1−α f )]

t+h
UB

(9)

The coefficient CCN is the Crank-Nicolson coefficient where
CCN = 0.5 yields the classical Crank-Nicolson scheme and

CCN = 1.0 yields the Implicit Euler scheme. Similar to the for-
mulation of Euler time integration scheme, Eq.(9) is separated
into Predictor step (Eq.(10)) and Corrector step (Eq.(11)).

(V t+h
P α∗

P)− (VPαP)
t

h
+∑

f
[φCN

α
∗
f ]BD = 0

φ
CN = (CCNφ

t+h +(1−CCN)φ
t)

(10)

The Predictor equation (Eq.(10)) solves the intermediate VOF
field α∗ with bounded discretization scheme where the flux φCN

is a time blended flux.

(V t+h
P α∗∗

P )− (V t+h
P α∗

P)

h
+∑

f
λ (FCN

UB −FCN
BD ) = 0 (11)

FCN
BD = [φCN

α
∗
f ]BD

FCN
UB = [CCNF t+h

UB +(1−CCN)F t
UB]

F t+h
UB = [φ t+h

α
∗
f +φ

t+h
r α

∗
f (1−α

∗
f )]

F t
UB = [φ t

α
t
f +φ

t
r α

t
f (1−α

t
f )]

(12)

The Corrector equations (Eq.(11) and Eq. (12)) correct the VOF
field and the VOF flux(FCN

BD ) in the same way that the Euler
scheme did.

FCN
BD := FCN

BD +λ (FCN
UB −FCN

BD ) (13)

Since the corrected VOF flux is time blended value, a time ex-
trapolation from FCN

BD to F t+h is required. Eqn.(14) gives the
extrapolation of VOF flux where, Coc is off-centering coefficient
(0 ≤Coc ≤ 1) and F t is a VOF flux at the previous time step.

F t+h = (1+Coc)FCN
BD −CocF t

Coc = (1−CCN)/CCN
(14)

MULES with second-order backward scheme
The formulation of second-order backward finite difference

(BFD2) time-stepping method with explicit limiter is discussed
in this section. The application of BFD2 scheme to Eq.(4) yields
Eq.(15) where, h0 is the previous time-step.
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1
h
[c(V t+h

P α
t+h
P )− c0(VPαP)

t + c00(VPαP)
t−h0 ]

+∑
f
[φα f +φrα f (1−α f )]

t+h
UB = 0

c = 1+
h

h+h0
c00 =

h2

h0(h+h0)
c0 = c+ c00

(15)

The Eq.(15) divided into Eq.(16) (Predictor) and Eq.(17) (Cor-
rector) using (1/c) scaling.

(V t+h
P α∗

P)− (VPαP)
t

h
+∑

f
[φ t+h

α
∗
f ]BD = 0

F t+h
BD = [φ t+h

α
∗
f ]BD

(16)

The Predictor equation does not solves α∗
f with BFD2 scheme

but used Euler like formulation. As a reaction, the remaining
higher-order components moves to the Corrector step. There-
fore, some source terms Sn are included in Eq.(17).

(V t+h
P α∗∗

P )− (V t+h
P α∗

P)

h
+∑

f
λ [Fn

UB −F t+h
BD ] = Sn

Fn
UB = [φ t+h

α
∗
f +φ

t+h
r α

∗
f (1−α

∗
f )]UB n = 1,2,3...

(17)

S1 =
1
c
[(c−1)F∗

UB +(c0 − c)
(VPαP)

t

h
− c00

(VPαP)
t−h0

h
]

Sn =
1
c
[(c−1)Fn

UB −Fn−1
UB ] n = 2,3...

(18)

Similar to different temporal scheme, Eq.(17) is solved multiple
times to correct VOF field and VOF flux. The source term Sn
must change for every the MULES loop. In the Eq.(18), S1 refers
to the source of the MULES loop and Sn refers to the source terms
at nth MULES iteration. Every ends of corrector iteration, the
intermediate VOF is updated and Eq.(19) updates the VOF flux.

F t+h
BD := F t+h

BD +λ (Fn
UB −F t+h

BD ) (19)

Simulation set-up
Three different temporal discretization formulation for VOF

convection equation are investigated in this section. For conve-
nience, the name of each solver is present in Table 1.

TABLE 1. FOUR SOLVERS WITH DIFFERENT TEMPORAL DIS-
CRETIZATION SCHEME

Solver Temporal discretization scheme

Euler Implicit Euler

CN Crank-Nicolson

Backward BFD2

FIGURE 2. COMPUTATIONAL DOMAIN AND BOUNDARY
CONDITIONS

To investigate the ability of each temporal discretization
method in naval application, two-dimensional wave propagation
test case is considered. The computational domain is exactly
one wave length in x-direction. Fig. 2 shows the computational
domain, boundary conditions and initial VOF field. A periodic
boundary condition is applied to ’Inlet’ and ’Outlet’ boundaries.
For the ’Bottom’ patch, slip boundary condition is applied.

To measure the wave in space and in time, 100 wave probes
are installed uniformly from ’Inlet’ boundary to ’Outlet’ bound-
ary. The initial wave velocities and the free-surface positions are
evaluated from the stream function wave theory [10, 11]. The
wave condition is identical to previous studies [1, 12] and it is
tabulated in Table 3.

Same spatial discretization schemes are applied for all
solvers and only the temporal discretization scheme for convec-
tion and momentum equation is different. Applied spatial dis-
cretization schemes are tabulated at Table 2. Also, note that
Crank-Nicolson time-stepping method used off-centering coeffi-
cient Coc = 0.95 due to the stability reason. In order to minimize
the iterative uncertainty, 8 outer (SIMPLE) and 2 inner (PISO)
loop is applied.
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TABLE 2. SPATIAL DISCRETIZATION SCHEMES

Name Mathematical form Spatial discretization scheme

Gradient ∇aP Gauss linear

Surface normal gradient n•(∇a) f Linear uncorrected (Structure grid)

VOF convection ∇•(uα) Gauss Vanleer

VOF compression ∇•(urα(1−α)) Gauss linear

Momentum convection ∇•(ρuu) Gauss linear upwind for Vector

Momentum laplacian ∇•(µ(∇u)) Gauss linear uncorrected

Pressure laplacian ∇•(1/aP(∇u)) Gauss linear uncorrected

Under-relaxation Velocity u under-relaxation of velocity to 0.7

TABLE 3. WAVE CONDITION

Item Unit Value

Depth (D) [m] 0.6

Period (T ) [s] 0.7018

Height (H) [m] 0.05753

Wave length (λ ) [m] 0.8082

Wave steepness (kA) 0.24

To evaluate the order of convergence of each solver, a set of
simulation with five different refinement level of grids is carried
out. The information on the grid size and time-step (∆t) are given
in Table 4. The refinement ratio between each grid is r = 2 (ex-
cept between Grid 1 and Grid 2). The reference mesh is Grid 4
which have 100 cell for one wave length and this is a usual mesh
resolution for the naval application. Regardless to the refinement
level of grid, similar initial Courant Number (Co# ≈ 0.17) is as-
sumed.

Results and discussions
This section provides the results and discussions on the con-

vergence study for three solvers (Table 1). To examine the per-
formance of each solver, mainly three items are compared.

1. Time averaged first harmonic wave amplitudes.

TABLE 4. GRIDS FOR THE CONVERGENCE STUDY

Case λ/∆x H/∆z T/∆t ∆x/∆z

Grid 1 15 3 50 2.8

Grid 2 25 5 100 2.8

Grid 3 50 10 200 2.8

Grid 4 100 20 400 2.8

Grid 5 200 40 800 2.8

2. Time averaged phase velocities.
3. Free surface profile at time 10T , 20T , 30T and 40T .

Since the test case is wave propagation with periodic bound-
ary condition, it is difficult to compare the first harmonic phase
difference. Therefore, phase velocity is used to compare the
phase difference. The averaged time interval is 10 periods,
thus four time averaged wave amplitude and phase velocities
are compared. The most important time interval is the first one
[1T −10T ]. This is because 10 periods of periodic wave propa-
gation are enough for the practical purpose. Note that, 10 periods
of periodic wave propagation is very similar to 10 wave length
wave propagation with relaxation zones.

From the time averaged first harmonic amplitude, the order
of convergence and its uncertainties are evaluated. This compu-
tation is performed with the open access tool developed by Eça
and Hoekstra [13]. No convergence analysis has performed for
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FIGURE 3. TIME AVERAGED AMPLITUDE AND PHASE VELOCITY (EULER)

FIGURE 4. FREE SURFACE PROFILE WITH GIRD 4 AND GRID 5 (EULER)

phase velocity since it showed oscillatory behavior. The value P
and U inside the figures (Fig 5 to Fig 7) represent the order of
convergence of wave amplitude and its uncertainty, respectively.

Fig. 3 and Fig. 4 show the results of wave propagation using
Implicit Euler time-stepping method. With Grid 1 and Grid 2,
the wave is fully damped after 10 periods. Therefore, the order
of convergence is evaluated only for the time interval [1T −10T ]
and for Grid 3 to Grid 5. Higher phase velocity and large phase
shift is captured during the simulation. For time interval [1T −
10T ] the phase velocity showed convergence, however, it is still
higher than analytic phase velocity.

The wave propagation results using Crank-Nicolson tempo-
ral discretization scheme are illustrated at Fig. 5 and Fig. 6. The
second-order convergence (P= 2) of wave amplitude is achieved
for time interval [1T −10T ] and [11T −20T ]. The order of con-
vergence decrease to (P = 1.5) and (P = 1.2) for the time in-
terval [21T − 30T ] and [31T − 40T ]. With Gird 5, ’CN’ solver
loses about 1% of wave amplitude for every 10 periods, while
Gird 4 loses 2.5% of wave amplitude. The phase velocity clearly
shows the convergence to analytic solution. It might be useful to

note that there has a gradual increase of phase velocity respect to
time.

Fig. 7, Fig. 8 give the results of wave propagation using
BFD2 time integration scheme. With Backward solver, rather
low accuracy is achieved with course mesh. Also, the order of
convergence less then 2 is obtained even if it used second-order
time integration scheme.

Table 5 gives the summary of order of convergence of wave
amplitude of each solver respect to time intervals. For time in-
terval [1T −10T ], only CN solver obtained second order conver-
gence. And CN solver get the highest order of convergence for
later time interval. From this it is be possible to consider that the
Crank-Nicolson time-stepping scheme is more stable than others.

Fig. 9 , Fig. 10 illustrate the comparison of different solvers
for the time interval [1T − 10T ] and [11T − 20T ]. For course
mesh (Grid 1 - Grid 3), CN solver shows better conservation of
the wave amplitude. However, for the simulation set-up Grid
4 and Grid 5, the difference between CN solver and Backward
solver is very small.
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FIGURE 5. TIME AVERAGED AMPLITUDE AND PHASE VELOCITY (CN)

FIGURE 6. FREE SURFACE PROFILE WITH GIRD 4 AND GRID 5 (CN)

TABLE 5. SUMMARY OF ORDER OF CONVERGENCE OF
WAVE AMPLITUDE

T 01-10 T 11-20 T 21-30 T 31-40

Euler 0.7 x x x

CN 2.0 2.0 1.5 1.2

Backward 1.2 0.5 0.8 0.6

Conclusion
Different temporal discretization schemes for simple naval

application are presented. Implicit Euler, Crank-Nicolson and
BFD2 temporal discretization scheme are applied. A new for-
mulation for BFD2 time-stepping with explicit limiter are sug-
gested. Three solvers are compared with wave propagation sim-

ulation which have period boundary conditions.

Implicit Euler scheme show very large damp of free sur-
face elevation and showed this method is not appropriate for
two-phase naval appliation. Crank-Nicolson scheme showed best
propagation of wave and best order of convergence compare to
other solvers. The BFD2 temporal discretization scheme showed
inferior preservation of wave amplitude and phase velocity for
course mesh. However, for the fine meshes and small time-step
size, such as Grid 4 and Grid 5, BFD2 scheme showed a good
wave propagation properties.
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FIGURE 7. TIME AVERAGED AMPLITUDE AND PHASE VELOCITY (BACKWARD)

FIGURE 8. FREE SURFACE PROFILE WITH GIRD 4 AND GRID 5 (BACKWARD)

FIGURE 9. COMPARISON OF TIME AVERAGED WAVE AMPLITUDE FOR TIME INTERVAL [1T −10T ]
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FIGURE 10. COMPARISON OF TIME AVERAGED WAVE AMPLITUDE FOR TIME INTERVAL [11T −20T ]
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