
HAL Id: hal-02884949
https://hal.science/hal-02884949

Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trace Analysis in Instrumented Learning Groupware: an
experiment in a practical class at the university

Stéphane Talbot, Christophe Courtin

To cite this version:
Stéphane Talbot, Christophe Courtin. Trace Analysis in Instrumented Learning Groupware: an exper-
iment in a practical class at the university. Seventh IASTED International Conference WEB-BASED
EDUCATION (WBE), Mar 2008, Innsbruck, Austria. �hal-02884949�

https://hal.science/hal-02884949
https://hal.archives-ouvertes.fr

Trace Analysis in Instrumented Learning Groupware: an experiment in a practical

class at the university

Stéphane Talbot, Christophe Courtin

Laboratory Systèmes Communicants – University of Savoie
73376 Le Bourget-du-Lac Cedex

France
{Christophe.Courtin,Stephane.Talbot}@univ-savoie.fr

ABSTRACT
Software for supporting students in learning in a
collaborative way is very often less productive than
expected. We have defined models to collect and analyse
traces of learning activities in instrumented collective
learning situations (ICLS). We have conducted an
experiment, to test a prototype of an observation station,
with students and a teacher during a foreign language
course at the university. We use this prototype to point
out how software tool use models can provide a human
observer with information to analyse collaborative
learning activities..

KEY WORDS
trace, observation, intrumentation, awareness,
collaborative learning

1. Introduction

E-learning technologies are becoming increasingly
popular, but it is often difficult to take advantage of
collaboration in the learning process. Indeed,
collaborative learning systems should enable participants
to observe group activity, in order to be aware of the work
in progress. An observation station should give as much
information as needed for adapting activity in an
instrumented collective learning situation (ICLS). As far
as the teacher is concerned, such information may lead
her/him to modify the pedagogical scenario over time [1],
for instance by adding exercises or specific explanations
in the event of a failure. Observation of students’ work
may allow the teacher to detect effective strategies. For
students, this observation is useful to situate their own
work in the group, to get information about their own
errors, etc.

In this paper, we present an experiment which highlights
the feasibility of an observation station, from the technical
results of a prototype. This first experiment is a starting
point to evaluate the benefits of such a system in
collaborative learning activities

2. Objectives

With this experiment, we aim to test our intra and inter
use models of software tools [2]. These models, which
describe the expected use of each software tool of an
ICLS and between tools, are represented by a set of rules.
A use model has to facilitate activity interpretation by
increasing the abstraction level. An abstraction level
corresponds to an observer’s specific point of view (e.g.
pedagogical, communicational, etc.). A use model is
based on structured information (collect model [3]) with
specific semantics, that we call “templates”.

3. Experiment

Figure 1 : experiment

Our experiment was carried out during a practical class in
an English course (foreign language) with students at the
university. The work consisted in teaching English
vocabulary through the study of a text in English, to
students working in pairs, and placed on separate
workstations, but communicating with an appropriate
software tool (“coffee-room” which is a structured chat
room). The students were free to organize their work in
pairs, but each member had to participate actively in the
exercise. This consisted in defining a set of situated
English words. The work was finished when all the
definitions had been completed, or when the class was
over.

The main final objectives defined by the teacher were to
promote knowledge sharing in pairs, and to detect one’s
own errors.

In the experiment, the production tool is called “jibiki”
(an asynchronous collaborative editor) and the
communication tool is called “coffee-room” (a chat room
in which communication spaces are represented by
tables).

The experiment trace technique is based on the
instrumentation of the software tools which are used in an
instrumented collective learning situation (ICLS).

The instrumentation technique is equivalent to the log
system one [4], except for the fact that it takes place at the
level of the software tools themselves. We observed
promising results with the log system [5], and we
therefore propose a technique as an extension of it. Both
techniques have advantages which compensate for their
respective drawbacks, and we plan to use both of them in
our architecture. Indeed, we will present the possibility of
considering other trace sources in our analyses [6]. This
flexibility is possible because collect and trace analysis
modules are separated in our system architecture.

As instrumentation takes place at the software tool level
in an ICLS, it enables one to provide traces with an
abstraction level close to that of the human observer, that
is to say one which enables the description of actions
according to a software tool use model, defined by the
observer her/himself.

The log systems, which represent low level data on a
server, enable one to collect all the events generated by
the system when using the software tools of the ICLS.
However, this technique generates a great deal of noise
[7], and it is difficult to interpret low level events.
Furthermore, we maintain that the system is unable to
provide all the elements useful for the description of
actions (we will see an example hereafter).

The instrumentation technique is based on the idea of the
nature of the traces we wish to obtain. Thus, we define a
use model for the software tools of the ICLS, which
describes all the actions expected in this kind of activity.
After having defined the corresponding observables,
instrumentation consists in sending explicitly associated
information, called signals, from the software tools
themselves.

The use model of software tools in ICLS is represented by
a system of rules in order to recognize potential actions
from signals and sequences [2]. The rules, triggered by
signals matching their conditions, provide higher
abstraction level traces, called level one sequences. By
extrapolating this mechanism, level n sequences may be
created from signals and previously created level n-1
sequences.

Whatever the technique used, we observe that some data
cannot be provided by the system itself when actions start.
As an example, communication between two given
participants about a given topic. This meaningful
information is not provided by a single event-like “open
communication tool”. Therefore, our assisted-analysis
system generates explicitly high abstraction level traces
with a low granularity structure (signals). Working on
these signals, which are reinjected into those produced by
the system, is possible in asynchronous mode for back-
office assisted analysis. In this case, we identify the
analyser as being the source of the signal (as for the
sequences), and not the system itself.

In short, the instrumentation technique enables one to
enrich the traces produced by the system, with signals and
sequences.

4. Trace format

With the trace manager, we are able to manage two kinds
of activity traces :
• signals which correspond to time pinpoints and

elementary elements (e.g. a user action, a state
modification of the system, and so on);

• sequences which split into a chronological succession
of signals or sub-sequences. Obviously a sequence
also has some duration and normally should make
sense to understand what happened with the tools.

Parameter

Signal
Sequence

TraceElement

0..1
value : string

parameters

* source : string

description : string

*

date : Date

event : string

tool : string
beginDate : Date

endDate : Date

*

Figure 2 : UML model for traces

To prepare the experiment we have instrumented the two
tools used for this one: the Coffee Room and the Jibiki.
So each single significant action of either the students or
the teacher were converted into signals and send to the
trace manager.

To achieve this goal we have modified the Coffee Room
(the tool the students use to chat to each other). Now it
generate a signal at user connection or disconnection,
table creation or destruction and when one user sends a
message at some table.

These signal contains :
• a source (the people or the tool which has generated

the signal – in our experiments it's always the Coffee
Room or the Jbiki);

• a tool (the tool or the instance tool in which the event
has taken place – in our experiments its always an
instance of Coffee Room or the Jbiki);

• a date (the timestamp which says when the event
happened);

• an event id. The list of possible events will of course
depend on the tools we use: connection,
disconnection, message emission, for the Coffee
Room);

• a textual description and
• a list of parameters (which contains the variable parts

of signals). In this list we should find everything that
is needed to understand what has happened. For
example who and what is involved in the event.
Obviously, this part also will change with events and
tools.

For example when somebody chats at one table, the
Coffee Room sends a chat signal to the trace manager.
This signal has three parameters : The first is the name of
the people who has talk, the second is table identifier and
the last one is the emitted message.

The same action have been conducted for the Jibiki. So
each action a user can do (user login, start or stop the
edition of an entry, changing its state: from editing to
reviewed, finished or validated) a signal is emitted and
collected by the trace manager. All theses signals are also
described by means of pertinent parameters.

The sequences are more complex than signals. So we will
rather obtain them from the analyzer part of the
observation station: that is its job ton interpret the signals
into meaningful sequences suitable to understand the
activity of the experiment participants. Each sequence is
composed of signals or subsequences and, as signals, have
parameters.

For example if somebody as spoken at a table, the other
people who were at the same table would have heard
him/her, according to that one could want to record that
"communication act" and all the details : a sequence can
do that.

In the same way, if participants chats a lots than we will
surely have different "communication acts" betweens the
same participants and perhaps have some interest to
interpret all these "communications acts" as a
"conversation". A sequence can also be used to group
different sub-sequences together and give a new
interpretation for this group of sequences.

Figure 2 : visualization of sequences Figure 2: visualization of sequences

In our implementation, each sequence is stored with:
• a start date (timestamp – the beginning of the

sequence);
• a end date (timestamp – the end of the sequence);
• a type id, which characterize the kind of sequence;
• a source (the people or the tool which has recognized

the sequence – in our experiments it's always the
analyzer);

• a textual description and
• a list of parameters (which gives all significant

details of the memorized episode).

During the experiment we have especially tried to identify
sequences which one could associate with cooperation
activities (communication acts, conversation, …) or with
the progression of the tasks assigned to the students or the
teacher (definition proposal, evaluation, correction and
validation, and so on).

As stated previously, actually the trace manager needs to

be associated with a trace analyzer in order recognized
sequences. The analyzer is able to identify the sequences

in line (during the experiment) or off line (when the
experiment is over).

The sequences the analyzer should recognized are
described with rules. Each subpart of the sequence fits
with a pattern. So a rule a composed of different patterns
which can match against signals or sub-sequences (we can
put variables in the patterns). Using these rules the
analyzer search the signals, then the sequences which
match the patterns and store the new recognized
sequences inside the trace base.

We have actually four operators that can be used to group
patterns inside rules : and, or, negation and next. The
three first ones have their standard logical interpretation
when the last one is used to specify that sub-sequences or
signals should be sequentially ordered. Moreover, in order
to avoid problems associated with the use of negation (the
classical non monotony problem due to negation in rule
based systems), the negation operator has always to be

used in association with next.

Figure 3: the rule editor

3. Conclusion and perspectives

The experiment presented in this paper is part of an
overall project about the development of an observation
station. The prototype we have developped for this
experiment allows us to reach our main objectives in
terms of trace analysis. This first step contributes to the
validation of our model analysis based on rules. As our
system is open source and based on programming
standards, we plan to introduce other trace elements (e.g.
from agents [5] or database [7]) in the observation station,
to be run in the analysis system. Such an operation would
need restructuration of collected information to match
with our collect model [3].

The next step consists in evaluating final users’ objectives
on the pedagogical level. An other experiment, which
implicates social and pedagogical experts, will be led in a
near future. In order to reach these objectives, the future
prototype needs to take into account signals generated by
the analysis system itself, because of the system limits to
produce some information (e.g. predictive actions with
high abstraction level).

References

[1] S. Talbot, P. Pernelle, “Helping in collaborative activity
regulation: modeling regulation scenarii”, 15th French-speaking
conference on human-computer interaction (IHM 2003), T.
Baudel, Ed. IHM 2003, vol. 51. ACM Press, Caen (France),
November 25-28, 2003, pp. 158-165.

[2] C. Courtin, and S. Talbot, “Trace Analysis in Instrumented
Collaborative Learning Environments”, 6th IEEE International
Conference on Advanced Learning Technologies (ICALT
2006), Kerkrade (The Netherlands), July 5-7, 2006, pp. 1036-
1038.

[3] C. Courtin, and S. Talbot, “An Architecture To Record
Traces In Instrumented Collaborative Learning Environments”,
International Conference on Cognition and Exploratory
Learning in Digital Age (CELDA'05), IADIS, Porto (Portugal),
December 14-16, 2005, pp. 301-308.

[4] J.-M. Heraud, J.-C. Marty, L. France, T. Carron, “Helping
the Interpretation of Web Logs: Application to Learning
Scenario Improvement.”, Workshop Usage Analysis in Learning
Systems, 12th International Conference on Artificial Intelligence
in Education (AIED 2005), Amsterdam, The Netherlands, July
18th, 2005.

[5] T. Carron, J.-C. Marty, J.-M. Heraud and L. France ,
“Preparing An Observed Pedagogical Experiment”, International
Conference on Cognition and Exploratory Learning in Digital
Age (CELDA'05), IADIS, Porto (Portugal), December 14-16,
2005, pp. 526-531.

[6] S. Metz, I. Boukhriss “La conception du campus numérique
VCIEL : compromis pour le maintien d’identités, Innovation,
Formation et Recherche en Pédagogie Universitaire”, XXIIIème

Congrès de l’Association Internationale de Pédagogie
Universitaire, Monastir, (Tunisie), May 15-18, 2006.

[7] R. Smith, and B. Korel, “Slicing Event Traces of Large
Software Systems”, poster in proc. of 4th International
Workshop on Automated Debugging (AADEBUG), Mireille
Ducassé (ed), Munich (Germany), August 28-30, 2000.

[8] L. France, J.-M. Heraud, J.-C. Marty, T. Carron, “Help
through visualization to compare learners’ activities to
recommended learning scenarios”, 5th IEEE International
Conference on Advanced Learning Technologies (ICALT
2005), Kaohsiung (Taiwan), July 5-8, 2005, pp. 476-480.

