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Abstract: In this paper, an efficient method is proposed to numerically estimate the 

variable-order fractional derivatives of a noisy signal. Firstly, the process of wavelet 

denoising is adopted to reduce the noise effect in the signal. Secondly, polynomials are 

constructed to fit the denoised signal in a set of overlapped subintervals of the considered 

interval. Thirdly, the variable-order fractional derivatives of these fitting polynomials are 

considered as the estimations of the original signal, where the values obtained near the 

boundaries of each subinterval are ignored in the overlapped parts. Finally, numerical 

examples are presented to demonstrate the efficiency and robustness of the proposed method. 

Keywords: Variable-order fractional numerical differentiation; Noisy signals; Wavelet 

denoising; Fitting polynomials; 

1 Introduction 

  In recent decades, fractional calculus has been successfully extended from pure 

mathematical theory to practical applications, such as visco-elastic materials [1, 2], 

economics [3], statistical mechanics [4], as well as solid mechanics [5], etc. Meanwhile, the 

booming development of numerical methods focusing on the computing difficulties for 

fractional calculus promotes the topic to go further. These methods include finite difference 

method [6], Laplace transform method[7], Adomian decomposition method [8], variational 

iteration method [9], fractional differential transform method [10], operational approach [11, 

12], as well as orthogonal functions methods including Block pulse functions [13], Bernstein 

polynomials [14], generalized fractional-order Legendre functions [15], Chebyshev wavelets 

[16], Legendre wavelets [17], etc.  

  Fractional order numerical differentiation in signal processing is a relevant research branch. 

Numerous effective numerical algorithms have been proposed by researchers [18-27]. With 

regard to a noisy signal, a filter will generally be used to smooth the signal and then the 

fractional derivative of the filter is considered as a differentiator. In [20], the Digital 

Fractional Order Savitzkv-Golav Differentiator (DFOSGD) was shown to be better than some 

other existing fractional order differentiators. Afterwards, the fractional order Jacobi 

differentiator was presented and shown better performance than the DFOSGD both in noisy 

and noise-free cases [21, 22]. In [23], a method combining B-Spline functions with Tikhonov 

regularization was proposed. 

Currently, the topic of variable-order fractional calculus is becoming more and more 

attractive. A variety of works have been presented [28-37]. In [28-30], the authors have built 
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several mathematical models by applying the variable-order fractional calculus. Due to the 

existence of variable-order fractional differential and integral operators, the solutions for such 

kind of problems were always quite difficult to find. Thus, it is necessary to develop efficient 

numerical techniques. In [29, 30], numerical methods for variable-order fractional differential 

equations based on finite difference method were presented. In [33, 34], Chen and Liu et al. 

provided a distinctive class of numerical method based on operational matrices of Bernstein 

polynomials for variable-order fractional linear cable equation and time fractional diffusion 

equation respectively. Legendre wavelets functions were also adopted to numerically solve 

similar problems in [35]. Zayernouri and Karniadakis applied fractional spectral collocation 

methods for linear and nonlinear variable-order FPDEs in [36]. Moreover, Zhao et al. 

proposed second-order approximations for variable-order fractional derivatives and gave both 

algorithms and applications in [37]. On account of these works, it is convinced that the 

relative researches can be fairly promising. 

  Based on such research background, variable-order fractional numerical differentiation of a 

noisy signal is considered in this paper. As well known, wavelet method is a prominent tool in 

signal processing. In this paper, a noisy signal is processed by means of wavelet denoising. 

Then, fitting polynomials are adopted to approximate the denoised signal via solving least 

square problems. Thus, the variable-order fractional numerical differentiation can be 

performed easily.  

  The outline of this paper is as follows: In Section 2, some necessary mathematical 

definitions and properties of variable-order fractional differential operators are introduced. In 

Section 3, the denoising process of wavelet method is presented. In Section 4, the denoised 

signal is fitted by polynomials and the variable-order fractional numerical differentiation is 

studied in Section 5. In Section 6, some examples are illustrated. Finally, some conclusions 

are given in Section 7. 

2 Preliminaries 

   This section presents some definitions as well as some properties on fractional calculus 

and wavelet analysis, which will be useful in this work. 

2.1 Variable-order fractional derivative 

   In this paper, variable-order Caputo fractional derivatives are considered, which are 

defined as follows. 

Definition 2.1 [33]: Let aR , and
1( )f C R , where

1( )C R  refers to the set of functions 

being 1-time continuously differentiable on . Then, the variable-order Caputo fractional 

derivative of f  is defined as follows: 

 
( ) ( )

,

1
, ( ) ( ) '( ) ,

(1 ( ))

t
t t

a t
a

t a D f t f d
t

   


−  = −
 −    (1) 

where 0 ( ) 1t  , and ( )  is the Gamma function. 



Then, the following two properties can be deduced.   

Property 2.1 [33]: Let ( ) ( )nf t t a= − , with 0 ( ) 1t  and a t R , then:  
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Property 2.2: Let
1 1

1 2( ) ( ), ( ) ( )f t C f t C R R , with 0 ( ) 1t  and a t R , then:  
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2.2 Theory foundation of wavelet analysis 

Definition 2.2 (Frame and Riesz bases) [38]: A sequence { }n n   is called a frame of a 

Hilbert space H , if there exist two constants 0B A  such that  
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 refers to a finite or infinite index set. If A B= , then the frame is compact. If the frame 

{ }n n  is linear independent, it is irredundant and called Riesz bases. 

   Based on Definition 2.2, the fundamental concept of “Multiresolution approximation” of 

wavelet analysis can be introduced as follows. 

Definition 2.3 (Multiresolution approximation) [38]: Let
2[ ]f L R . If the following six 

properties are fulfilled, the sequence of closed subspace
2{ } [ ]j j ZV L R is called a 

multiresolution approximation: 
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{ ( )}nt n −
Z is a group of Riesz bases of 0V  if there exists a . 

2.3 Problem statement 

Let ,b cR , and
1( )y C R . Assume that ( ) ( ) ( )i i iy t y t t = + is a discrete noisy 

observation of the continuous signal ( )y t  on [ , ]I b c= , with i st b T i= + , for 1, 2, ,i M= , 



where 
1

s

c b
T

M

−
=

−
is an equidistant sampling period. The noise  ( )it is a sequence of 

random variables with zero-mean and an unknown variance . Then, the considered problem 

is to provide an approach to numerically compute the variable-order fractional 

derivative
( )

, ( )i

i

t

b t iD y t


from the noisy signal y
. 

3 Main results 

3.1 The process of wavelet denoising 

  In [38], S. Mallat provided a quite systematic introduction on wavelet tour in signal 

processing. Based on this excellent monograph, some basic theory of wavelet denoising is 

briefly recalled in this section. 

  Suppose that a signal f  and a sequence of closed subspace
2{ } [ ]j j ZV L R  are given 

based on Definition 2.2 and Definition 2.3. By means of multiresolution approximation, the 

signal f  can be analyzed in different levels of subspaces{ }j jZ
V .  

  The orthogonal projection of f  on jV  is given by
, ,,

j j n j n

n

P f f  
+

=−

= V
, where 

,{ }j n n Z is a set of scale orthogonal bases of jV . The scale bases ,{ }j n n Z  can be obtained 

by dilating and shifting a single scale function  as: 
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If ,[ ] ,j j na n f =  is denoted as the associated inner product, then it can be rewritten into 

the convolution form as follows: 
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   Since 1j jV V − , there exists a set jW such that 

 1 .j j j− = V V W   (6) 

Then, the orthogonal projection of f can be respectively decomposed from 1j−V to its 

subspaces jV and jW  as follows: 
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By dilating and shifting a wavelet , orthogonal bases ,{ }j n n Z of jW  can be obtained 

as follows: 
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 Denote
,[ ] ,j j nd n f = . Then, according to Eq. (6), we have: 
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then we can introduce the following theorem. 

Theorem 3.1[39, 40]: Signal decomposing formula: 
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 Signal reconstructing formula: 
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   It’s generally in practical applications that the previously considered signal f  is known at 

uniform sampling points and various kinds of elegant wavelets have been widely used, such 

as Haar wavelet, Meyer wavelet, Daubechies wavelets, Morlet wavelet, Mexican hat wavelet, 

etc. Meanwhile, the convolution used above is computed via discrete convolution.  

   By means of Theorem 3.1, the low-pass filter h  can remove the high-frequency part of 

the signal while the high-pass filter g  reserves this part. Besides, according to Eq.(10) and 

Eq.(11), a signal can be successively decomposed several times. Thus, if all the elements of 

the sequence 1{ [ ]}j nd n+ Z  obtained by decomposing a noisy signal are set to zero and in 

order to reconstruct the signal, then the noise effect can be reduced to a certain degree in the 

original signal.  

3.2 Polynomial fitting for the denoised signal 

  By using the wavelet method given in Section 3.2, we can get a signal with less noise effect. 

In order to obtain a smoother signal with an algebraic expression, the polynomial fitting 

method is adopted.  

  Suppose that the denoised signal df is located on the time domain [ , ]I b c= , then we define 

a set of overlapped subintervals of I  as follows: 
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It should be mentioned that neighboring subintervals are intersecting. 



  Define q th order fitting polynomial on [ , ]i i iI b c= , for 0,...,i l= : 
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where the coefficients vector , , 1 ,0[ , ,..., ]T

i i p i p iw w w−=X are to be determined. 

   Denote the uniform sampling nodes as a vector 1 2[ , ,..., ]T

i mt t t=T , then we have: 

 ( ),i i d if=A X T   (15) 

where 
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A   (16) 

and ( )d if T denotes a part of the denoised signal df  at nodes iT . The solution of the equation 

can be obtained via least square method. If the well-known "economy size" QR 

decomposition is applied to the matrix iA  such that i i i=Q R A , where iQ  is a ( 1)m q +  

matrix, iR  is a ( 1) ( 1)q q+  +  upper triangular matrix if iA  has more rows than 

columns, then the least square solution of Eq. (15) can be obtained by 
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  In this way, the fitting polynomials are obtained in each subinterval. 

3.3 Variable-order fractional derivatives of a noisy signal 

  In Section 4, the denoised signal is fitted by polynomials in each subinterval. Then, the 

variable-order fractional numerical differentiation can be computed via Property 2.1. 

Eventually, results of all subintervals will be merged together for the entire interval.  

  By applying Property 2.1 to the fitting polynomial of a subinterval iI , we have: 
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Then the variable-order fractional derivatives at each node of subinterval iI  can be 

computed. In order to eliminate results with excessive numerical errors, we merge together 

the results of all subintervals in the following way: 



  By taking subintervals [ , ]i i iI b c=  and 1 1 1[ , ]i i iI b c+ + +=  as an example, we reserve the 

part 1[ , ( ) / 2]i i ib b c+ +  of iI and the part 1 1[( ) / 2, ]i i ib c c+ ++  of 1iI + .  

  Similarly, executing this procedure to all subspaces one by one can reduce the excessive 

numerical errors appearing on the boundaries of each subinterval to a certain degree. 

4 Numerical examples 

 In this section, some numerical examples are given to show the efficiency and the robustness 

of the proposed wavelet method. In order to have a forceful verification of the method, a 

numerical approximate scheme of the variable-order Caputo fractional derivative of a 

noise-free signal 
1( )f C R located in interval [ , ]I b c=  ( 1 2 ,i Mb t t t t c=     =  

1i i ih t t+= − ) is provided based on Ref. [32] as follow:  
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where the residue ir  has 
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Additionally, in order to provide an apparent comparison with the proposed method, the 

mean value of estimation errors is given as follows: 
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where 
1

[ , ] [ , ], 0
KN NI b c t t   = − − =   and De  is the estimation error of the variable- 

order fractional derivative at each node. 

The wavelet method is accomplished via the powerful software MATLAB R2012a, where 

discrete Meyer wavelet included in the Wavelet toolbox is adopted to decompose a signal to 

the forth level. Meanwhile, 8-order polynomials are used on each subinterval to fit the 

denoised signals. 

Example 4.1(Periodic signal) Let ( ) sin(5 )y t t= . Take [0,6],I = 5001,M =  

( ) cos(5 )t t =  and the length of each subinterval of I is 1.2.  The variance is chosen 

such that the Signal-to-Noise Ratio 
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 is equal to10dB . The 

variable-order Caputo fractional derivative of sin( )wt  can be obtained by means of the 

software Mathematica 9.0. The original noisy signal is shown in Fig 4.1(a) and the denoised 

signal is shown in Fig 4.1 (b). The estimated variable-order fractional derivative is depicted in 

Fig 4.2.  

  Take 0.0120 = in Eq. (20) and the corresponding values for Eq. (19) and the wavelet 

method are 5.9724e-07 and 0.0138 respectively. Accordingly, it can be concluded that Eq. (19) 

can efficiently approximate the exact variable-order Caputo fractional derivative of a 

noise-free signal and the wavelet method performs well in estimating the variable-order 

fractional derivative of a noisy periodic signal. 

 

 

Fig 4.1 Denoising result of the signal in Example 4.1 

 

 

 



 

Fig 4.2 The estimated variable-order fractional derivative of Example 4.1 

Example 4.2 (Non-periodic signal) Let
2( ) 0.01( 6) sin(6 )y t t t= − . Take [0,10],I =  

10001,M = 2( ) cos( 3 )t t t = +  and the length of each subinterval of I is 1. The variance 

2 is chosen such that the Signal-to-Noise Ratio 10SNR dB= . The original noisy signal is 

shown in Fig 4.3(a) and the denoised signal is shown in Fig 4.3 (b). The estimated 

variable-order fractional derivative based on Eq. (18) is depicted in Fig 4.4. Take 0.01 =  

in Eq. (20), the corresponding result between Eq. (19) and the wavelet method is 3.5351e-04. 

The validity of the wavelet method for non-periodic signal is shown. 

 
Fig 4.3 Denoising result of the signal in Example 4.2 

 



 

Fig 4.4 The estimated variable-order fractional derivative of Example 4.2 

Example 4.3 (Non-equidistant sampling signal) Let ( ) ln( 1)(sin(3 ) cos(5 ))y t t t t= + + . 

Take ( ) 0.75sin(0.25 )t t = , 15001M = and non-equidistant sampling steps 

0.001(1 ) , [ 0.1,0.1], 1,2,... 1i i ih i M= +    − = − . Chose 0.9 =  then 7.9534SNR dB= . 

In order to make the proposed method be applicable in this case, the length of each 

subinterval can be modified as 1+0.001
j i

i jt I
l


=  . The original noisy signal is shown in  

 

Fig 4.5 Denoising result of the signal in Example 4.3 

 



 

Fig 4.6 The estimated variable-order fractional derivative of Example 4.3 

Fig 4.5(a) and the denoised signal is shown in Fig 4.5 (b). The estimated variable-order 

fractional derivative based on Eq. (18) is depicted in Fig 4.6. Take 0.01 =  in Eq. (20), the 

corresponding result between Eq. (19) and the wavelet method is 0.1823. Accordingly, the 

wavelet method shows better robustness.   

Example 4.4 As a special case of the variable-order fractional numerical differentiation, we 

reset the relative parameters of the considered signal ( ) sin( )y t wt=  as follows: 

10, [0,4], 2001, 0.5, ( ) 0.5.w I m t = = = = =  

The signal-to-noise ratio is equal to 4.95SNR dB= . The subintervals of I  have a length of 

1. In [23], the authors present a method combining B-Spline functions and Tikhonov 

regularization to estimate the Riemann-Lowville fractional derivative of a noisy signal. By 

using a similar way, the Caputo fractional derivative can also be estimated. 

Taking 0.05 = for Eq. (20), the corresponding results of the B-Spline method and the 

wavelet method are 0.0457 and 0.0280, respectively. Thus, the wavelet method provides a 

better result. The Comparison on numerical error of two methods in [0.05, 3.95]I  =  is 

depicted in Fig 4.7.  

According to the above four numerical examples, the validity, robustness and efficiency of 

the proposed method are clearly verified in four different cases. The wavelet denoising 

efficiently reduces the noise effect of a signal and the computation of the proposed wavelet 

method provides satisfactory results as well. Moreover, the last numerical example is 

presented as a special case of the considered problem to compare with the method based on 

B-Spline functions. Accordingly, it can be concluded that the proposed wavelet method 

performs better and the algorithm is also easier to be accomplished.  



 

Fig 4.7 Comparison on numerical errors of two methods 

5 Conclusion  

  In this paper, a new method based on wavelet denoising is proposed to estimate the 

variable-order fractional derivatives of noisy signals. The wavelet method is adopted to 

reduce the noise effect of a signal to a certain degree. Then, the denoised signal is fitted by 

polynomials in a sequence of overlapped subintervals, where the values obtained near the 

boundaries of each subinterval are ignored in the overlapped parts. Numerical examples are 

presented to demonstrate the efficiency and robustness of the proposed wavelet method. It can 

also be illustrated by numerical examples that the proposed wavelet method shows better 

performance than the B-Spline method presented in [23] in the case where the fractional 

differential order is a constant. 
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