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Abstract

The aim of this paper is to design an algebraic and robust fractional order differentiator to estimate both the Riemann-Liouville
and the Caputo fractional derivatives with an arbitrary order of an unknown signal in noisy environment, without knowing the
model defining the signal. For this purpose, a new class of fractional order Jacobi orthonormal functions is firstly introduced.
Secondly, the truncated fractional order Jacobi orthonormal series expansion is applied to filter the noisy signal, whose fractional
derivative is used to estimate the desired one. Thus, the obtained differentiator is exactly given by an integral formula which
depends on a set of design parameters. Thirdly, by applying the generalized Taylor’s formula, some error analysis is provided.
In particular, error bounds are given, which permit to study the design parameters’ influence. Fourthly, a digital fractional
order differentiator is deduced in discrete noisy case. Finally, by comparing with two existing fractional order differentiators,
numerical results are given to illustrate the accuracy and the robustness of the proposed fractional order differentiator.

Key words: Fractional order differentiator, Fractional order Jacobi orthonormal functions, Error analysis.

1 Introduction

Fractional calculus was introduced in many fields of sci-
ence and engineering long time ago. It was first develope-
d by mathematicians in the middle of the ninetieth cen-
tury [1]. During the past decades, fractional calculus has
gained great interest in many scientific and engineering
fields, including control, flow propagation, signal pro-
cessing, image processing, electrical networks, and etc.
[2–9]. In most cases, the fractional derivatives of a sig-
nal can not be analytically calculated. Moreover, when
the signal is a unknown, it is usually measured in noisy
environment. In order to estimate the fractional deriva-
tives of an unknown signal from its discrete noisy ob-
servation, various robust fractional order differentiators
have been designed in the frequency domain [10–12] and
in the time domain [13–18]. Among them, there exists
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a class of model-free differentiators, which are obtained
from the truncation of an analytical expression, without
considering the model of the studied signal [10,11,13,14].

Recently, the model-free fractional order Jacobi differ-
entiator was obtained by the fractional order differen-
tiation by integration method [14], as the extension of
the integer order one [19–23]. This method is algebraic,
where the differentiator was exactly given by an integral
formula. Moreover, it is robust against corrupting noises
thanks to the integral [24]. The idea of this method is to
filter the studied noisy signal by the Jacobi polynomial
filter whose fractional derivative is used to approximate
the one of the signal. Since the fractional derivative of
a polynomial is a power function, the desired fractional
derivative is approximated by a power function. Conse-
quently, an intuitive idea is to approximate the studied
signal by a power function whose fractional derivative is
again a power function. Similar idea was used to solve
fractional order differential equations in [25,26]. Bear-
ing these ideas in mind, the aim of this paper is to ex-
tend the fractional order differentiation by integration
method by introducing fractional order Jacobi orthonor-
mal functions to filter the studied noisy signal, which
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are power functions and whose fractional derivatives are
also power functions.

The contributions of the paper are outlined as follows:

(1) the fractional order differentiation by integration
method [14] is extended using fractional order
Jacobi orthonormal functions to estimate both
the Riemann-Liouville and the Caputo fractional
derivatives for noisy signals,

(2) some analysis and error bounds are given, which
permit to study the design parameters’ influence,

(3) numerical algorithms are provided in discrete noisy
case, which are robust against the numerical errors
produced by negative design parameters’ values,

(4) the proposed differentiator does not produce any
truncated term error for power functions.Moreover,
it will be shown in numerical simulations that the
proposed differentiator can improve the one in [14].

This paper is organized as follows. In Section 2, some
useful definitions and properties on fractional calculus
and fractional order Jacobi orthonormal functions are
given. The main results are given in Section 3. An alge-
braic fractional order differentiator is proposed. Then,
some error analysis is provided. Moreover, four numeri-
cal algorithms are given in discrete noisy case. In Section
4, numerical results illustrate the accuracy and the ro-
bustness of the proposed fractional order differentiator.
Finally, conclusions are summarized in Section 5.

2 Preliminaries

In this section, some useful definitions and properties
on fractional calculus are given. Moreover, the fractional
order Jacobi orthonormal functions are introduced with
some useful properties.

2.1 Fractional calculus

Let I = [a, b] ⊂ R 1 , α ∈ R+, and l = ⌈α⌉, where ⌈α⌉
denotes the smallest integer larger than or equal to α.
Then, the following definitions can be found in [3] and
[4].

Definition 1 The α order Riemann-Liouville fractional
integral of a function y is defined on ]a, b] as follows:

D0
a,ty(t) := y(t),

D−α
a,t y(t) :=

1

Γ(α)

∫ t

a

(t− τ)
α−1

y(τ) dτ,
(1)

1 In this paper, N∗ (resp. R∗
+) denotes the set of strictly

positive integers (resp. strictly positive real numbers), R+

denotes the set of positive real numbers, and Z− denotes the
set of negative integers (including 0).

where Γ(·) is the well-known Gamma function [27].

Definition 2 The α order Riemann-Liouville fractional
derivative of a function y is defined on ]a, b] as follows:

RD
α
a,ty(t) :=

dl

dtl
{
Dα−l

a,t y(t)
}
. (2)

Definition 3 The α order Caputo fractional derivative
of a function y is defined on ]a, b] as follows:

CD
α
a,ty(t) := Dα−l

a,t

{
y(l)(t)

}
. (3)

By applying integration by parts to (2), the following
result can be obtained.

Lemma 1 [3] The relation between the Riemann-
Liouville and the Caputo fractional derivatives is give as
follows: ∀α ∈ R+ \ N,

RD
α
a,ty(t) =

⌈α⌉−1∑
i=0

(t− a)
i−α

Γ(i+ 1− α)
y(i)(a)+CD

α
a,ty(t). (4)

Using (2) and (3), the fractional derivatives of a power
function can be obtained in the following lemma.

Lemma 2 Let y(·) = (· − a)
nα

with α ∈]0, 1], n ∈ N
and m ∈ N∗, then we have: ∀ t > a,

RD
mα
a,t y(t) =

Γ(nα+ 1)

Γ((n−m)α+ 1)
(t− a)

(n−m)α
, (5)

CD
mα
a,t y(t) =


0, if nα ∈ N and nα < ⌈mα⌉,

Γ(nα+ 1)

Γ((n−m)α+ 1)
(t− a)

(n−m)α
, else.

(6)

In order to simplify the notations in the sequel, Dα
a,ty

(α ∈ R+) is used to denote both the Riemann-Liouville
and the Caputo fractional derivatives. Then, the follow-
ing lemma is given.

Lemma 3 [2,3] The fractional derivatives satisfy the
following properties with α ∈ R,

• Scale change: Let λ ∈ R∗
+, then we have: ∀ t > a,

Dα
a,λ ty(λ t) =

1

λα
Dα

a
λ ,ty(λt). (7)

• Transition: Let a ∈ R, then we have: ∀ t > 0,

Dα
0,ty(a+ t) = Dα

a,a+ty(t). (8)
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• Additive index law: Let β ∈ R+. If ⌈β⌉ < α, we
have: ∀ t > a,

Dβ
a,t

{
D−α

a,t y(t)
}
= Dβ−α

a,t y(t). (9)

Finally, this subsection ends with the following definition
and theorem.

Definition 4 [4] Let k ∈ N, the Caputo fractional se-
quential derivative of a function y is defined as follows:

CDkα
a,ty(t) :=

 y(t), for k = 0,

CD
α
a,t

{
CD(k−1)α

a,t y(t)
}
, for k ≥ 1.

(10)

Theorem 1 [28] Generalized Taylor’s Formula
Let α ∈]0, 1] and N ∈ N. Assume that CDiα

a,ty is contin-
uous on ]a, b], for i = 0, 1, · · · , N + 1. Then, we have:
∀ t ∈]a, b],

y(t) =
N∑
i=0

(t− a)
iα

Γ(iα+ 1)
CDkα

a,ty(a)

+ D
−(N+1)α
a,t

{
CD(N+1)α

a,t y(t)
}
.

(11)

2.2 Fractional order Jacobi orthonormal functions

Based on the shifted Jacobi orthogonal polynomials [27],
a class of power functions can be introduced in the fol-
lowing definition.

Definition 5 Let α ∈]0, 1] and n ∈ N, then the fraction-
al order Jacobi function is defined on [0, 1] as follows:

L(µ,κ)
n,α (τ) :=

n∑
j=0

Cj
n+µC

n−j
n+κ (τ

α − 1)
n−j

τ jα, (12)

where µ, κ ∈] − 1,+∞[, and the generalized binomial

coefficients are used: Cb
a = Γ(a+1)

Γ(b+1)Γ(a−b+1) with a, b ∈
R \ Z−.

In fact, L
(µ,κ)
n,α is defined by taking L

(µ,κ)
n,α (τ) =

P
(µ,κ)
n (τα), where P

(µ,κ)
n is the nth order shifted Jacobi

polynomial defined on [0, 1]. In particular, if α = 1, we

have L
(µ,κ)
n,α ≡ P

(µ,κ)
n .

Let g1, g2 ∈ C([0, 1]), where C([0, 1]) refers to the space
of functions continuous on the interval [0, 1], the scalar
product ⟨g1, g2⟩ is defined by:

⟨g1, g2⟩ :=
∫ 1

0

g1(τ) g2(τ)ϕ
(µ,κ)
α (τ) dτ (13)

with respect to the following weight function:

ϕ(µ,κ)
α (τ) := α(1− τα)µτα(κ+1)−1. (14)

Then, by applying the change of variables: τ → τα and

using the norm of P
(µ,κ)
n [14], we get:

∥∥∥L(µ,κ)
n,α

∥∥∥2 =
Γ(µ+ n+ 1)Γ(κ+ n+ 1)

Γ(µ+ κ+ n+ 1)Γ(n+ 1) (2n+ µ+ κ+ 1)
.

(15)
In order to simplify the notations in the sequel, for fixed
α, µ and κ, we define: ∀n ∈ N,

En :=
L
(µ,κ)
n,α∥∥∥L(µ,κ)
n,α

∥∥∥ . (16)

Then, the following properties of the fractional order
Jacobi functions {En}n∈N can be deduced from the ones
of the shifted Jacobi polynomials.

Firstly, thanks to the orthogonality of the shifted Jacobi
polynomials, the following lemma can be obtained.

Lemma 4 Under the scalar product ⟨·, ·⟩ defined in (13)

with respect to the weight function ϕ
(µ,κ)
α (τ) defined in

(14), we have:

• the fractional order Jacobi functions {En}n∈N are or-
thonormal,

• ∀n ∈ N∗, En is orthogonal to lm,τ (τ) = τmα for m =
0, · · · , n− 1.

Proof. This proof can be completed by applying the
change of variables: τ → τα and using the orthogonal

properties of P
(µ,κ)
n [14].

Secondly, thanks to the completeness of the shifted Ja-
cobi orthogonal polynomials [29], the following lemma
is provided.

Lemma 5 Let y ∈ C(I) with I = [a, b] and h = b −
a, then the fractional order Jacobi orthonormal series
expansion of y(a+ h·) is given by: ∀ ξ ∈ [0, 1],

y(a+ hξ) =
+∞∑
i=0

⟨Ei(·), y(a+ h·)⟩Ei(ξ). (17)

In particular, if y is a power function defined on I with
the following form:

y(τ) =
n∑

i=0

ai(τ − a)iα, (18)
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where α ∈]0, 1], n ∈ N and ai ∈ R for i = 0, . . . , n, then
we have: ∀ ξ ∈ [0, 1],

y(a+ hξ) =
n∑

i=0

⟨Ei(·), y(a+ h·)⟩Ei(ξ). (19)

Proof. (17) can be obtained by applying the change of
variables: τ → τα in the Jacobi orthogonal series expan-
sion of y(a+h·) [14]. Then, this proof can be completed
by applying Lemma 4 and (18) in (17).

Finally, by applying Lemma 2 to (12) and applying the
well-known binomial theorem, the fractional derivatives
of the fractional order Jacobi orthonormal functions can
be obtained in the following lemma.

Lemma 6 Let α ∈]0, 1], then the mα order derivatives
of the fractional order Jacobi orthonormal function is
given as follows: ∀ τ ∈]0, 1],

RD
mα
0,τ En(τ) =

1∥∥∥L(µ,κ)
n,α

∥∥∥
{ n∑

j=0

n−j∑
i=0

Γ((n− i)α+ 1)

Γ((n− i−m)α+ 1)

× cµ,κ,n,j,i τ
(n−i−m)α

}
,

(20)

CD
mα
0,τ {En(τ)} =

1∥∥∥L(µ,κ)
n,α

∥∥∥
{ n∑

j=0

n−j∑
i=0

Γ((n− i)α+ 1)

Γ((n− i−m)α+ 1)

× dα,n,i,m cµ,κ,n,j,i τ
(n−i−m)α

}
,

(21)

where cµ,κ,n,j,i = (−1)iCj
n+µC

n−j
n+κC

i
n−j,

∥∥∥L(µ,κ)
n,α

∥∥∥ is

given by (15), and dα,n,i,m = 0 if (n− i)α ∈ N and
(n− i)α < ⌈mα⌉, dα,n,i,m = 1 else.

3 Main results

Let y ∈ C(R), and yϖ be a noisy observation of y on an
interval I = [a, b] ⊂ R of length h = b− a: ∀ t ∈ I,

yϖ(t) = y(t) +ϖ(t), (22)

where the noise ϖ is integrable and locally essentially
bounded, i.e. locally bounded except on a set of measure
zero.

The objective is to estimate the fractional derivatives of
y using the observation signal yϖ. For this purpose, the
fractional order differentiation by integration method
proposed in [14] will be extended by using fractional
order Jacobi orthonormal functions.

3.1 Generalized fractional order Jacobi differentiator

For a moment, let us ignore the noise. Then, we define
the following approximation of y by taking its N th or-
der truncated fractional order Jacobi orthonormal series
expansion: ∀ ξ ∈ [0, 1],

y(a+ hξ) ≈D0
Ny(a+hξ) :=

N∑
i=0

⟨Ei(·), y(a+ h·)⟩Ei(ξ).

(23)
Thus, y is approximated by the power functionD0

Ny(a+
h·). In the case of α = 1, D0

Ny(a + h·) is the Jacobi
polynomial filter, whose fractional derivative is a power
function used to construct the fractional order Jacobi
differentiator [14]. Inspired by this idea, the following
definition is introduced.

Definition 6 Let m ∈ N and α ∈]0, 1], the generalized
fractional order Jacobi differentiator Dmα

N y(a + h·) is
defined as the mα order derivative of D0

Ny(a+ ·) defined
in (23), i.e. we have: ∀ ξ ∈]0, 1],

Dmα
0,hξy(a+ hξ) ≈Dmα

N y(a+hξ) := Dmα
0,hξ

{
D0

Ny(a+ hξ)
}
.

(24)
This differentiator specifies RD

mα
N yϖ(a + hξ) (re-

sp. CD
mα
N yϖ (a + hξ)) when it is used to estimate

RD
mα
0,hξy(a+ hξ) (resp. CD

mα
0,hξy(a+ hξ)).

Consequently, according to Lemma 6, Dmα
N y(a + h·) is

also a power function. Moreover, according to Lemma
5 and Definition 6, the fractional derivative of a power
function can be exactly obtained by Dmα

N y(a+h·). This
result is given in the following lemma.

Lemma 7 If y is a power function defined by the form
given in (18) with n ≤ N , then we have: ∀ ξ ∈]0, 1],

Dmα
N y(a+ hξ) = Dmα

0,hξy(a+ hξ). (25)

Let us consider the noise in the sequel. Then, the gen-
eralized fractional order Jacobi differentiator is given in
the noisy environment by the following proposition.

Proposition 1 The generalized fractional order Jacobi
differentiator Dmα

N y(a + h·) can be given by an integral
formula as follows: ∀ ξ ∈]0, 1],

Dmα
N y(a+ hξ) =

1

hmα

∫ 1

0

QN (τ, ξ) y(a+ hτ) dτ, (26)

where h ∈ R∗
+, N ∈ N, µ, κ ∈]− 1,+∞[, and

QN (τ, ξ) = ϕ(µ,κ)
α (τ)

N∑
i=0

Ei(τ)D
mα
0,ξ {Ei(ξ)} , (27)
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with ϕ
(µ,κ)
α (τ) = α(1− τα)µτα(κ+1)−1. Moreover, let yϖ

be the noisy observation defined in (22), then Dmα
0,hξy(a+

hξ) can be estimated by applying the generalized fraction-
al order Jacobi differentiator Dmα

N yϖ(a+ hξ) defined in
the noisy case as follows: ∀ ξ ∈]0, 1],

Dmα
N yϖ(a+ hξ) :=

1

hmα

∫ 1

0

QN (τ, ξ) yϖ(a+ hτ) dτ.

(28)

Proof. By applying the scale change given in (7) to
(24), we obtain: ∀ ξ ∈]0, 1],

Dmα
N y(a+ hξ) =

1

hmα
Dmα

0,ξ

{
D0

Ny(a+ hξ)
}
. (29)

Then, by applying the linearity of the fractional deriva-
tive operator, we get:

Dmα
N y(a+ hξ) =

1

hmα

N∑
i=0

⟨Ei(·), y(a+ h·)⟩Dmα
0,ξ {Ei(ξ)}

=
1

hmα

∫ 1

0

QN (τ, ξ) y(a+ hτ) dτ.

(30)

Finally, this proof can be completed by substituting y
by yϖ in (30).

Remark 1 By applying the translation property given in
(8), we get:Dmα

0,hξy(a+hξ) = Dmα
a,a+hξy(hξ). Consequent-

ly,Dmα
N yϖ(a+τ) is actually used to estimateDmα

a,a+τy(τ)
with τ = hξ.

Consequently, according to (28), the proposed differen-
tiator Dmα

N yϖ(a + hξ) is exactly given by an integral
formula. Hence, it is an algebraic differentiator. More-
over, the integral can be considered as a low-pass filter
in noisy cases [24]. Since the integral involves fractional
order Jacobi functions, this method is called fractional
order differentiation by integration based on fractional
order Jacobi orthonormal functions.

Dmα
N yϖ(a + hξ) can be used to estimate both the

Riemann-Liouville and the Caputo fractional deriva-
tives of y with an arbitrary order. Indeed, ∀α∗ ∈ R,
there exists α ∈]0, 1] and m ∈ N such that α∗ = mα.
Moreover, Dmα

N yϖ(a + hξ) is a model-free differentia-
tor which can be used for different situations without
knowing the model defining y. Similar to the fractional
order Jacobi differentiator, the proposed differentiator
can be used for both continuous-time and discrete-time
signals in both off-line and on-line applications [14].

Finally, it can be seen that the generalized fractional
order Jacobi differentiator Dmα

N yϖ(a + hξ) depends on
a set of parameters {m,α, h, µ, κ,N}:

• m ∈ N and α ∈]0, 1] are determined by mα which is
the order of the required fractional derivative,

• h ∈ R+ is the length of the interval where the noisy
signal is observed,

• µ, κ ∈]−1,+∞[ are the design parameters in the frac-
tional order Jacobi functions,

• N ∈ N is the truncation order in the truncated frac-
tional order Jacobi orthonormal series expansions.

In order to give a guideline on how to choose these pa-
rameters, the estimation error for Dmα

N yϖ(a + hξ) is s-
tudied in the next subsection.

3.2 Error analysis in continuous noisy case

The estimation error for the fractional order Jacobi d-
ifferentiator has been studied in [14], where some error
bounds were obtained. Using a more general way, the er-
ror analysis for the proposed generalized fractional order
Jacobi differentiator is provided in this subsection.

The estimation error for the generalized fractional order
Jacobi differentiator in continuous noisy case, denoted
by eC(ξ) := Dmα

N yϖ(a+hξ)−Dmα
0,hξy(a+hξ), is the sum

of the following two errors eϖ(ξ) and e∞N (ξ) which are:

• the noise error contribution eϖ(ξ) := Dmα
N yϖ(a +

hξ)−Dmα
N y(a+ hξ), which is due to the noise in the

signal yϖ,
• the N th order truncated term error e∞N (ξ) :=
Dmα

N y(a + hξ) − Dmα
0,hξy(a + hξ), which comes from

the truncated fractional order Jacobi orthonormal
series expansion of y in (23).

The previous two errors are studied as follows. Firstly,
we begin with the noise error contribution.

Proposition 2 Let yϖ be the noisy observation defined
in (22) and Dmα

N yϖ(a+ hξ) be the generalized fraction-
al order Jacobi differentiator proposed in Proposition 1.
Then, the noise error contribution in Dmα

N yϖ(a+ hξ) is
given as follows: ∀ ξ ∈]0, 1],

eϖ(ξ) =
1

hmα

∫ 1

0

QN (τ, ξ)ϖ(a+ hτ) dτ, (31)

where α ∈]0, 1], h ∈ R∗
+, QN (·, ·) is given by (27). More-

over, if the essential supremum 2 of |ϖ| exists, i.e. δ =
ess sup |ϖ| < ∞, then we have: ∀ ξ ∈]0, 1],

|eϖ(ξ)| ≤ δ

hmα
Eµ,κ,m,α,N (ξ), (32)

where Eµ,κ,m,α,N (ξ) =
∫ 1

0
|QN (τ, ξ)| dτ .

2 The essential supremum of |ϖ|, denoted by ess sup |ϖ|, is
defined as follows: ess sup |ϖ| := inf{c ∈ R : η({t ∈ R :
|ϖ(t)| > c}) = 0}, where η is a measure on R.
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Proof. Using yϖ = y +ϖ in (28), the noise error con-
tribution for Dmα

N yϖ(a+h·) can be obtained as follows:
∀ ξ ∈]0, 1],

eϖ(ξ) = Dmα
N yϖ(a+ hξ)−Dmα

N y(a+ hξ)

=
1

hmα

∫ 1

0

QN (τ, ξ)ϖ(a+ hτ) dτ.

Then, this proof can be completed by taking the absolute
value of eϖ(ξ).

Secondly, the truncated term error is studied.

Theorem 2 LetDmα
N yϖ(a+hξ) be the generalized frac-

tional order Jacobi differentiator proposed in Proposi-
tion 1. If m < N and CDiα

a,tf is continuous on ]a, b], for

i = 0, 1, · · · , N + 1, the N th order truncated term error
for Dmα

N yϖ(a+ hξ) can be given as follows: ∀ ξ ∈]0, 1],

e∞N (ξ) = h(N+1−m)α

(∫ 1

0

QN (τ, ξ) I1(τ) dτ + I2(ξ)

)
,

(33)
where α ∈]0, 1], h ∈ R∗

+, QN (·, ·) is given by (27), and

I1(τ) =
τ (N+1)α

Γ((N + 1)α)

∫ 1

0

(1− s)(N+1)α−1

× CD(N+1)α
0,hτs y(a+ hτs)ds,

(34)

I2(ξ) =
ξ(N+1−m)α

Γ((N + 1−m)α)

∫ 1

0

(1− s)(N+1−m)α−1

× CD(N+1)α
0,hξs y(a+ hξs)ds.

(35)

Moreover, if MN+1 = sup
{∣∣∣CD(N+1)α

a,t y(t)
∣∣∣ , t ∈ I

}
ex-

ists, then e∞N (·) is bounded as follows: ∀ ξ ∈]0, 1],

|e∞N (ξ)| ≤ h(N+1−m)αMN+1Cµ,κ,m,α,N (ξ), (36)

where Cµ,κ,m,α,N (ξ) = I3(ξ)
Γ((N+1)α+1) + ξ(N+1−m)α

Γ((N+1−m)α+1)

with I3(ξ) =
∫ 1

0

∣∣QN (τ, ξ) τ (N+1)α
∣∣ dτ .

Proof. By applying the Generalized Taylor’s Formula
given in Theorem 1 to y, we get: ∀ ξ ∈]0, 1],

y(a+hξ) = yN (a+hξ)+D
−(N+1)α
0,hξ

{
CD(N+1)α

0,hξ y(a+ hξ)
}
,

(37)
where

yN (a+ hξ) :=
N∑
i=0

(hξ)
iα

Γ(iα+ 1)
CDkα

0,hξy(a). (38)

Then, let us divide the truncated term error into the
following two parts: ∀ ξ ∈]0, 1],

e∞N (ξ) :=Dmα
N y(a+ hξ)−Dmα

0,hξy(a+ hξ)

=
(
Dmα

N y(a+ hξ)−Dmα
0,hξyN (a+ hξ)

)
+
(
Dmα

0,hξyN (a+ hξ)−Dmα
0,hξy(a+ hξ)

)
.

(39)

On the one hand, by applying Lemma 7 and Proposition
1, we get:

Dmα
N y(a+ hξ)−Dmα

0,hξyN (a+ hξ))

=
1

hmα

∫ 1

0

QN (τ, ξ) (y(a+ hτ)− yN (a+ hτ)) dτ.

(40)

Hence, using (37) and (38) in (40) and by applying the
scale change property given in (7), we obtain:

Dmα
N y(a+ hξ)−Dmα

0,hξyN (a+ hξ))

= h(N+1−m)α

∫ 1

0

QN (τ, ξ) I1(τ) dτ,
(41)

where I1(τ) = D
−(N+1)α
0,τ

{
CD(N+1)α

0,hτ y(a+ hτ)
}
. Then,

by applying the following change of variables: s → τs,
we get:

I1(τ) =
1

Γ((N + 1)α)

∫ τ

0

(τ − s)(N+1)α−1

× CD(N+1)α
0,hs y(a+ hs)ds

=
τ (N+1)α

Γ((N + 1)α)

∫ 1

0

(1− s)(N+1)α−1

× CD(N+1)α
0,hτs y(a+ hτs)ds.

(42)

On the other hand, by taking the mα order derivative
to (37) and applying the additive index law given in (9)
and the scale change property, we obtain: ∀ ξ ∈]0, 1],

Dmα
0,hξyN (a+ hξ)−Dmα

0,hξy(a+ hξ) = h(N+1−m)αI2(ξ),
(43)

where I2(ξ) = −D
−(N+1−m)α
0,ξ

{
CD(N+1)α

0,hξ y(a+ hξ)
}
.

Then, by applying the following change of variables:
s → ξs, we get:

I2(ξ) =
ξ(N+1−m)α

Γ((N + 1−m)α)

∫ 1

0

(1− s)(N+1−m)α−1

× CD(N+1)α
0,hξs y(a+ hξs)ds.

(44)

6



Consequently, it can be deduce from (40) and (43) that:
∀ ξ ∈]0, 1],

e∞N (ξ) = h(N+1−m)α

(∫ 1

0

QN (τ, ξ) I1(τ) dτ + I2(ξ)

)
.

(45)
Finally, if we take the absolute value of e∞N (·) and the
following inequalities:

|I1(τ)| ≤ MN+1
τ (N+1)α

Γ((N + 1)α+ 1)
, (46)

|I2(ξ)| ≤ MN+1
ξ(N+1−m)α

Γ((N + 1−m)α+ 1)
, (47)

this proof can be completed.

Finally, by applying Proposition 2 and Theorem 2, the
total estimation error for the generalized fractional order
Jacobi differentiator is studied.

Corollary 1 Under the hypotheses given in Proposition
2 and Theorem 2, the total estimation error eC(ξ) =
Dmα

N yϖ(a+hξ)−Dmα
0,hξy(a+hξ) in Dmα

N yϖ(a+hξ) can
be bounded as follows:

|eC(ξ)| ≤ h(N+1−m)αMN+1Cµ,κ,m,α,N (ξ)

+
1

hmα
δEµ,κ,m,α,N (ξ),

(48)

where MN+1Cµ,κ,m,α,N (ξ) and δEµ,κ,m,α,N (ξ) are given
in Theorem 2 and Proposition 2, respectively.

In the section of numerical test, the error bounds ob-
tained in Proposition 2 and Theorem 2 will be used to
study the influence of the design parameters on the es-
timation errors eϖ(ξ) and e∞N (ξ), respectively.

3.3 Digital generalized fractional order Jacobi differen-
tiator

From now on, we assume that the noisy signal yϖ defined
in (22) is given in the following discrete case with an
equidistant sampling period Ts:

yϖ(ti) = y(ti) +ϖ(ti), (49)

where Ts =
h
M , M ∈ N∗, and ti = a+ hξi with ξi =

i
M ,

for i = 0, · · · ,M .

Since yϖ is a discrete observation, a numerical integra-
tion method should be used to approximate the inte-
gral in the generalized fractional order Jacobi differen-
tiator given in (28). In particular, the discrete values of

ϕ
(µ,κ)
α (τj) = α(1 − ταj )

µτsj should be calculated in (27)

for j = 0, · · · ,M , where τj = j
M , µ, s ∈] − 1,∞[ with

s = α(κ + 1) − 1. However, if µ or s is negative, there
exists a singular value τj = 0 or at τj = 1. In the follow-
ing proposition, the generalized fractional order Jacobi
differentiator is studied in the discrete case, where four
algorithms are provided to overcome the problem of sin-
gularity.

Proposition 3 Let yϖ be the discrete noisy observation
defined in (49) and τj =

j
M for j = 0, · · · ,M . Then, the

digital generalized fractional order Jacobi differentiator
denoted by Dmα

Ts,N
yϖ(a + hξi) is defined by considering

the following four cases with s = α(κ + 1) − 1: for i =
1, . . . ,M ,

Case 1: If 0 ≤ µ, 0 ≤ s, we have:

Dmα
Ts,Nyϖ(a+ hξi)

:=
1

2hmαM

{ M∑
j=1

(QN (τj , ξi)y
ϖ(a+ hτj)

+QN (τj−1, ξi) y
ϖ(a+ hτj−1))

}
,

(50)

Case 2: If 0 ≤ µ,−1 < s < 0, we have:

Dmα
Ts,Nyϖ(a+ hξi)

:=
1

2hmα

{ M∑
j=1

hj(
sQN (τ̂j−1, ξi)y

ϖ(a+ hτj−1)

+ sQN (τ̂j , ξi) y
ϖ(a+ hτj)

}
,

(51)

where τ̂j = τ1+s
j for j = 0, . . . ,M , hj := τ̂j − τ̂j−1 for

j = 1, . . . ,M , and

sQN (τ, ξ) =
α

1 + s
(1−τ

α
1+s )µ

N∑
i=0

Ei(τ
1

1+s )Dmα
0,ξ {Ei(ξ)} .

(52)

Case 3: If 0 ≤ s,−1 < µ < 0, we have:

Dmα
Ts,Nyϖ(a+ hξi)

:=
1

2hmα

{ M∑
j=1

h′
j(

s′QN (τ̂ ′j−1, ξi)y
ϖ(a+ hτj−1)

+ s′QN (τ̂ ′j , ξi) y
ϖ(a+ hτj))

}
,

(53)

where s′ = α(µ + 1) − 1, τ̂j = (1 − ταj )
1+s′

α for j =
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0, . . . ,M , h′
j := τ̂ ′j−1 − τ̂ ′j for j = 1, . . . ,M , and

s′QN (τ, ξ)

=
α

1 + s′
(1− τ

α
1+s′ )

s+1
α −1

{ N∑
i=0

Ei((1− τ
α

1+s′ )
1
α )

×Dmα
0,ξ {Ei(ξ)}

}
.

(54)

Case 4: If −1 < s < 0,−1 < µ < 0, we have:

Dmα
Ts,Nyϖ(a+ hξi)

:=
1

2hmα

{ ⌈M
2 ⌉∑

j=1

hj(
sQN (τ̂j−1, ξi) y

ϖ(a+ hτj−1)

+ sQN (τ̂j , ξi) y
ϖ(a+ hτj))

}
+

1

2hmα

×
{ M∑

j=⌈M
2 ⌉

h′
j(

s′QN (τ̂ ′j−1, ξi) y
ϖ(a+ hτj−1)

+ s′QN (τ̂ ′j , ξi) y
ϖ(a+ hτj))

}
.

(55)

Proof. The following four cases are considered in the
proof.

Case 1: 0 ≤ µ, 0 ≤ s. In this case, the integral in (28) is
proper, which can be calculated in the discrete case by
the trapezoidal numerical integration method. Hence,
(50) is obtained.

Case 2: 0 ≤ µ,−1 < s < 0. In this case, the integral
given in (28) is improper, which has a singularity at
τ = 0. In order to overcome this problem, let us apply the

following change of variables: τ → τ
1

1+s in (28). Hence,
we obtain:

Dmα
N yϖ(a+hξ) =

1

hmα

∫ 1

0

sQN (τ, ξ) yϖ(a+h τ
1

1+s )dτ,

(56)
with

sQN (τ, ξ) =
α

1 + s
(1− τ

α
1+s )µ

{ N∑
i=0

Ei(τ
1

1+s )

×Dmα
0,ξ {Ei(ξ)}

}
.

(57)

Since yϖ is defined with an equidistant sampling pe-

riod, let τ̂j =
(

j
M

)1+s
be the new abscissas such that

τ̂
1

1+s

j = τj = j
M . Hence, the numerical integration step-

s are hj = 1
M1+s (j

1+s − (j − 1)1+s), for j = 1, . . . ,M .
Thus, (51) can be obtained by applying trapezoidal nu-
merical integration method to (56).

Case 3: 0 ≤ s,−1 < µ < 0. In this case, the integral
given in (28) has a singularity at τ = 1. In order to
overcome this problem, let us first apply the following

change of variables: τα → 1− τα i.e. τ → (1− τα)
1
α in

(28). Hence, we get:

Dmα
N yϖ(a+ hξ)

=
1

hmα

∫ 1

0

µQN (τ, ξ) yϖ(a+ h (1− τα)
1
α ) dτ,

(58)

with

µQN = ατ (µ+1)α−1(1− τα)
s+1
α −1

{ N∑
i=0

Ei((1− τα)
1
α )

×Dmα
0,ξ {Ei(ξ)}

}
.

(59)

Since−1 < (µ+1)α−1 < 0 and s+1
α −1 ≥ 0, the integral

obtained in (58) has a singularity at τ = 0.Hence, similar
to Case 2, let us apply the following change of variables:

τ → τ
1

1+s′ in (58) with s′ = (µ + 1)α − 1. Hence, we
obtain:

Dmα
N yϖ(a+ hξ)

=
1

hmα

∫ 1

0

s′QN (τ, ξ) yϖ(a+ h(1− τ
α

1+s′ )
1
α ) dτ,

(60)

with

s′QN (τ, ξ) =
α

1 + s′
(1− τ

α
1+s′ )

s+1
α −1

×
{ N∑

i=0

Ei((1− τ
α

1+s′ )
1
α )Dmα

0,ξ {Ei(ξ)}
}
.

(61)

Let τ̂j =
(
1− ( j

M )α
) 1+s′

α be the new abscissas such that

(1 − τ̂
α

1+s′
j )

1
α = τj = j

M . Hence, the numerical integra-

tion steps are h′
j =

(
1− ( j−1

M )α
) 1+s′

α −
(
1− ( j

M )α
) 1+s′

α ,
for j = 1, . . . ,M . Thus, (53) can be obtained by apply-
ing trapezoidal numerical integration method to (60).

Case 4: −1 < s < 0,−1 < µ < 0. In this case, the
integral given in (28) has two singularities at τ = 0
and τ = 1. In the case, the integral given in (28) is
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decomposed into two parts:

Dmα
N yϖ(a+ hξ) =

1

hmα

∫ 1/2

0

QN (τ, ξ)yϖ(a+ hτ)dτ

+
1

hmα

∫ 1

1/2

QN (τ, ξ)yϖ(a+ hτ)dτ.

(62)

Thus, the two integrals in the right side of (62) have
singularities at τ = 0 and τ = 1, respectively. Then,
using a similar way as done in Case 2 and Case 3, (55)
can be obtained.

Consequently, the estimation error for the digi-
tal generalized fractional order Jacobi differentiator
Dmα

Ts,N
yϖ(a+hξi) is given in this discrete noisy case by:

for i = 1, . . . ,M ,

eD(ξi) :=Dmα
Ts,Nyϖ(a+ hξi)−Dmα

0,hξy(a+ hξi)

=
(
Dmα

Ts,Nyϖ(a+ hξi)−Dmα
Ts,Ny(a+ hξi)

)
+
(
Dmα

Ts,Ny(a+ hξi)−Dmα
N y(a+ hξi)

)
+
(
Dmα

N y(a+ hξi)−Dmα
0,hξy(a+ hξi)

)
,

(63)

which contains three sources of errors:

• the discrete noise error contribution eϖTs
(ξi) :=

Dmα
Ts,N

ϖ(a+ hξi), which is due to the discrete noise,

• the numerical error etrapTs
(ξi) := Dmα

Ts,N
y(a + hξi) −

Dmα
N y(a + hξi), which is due to the trapezoidal nu-

merical integration method,
• the truncated term error e∞N (ξi) = Dmα

N y(a + hξi) −
Dmα

0,hξy(a+ hξi), which is studied in Subsection 3.2.

Firstly, it is well known that the numerical error etrapTs
(ξi)

converges to 0 when Ts → 0 [30]. Secondly, using a simi-
lar way as done in [14], it can be shown that the discrete
noise error contribution eϖTs

(ξi) converges to 0 in mean
square when Ts → 0, if the noise {ϖ(t), t ∈ I} is as-
sumed to be a continuous stochastic process satisfying
the following conditions:

(C1) : for any t1, t2 ∈ I, t1 ̸= t2, ϖ(t1) and ϖ(t2) are
independent;

(C2) : the mean value function of {ϖ(t), t ∈ I} denoted
by E[·] is equal to 0;

(C3) : the variance function of {ϖ(t), t ∈ I} denoted by
Var[·] is bounded on I.

Note that a zero-mean white Gaussian noise satisfies
these conditions.

Consequently, both the numerical error and the discrete
noise error contribution can be reduced in the proposed

digital fractional order differentiator by decreasing the
sampling period Ts. However, if the computations are
performed on a finite precision numerical machine, there
are also round-off errors [31]. Hence, the infinite reduc-
tion of Ts would not lead to arbitrary reduction of esti-
mation errors, since the round-off errors would become
too large at some points.

4 Numerical tests

In this section, some numerical results are presented
to demonstrate the accuracy and the robustness of the
generalized fractional order Jacobi differentiator pro-
posed in Proposition 3. It is assumed that yϖ(ti) =
y(ti) + ϖ(ti) is observed on I = [0, h], where the noise
{ϖ(ti)} is simulated from a zero-mean white Gaussian
iid sequence, and the variance ofϖ is adjusted such that

the signal-to-noise ratio SNR = 10 log10

(∑
|yϖ(ti)|2∑
|ϖ(ti)|2

)
is equal to SNR = ρdB [32].

In most cases, the fractional derivatives of a func-
tion cannot be analytically calculated, the Grünwald-
Letnikov (GL) scheme is usually used to approximate
the Riemann-Liouville derivatives in noise-free cases,
which is defined as follows [3,6]: ∀α ∈ R,

RD
α
t y(t) ≈

1

Tα
s

⌈ t
Ts

⌉∑
j=0

w
(α)
j y(t− jTs), (64)

where the binomial coefficients can be recursively calcu-
lated as follows:w

(α)
0 = 1, if j = 0,

w
(α)
j =

(
1− α+1

j

)
w

(α)
j−1, else.

(65)

However, this scheme is not robust against noises.

Three kinds of functions are considered in the following
examples: a power function, a periodic function and two
non-periodic functions, whose Riemann-Liouville frac-
tional derivatives will be estimated by the proposed d-
ifferentiator. The Caputo fractional derivatives can be
similarly estimated, which is out of the scope of this sec-
tion. The Riemann-Liouville fractional derivatives of the
first two functions can be analytically calculated. How-
ever, the ones of the last function are unknown. Hence,
the GL scheme is applied in noise-free case in order to
verify the efficiency of the proposed differentiator.

The Fractional Order Jacobi Differentiator (FOJD) [14]
and the Digital Fractional Order Savitzky-Golay Differ-
entiator (DFOSGD) [13] will also be applied to estimate
the Riemann-Liouville fractional derivatives in order to
compare with the proposed one. These differentiators
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are based on polynomial approximation methods, which
depend on the degree N of the polynomials. In the fol-
lowing examples, same values of N are set for these dif-
ferentiators and the proposed one. Moreover, the design
parameters µ and κ are both set to 0 for FOJD as done in
[14] and the design parameter θ is set to 1 for DFOSGD.

Example 1: Power function. Let y(t) = −1
2 t

3α+ 1
5 t

4α

on I = [0, 3] with α ∈]0, 1[, whose fractional derivatives
can be analytically given by Lemma 2. By taking Ts =
0.001 and ρ = 20, the discrete noisy observation yϖ can
be obtained. Then, themα order fractional derivative of
y will be estimated using yϖ, where the values m = 1
and α = 0.71 (resp. m = 2 and α = 0.95) are set for the
proposed differentiator in Proposition 3.

The proposed differentiator depends on three design pa-
rameters N , µ and κ, which should be chosen to reduce
estimation errors. Firstly, since y is a power function,
according to Lemma 7, the proposed differentiator does
not produce any truncated term error if N ≥ 4. Second-
ly, four algorithms are provided in Proposition 3, which
are robust against numerical errors. Consequently, N , µ
and κ need to be chosen to reduce noise error contribu-
tions.

In order to study the influence of the design parameters
N , µ and κ on noise error contributions, the noise error
bound proposed in Proposition 2 is applied.

(1) By taking m = 1 and α = 0.71 (resp. m =
2 and α = 0.95), µ = κ = 0, and N =
4, . . . , 10, the variation of Eµ,κ,m,α,N (ξi) for
ξi = 0.001, 0.01, 0.02, . . . , 1, with respect to N is
shown in Fig. 1(a) (resp. Fig. 1(b)). It can be seen
that the noise error bound is increasing with respec-
t to N . Moreover, it is decreasing as 0.5 < ξi ≤ 1
and is increasing as 0 < ξi ≤ 0.5. Similar results
can also be obtained by taking other values of m, µ
and κ. Consequently, N = 4 is set in this example.

(2) Now, we fix the value of N = 4 with m = 1 and
α = 0.71 (resp. m = 2 and α = 0.95). For each
value of ξi, the contour level set of Eµ,κ,m,α,N (ξi)
with respect to κ and µ can be obtained. These con-
tour level sets vary differently for different values
of ξi. In Fig. 2(a) (resp. Fig. 2(b)), the variation
of ∥Eµ,κ,m,α,N (ξi)∥ with respect to µ and κ can be
observed, where µ, κ = −0.9,−0.8, . . . , 1. Accord-
ingly, smaller values of the noise error bound can
be obtained by choosing −0.5 ≤ κ ≤ 0.5 (resp.
−0.5 ≤ κ ≤ 0) and −0.9 ≤ µ ≤ 0. In this example,
µ = −0.4 and κ = −0.4 are chosen to reduce noise
error contributions.

Finally, the computation results, the comparison with
other methods as well as the corresponding estimation
errors are depicted in Fig. 3 (m = 1, α = 0.71) and in
Fig. 4 (m = 2, α = 0.95), respectively.

Example 2: Periodic function. Let y(t) = sin(ωt)
with ω = 4. The Riemann-Liouville fractional deriva-
tives of y can be analytically calculated as follows [5]:

RD
α
t y(t) =

ωt1−α

Γ(2− α)
1F2

(
1;

1

2
(2− α),

1

2
(3− α);−1

4
ω2t2

)
,

(66)

where 1F2 is the generalized hypergeometric function.
Moreover, we take I = [0, 5], Ts = 0.001 and ρ = 10.
RD

0.51
t y and RD

1.02
t y will be estimated in this example.

Hence, α = 0.51 is set.

Firstly, the design parameters N , µ and κ should be set.
On the one hand, different from Example 1, the truncat-
ed term error will be produced in this example. Since N
corresponds to the truncation order, the truncated ter-
m error can be reduced by increasing N . On the other
hand, similar to Example 1, by studying the noise error
bound obtained in Proposition 2, it can be deduced that
the noise error contribution is increasing with respect
to N . In this example, N = 20 is chosen to reduce the
truncated term error. Then, µ and κ are chosen to re-
duce the noise error contribution. Using a similar way as
done in Example 1, it can be deduced that negative val-
ues of µ and κ can reduce the noise error contribution.
Moreover, by studying the error bound obtained in The-
orem 2, the variation of ∥Cµ,κ,m,α,N (ξi)∥ with respect to
µ and κ can be observed in Fig. 5(a) with m = 1 and
Fig. 5(b) with m = 2, where µ, κ = −0.9,−0.8, . . . , 1.
Hence, it can be deduced that negative values of µ and κ
can also reduce the truncated term error. Consequently,
µ = −0.1 and κ = −0.1 are chosen both for the cas-
es m = 1 and m = 2. Finally, the computation results,
the comparison with other methods as well as the cor-
responding estimation errors are depicted in Fig. 6 with
m = 1 and Fig. 7 with m = 2, respectively.

In the following two examples, the numerical results ob-
tained by GL scheme are considered as the exact frac-
tional derivatives.

Example 3: Non-periodic function. Let y(t) =

0.01(t + 1)
2
3 cos(6t), I = [0, 4], Ts = 0.001 and ρ = 15.

Then, the α and 2α orders fractional derivatives of y
will be estimated with α = 0.7. By means of similar
analysis as done in Example 1 and Example 2, N = 20,
µ = −0.2, κ = −0.2 are chosen in the cases of m = 1
and m = 2, to reduce truncated term errors and noise
error contributions. Finally, the computation results,
the comparison with other methods as well as the cor-
responding estimation errors are depicted in Fig. 8 with
m = 1 and Fig. 9 with m = 2, respectively.

Example 4: Non-periodic function. Let y(t) =
e(−t) sin(4t+1), I = [0, 6], Ts = 0.001 and ρ = 15. Then,
the α and 2α orders fractional derivatives of y will be
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estimated with α = 0.85. By means of similar analysis
as done previously, N = 22, µ = −0.2, κ = −0.1 are
chosen in the cases of m = 1 and m = 2, to reduce
truncated term errors and noise error contributions.
Finally, the computation results, the comparison with
other methods as well as the corresponding estimation
errors are depicted in Fig. 10 with m = 1 and Fig. 11
with m = 2, respectively.

Consequently, it can be seen in the previous four exam-
ples that the results obtained by the proposed fractional
order differentiator can be better than the ones obtained
by the differentiators: DFOSGD and FOJD.

Finally, by taking different values of m and α we can
summarize the influence of the parameters N , µ and κ
on the two error bounds obtained in Proposition 2 and
Theorem 2 in the following table. According to Tab. 1,
the noise error bound is increasing with respect to N .
Moreover, the intervals of µ and κ are given to reduce
the error bounds. Remark that the error bound obtained
in Theorem 2 cannot be used to study the influence of
N since MN+1 is unknown. However, as mentioned pre-
viously, the truncated term error can be reduced by in-
creasing N .

Table 1
Influence of the design parameters on error bounds

Noise error bound Truncated term error bound

N ↑ ↗
(((((((((((((

µ ∈ [−0.9, 0] ∈ [−0.9, 0]

k ∈ [−0.5, 0.5] ∈ [−0.9, 0]

5 Conclusions

In this paper, the fractional order differentiation by in-
tegration method was extended by introducing a class
of fractional order Jacobi orthonormal functions. Then,
the generalized fractional order Jacobi differentiator was
proposed by taking the fractional derivative of the trun-
cated fractional order Jacobi orthonormal series expan-
sion of the considered noisy signal. This differentiator
was exactly given by an integral formula and depend-
s on a set of design parameters, where the integral can
be considered as a low-pass filter. Hence, the proposed
differentiator is algebraic and robust against corrupting
noises. It can be used to estimate both the Riemann-
Liouville and the Caputo fractional derivatives with an
arbitrary order of the studied signal, without knowing
the model defining the signal. By applying the general-
ized Taylor’s formula, some error analysis was provided
by giving two error bounds, which were used to study
the design parameters’ influence. Moreover, three algo-
rithms were provided in discrete noisy case, which are ro-
bust against the numerical errors produced by negative
design parameters’ values. Finally, by comparing with

two existing fractional order differentiators: DFOSGD
[13] and FOJD [14], numerical results were given to il-
lustrate the accuracy and the robustness of the proposed
fractional order differentiator.
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Fig. 6. Example 2 : Estimation results and errors of RD
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Fig. 7. Example 2 : Estimation results and errors of RD
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Fig. 8. Example 3 : Estimation results and errors of RD
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Fig. 9. Example 3 : Estimation results and errors of RD
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Fig. 10. Example 4 : Estimation results and errors of RD
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