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Abstract—The principle of quantitative acoustic microscopy
(QAM) is to form two-dimensional (2D) acoustic parameter
maps from a collection of radiofrequency (RF) signals acquired
by raster scanning a biological sample. Despite their relatively
simple structure consisting of two main reflections, RF signals
are currently sampled at very high frequencies, e.g., at 2.5 GHz
for QAM system employing a single-element transducer with
a center frequency of 250-MHz. The use of such high sampling
frequencies is challenging because of the potentially large amount
of acquired data and the cost of the necessary analog to digital
converters. Based on a parametric model characterizing QAM
RF signals, the objective of this paper is to use the finite rate of
innovation (FRI) framework in order to significantly reduce the
number of acquired samples. This is directly fed into a state-of-
the-art autoregressive (AR)-based method to estimate the model
parameters, which finally leads to the reconstruction of accurate
2D maps. The combination of FRI and AR model for sampling
and parametric map recovery allows decreasing the required
number of samples per RF signal up to a factor of 18 compared
to a conventional approach, with a minimal accuracy loss of
quantitative acoustic maps, as proven by visual evaluations and
numerical results, i.e. PSNR of 24.50 dB and 24.51 dB for the
reconstructed speed of sound map and acoustic impedance map.

Index Terms—Scanning Acoustic Microscopy, finite rate of
innovation, auto-regressive model.

I. INTRODUCTION

Quantitative Acoustic Microscopy (QAM) uses high fre-
quency ultrasound waves to investigate the mechanical prop-
erties of biological tissues at a microscopic scale [1]–[4].
Currently, the acquisition process in QAM requires a raster
scan of the sample, resulting into a large amount of RF data
acquired by transmitting short ultrasound pulses into a thin
section of soft tissue affixed to a microscopy slide. At each
spatial position, the received RF echo consists of two main
reflections due to the water-tissue and tissue-glass interfaces.
These reflections are time-shifted, frequency-attenuated, and
amplitude-decayed versions of a reference reflection signal
obtained from a water-glass interface. Two-dimensional (2D)
acoustic maps are thus estimated from an RF data cube using a
state-of-the-art inverse model based on an autoregressive (AR)
model for each RF signal [5]. Despite their limited degrees of
freedom, QAM RF signals are currently sampled beyond the

Nyquist rate. For example, within our 250-MHz imaging sys-
tem with 6-dB bandwidth of 300 MHz, RF signals are sampled
at 2.5 GHz. This arouses a number of practical issues, such as
a large amount of acquired data or the cost and the complexity
of the A/D converters and other fast electronic components. In
our previous study [6], we proved that, in the spatial domain,
applying the compressed sensing framework with an approx-
imate message passing reconstruction algorithm to the QAM
data acquisition enables a significant decrease in the amount of
RF signals acquired and the scanning time. This work proposes
a sampling scheme in the temporal domain able to drastically
reduce the number of samples per RF signal required to
reconstruct accurate acoustic maps in QAM [7]. The proposed
approach is based on the finite rate of innovation (FRI) theory
[8] that provides theoretical guarantees for reconstructing non-
bandlimited parametric signals, such as train of Diracs, from
a small number of samples taken at the innovation rate. The
class of signals subjected to the FRI framework, so called
FRI signals, can be commonly modeled as a signal in union of
subspaces spanned by a limited set of parameters with a known
basis, instead of a single linear vector space forcing an input
signal to be bandlimited [9]. As such, given the basis function
as a prior information, the novel sampling process carries out
a uniform sampling at a remarkably reduced sampling rate,
i.e. the rate of innovation, corresponding to the degree of
freedom able to perfectly characterize the considered signal.
The reconstruction strategy is equivalent to identifying the
innovation part of the signal, typically using the annihilating
filter technique [10], the matrix pencil method [11] or total
least-squares [12]. In this regard, taking into account the
aforementioned nature of QAM RF signals, namely paramet-
rically expressed by two pulses varied with amplitude decay,
time delay and frequency dependent attenuation of a known
pulse, the low rate sampling scheme based on the FRI manner
could contribute to a significant reduction of the number of
samples. Nevertheless, it should be noted that this signal has
an additional degree of freedom, i.e., the frequency attenuation
in comparison with signal models normally considered in FRI
context, which is likely to be an intractable parameter for
existing estimators generally employed in FRI studies. Thus,
in order to successfully introducing FRI sampling framework
to our signal model, we propose a novel technique, i.e., FRI
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sampling scheme combined with AR model-based estimation.
The proposed sampling and reconstruction methods for QAM
RF signals are evaluated on experimental data obtained from
a chicken tendon. The resulting acoustic parameter maps are
compared to those computed directly from the fully sampled
RF data cube. The simulation results demonstrate that the
sampling frequency currently used within existing scanners
can be reduced by a factor of 18 (i.e., 15.6% of Nyquist rate)
without degrading the quality of the 2D acoustic maps.
The remainder of this paper is structured as follows. Section II
briefly presents the necessary theoretical background of QAM
technology and in particular the parametric model used for
RF signals, and the basic theory behind sampling and recon-
struction of FRI signals. Section III introduces the proposed
QAM RF signal sampling scheme and reconstruction method.
Results are reported in Section IV, before conclusive remarks
and perspectives in Section V.

II. THEORETICAL BACKGROUND

A. Signal model in quantitative acoustic microscopy

In QAM, a high-frequency (> 50 MHz), single-element,
spherically-focused (e.g., F-number < 1.3) transducer trans-
mits a short ultrasound pulse and receives the RF echo signal
reflected from the sample which consists of a thin section of
soft tissue affixed to a microscopy slide. The echo RF signal
denoted by S(t) in (1) is composed of two main reflections,
S1(t) and S2(t), as illustrated in Fig. 1. S1(t) originates from
the interface between the coupling medium (degassed saline)
and the specimen, and S2(t) from the interface between the
specimen and the glass substrate.

S(t) = S1(t) + S2(t) (1)

Estimating acoustic parameters from S(t) basically requires
the knowledge of a reference signal, denoted by S0(t) in
Fig. 1(a), obtained in practice from a region devoid of sample.
Echoes S1(t) and S2(t) can be further linked to the reference
signal S0(t) through amplitude decays a1,2 and time delays
t1,2. Moreover, due to a round trip flight inside the sample,
S2(t) experiences an additional effect of frequency dependent
attenuation represented by (∗). This observation on the physi-
cal phenomena allows one to build a more explicit formula of
the received RF signals, which paves the way for introducing
the FRI sampling and reconstruction in QAM imaging:

S(t) = a1S0(t− t1) + a2S
(∗)
0 (t− t2), (2)

At each scan location, the RF data is digitized, saved,
and processed offline to yield values of speed of sound (c),
acoustic impedance (Z) and attenuation coefficient (α) [4].
For doing these, the ratio between the Fourier transforms
of the sample signal (S) and the reference signal (S0) is
computed, and fit to a forward model to estimate the time
lags of S1 and S2 with respect to S0. These time differences
are exploited to determine c and the tissue thickness (d in
Fig. 1(a)) corresponding to the scanned location of the sample.
The forward model fit also provides the amplitude of S1, which
is used to estimate Z in the sample. Finally, α is obtained

(a) (b)

Fig. 1. Illustrative working principle of QAM (a) and transducer (b)

from the previously-estimated time delay of S2 and the tissue
thickness d [4]. More details about the computation of these
acoustic parameter maps are given in Section IV.

B. FRI signal sampling and reconstruction

Signals with a limited number of degrees of freedom occur
in various applications such as astronomy, radar or medical
imaging [13]–[17]. Generally called signals with FRI, they are
typically expressed as a τ -periodic parametric form as follow:

x(t) =
∑
m∈Z

L∑
l=1

alh(t− tl −mτ), (3)

where h(t) is a possibly non-bandlimited pulse supposed to
be known and repeated L times at the time instants tl and
scaled by the amplitudes al. Starting from the seminal paper of
Vetterli et al. [8], a rich literature exists on the reconstruction
of these kinds of signals from a limited number of samples.
In contrast to the classical sampling theory based on the
celebrated Shannon-Nyquist theorem that relates the number
of samples required to the signal bandwidth, the number of
measurements in FRI framework is dictated by the rate of
innovation (ρ), i.e., the number of parameters able to com-
pletely describe x(t) over one period. Given the parametric
representation in (3) of a signal of interest, the canonical FRI
processes involve the design of a relevant sampling kernel and
the development of effective recovery strategies, which will be
addressed hereafter.

Construction of a proper sampling kernel: Finding
appropriate sampling kernels has been vigorously carried out
in several existing studies, e.g., [8], [18]. As requirements
commonly highlighted in these works, the sampling kernels
adopted must be resilient to noise and have a compact support
in time, and therefore should be able to ensure a stable and
accurate reconstruction. Taking into account these aspects,
exponential reproducing kernels ϕ(t) are most frequently
addressed in FRI literature [19], [20]:∑

n∈Z
cm,nϕ(t− n) = eαmt, (4)

where cm,n are proper coefficients able to reproduce complex
exponentials, i.e. eαmt (m = 0, . . . , P ) with complex value
parameters αm, via a linear combination of shifted versions
of any function ϕ(t). Importantly, when Φ(αm) represents
the Laplace transform of ϕ(t) evaluated at αm, such kernels
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necessarily satisfy Φ(αm) 6= 0 and Φ(αm + 2jπl) = 0 for
l ∈ Z\{0} [21], and the coefficients cm,n are given by:

cm,n =

∫ ∞
−∞

eαmtϕ̃(t− n)dt

=

∫ ∞
−∞

eαmxeαmnϕ̃(x)dx = cm,0e
αmn, (5)

where the dual analysis function ϕ̃(t) is biorthogonal to ϕ(t),
i.e., 〈ϕ̃(t− n), ϕ(t−m)〉 = δm−n [22]. In order to guarantee
a stable and accurate recovery, the FRI setting established in
[20] imposes some conditions on the matrix consisting of the
elements cm,n, which is square and unitary and its condition
number is one. Overall, the requirements are supported by
|cm,0| = 1 and αm being purely imaginary exponents to be
located on the unit circle.

Uniform sampling: Let xn be a finite set of N samples
acquired by low pass filtering and uniformly sampling x(t) at
intervals of T with a sampling kernel ϕ(t).

xn =

〈
L∑
l=1

alh(t− tl)︸ ︷︷ ︸
one period of x(t)

, ϕ

(
t

T
− n

)〉
(6)

Estimating the unknown parameters from samples xn:
In order for relating the spectral estimation method to the
estimation of the unknown parameters in (3), the uniformly
sampled measurements xn are transformed into a sequence of
moments Mm taking advantage of (5) and (6) [20]:

Mm =
L∑
l=1

alu
m
l , (7)

where m = 0, . . . , P and the sampling kernel’s order cor-
responds to P + 1 ≥ 2L. Determining both ul’s containing
the time delays tl and amplitudes al is subject to solving a
classical problem in spectral analysis [10].

III. MATERIAL AND METHODS

A. Signal model

In QAM, RF signals consist of two main reflections plotted
as the continuous line in Fig. 2 (a), which can be parametri-
cally modeled with a reference RF pulse displayed with the
dotted line in Fig. 2 (a). The non-attenuated reference pulse,
denoted by h(t) hereafter and corresponding to S0(t) in (2),
is commonly measured, at the same time when the sample is
scanned, from a region without sample, i.e. presenting only
one water-glass interface [5]. It is thus assumed to be known.
The two frequency attenuated versions of h are denoted by
h(1) and h(2). Written in a τ -periodic version, the QAM RF
signal model is as follows:
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Fig. 2. (a) Example of reference and QAM RF signals in the time domain,
(b) Fourier transform of the reference signal in (a) highlighting the 6dB
bandwidth.

x(t) =
∑
m∈Z

2∑
l=1

alh
(l)(t−∆tl −mτ)

(a)
=
∑
k∈Z

{
1

τ
H
[2πk

τ

] 2∑
l=1

ale
−j2πk∆tl−2πkβl

τ

}
e
j2πkt
τ (8)

∆
=
∑
k∈Z

X [k] e
j2πkt
τ ,

where (a) is obtained applying the Poisson’s summation for-
mula [23], βl, al and ∆tl stand respectively for the frequency
attenuation coefficients, the amplitudes and the time delays.
Without loss of generality, we assume β1 equal to 0. Thus, the
unknown parameters are a1, a2, ∆t1, ∆t2 and β2. In (8), the
last line represents the Fourier series expansion of x(t), with
X[k] the Fourier series coefficients. By identification, one can
easily connect X[k] to the unknown parameters as follows:

X[k] =
1

τ
H
[2πk

τ

] 2∑
l=1

ale
−j2πk∆tl−2πkβl

τ (9)

Assuming that one has access to a set of Fourier series
expansion of X[k], retrieving the unknown parameters from
the sum of power series is closely related to the standard
problem of identifying frequencies and amplitudes in spectral
analysis [10]. The following sections explain how X[k] can be
obtained in practice, and the reconstruction method proposed
is able to determine the model parameters defining QAM RF
signals.

B. Sampling procedure

The sampling procedure used in this work was inspired
by [17], where the stream of ultrasound pulses sampled at
innovation rate was able to be exactly recovered using FRI
framework. The main idea is to uniformly sample the de-
modulated QAM RF signal using a compactly supported Sum
of Sincs (SoS) sampling kernel, and subsequently to relate
these samples through a linear model to the Fourier series
coefficients X[k]. In the Fourier domain, the SoS sampling
kernel (denoted by ϕ(t) in the time domain) is given by

Φ(ω) =
τ√
2π

∑
k∈Z

bksinc

(
ω
2π
τ

− k
)
, (10)
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Fig. 3. Example of SoS sampling kernel is illustrated in temporal (a) and
frequency domain (b). On the other hand, (c) and (d) show respectively real
and imaginary parts after filtering and uniform sampling the demodulated RF
signal using the SoS sampling kernel, where the applied innovation rate is
125MHz (equivalent to 11 samples over one period).

where bk is a smoothing window (Hamming window was used
in our experiments) and has a symmetric sequence of odd
length, which leads to a real valued analog filter applicable
to a continuous time domain. An example of SoS sampling
kernel is shown in Fig. 3 (a-b), in both temporal and frequency
domains, where the applied innovation rate is 125 MHz
corresponding to 11 samples over one period. Note that the
sampling kernel ϕ(t) used within our sampling scheme is in-
trinsically a low pass filter, but the 6-dB bandwidth highlighted
in Fig. 2 (b) to be sampled has the center frequency of 250
MHz. Therefore it should be shifted on the baseband prior
to the low rate sampling. This requirement is accomplished
by a standard I-Q demodulation [24], the outcome of which
is filtered and sampled with the sampling kernel ϕ(t) and
a sampling period T respectively. We denote by x[n] the
sampled version of x(t), and the process is detailed as follows.

x[n] = 〈x(t), ϕ(t− nT )〉 =

∫ ∞
−∞

x(t)ϕ∗(t− nT )dt

(a)
=
∑
k∈Z

X[k]

∫ ∞
−∞

e
j2πkt
τ ϕ∗(t− nT )dt

(b)
=
∑
k∈Z

X[k]e
j2πknT

τ

∫ ∞
−∞

e
j2πkt
τ ϕ∗(t)dt

(c)
=
∑
k∈Z

X[k]e
j2πknT

τ Φ∗
[2πk

τ

]
,

(11)

where (a) is obtained by substituting the result of the
derivation in (8), (b) results from a change of variable, and
Φ∗[2πk/τ ] in (c) denotes the discrete Fourier transform of
ϕ∗(t) evaluated at [2πk/τ ]. The superscript “ ∗ ” stands

for complex conjugate. Fig. 3 (c-d) display, in the real and
imaginary parts, samples filtered and uniformly decimated at
an innovation rate after I-Q demodulating an RF signal. One
may observe from (10) that Φ∗[2πk/τ ] is different from zero
only for k’s belonging to a finite set K. Then, the summation,
in the last line of (11), becomes finite (k ∈ K instead of
k ∈ Z), and can be rewritten as in (12). This nice property can
be supported by any kernel satisfying the Strang-Fix condition
[25], [26].

x[n] =
∑
k∈K

X[k]e
j2πknT

τ Φ∗
[2πk

τ

]
. (12)

As a result, the Fourier series coefficients X[k] can be com-
puted from the digital samples x[n] by applying the inverse of
a correction matrix to the discrete Fourier transform of x[n]
as shown hereafter. (12) can be rewritten in a matrix-vector
form as follows.

x = VGX, (13)

where x and X are column vectors that gather respectively
the discrete samples x[n] and the Fourier coefficients X[k] to
be identified. Moreover, V and G are a Vandermonde matrix
having e( j2πknTτ ) as (nk)th elements (discrete inverse Fourier
transform matrix) and a diagonal matrix with Φ∗( 2πk

τ ) as main
diagonal entries respectively. Based on (13), X is obtained by

X = G−1DFT (x), (14)

where DFT stands for discrete Fourier transform. In the
remainder of the paper, X[k] plays a pivotal role to estimate
the unknown parameters in (9). Note that the invertibility of
matrix G is ensured by the choice of the sampling kernel and
of the finite set K where Φ∗[2πk/τ ] is different from zero.

C. Reconstruction method

In QAM, the acoustic parameters of the scanned tissue are
calculated based on the estimation of the amplitudes, time
delays and frequency attenuation coefficients of each RF signal
at each spatial location, following the signal model in (8) and
more precisely its Fourier domain counterpart in (9). Within
the proposed framework, these Fourier coefficients are directly
estimated from the few samples acquired using SoS sampling
kernel, as explained in the previous sections. The Fourier
coefficients can be rewritten in a normalized form denoted by
Nk containing only the terms associated with the parameters
to be estimated, obtained by dividing X[k] by 1

τH[2πk/τ ] in

Nk =

n∑
l=1

al{exp[2π∆f(−βl − j∆tl)/τ ]}k

=
n∑
l=1

alλ
k
l ,

(15)

where ∆f and n are the step size leading to discrete fre-
quencies, i.e. fk = k∆f and the number of pulses to be
reconstructed respectively, and λl stands for exp[2π∆f(−βl−
j∆tl)/τ ]. Thus, the parameters of the model in (8) can be
directly estimated by solving this problem without the need of
reconstructing the RF signal. The estimation is accomplished
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making use of an AR model, which unlike the previous setup
in (9) supposes that QAM RF signals are composed of more
than two reflections (n ≥ 2) in order for providing robustness
and stability to noise and estimation artifacts. Introducing the
error term and the AR coefficients denoted by respectively ε
and s, the AR inverse model for QAM proposed is formulated
as follow:

Nk =
n∑
i=1

siNk−i + εk, (16)

For the practical implementation, (16) is rewritten in matrix-
vector form as:

n = −Rs + ε, (17)

where provided that the normalized coefficients Nk are com-
puted at the frequencies ranging from kmax∆f to kmin∆f ,
n is the column vector of length (kmax − kmin + 1 − n)
representing the values of Nk from (kmin + n) to kmax, R
is the matrix of size (kmax − kmin + 1 − n) by n whose
entries are determined by Nk−i, and ε is the column vector of
length (kmax − kmin + 1− n) composed of the values εk from
(kmin+n) to kmax. Together with the process to find the solution
to the AR coefficients s, the great details regarding further
derivations are presented in [5], and therefore in what follows
we briefly summarize the remaining steps. The AR model
coefficients si are estimated by a least-square approach (Eq.
(14) in [5]). Then, the coefficients λl are determined by the
roots of polynomials formed from the AR model coefficients
(Eq. (18) in [5]). Subsequently, the coefficients al are obtained
using a least-square approach (Eq. (20) in [5]). Among the
n pairs of λl and al estimated, we select the two sets of
parameters corresponding to the echoes reflected from the
water-tissue and tissue-glass interfaces (see Section II.C.3 in
[5]).

D. Computation of acoustic parameters
From the signal model parameters estimated as described in

the previous section, speed of sound (c), acoustic impedance
(Z) and attenuation (α) are computed as follows, where
without loss of generality we assumed the water-tissue and
tissue-glass signals are represented by (λ1, a1) and (λ2, a2),
respectively.

c = cw
imag(log(λ1))

imag(log(λ1)) + imag(log(λ2))
, (18)

where cw is the known speed of sound in the water used as a
coupling fluid between the transducer and the sample.

α =
real(log(λ2))

2d∆f
, (19)

where d is the tissue thickness estimated by

d =
cw
2

imag(log(λ1))

∆f
, (20)

Z = Zw
1 + a1

Rwg

1− a1

Rwg

, (21)

where Rwg is the known pressure reflection coefficient be-
tween water and glass and defined in Eq. (34) in [5].

E. Experimental data and QAM system

To evaluate the FRI-based AR approach, experimental QAM
data were acquired from a chicken tendon sample using a
QAM system equipped with a 250 MHz center frequency
transducer. A fresh chicken tendon was fixed in formalin
while loaded longitudinally then cryosectioned (16-µm thick)
and affixed to a microscopy slide [27]. The RF data cube
was obtained by raster scanning the microscopy slide in two
dimensions using 2-µm steps between adjacent scan lines. At
each scan location, the RF signal was sampled at 2.5 GHz.
The resulting RF data cube was of size 501 × 501 × 200
RF samples. The QAM system has been described in great
details in previous publications (see, e.g., [2], [3], [28]) which
were committed to identification of various elastic properties
of soft tissues, i.e. attenuation (α), speed of sound (c), acoustic
impedance (Z), bulk modules (B) and mass density (ρ). The
-20 dB bandwidth of the QAM system extended to approxi-
mately 400 MHz. Therefore, in what follows, we define the
Nyquist frequency of the QAM system to be 800 MHz. The
experimental data were sampled using the FRI-based method
with the same spatial step size but with temporal sampling
frequencies ranging from 75 MHz to 250 MHz (25 MHz steps)
yielding from 7 to 21 samples per RF line. These sampling
frequencies correspond to a range from approximately 9.4%
to 31.3% of the QAM system Nyquist frequency 800 MHz.

F. Similarity measures

Quantitative evaluations between the acoustic maps obtained
with the proposed approach and their counterpart produced
from fully sampled RF signals are performed using the normal-
ized mean squared error (NRMSE=

√
‖x−x̂‖2
‖x‖2 ) and the peak

signal to noise ratio (PSNR(dB)= 10 log10
max(x,x̂)2

‖x−x̂‖2 ), which
are defined as the comparison between two images x and x̂.

IV. SIMULATION RESULTS

Simulations were conducted with nine innovation rates
chosen considering 6 dB bandwidth of the reference signal,
based on the methods introduced in Section III. The results are
reported in Section IV-A for the Fourier coefficients estimation
and subsequently in Section IV-B for the acoustic parameter
estimation. More importantly, the outcomes in the second part
lead to an instructive discussion on how the most preferable
innovation rate could be selected in a sense of the sampling
efficiency and the estimation accuracy.

A. Estimation of Fourier coefficients

The first step following QAM RF signal sampling at innova-
tion rate is to recover the discrete Fourier coefficients X[k] as
described in (11)-(14). Fig. 4 depicts the comparison between
the Fourier coefficients estimated by the proposed method and
those computed by the conventional sampling scheme sepa-
rately in the real and imaginary parts. The illustrative results
demonstrate that there is no visually perceptible discrepancy
caused by the FRI estimation method. Table I shows the
average and the standard deviation (over 10, 000 recovered
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Fig. 4. Real parts (a) and imaginary parts (b) of FT coefficients estimated
from FRI sampling scheme (11 samples, i.e. 125 MHz) are overlapped on
the FT coefficients acquired by conventional sampling (200 samples, i.e. 2.5
GHz).

signals) of the normalized root mean squared error relative
to the Fourier coefficients obtained using the FRI approach.
Overall, the numerical comparison confirms that the Fourier
coefficients are estimated nearly perfectly, which is consistent
with the qualitative observations of Fig. 4. Evidently, it can be
expected that the accurate recovery of the Fourier coefficients
will contribute to the exact estimation of acoustic parameters
as revealed in the following section. In addition, it turns out
that the estimation error depends on the design of the SoS
sampling kernel, in particular being affected by the selection
of the window function, i.e. bk’s in (10), and the strategy for
finding the optimal window coefficients is referred to in [17].

B. Acoustic parameter maps

We herein evaluate the quality of the 2D acoustic maps,
i.e. speed of sound map (2DcM) and acoustic impedance
map (2DZM), reconstructed from QAM RF signals sampled
following the proposed scheme against the one estimated from
fully sampled RF data cubes. Fig. 5 (a) and (b-i) shows 2DcMs
reconstructed from the conventional AR estimator (i.e., applied
to the data sampled at 2.5 GHz) and using the proposed FRI-
based AR estimator applied at 8 different effective innovation
rates. Similarly, Fig. 6 shows the red boxes of Fig. 5 to
provide visual details at a finer scale. On the whole, in spite
of the innovation rate sampling, the 2DcMs reconstructed
using the FRI-based AR estimator shows no significant visual
degradation except for the 2DcM built from 7 samples (i.e.,
sampling at 75.0 MHz) of Fig. 5 (b). Additionally, Fig. 7
compares the single lines extracted at 0.4mm on the y-axis of
each map in order to scrutinize the estimation accuracy of the
acoustic parameter in the 2DcMs yielded from the innovation
rates. It clearly illustrates two lines are exactly overlapped on
most positions in the sampling schemes using over 125.0 MHz
of Fig. 7 (c)-(h), whereas the result recovered from 75.0 MHz
reveals the severe distortion as observed earlier. Figures 8, 9
and 10 present the 2DZM results in the exact same fashion
as Figures 5, 6, and 7. Overall, the results follow the same
trends as those of the 2DcMs. The above visual observations
are quantitatively confirmed by standard quality metrics (i.e.,
normalized root mean square error and peak signal to noise
ratio) shown in the Table II (which were computed in the
zoomed in areas, i.e., red rectangle). As expected, the results
obtained with 7 samples show large NRMSE and low PSNR.

Small improvement exists in these metrics when 9 samples are
used. Interestingly, NRMSE and PSNR results for between 11
and 21 samples are all satisfactory and nearly identical. No
further improvement is obtained even when more samples are
used, which will be discussed in the following section.

V. DISCUSSION AND CONCLUSIONS

The objective of this work was to combine the innovation
rate sampling procedure of RF signal with the AR model-based
parametric acoustic map reconstruction in QAM imaging. Both
approaches were based on a parametric model of the QAM RF
signals with a limited number of degrees of freedom, i.e. the
amplitudes, time delays and frequency-dependent attenuation
coefficients. We showed encouraging results by proving that
the proposed FRI-based AR approach can reconstruct 2D
acoustic maps with an accuracy comparable to the conven-
tional QAM technology, despite using sampling frequency 18
times lower than the one (2.5 GHz) classically used within
existing imaging systems and 6 times lower than the rate (800
MHz) required by the Nyquist criterion.
Taking into account a model mismatch caused by noise,
artifacts or scattering in the tissue structure, the FRI-based
AR estimator is able to obtain the most desirable two echoes
in the manner of screening out such noise perturbations with
the dedicated logic. In this sense, increasing n in (16) implies
that we can construct more individual pulses, and two correct
reflections are more likely to be separable from the noise
effects. However, because this requires the increase of Fourier
coefficients, i.e. higher innovation rate, we need to find a com-
promise. Except for the results acquired from the innovation
rates below 6-dB bandwidth, i.e. 7 and 9 samples, the overall
numerical assessments on the Table II reveal no noticeable
improvement even though the number of samples increases.
This is likely to result from the fact that, as illustrated in the
Fig. 2(b), the coefficients away from the center frequency have
less contribution to the signal information. Accordingly, the
analysis of the power distribution of a reference signal could
offer a critical insight to determine the most relevant inno-
vation rate of a QAM RF signal featured by five parameters.
Likewise, the estimation failure in less innovation rates than 11
samples could be explained in this perspective. To conclude,
the simulation results legitimize that the innovation rate (125
MHz) of 11 samples, equivalent to 6 dB bandwidth showing
the estimation performance comparable to its counterparts (i.e.
over 125 MHz), can be considered as the optimal operating
in this experiment, i.e. the compromise between the sampling
cost and the image quality as stated above.
Strang-Fix condition [25], [26] defines the property of a
sampling kernel able to perfectly represent the moments of
an FRI signal in a subspace spanned with a maximum order
corresponding to the innovation rate. In the simulations, we
used SoS sampling kernel in [17] since it respects this property.
However, other sampling kernels could also be considered such
as B-splines that reproduce polynomials other than exponen-
tials [29], [30].
The FRI-based AR approach to QAM presented in this paper
has tremendous implications for QAM systems. For instance,
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Number of samples 7 9 11 13 15 17 19 21
Sampling frequency (MHz) 75 100 125 150 175 200 225 250

Fraction of Nyquist rate (800 MHz) in % 9.4 12.5 15.6 18.8 21.9 25.0 28.1 31.3
Real part

of FT coefficients
NRMSE 0.0137 0.0126 0.0132 0.0116 0.0100 0.0090 0.0089 0.0089

STD. 0.0063 0.0055 0.0048 0.0057 0.0045 0.0037 0.0034 0.0032
Imaginary part

of FT coefficients
NRMSE 0.0064 0.0062 0.0067 0.0060 0.0058 0.0056 0.0059 0.0058

STD. 0.0020 0.0021 0.0022 0.0028 0.0023 0.0023 0.0022 0.0022

TABLE I
The average and standard deviation of normalized root mean squared error (over 10,000 recovered signals) with respect to real and imaginary parts of FT

coefficients retireved from various innovation rates

Samples per RF line: 200
 Sampling rate:2.50GHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(a)

Samples per RF line: 7
 Sampling rate:75.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(b) NRMSE (0.1064), PSNR (17.73dB)

Samples per RF line: 9
 Sampling rate:100.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(c) NRMSE (0.0771), PSNR (20.68dB)

Samples per RF line: 11
 Sampling rate:125.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(d) NRMSE (0.0529), PSNR (24.50dB)

Samples per RF line: 13
 Sampling rate:150.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(e) NRMSE (0.0498), PSNR (25.00dB)

Samples per RF line: 15
 Sampling rate:175.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(f) NRMSE (0.0500), PSNR (25.00dB)

Samples per RF line: 17
 Sampling rate:200.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(g) NRMSE (0.0498), PSNR (25.07dB)

Samples per RF line: 19
 Sampling rate:225.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(h) NRMSE (0.0493), PSNR (25.16dB)

Samples per RF line: 21
 Sampling rate:250.00MHz

0 0.2 0.4 0.6 0.8 1

x[mm]

0

0.2

0.4

0.6

0.8

1

y[
m

m
]

1500

1850

2200
[m/s]

(i) NRMSE (0.0509), PSNR (24.87dB)

Fig. 5. (a) and (b-i) are speed of sound maps estimated from fully-sampled RF data cube (200 samples per RF signal), and from samples acquired following
the proposed approach corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal. Quantitative accuracy measurements computed
from the red box in these speed of sound maps are given in Table II.
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Fig. 6. Magnified maps of the red boxes in Fig. 5. (a) is the SOS map created from fully-sampled RF data cube (200 samples per RF signal), (b-i) are the
SOS maps estimated following the proposed approach corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal. The red dotted
line indicates the cross sectioned location of profiles in Fig. 7.

Number of samples 7 9 11 13 15 17 19 21
Sampling frequency (MHz) 75 100 125 150 175 200 225 250

Fraction of Nyquist rate (800 MHz) in % 9.4 12.5 15.6 18.8 21.9 25.0 28.1 31.3

Speed of sound map NRMSE 0.1064 0.0771 0.0529 0.0498 0.0500 0.0498 0.0493 0.0509
PSNR(dB) 17.73 20.68 24.50 25.00 25.00 25.07 25.16 24.87

Acoustic impedance map NRMSE 0.1073 0.0842 0.0591 0.0631 0.0498 0.0464 0.0461 0.0456
PSNR(dB) 18.41 21.42 24.51 23.94 25.99 26.60 26.66 26.74

TABLE II
Quantitative results computed between the 2D map from fully sampled RF data cube and those obtained from QAM RF signal sampled at low rates: 262.5

MHz (21 samples per RF signal), 237.5 MHz (19 samples per RF signal), 212.5 MHz (17 samples per RF signal), 187.5 MHz (15 samples per RF
signal),162.5 MHz (13 samples per RF signal), 137.5 MHz (11 samples per RF signal), 112.5 MHz (9 samples per RF signal) and 87.5 MHz (7 samples per

RF signal) .
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Fig. 7. Horizontal cross sections and single lines of 2DcM at 0.4mm of y-axis in Fig. 6. The red continuous lines are a cross section from fully sampled
map, i.e. Fig. 6(a) which is used as the criterion for comparison. The blue dotted lines of (a-h) represent the cross sections of Fig. 6(b-i) respectively.
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Fig. 8. (a) and (b-i) are acoustic impedance maps estimated from fully-sampled RF data cube (200 samples per RF signal), and from RF signals sampled
following the proposed approach corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal. Quantitative accuracy measurements
computed from the red box in these speed of sound maps are given in Table II.

it would allow the use of much slower A/D cards than
those currently used. This would drastically reduce costs.
Furthermore, slower A/D cards are much easier to manufacture
and therefore can be made with higher bit counts (e.g., 16
bits sampling at 250 MHz is much easier to manufacture than
12 bits at 2.5 GHz) yielding increased data quality and lower
sensitivity to noise. Currently, most QAM systems do not fully
operate in real-time and require a few seconds to process the
data and form images. The FRI-based AR approach completely
short circuits the process of forming images by not only

providing much less data overall, but, more importantly, by
directly providing normalized Fourier coefficients used in the
AR algorithm thus saving precious computation time.
Based on this achievement, we plan to propose an approach
able to further reduce the data acquisition time and the size of
the data cube from spatio-temporally under-sampled measure-
ments by combining both the compressed sensing framework
[31], [32] and the finite rate of innovation signal theory. The
integration of two methods is straightforward thanks to the
previous study [6]; the compressed scanning scheme in spatial
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Fig. 9. Magnified maps of the red boxes in Fig. 5. (a) is the acoustic impedance map created from fully-sampled RF data cube (200 samples per RF signal),
(b-i) are the SOS maps estimated following the proposed approach corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal. The
red dotted line indicates the cross sectioned location of profiles in Fig. 10.
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Fig. 10. Horizontal cross sections and single lines of 2DZM at 0.4mm of y-axis in Fig. 9. The red continuous lines are a cross section from fully sampled
map, i.e. Fig. 9(a) which is used as the criterion for comparison. The blue dotted lines of (a-h) represent the cross sections of Fig. 9(b-i) respectively.
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domain followed by the FRI sampling in temporal domain
will lead to extremely squashed data cube compared to the
conventional QAM technique.
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