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Abstract—The Internet of Things (IoT) encompasses both
large-scale deployed physical infrastructures and software layers
that enable intuitive and transparent creation of applications.
This highly distributed, energy-greedy environment must ensure
the quality of deployed services while taking into account the
heterogeneity of capabilities and protocols as well as users and
objects mobility. Deployment infrastructure has been redesigned
to provide the necessary features, including paradigms such
as software-defined networks and Fog computing. The purpose
of this article is to study IoT services placement in a Fog
architecture. We propose a model of the infrastructure and IoT
applications as well as a placement strategy taking into account
system’s energy consumption and applications delay violations
minimization with a Discrete Particles Swarm Optimization
algorithm (DPSO). Simulations have been done with iFogSim
simulator. Results have been compared with heuristics coming
from the literature: Binary Partical Swarm optimization (BPSO),
Dicothomous Module Mapping (DCT), CloudOnly, IoTFogOnly,
IoTCloud (IC) and FogCloud (FC) placement approaches.

Index Terms—Fog, IoT, DPSO, Heuristics, Energy, QoS,
iFogSim.

I. INTRODUCTION

Nowadays, we depict around 15 billions of deployed con-

nected objects. A study published by CISCO [25] predicts

an increase of devices reaching 50 billions in 2025. The

proliferation of equipment such as smartphones, wearables,

autonomous vehicles and their associated services leads to

high heterogeneity, scalability, delays and mobility issues and

that is making Internet of Things (IoT) services placement

in the cloud less attractive. Fog Computing is defined as

the process of extending cloud capabilities with networks

nodes [1], [2] and seems to be a promising solution to

support requirements induced by IoT applications. Indeed, Fog

computing has emerged as a powerful paradigm answering

new application needs such as short response delays and

high bandwidth demand by providing computing and storage

capacities closer to end users. Adding to that, a large scalable

and distributed infrastructure such as Fog computing is at

first sight more suitable to handle objects heterogeneity and

dynamic of IoT applications but in contrast, their placement

and management in such infrastructure can be quite challeng-

ing and disadvantageous if not well designed. Using such a

distributed large scale and dynamic topology can be easily

energy and network-greedy if the trade-off between services

Cloud-placed, Fog-placed is not well balanced. Adding to

that, objects and users positions are also parameters that

should be considered for IoT services, which also interact

with real physical environment through sensors and actuators

devices. Energy consumption is a high interest field for cloud

community, considering that data centers consume 4% of

global world energy [27]. Fog Computing, by combining both

data centers, communications infrastructures and IoT systems

makes the energy issue more complex to study, inheriting

various issues of evaluation and optimization of the latter in

networks and IoT systems. A report from the International

Energy Agency (IEA) [11] estimates the annual energy

consumption of 5 types of IoT applications, home automation,

smart lighting and smart street lighting, smart roads, smart

appliances, to 46 TWh in 2025. Since services placement

problem is NP-hard, we propose to use an evolutionary semi-

stochastic meta-heuristic to efficiently place IoT services in

a Fog infrastructure minimizing the energy consumption and

applications delay violations while ensuring nodes capacities

constraints and services placement constraints. This paper’s

contributions can be summarized as follows :

• Using a Discrete Particle Swarm Optimization for IoT

services placement in a Fog computing infrastructure.

• Considering different applications topologies and classes

with their delay constraints.

• Evaluating with real topology values and different net-

works technologies using iFogSim simulator.

The remainder of this paper is structured as follows. In section

II we establish a brief Fog computing and services placement’s

state of the art. Then, we introduce Particle Swarm approach.

In section III and IV, we expose respectively the problem mod-



eling and the Discrete Particle Swarm Optimization (DPSO)

model used for IoT services placement. Finally, section V

reports experimental results using iFogSim.

II. RELATED WORK

A. Fog computing and services placement

Fog Computing is a relatively young concept [1]. Since

2012, several Fog research areas have emerged, including the

development of simulation tools such as iFogSim and Edge-

CloudSim [3] [23], platforms for the industry, such as Iox

[5] and Edgex [23]. [14] determines the degree of relevance

of the Fog according to the type of applications and their use

cases: connected vehicles, health care, smart tracking, smart

grids, [29] defines classes of services to facilitate deployment

policies. There are also many works on Fog-Cloud and Fog-

IoT layers interactions, moving loads from a Fog node to the

Cloud, assigning users to Cloud and Fog services, increasing

capacity mobile devices as part of Mobile Cloud Computing

(MCC) [31] and Mobile Edge Computing (MEC) [30]. [15],

deals with the offloading of Fog tasks to the Cloud under

delay constraints. Other works like [16] tackle the issue of

fog node allocation to different service providers by combining

principles of game theory with Stackelberg’s bidding.

Several approaches for IoT service placement in the Fog

have been addressed. [7] presents a generic placement algo-

rithm of IoT services in the Fog based on a dichotomous

search on all the available Fog nodes. [12] proposes a

method which identifies deployment’s eligibility, taking into

account business policies and resources states. [17] proposes

to maximize the placement of tasks in the Fog without

taking into account the requirements of services and excludes

cloud usage in certain cases. Following the same objective

of fog resource usage maximization [13] proposes a genetic

algorithm approach. [18] studies scheduling problem in Fog

computing, Considering user mobility influence on application

performance and compares three different scheduling policies,

namely concurrent, FCFS, and shows that delay-priority strate-

gies, can be used to improve execution [19] try to minimize

application makespan and monetary cost.

About energy in Fog Computing and IoT, [4] defines

elements that should come into consideration to reduce cloud-

IoT system energy consumption such as network access tech-

nology, applications type, Fog servers energy consumption

with no workload, virtualization techniques and their manage-

ment. [24] shows that IoT applications energy consumption

in the Fog is directly impacted by access technologies. It is

shown that application can be more energy-greedy if it is

accessed via a 4G network rather than a wired network with

Ethernet technology, sending rates also influences, and in some

cases wired technologies are less efficient than wireless. [21]

proposes a strategy of clustering Fog nodes to minimize their

energy consumption. [8] tries to minimize energy, time and

execution cost for mobiles tasks; it studies offloading rather

than initial services placement and model the problem with

queues system modeling. In [20], model for video traffic’s

energy consumption in a Fog system is proposed but services

placement is supposed to be already done. [22] adopted an

object assignment problem rather than service one by address-

ing IoT devices to Fog nodes assignment problem with an

evolutionary algorithm to reduce mobile energy consumption

under delay constraints. Due to computing and networking

capacities evolution, agent-based evolutionary algorithms are

receiving more attention and have emerged as strong optimiza-

tion approaches. Meta-heuristics such as Genetic Algorithm

(GA), Ant Colony Optimization (ACO) or Particle Swarm

Optimization (PSO) seem to be the ideal approaches for

distributed and dynamic computing systems. To the best of

our knowledge, Particle Swarm Optimization was only used in

cloud paradigm. [40] used PSO for task assignment problem

in order to reduce total execution time and compare PSO

results with classical GA. In the same field, [42] proposes

a DPSO approach for grid job scheduling aiming to minimize

makespan and flowtime and shows that this approach gives

better results than other evolutionary methods such as GA

and ACO. [43] proposes an energy-efficient routing protocol

for Wireless network using PSO. Differently from previous

works and considering good results given by the PSO approach

in cloud paradigm, we aim to place different types of IoT

applications in a Fog infrastructure while minimizing both

system’s energy consumption and applications delay violations

using a Discrete Particles Swarm (DPSO) metaheuristic under

devices capacities constraints. To the best of our knowledge,

there is no other work in the literature that aims at minimizing

both energy consumption and applications delay violations.

B. Particle Swarm Optimization approach overview

Particle Swarm approach [38] is a semi-stochastic

population-based optimization method inspired by the col-

lective behavior of social animals such as flock of birds

and fish school. In order to find an acceptable solution to a

combinatorial problem, the PSO manipulates a population of

particles set called a Swarm. This particle swarm explores the

problem search space to find an acceptable solution.

Considering a D-dimensional combinatorial continuous

problem, the kth swarm’s particle ~Xk is a D-dimensional

vector representing a feasible solution. Each particle ~Xk is

identified by a subset of particles’ neighbours, its position in

the search space ~Xk

t
and its motion speed called velocity

~Vk

t
which varies from one iteration t to the next. The speed

variation of each particle ~Xk is a function of particle’s previous

position ~Xk

(t−1)
, its personal best known position ~Pbk and

its neighbours best position ~Nbk (eq (1)).

~Xk

t
= f( ~Xk

t−1
, ~Vk

t−1
, ~Pbk, ~Nbk) (1)

PSO was initially proposed for continuous problems but

rapidly, in order to resolve binary decision problems such as

services placement, Kennedy and Eberhart introduced Binary

Particle Swarm Optimization (BPSO) [36]. Its main difference

with PSO lies in particles positions and velocities definitions

which are defined respectively as binary placement and proba-

bilities matrices. For this purpose, the sigmoid function sig(.)



is introduced to map all real valued elements of velocity

vtk(i, j)in [0, 1] with i, j ∈ N.

• ∀Xk particle of the swarm and its corresponding velocity

Vk, defined respectively as a binary placement and prob-

ability matrices, are updated according to equations (2),

(3) and (4) as follows:

V t+1
k = ωV t

k + ϕ1ω
t
1(Pbtk −Xt

k) + ϕ2ω
t
2(Nbtk −Xt

k) (2)

xt+1
k (i, j) =

{

1 if rand() ≥ sig(vt+1
k (i, j))

0 if rand() < sig(vt+1
k (i, j))

(3)

sig(vt+1
k (i, j)) =

1

1 + exp−v
t+1

k
(i,j)

(4)

• ϕ1 and ϕ2 are respectively known as cognitive and social

constants that modulate the magnitude of particle’s next

step to its personal best and neighbours best solutions.

According to the literature [37] ϕ1 and ϕ2 are usually

in [0, 4] and it has been shown in [38] that ϕ1 = ϕ2 = 2
works well for most applications.

• To avoid particle’s big oscillations problem, literature in-

troduces two approaches: Velocity clamping that bounds

the velocity vector elements vk(i, j) ∈ [−Vmax, Vmax] or

a restriction coefficient ω to ponderate velocity elements

values. This limitation prevents particles from moving too

rapidly from one search space region to another. This

value is usually initialized as a function of the problem

range [35], [37].

• ω1 and ω2 are two matrices with elements

ω1(i, j), ω2(i, j) taken randomly in [0, 1], aiming

to introduce randomness in particles motions behaviour

through search space.

This approach was designed for discrete problems as DPSO

where values of Xk are in N. For placement problems DPSO,

that we will detail in section IV, is more interesting in term

of memory space usage during implementation and we can

easily switch from BPSO to DPSO modeling. [42].

III. PROBLEM FORMULATION

A. Physical topology

We consider a Hierarchical Three-Layered Fog infrastruc-

ture M, constituted of M physical nodes. The first layer is

composed of a set C of cloud data center’s nodes (level 0),

the second one is a set F of Fog nodes ( level 1 to l− 1) and

the last layer regroups a set T of IoT devices or connected

things (level l) to which sensors and actuators are directly

connected. The physical topology is represented by an oriented

graph GM = (M,L) with L the set of links between nodes.

Each node mi ∈ M with i ∈ [0,M − 1] has the following

characteristics:

• A Level levi in the topology from 0 to l.

• Processing capacity cpui in MIPS.

• Memory capacity rami in MB.

• Power consumption characteristics pidlei that represents

the power consumption of the device when it is not used

and pmax
i the device’s power consumption when it is used

to its maximal capacity.

Each link lk ∈ L that binds nodes mi and mj has the following

characteristics:

k =

{

(i, j) with i, j ∈ [0,M − 1] If point to point

(i, j1, .., jn) with jn ∈ [0,M − 1], n ∈ N If multi-points

• ntwk represents links network technology.

• bwk is the bandwidth in Mb/s.

• lck is the latency in ms.

• stek is the state which can be ”On” or ”Off”.

lk can be a physical or a virtual link. If lk is a virtual

link, we assume that devices’ routing algorithm gives us one

optimum path between two machines composed of a set Θlk

of physical links.

∀v ∈ Θlk

• bwk = min
v∈Θlk

(bwv)

• lck =
∑

v∈Θlk

(lcv)

B. IoT Applications

According to works [28], [10] and [29], IoT applications

are special workflows that should be deployed in distributed

systems and can be modeled as Directed Acyclic Graphs

(DAG). Indeed, an IoT application gets data from the physical

environment through sensors equipment, those information

are processed by software services and then instructions are

transmitted to actuators in order to act on devices. From the

previous definition we can decompose the IoT application view

as follows:
1) Sensors and Actuators: In application’s DAG representa-

tion, sensors nodes and actuators nodes represent respectively

sources and ends of the DAG data flow.
2) Processing services: Each processing service si is de-

fined by:

• teci: the service deployment technology which can be a

virtual machine, a container, OSGi plugin, Java Virtual

Machine(JVM) or a combination of them.

• mii: the CPU requested by service i in million instruc-

tions.

• rami: the maximum RAM requested by service i in MB.

• dexei : the maximum execution delay for service i in ms.

3) Links and dependencies between IoT processing ser-

vices: Each oriented edge e(i,j) ∈ E going from service si
to service sj represents data dependency between si and sj
and carries the following information:

• data(i,j) is the data size sent from si to sj in kB.

• dcom(i,j) is the maximum communication delay between si
and sj .

4) IoT application Direct Acyclic Graph models: We con-

sider a Directed Acyclic Graph GA = (S, E) which represents

a set A = {a0, ..., aA−1} of IoT applications where each

application ai has a size ni of processing services.

S is the set of size N composed of processing services from

all applications that we have to place with N =
∑A−1

i=0 ni.

E is the set of edges representing data dependencies between

the applications graph nodes.



5) IoT applications service classes and priority: Establish-

ing a prioritization between applications classes shows usually

good results for standard workflows management in cloud

data centers [29]. Each IoT application belongs to a class

as identified in [9] with its associated priority. In addition

to services’ execution time and communication delay, each

application ai has a global maximum response delay Dmax
ai

,

from a sensor to its corresponding actuator, that should not be

exceeded. This value is taken according to delay-sensitivity in

each application class.

C. Problem statement

We aim to place a set A = {a0, a1, ..., aA−1} of heteroge-

neous IoT applications in a three-Layered Fog infrastructure’s

nodes M = {m0, ...,mM−1} while minimizing a cost func-

tion f under nodes capacities constraints.

f : NN 7−→ R represents system’s total energy consumption

ET pondered by total applications delay violations λ.

The total applications delay violations λ, defined in eq (5),

represents the count of all sensor to actuator delay violations

in the applications set A.

A delay violation of an application ai occurs when the

processing and communication time dai
, from its sensor to

its attached actuator exceeds the allowed time Dmax
ai

which is

given by the application’s class requirements.

λ =
∑

ai∈A
wai

with :

wai
=

{

1 if Dmax
ai

< dai

0 if not
(5)

The total energy consumption ET is the sum of energy

consumption from the computations and from network com-

munications.

ET = EN + EC . (6)

For one data flow processing, i.e from sensor to actuator, we

compute energy consumption as follow:

EC =
∑

N−1
i=0

∑

M−1
j=0 Y t

k (i, j)
mii

cpuj

(pmax
j − pidlej ) + pidlej

(7)

EN =
∑

(i,l)∈S

∑

(j,p)∈M

[Y t
k (i, j)Y

t
k (l, p)

data(i,l)

bw(j,p)

+ lc(j,p)][p
max
j + pmax

p − pidlej − pidlep ]

(8)

with Y t
k (i, j) is the binary decision variable for the place-

ment of service si in the device mj from the decision agent1

k at time t.

1Swarm based algorithms manipulate a set of potential solutions that evolve
during algorithm life time. Depending on the idea of the swarm approach, the
terminology of this potential group of solutions varies from one approach to
another. To give a method-agnostic naming to a swarm single element we use
”decision agent” term.

Fig. 1: Position of the kth particle after t iterations.

∀k in decision agents set and ∀t ∈ N

Yt
k(i, j) =

{

1 if service si is on machine mj

0 if not
(9)

The problem is equivalent to place the set of all services

S = {s0, s1, ..., sN−1} of GA=(S,E), which is the DAG of all

applications to place at the same time, on physical topology

nodes set M.

∀k, t ∈ N :

f = mini∈[0,N−1],j∈[0,M−1][(1 + λ)ET ] (10)

s.t

{ rami ≤ ramj∀i ∈ [0, N − 1], ∀j ∈ [0,M − 1]..(i)
mii ≤ cpuj∀i ∈ [0, N − 1], ∀j ∈ [0,M − 1]..(ii)
∑

j∈[0,M−1] y
t
k(i, j) = 1, ∀i ∈ [0, N − 1]...(iii)

• (i) and (ii) are respectively memory and computing con-

straints for placing service i on machine j.

• (iii) means that a service si should be placed only in one

device.

IV. A DISCRETE PSO FOR IOT SERVICES PLACEMENT

We have a particles swarm P = {X0, ..XP−1} of size P ,

each Xk ∈ P will evolve over a set Tmax of iterations.

A. Particle position and velocity’s representations

As it is shown in Figure 1, Xk ∈ N
N represents the position

of the kth particle in the DPSO swarm and it is a N size

vector with values xk(i) ∈ [0,M − 1], ∀i ∈ [0, N − 1]. Xt
k

is the particle’s position at iteration t. xt
k(i) = z means that

at iteration t service si is placed in the zth machine mz with

z ∈ [0,M − 1]. Which can be written as follows: xt
k(i) =

z ⇐⇒ Y t
k (i, z) = 1∧ ∀j ∈ {0, .., N − 1} − {z}, Y t

k (i, j) = 0.

The particle’s velocity Vk is an NxM matrix. It determines the

motion speed of the particle Xk. Each element vk(i, j) ∈ R

defines the possibility of service si to be placed in the machine

mj .

B. Particle’s motion equation

Particle positions are updated through iterations according

to the following:

1) We compute each particle new velocity matrix according

to Eq (11).

vt+1
k (i, j) = ω(t+1)vtk(i, j) + ϕ1ω

t+1
1 (i, j)[f(Pbtk)

− f(Xt
k)] + ϕ2ω

t+1
2 (i, j)[f(Nbtk)− f(Xt

k)]
(11)

We may stress that variables ω1, ω2, ϕ1, ϕ2, ω,Nb, Pb

keep the same meaning as in the BPSO equation (2). The



difference lies in the particle representation which is a

vector rather than a binary matrix and this representation

is better to use less memory space with vector data

structures. Adding to that, considering the saturation

problem of the sigmoid function in the BPSO, we prefer

to use real valued velocities matrices Vk. We have also

introduced the fitness into velocity updating equation

rather than using particle vector index. ω modulates

the influence of the previous speed in the new speed

computation. According to literature [37], [38], [35]

its value should vary in [ωmin, ωmax] with ωmin =
0.4 and ωmax = 0.9 and the linear decrease strategies

have shown best results for algorithm stabilization. For

our strategy, we have chosen to update ω according to

[39] as follows:

ωt = ωmax −
(ωmax − ωmin)

Tmax

∗ t (12)

2) After new velocity computation, we deduce particle’s

new position vector with Eq (13)

xt
k(i) = Z ⇐⇒ vtk(i, Z) = max

∀j∈[0,M−1]

{

vtk(i, j)
}

(13)

3) Physical topology constraints can reduce placement pos-

sibilities for a service si. Each service si ∈ S has its

authorized subset of physical machines. To ensure this

constraint in the DPSO, if a service si can’t be placed

in a device mj ∈ M:

∀k ∈ [0, P − 1], ∀t ∈ [0, Tmax − 1] ⇒ vtk(i, j) = −∞
(14)

C. Initial population

The initial swarm particles X0
0 , .., X

0
P−1 are distributed

uniformly in search space.

∀si ∈ S , x0
k(i) should be taken uniformly in service si

admissible set of machines.

Initial velocities V 0
k are initialized to 1 and −∞ elements

matrices as described in Algorithm 2.

D. Neighboring Topology

Neighbourhood topology defines particles swarm communi-

cations. In its original version [38], PSO algorithm allows all

particles to exchange their solutions to determine a global best

solution. This global approach leads particles to be trapped in

a local optimum. To avoid this problem, the swarm can be

divided into sub-groups and communications will be allowed

only between particles in the same sub-group [41]. According

to literature, we can define geometrical sub-groups which

are deduced based on closest particles considering a certain

metric (e.g fitness function) or we can define social sub-

groups that are defined based on particles swarm index and

this last has shown better results than the geometrical approach

[37], [38], [41]. Based on that, we define a social circular

neighbourhood of two particles as shown in Figure 2.

We present the overall DPSO approach in Algorithm 1

Data: · Topology nodes set M of size M
· Applications services set S of size N
· P , Tmax, ϕ1, ϕ2, ω0,ω0

1 ,ω0
2

Result: · Best placement particle vector Gbest

· Total system energy ET

· Total applications delay violations λ
begin

V0, P 0 = uniformInit()
t=0
ω0 = 0.9
while t < Tmax do

for Xt
k ∈ P t

do

updateVelocity(Xt
k)

updatePosition(Xt
k)

if (f(Xt
k) < f(Pbk))

Pbk ← Xt
k

for Xw ∈ Neighbors(Xk) and w ∈ [0, P − 1]
do

if (f(Xt
k) < f(Nbw))

Nbw ← Xt
k

end
end

(Gbest← Xt
z) ⇐⇒ f(Xt

z) =
min∀k,z∈[0,P−1]{f(X

t
k)}

t++;
end

end

Algorithm 1: DPSO for services placement

Data: · Topology size M
· Services size N
· Population size P

Result: · Initial particles Swarm P0

· Initial velocities set V0

begin
for k ∈ [0, P − 1]
do

for i ∈ [0, N − 1]
do

choose uniformly j ∈ [0,M − 1] with mj

allowed device for service si
x0
k(i)← j

end
for i ∈ [0, N − 1] do

for j ∈ [0,M − 1] do
if mj is an allowed device for sj
v0k(i, j) = 1
elsif

v0k(i, j) = −∞
end

end

Pbk ← X0
k

for Xw ∈ Neighbors(Xk) and w ∈ [0, P − 1]
do

Nbw ← Xt
k

end
end

(Gbest← X0
z ) ⇐⇒ f(X0

z ) =
min∀k,z∈[0,P−1]{f(X

0
k)}

end
Algorithm 2: Swarm and velocities initialization



Fig. 2: Neighbouring topology.

V. EXPERIMENTAL RESULTS

A. Test methodology

In order to prove the efficiency of the proposed method and

to observe the impact of different Fog Layers-interplay strate-

gies on both delay and energy consumption, the DPSO has

been compared to BPSO, CloudOnly, IoTFogOnly, IoTCloud

(IC), FogCloud (FC) and Dicothomous Modules Mapping

(DCT) placement heuristics. Those methods are implemented

in JAVA in iFogSim [3] which is a Fog environment simu-

lator based on CloudSim tool [34]. Experiments have been

conducted on an Intel core i7-7700 CPU@3.60GHz x8. For

a given fixed Fog topology, we vary applications set size

and compare the different approaches considering system’s

total energy consumption in MJoules and applications delay

violations number as a QoS metric.

B. Strategies

We briefly define the implemented placement approaches

as follows: (1) CloudOnly - For a placement of all services

in cloud nodes. (2) IoTFogOnly - IoTFogOnly tries to place

all services from the same application, under capacity and

dependency constraints, in IoT closest node to application’s

user device then it moves to Fog layer closest node. (3)

FogCloud (FC) - FogCloud places as much as possible

services from same application in the same Fog layer node,

under dependency and capacity constraints, then it uses cloud

layer placement. (4) IoTCloud (IC) - It places as much as

possible services in the IoT layer, under dependency and ca-

pacity constraints, then it uses cloud nodes. (5) Dicothomous

Module Mapping (DCT) - This method is coming from [7],

it sorts services and nodes respectively by the increasing order

of their computation needs and computation capacities then a

Dicothomous search over nodes is applied for each service. We

adapted this strategy to respect services data dependencies.

These algorithms are the baseline for the comparison with

BPSO and DPSO. No other work in the literature minimizes

both energy and applications delays violations. (6) BPSO -

Is the implementation of Binary Particle Swarm algorithm as

described in section II. (7) DPSO - For the proposed DPSO,

Algorithm 1, the following ranges of parameter values have

been tested: ϕ1, ϕ2 in [1, 4] and P ∈ [10, 80]. Based on our

pre-experiments results, which are in adequacy with values

found in literature [37], [42], DPSO performs its best under

the following settings: ϕ1 = 2, ϕ2 = 2 P = 40.

Fig. 3: DAG structures used for IoT applications generation

C. Input Data

1) A varying set of IoT applications: We consider in our

work and experimentation, two types of Graphs that were

given in [28] and shown in Figure 3.

• Master-Worker: The Master is the only service that com-

municates with the source and then sends data instruc-

tions to workers services. After the response, the master

sends orders to actuators.

• Sequential Unidirectional DataFlow (SUD): It represents

a sequential data flow from one service to another one.

The first service gets data from sensors; the last one

communicates with the actuators.

We place A applications with A ∈ [4, 32] and a step of

h = 4. Each application ai has a size ni = 3 of services.

We took average services workload in Million instructions

demand and network data size (kB) exchanged between them

proportionally to information found in applications examples

given in [28]. Each application ai is characterized by its

DAG structure, Quality Of Service (QoS) requirements and

priority. We used table I to generate a set of IoT applications

of different classes that have been identified in [9] with

their associated priority (0 is the highest priority) and QoS

requirements. 50% of master-slave and 50% of Sequential

Unidirectional dataflow applications graphs are generated. In

each graph application category, 25% of interactive Real-

Time (RT) applications, 25% of Streaming applications (ST),

25% of Mission Critical applications (MC) and 25% Best

Effort applications (BE) are deployed. Each application has

one sensor/actuator pair placed randomly on infrastructure IoT

devices. Infrastructure sensors send simultaneously data item

every 5ms. We stop simulation when all sensors have sent 500

data packets.

2) A fixed three layered Physical topology: According

to [32], [33] we fix an average topology of three layers:

Cloud layer, Proxy server, Gateways layer and IoT devices

layer. Different access network technologies (4G LTE, WiFi,

LPWAN, Wired) are used as real system. For data center

and proxy server nodes, we use power information measured

in a local data center composed of 4 physical nodes (Intel

dual Xeon E5 2699 v3 18-cores). Processor specification



TABLE I: IoT applications classes and priority

QoS / Class Best-
Effort
(BF)

Streaming
(ST)

Real-
Time
(RT)

Mission
Critical
(MC)

Delay-
sensitivity
(ms)

– 150 50 20

Bandwidth
demand

Low High High High

Communication
frequency

Low Medium High High

CPU demand Low Low-
Medium

Medium-
High

Medium-
High

Data Location Remote Local-
Vicinity-
Remote

Local-
Vicinity-
Remote

Local-
Vicinity-
Remote

Mobility High-
medium-
low

High-
medium-
low

High-
medium-
low

High-
medium-
low

Examples File
shar-
ing

Augmented
reality
games

video
stream-
ing

health
track-
ing

Priority 3 2 1 0

Fig. 4: The fixed topology used for the experimentation

comes from Intel web site and MIPS evaluation from 7-zip

benchmark results [44], [46]. For Fog infrastructure routers,

we took information of CISCO IR809 and IR829 [45]. For IoT

device layer, we consider two types of equipments : an average

capacity smartphone similar to Samsung galaxy S5 and a

Raspberry pi 3+ B [47], [48]. Also, considering simulator

constraints, the physical topology is a k-ary tree that represents

a hierarchical multi-layer topology as detailed in Figure 4

and Table II. We use 4G-LTE and LoRa networks which are

considered as attractive technologies for IoT environments. We

also used more classical networks technologies (Wi-Fi and

wired) highly deployed all over the world.

Considering 50 independent runs, Figure 5 shows both

average number of delays violations (a) and system’s energy

consumption (b) obtained by each method for different size

of heterogeneous applications sets, with hatched bar part

representing network energy consumption and the non hatched

one is for computation energy consumption. From 5, we

can see that DPSO offers the best delay-Energy trade-off,

followed by BPSO that is less efficient, which is due to

TABLE II: Fixed Topology Nodes Features

j ∈ [0, 3]

L Name N Devices MIPS RAM
(MB)

uBW (Mbs) P
max-

P
idle

0 cloud 4 Cloud 120000 64000 10000 318-
145

1 Fog 1 Proxy
server

60000 8000 10000 169-70

2 2 d0(LoRa) 6750 1000 10000 10-45
d1(Wired) 6750 1000 10000 10-45

2 d2(Wi-

Fi)

13500 2000 10000 20-70

2 d3(4G-

LTE)

13500 2000 10000 20-70

3 IoT 16 m0-j 2800 1000 0.25/1/1000/1000 5.1-1.9
m1-j 4500 3000 0.25/1/1000/1000 6.1-1.1
m2-j 2800 1000 0.25/1/1000/1000 5.1-1.9
m3-j 4500 3000 0.25/1/1000/1000 6.1-1.1

(a) Applications total delay violations

(b) System’s energy consumption

Fig. 5: Total delay violations and Energy consumption for each

placement method



Fig. 6: Services Load per each layer and for each placement

method.

Sigmoid function saturation issues that leads at some points

to reduce its exploration capacity. Then, DCT strategy is

the third one. CloudOnly strategy is energy and network

greedy. Using cloud for services that could be hosted on

smaller devices can drastically increase energy consumption

and response delay. In contrast, using only IoT and Fog

layers like IoTFogOnly approach decreases network resources

usage but services execution will take more time and induce

performance degradation. Moreover, Fog and IoT layers are

usually not sufficient to host all services computation, memory

and storage needs (we stress that for our experiments nodes

use time sharing overbooking scheduling strategy [26]. If the

CPU request of a service is smaller than the CPU capacity

of the node, allocation will be possible even if the total CPU

requirement of all services on that node is higher than its

capacity. Services will access the processor during a quantum

in a time sharing way). IoTFogOnly strategy, by using only

IoT and Fog layers, reduces energy consumption by reducing

Network communications and uses less power greedy devices

but in contrast the execution time increases and that leads to

more delays violations when applications sets size increases,

as we can notice it in (a). Taking more time for execution can

also leads in some cases to consume more energy. Including

cloud layer in the placement strategy is necessary.

With IC and FC approaches, which respectively uses only

IoT-cloud and Fog-clod layers, we can notice that the first

method is more energy greedy by adding cloud and network

distance while it slows the overall computation capacities

with powerless IoT nodes. In contrast, the approach is more

interesting in term of delay by using IoT nodes proximity

to place some services and exploiting cloud fast computation

ability. FC strategy reduces energy consumption with smaller

execution time while using more powerful nodes execution of

service but in contrast it increases actuator response time. We

deduce that using only two layers is not efficient to ensure a

good delay-energy trade-off. DCT approach uses the 3 layers

for the placement which gives good energy values but in

contrast delay violations are higher than DPSO. The approach

encourages placement in IoT and Fog layers and takes cloud

layer in last choice and with the time sharing scheduling

strategy it becomes almost similar to IoTFogOnly placement

but still better than this last because it sorts respectively

services and nodes by their increasing computation needs and

capacities and so it uses fairly the exploited layers.

Figure 6 plots services load per each layer for each place-

ment method. It confirms what was said previously and shows

that DPSO makes a fair load balancing of services between all

layers to deal with delay constraints and energy consumption

minimization. DCT uses fairly IoT and Fog layer and does

not use cloud layer because services can be placed on these

nodes. Then, the scheduler will use time sharing between

services. Even if simple heuristics are faster than evolutionary

algorithms such as DPSO we can see that the QoS and energy

gain are more interesting than other strategies.

DPSO takes for the placement of a 3 services application,

with half of the time dedicated to simulation, 109s while

CloudOnly, IoTFogOnly, IC, FC and DCT takes respectively

84ms, 211ms, 114ms, 241ms and 167ms. In contrepart, DPSO

energy delays violations average gain are respectively 80% and

31% for CloudOnly, 38% and 31% for IoTFogOnly, 61% and

31% for FC, 38% and -15% for IC, 9% and 7% for BPSO

and -30% and 15% for DCT.

From what was observed previously, we can say that DPSO

exploits smartly both Fog and Cloud layers advantages respec-

tively by reducing response delay violations and offering fast

and powerful computation capacity while reducing as much

as possible system energy consumption.

CONCLUSION

In this paper, we proposed a DPSO approach for IoT

services placement in a physical Fog topology, we compared

results with BPSO, CloudOnly and with different layers-

interplay combination placement approaches through iFogSim.

The main contribution of our proposal is in the conjunction

of the following features: evaluation of total system energy

consumption using a swarm intelligence based algorithm,

defining applications’ class with delay constraints, proposing

an algorithm to map IoT services in a Fog infrastructure

minimizing energy consumption. DPSO finds a good trade-

off between cloud, Fog and IoT layers usage. Experimen-

tation shows that DPSO prefers the middle layers devices,

then depending on the application it chooses between IoT

device and Cloud. For our future works, we plan to include

network technologies specifics and applications priority in the

placement policy logic. We will implement a multi-objective

version of the DPSO with estimation strategies in order to

improve computation time and solutions accuracy. We will also

deal with a dynamic context by integrating objects mobility.
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