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Faculty of Information Technology and Bionics Institute de Recherche en Informatique de Toulouse
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ABSTRACT

A volumetric non-blind single image super-resolution tech-

nique using tensor factorization has been recently introduced

by our group. That method allowed a 2-order-of-magnitude

faster high-resolution image reconstruction with equivalent

image quality compared to state-of-the-art algorithms. In this

work a joint alternating recovery of the high-resolution im-

age and of the unknown point spread function parameters is

proposed. The method is evaluated on dental computed to-

mography images. The algorithm was compared to an ex-

isting 3D super-resolution method using low-rank and total

variation regularization, combined with the same alternating

PSF-optimization. The two algorithms have shown similar

improvement in PSNR, but our method converged roughly 40

times faster, under 6 minutes both in simulation and on exper-

imental dental computed tomography data.

Index Terms— image enhancement, 3D super-resolution,

semi-blind deconvolution, 3D computed tomography

1. INTRODUCTION

Super-resolution algorithms attempt to enhance the image

quality in terms of resolution either by modifications of the

hardware or as a post-processing algorithmic step. In this

paper the latter group of methods is investigated, noted as

SR. Such algorithms either use a sequence of low-resolution

(LR) images [1], scenes of different modalities [2], or a

single image (SISR) [3] to provide an estimation of their

high-resolution (HR) counterpart. It is usually assumed that

the LR image is the blurred and decimated version with some

additive noise of the HR image. This model allows the for-

mulation of an ill-posed inverse problem, which requires

suitable regularization for obtaining a stable solution. State-

of-the-art techniques use regularizers like total variation [4],
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low rank [5], wavelet [6] or patch-based structural similarity

constraint [7]. Convolutional neural networks have also been

trained to map the LR image to its HR counterpart with suc-

cess [8–11], but require large training databases which are

not always easy to obtain in practice, and are limited to the

application they were trained for. However, for 3D images

the above methods are not applicable either because they are

not implemented for higher dimensions, or they suffer from

heavy computational cost.

Tensor factorization had been applied previously for hy-

perspectral – multispectral image fusion in [12]. In our previ-

ous paper [13] this technique was applied for the SISR task.

In that method canonical polyadic decomposition (CPD) is

carried out on the 3D image, which can be thought of as a

sum of rank-1 tensors. As the image is not unfolded into a

2D matrix, local information of neighbouring pixels is main-

tained.

In this paper, the issue of the system point spread func-

tion (PSF) is addressed. In our previous work the PSF was

estimated directly from the data knowing the LR-HR image

pairs [13]. Herein, a joint recovery of the PSF and the HR im-

age is proposed, assuming that the image blur is caused by a

Gaussian kernel, and its standard deviation is within a prede-

fined interval. The HR image and the parameters of the Gaus-

sian kernel are updated alternately in an iterative manner. The

proposed method was evaluated on dental computed tomogra-

phy (CT) images, both on simulated and real data. The results

are compared to a method using a recent 3D SISR technique

for the estimation of the HR image with low-rank and total-

variation regularization (denoted as LRTV). The Gaussian pa-

rameters are updated as in the proposed method, alternating

between the two estimation steps.

The rest of this paper is organized as follows: first the rel-

evant tensor algebra is summarized in Section 2. In Section

3, the image degradation problem is formulated, followed by

the description of the image and kernel estimation steps. In

Section 4, the test environment is introduced, and the results

are compared through qualitative and quantitative measures.

The algorithms achieve similar enhancement of the LR im-

ages, but the proposed method executes an order of magnitude



faster and its parameter tuning is also easier.

2. TENSOR OPERATIONS

In this section, operations from tensor algebra necessary for

the proposed method are summarized. Readers may refer to

[12–14] for further details.

A 3D image volume is a third-order tensor X ∈ R
I×J×K .

Its mode-1 fibers (columns) are the X(:, j, k) vectors, the

mode-2 fibers (rows) are X(i, :, k), and the mode-3 fibers are

X(i, j, :). The outer product (u1◦u2◦u3) between one mode-

1 (u1), one mode-2 (u2) and one mode-3 array (u3) is a rank-1

third order tensor.

The smallest number (F ) of rank-1 tensors building up

tensor X is called the tensor rank of X . The resulting factor-

ization of X is called the CPD of X given by

X = [[U1, U2, U3]] =
F
∑

f=1

U1(:, f) ◦ U2(:, f) ◦ U3(:, f)

(1)

where U =
{

U1, U2, U3
}

is a set of three 2D matrices,
{

U1 ∈ R
I×F , U2 ∈ R

J×F , U3 ∈ R
K×F

}

, known as the de-

composition of the tensor X .

The CPD is essentially unique (allowing permutations

within U1, U2, U3), making U identifiable almost surely if

F ≤ 2⌊log2J⌋+⌊log2K⌋−2 [15]. This condition allows identifi-

ability even for large tensor ranks (a matrix of 300×300×300
might have F ≤ 214 = 16384).

Multiplication between a 2D matrix and a 3D tensor along

dimension n is the mode-n product (denoted with ×n). The

mode-n fibers of a tensor are extracted and are pre-multiplied

by the 2D matrix. Along the first dimension it corresponds to

X×1(P1 ∈ R
I∗×I) = (X1 ∈ R

I∗×J×K)

where X1(:, j, k) = P1X(:, j, k)
(2)

where I∗ is an arbitrary integer number. The mode-n products

along the other two dimensions can be calculated analogously.

Using (1) the mode-n products can also be expressed as

X ×1 P1 ×2 P2 ×3 P3 = [[P1U
1, P2U

2, P3U
3]]. (3)

The matricization (unfolding) of the tensor X from 3D to

2D can be realized along any of the three dimensions again. In

the mode-n matricization the mode-n fibers form the columns

of X(n) in lexicographical order. Along the first dimension it

is written as

(X(1) ∈ R
I×JK)=[X(:, 1, 1),X(:, 2, 1), ...X(:, J, 1),

X(:, 1, 2),X(:, 2, 2)...,X(:, J,K)]
(4)

and can be calculated analogously for the other 2 dimensions.

Using U of X it can be written as

X
(1) = U1(U3 ⊙ U2)T (5)

where ⊙ is the Kathri-Rao product [13].

3. METHODS

3.1. Problem formulation

The classical image degradation model of SISR defines the

LR image ( Y ∈ R
I/r1×J/r2×K/r3 ) as a downsampled (with

rate r1 = r2 = r3 = r in our application) and blurred (with

kernel h) HR image (X ∈ R
I×J×K) with some additive

Gaussian white noise (N ∈ R
I/r1×J/r2×K/r3 ). Herein, the

PSF is considered Gaussian, a common assumption in many

applications. This can be expressed as

vec(Y ) = DHvec(X) + vec(N) (6)

where vec(·) vectorizes the tensor elements in lexicographical

order. H ∈ R
IJK×IJK is the block-circulant form of the

3D Gaussian kernel h. A 3D Gaussian kernel h of standard

deviations σ = [σ1, σ2, σ3] can be decomposed as h = h1 ◦
h2 ◦ h3, based on its separability. The corresponding block-

circulant matrices using zero-padding and circular shift are

H1 ∈ R
I×I , H2 ∈ R

J×J , H3 ∈ R
K×K . The downsampling

operator averages blocks of r neighboring pixels. In matrix

form these are D1 ∈ R
I/r×I , D2 ∈ R

J/r×J , D3 ∈ R
K/r×K .

Let U =
{

U1 ∈ R
I×F , U2 ∈ R

J×F , U3 ∈ R
K×F

}

be

the CPD of HR tensor X . Using (3) and the separated kernels,

(6) can be written as

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 +N

= [[D1H1U
1, D2H2U

2, D3H3U
3]] +N .

(7)

The semi-blind SISR task is now to find the set of matrices U

and the parameter σ which minimizes

min
U,σ

∥

∥Y − [[D1H1(σ1)U
1, D2H2(σ2)U

2, D3H3(σ3)U
3]]
∥

∥

2

F

(8)

where ‖·‖F denotes the Frobenius norm (square root of the

sum of the squared matrix elements).

As problem (8) is non-convex, an alternating optimiza-

tion method is proposed, minimizing (8) for U1, U2, U3 and

σ1, σ2, σ3, respectively.

3.2. Image estimation

The image estimation step is calculated as described in [13].

When minimizing over Un, the tensors are mode-n-matricized

using (4) and (5) giving

min
U1

1

2

∥

∥

∥
Y

(1) −D1H1U
1(D3H3U

3 ⊙D2H2U
2)T

∥

∥

∥

2

F

min
U2

1

2

∥

∥

∥
Y

(2) −D2H2U
2(D3H3U

3 ⊙D1H1U
1)T

∥

∥

∥

2

F

min
U3

1

2

∥

∥

∥
Y

(3) −D3H3U
3(D2H2U

2 ⊙D1H1U
1)T

∥

∥

∥

2

F
.

(9)



The least-square estimator of (9) obtained with the Moore-

Penrose pseudo-inverse (+) and Tikhonov regularization is

U1 = (D1H1)
+
Y

(1)(D3H3U
3 ⊙D2H2U

2)+T

U2 = (D2H2)
+
Y

(2)(D3H3U
3 ⊙D1H1U

1)+T

U3 = (D3H3)
+
Y

(3)(D2H2U
2 ⊙D1H1U

1)+T

(10)

3.3. PSF estimation

The PSF estimation was implemented based on [16]. As H

is a block circulant with circulant blocks (BCCB) matrix,

Hvec(X) of (6) can be rewritten using the Fourier transform

F as

Hvec(X) = F−1(F h̃ · FX) (11)

where h̃ is the zero-padded, circularly shifted version of ker-

nel h and the operation (·) is the element-wise matrix mul-

tiplication (Hadamard product). This formulation radically

reduces the size of the matrices to be multiplied. The kernel

h̃ can be expressed as

h̃(σ) =
1

σ1σ2σ3

√
2π

3 e
1

2

(

x
2

σ1
+ y

2

σ2
+ z

2

σ3

)

, (12)

where x, y, z are the fixed 3D evaluation coordinates of the

zero-padded, shifted kernel. It can be assumed, based on prior

knowledge depending on the application, that all elements of

σ are within a given interval denoted by a1, a2, and a3 re-

spectively. This is characterized by the indicator functions

i(σ) = i(σ1) + i(σ2) + i(σ3). Combining this with (11) and

(12) the kernel optimization problem can now be written as

min
σ

∥

∥

∥
Y −F−1(F h̃(σ) · FX)

∥

∥

∥

2

F
+ i(σ)

= min
σ

G(σ) + i(σ)
(13)

Knowing that the solution of the proximal operator for the

above problem is a projection (
∏

) onto the corresponding

a1, a2, a3 intervals, the solution of (13) will be the fixed point

of

σ =
∏

(

σ − γ
dG(σ)

dσ

)

, (14)

where γ, the step size is a small enough coefficient (its value

might be changed at each iteration). In (14) the data fidelity

term G(σ) is estimated with a gradient descent step and the

indicator function is taking effect through the projection op-

erator.

The algorithm was implemented in Matlab 2017, and for

the basic tensor operations and the tensor structure the Ten-

sorLab toolbox was employed [17]. The image and kernel

estimation steps were joined in our tensor-factorization-based

SISR algorithm 1 with semi-blind PSF estimation (TF-SISR-

blind) as shown in Algorithm 1.

1The Matlab code corresponding to [13] is available at

https://www.irit.fr/ Adrian.Basarab/codes.html

Algorithm 1 TF-SISR algorithm

Input: Y , F, a1, a2, a3, σ0, r,N,M, ǫ

1: Initialize U with normally distributed values

2: D1, D2, D3 ← decimation operator with a factor r

3: for i = 0:N do

4: H1, H2, H3 ← Gaussian kernels of σi

5: for j = 0:M do

6: U1 ← Y (1), U2, U3

7: U2 ← Y (2), U1, U3 ⊲ update using (10)

8: U3 ← Y (3), U1, U2

9: end for

10: X̂← U ⊲ build using (1)

11: Initialize diff= inf

12: while diff > ǫ do

13: σi+1 ← σi, X̂ ⊲ update using (14)

14: diff = max(σi+1 − σi)
15: end while

16: end for

Output: X , the estimated high resolution image

4. RESULTS AND DISCUSSION

4.1. Simulated and experimental data

The algorithm was evaluated on dental CT images. The HR

images were recorded with a QuantumFX micro-CT system

from Perkin Elmer (resolution 1 LP/mm at 50% MTF, mean-

ing that spatial frequencies of 1 line pair per mm are depicted

at 50% of the modulation transfer function) and their LR

counterparts with a Carestream 81003D limited cone-beam

CT system (CBCT, resolution 10 LP/mm at 50% MTF, 10

times lower than that of the micro-CT). Further details on the

data acquisition are introduced in [11]. Within the simulation

the LR images were obtained by blurring and down-sampling

the micro-CT images (considered as the ground truth in CT

imaging) without added noise, with parameters listed in Table

1. In the experimental setting, the LR input was the CBCT

volume.

The proposed method was compared with the LRTV

method described in [5]. Within this 3D SISR problem is

solved by the alternating direction method of multipliers

(ADMM), minimizing the sum between a quadratic data fi-

delity term and two law rank and total variation regularizers.

The original code was combined with the PSF estimation step

of (14). The method is further denoted as LRTV-blind.

The TF-SISR-blind algorithm ran 3 overall iterations

(N = 3), 5 image-update iterations in each loop (M = 5),

and the kernel update repeated until converged. The initial

step size γ was set to 1e-5 and decreased linearly in the outer

loop. The parameter setting for the simulation and experi-

mental data is listed in Table 1.

The LRTV-blind algorithm ran 3 overall iterations, in each

loop running 3 LRTV iterations for image update, followed by



Table 1. Test parameters and results

Simulation Experiment

HR pixel number 287×266×392 274×278×474

chosen F 400

downsampling rate r 2

ground truth σ [6.0 6.0 6.0] –

initialized σ [8.0 8.0 7.0] [8.0 8.0 7.0]

σ with LRTV-blind [4.7 4.6 6.3] [7.6 6.5 7.4]

σ with TF-SISR-blind [5.0 4.9 4.8] [8.5 7.8 6.5]

LR–HR PSNR 22.32 dB 19.42 dB

LRTV-blind PSNR 24.39 dB 25.63 dB

TF-SISR-blind PSNR 26.53 dB 30.07 dB

LRTV-blind time 9087 s 11823 s

TF-SISR-blind time 298 s 354 s

Gaussian parameter optimization until convergence. The hy-

perparameters controlling the regularization were set to 0.07

for the low-rank and 0.02 for total variation.

Note that for both methods, all the hyperparameters were

manually tuned to provide the best results possible in terms

of visual inspection. In both methods the initialization of σ

is started from the values listed in Table 1, and the a1, a2, a3
intervals of the projections are set corresponding to the initial-

ized σ as [σ − 4, σ + 2]. For the experimental data no ground

truth value of the Gaussian parameters was available.

The enhancement was measured quantitatively through

the peak signal-to-noise ratio (PSNR) [18] between the

ground truth micro-CT and the LR, TF-SISR-blind, LRTV-

blind images respectively.

4.2. Super-resolution results

The results are illustrated through one slice extracted from

the volumes in Fig. 1. It can be seen that with LRTV-blind

the image is contrasted, smoothed and the root canal (dark

region inside the tooth) is more dilated as a result of the TV

regularization, both in the simulation and on the experimental

data. Note that no such parameters need to be tuned in TF-

SISR-blind, resulting in more natural images.

In Table 1 the quantitative results are listed. In simula-

tion the PSNR improved by 18.9% in TF-SISR and 9.3% in

LRTV, while on the experimental data by 54.8% and 31.9%

respectively. It can be seen that the Gaussian parameters of

the simulation converged to a lower value than used for blur-

ring, because of the non-convex nature of the problem. How-

ever, the most important improvement of TF-SISR-blind re-

mains its runtime, being roughly 40 times faster compared to

the LRTV-blind on a standard PC with an Intel® CoreTM i7

22.5GHz processor and 16 GB of RAM.

Fig. 1. Image enhancement. On the left slices corresponding

to the simulation, on the right the slices from the experimental

volume can be seen. A coronal slice was chosen for demon-

stration. The LR images are shown on the scale of the HR

images using linear interpolation.

5. CONCLUSION

In this paper a fast method for single image super-resolution

with joint Gaussian kernel estimation was introduced. The al-

gorithm managed to improve the image quality similarly to an

existing ADMM reconstruction method using low-rank and

total-variation regularization. The main advantage of the al-

gorithm is its speed, processing 3D volumes in less than 5

minutes with standard Matlab implementation on a desktop

computer. In future work the effect of embedding classical

priors into the tensor-based model will be investigated on dif-

ferent image classes.
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