
HAL Id: hal-02884706
https://hal.science/hal-02884706

Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and evaluation of a semantic indicator for
automatically supporting programming learning

Julien Broisin, Clément Herouard

To cite this version:
Julien Broisin, Clément Herouard. Design and evaluation of a semantic indicator for automatically
supporting programming learning. 12th International Conference on Educational Data Mining (EDM
2019), Jul 2019, Montreal, Canada. pp.270-275. �hal-02884706�

https://hal.science/hal-02884706
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26221

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Broisin, Julien and Herouard, Clément

Design and evaluation of a semantic indicator for

automatically supporting programming learning. (2019) In:

12th International Conference on Educational Data Mining

(EDM 2019), 2 July 2019 - 5 July 2019 (Montreal, Canada).

Design and evaluation of a semantic indicator for
automatically supporting programming learning

Julien Broisin
Université Toulouse 3 Paul Sabatier, IRIT

118 route de Narbonne
31062 Toulouse, France
julien.broisin@irit.fr

Clément Hérouard
Ecole Normale Supérieure

Campus de Ker lann, Avenue Robert Schuman
35170 Bruz, France

clement.herouard@ens-rennes.fr

for the acquisition of 21st century skills, which include pro-
gramming learning. In France, for example, an educational
reform of High School curricula that will be operational next
year offers a Digital and Computer Science option that in-
cludes more than 350 hours of programming learning. This
interest in integration of programming learning skills early
in the curriculum requires not only prepared teachers, but
also technological solutions to support them and their stu-
dents in their daily practices.

With this purpose, the Technology-Enhanced Learning re-
search community has been interested in designing systems
dedicated to support learning of programming, as evidenced
by different efforts intended to analyze learners’ behaviour
[14, 12]. One of the most common approaches in prior
works consists in designing systems that analyze learners’
programming codes from a syntactical perspective. These
systems make a syntactic evaluation of students’ codes to
detect grammatical errors and provide appropriate and con-
structive support to learners to avoid misconception errors
[15]. However, delivering feedback about syntactical errors
falls short on providing meaningful information about how
students approach the programming problem. Yet, one of
the key learning outcomes of programming relates to the
development of an individual’s ability to solve a problem
[11]. One approach to achieve this goal is to design systems
able to analyze source codes from a semantic perspective,
i.e., able to show how the problem has been solved. Al-
though there have been some initiatives approaching code
evaluation from a semantic perspective [5], works on this
line are still scarce and very few solutions have been pro-
posed. Thus, more solutions based on semantic analysis are
needed to better understand the potential of this approach
in supporting learning of programming.

To advance on semantic analysis-based solutions, this article
introduces the design of an indicator revealing the semantic
proximity of two distinct source codes in order to express the
correctness of a learner’s code regarding a given problem,
and tackles the following research questions:
Research question 1: How to design a semantic indicator
revealing learner’s ability to solve a problem?
Research question 2: Is the semantic quality of a learner’s
production correlated with his/her academic performance?

To answer the first question, we adopt an approach based
on the comparison of abstract syntax trees. We adapt the
edit distance established by Levenshtein, an algorithm that

ABSTRACT
How to support students in programming learning has been a
great research challenge in the last years. To address this
challenge, prior works have mainly focused on proposing
solutions based on syntactic analysis to provide students
with personalized feedback about their grammatical pro-
gramming errors and misconceptions. However, syntactic
analysis falls short on informing learners how they solve the
programming problem, even if one key learning outcome of
programming relates to the development of an individual’s
ability to solve a problem. In this article, we introduce an
indicator to analyze beginners’ code based on semantic prox-
imity. This indicator adapts an edit distance algorithm (i.e.,
the Levenshtein distance) to express the proximity of the
students’ code with the expected solution provided by the
teacher, in order to express the learners’ capacity to solve the
given problem. To process our indicator, we applied ma-chine
learning techniques to a dataset from an introductory
programming course with a sample of 166 students. The first
results are encouraging. On the one hand, the semantic
indicator can be used to automatically classify source codes
as semantically correct or incorrect in 58% of the cases. On
the other hand, the indicator is correlated with teachers’
summative evaluations of students’ codes. Even if further
investigations must be conducted to improve the indicator’s
accuracy, the results of this study make it possible to use our
approach as the foundations for future research in semantic-
based intelligent and awareness programming systems.

Keywords
Programming learning, Semantic analysis, Educational data
mining, Edit distance, Levenshtein algorithm

1. INTRODUCTION
Computer literacy is currently booming. In Europe, par-
ticularly in Germany and the United Kingdom, profound
educational transformations have been initiated since 2016
to promote digital learning in schools and prepare learners

has proven effective in comparing and correcting strings of
characters. Then, we propose a machine learning method to
determine some of the factors required to process the seman-
tic proximity using source codes produced by 166 students.
For the second research question, and with the objective of
evaluating the precision of the indicator in relation to hu-
man perception, we conduct a set of statistical analysis with
source codes gathered from an authentic learning context.
In particular, we analyze the correlation between the value
of our indicator automatically processed, and the teachers’
scores manually assigned to students’ source codes.

In the following section we review what current approaches
dedicated to automatic source code analysis are currently
available in the literature, and highlight a lack of semantic-
driven proposals. Then, in Section 3, we present how the
semantic indicator was designed; as stated above, the indi-
cator stands on the Levenshtein distance adapted to source
codes comparison, and depends on a set of parameters lead-
ing to its calculation. Section 4 then introduces the machine
learning method we used to assign values to these different
parameters, whereas Section 5 describes the dataset used to
actually determine the values of the parameters. Section 6
gives the results we obtained, and evaluates the quality of
the indicator at two different levels: its capacity to act as a
semantic classifier, and its correlation with human percep-
tion. Finally, we discuss the results of this study as well as
the main conclusions of the work.

2. APPROACHES FOR AUTOMATIC

SOURCE CODE ANALYSIS
In the context of programming learning, automatic source
code analysis is used to achieve different objectives such as
improving feedback provided to learners [7, 9], predicting
their performance [1, 16], or monitoring their activities [3].

These automatic analyses are performed by compiling the
code [6], by searching for typical errors within a source code
[9], or by running unit tests provided by teachers [13]. These
various works guide learners in the production of syntacti-
cally correct programs, but they do not allow the source
code to be evaluated at a semantic level: syntactic evalu-
ation is not sufficient to reflect the relevance of a learner’s
production regarding a problem given by the teacher.

In the meta-review proposed by Ihantola et al. [8] who stud-
ied no less than 118 research articles in the field of educa-
tional data mining for programming, the word semantics is
missing from the paper. Also, a search for the terms "se-
mantic analysis programming" in Google Scholar and Web
of Science returns a large number of results, but no scientific
articles really deal with semantic analysis of code.

The works we have identified that are close to a semantic
analysis are those proposed by Bey et al. [5]. In order to pro-
pose an automated assessment of learners’ code in a Massive
Open Online Course (MOOC), the authors propose to com-
pare the control flow graph matching with the code produced
by the learner, with a set of graphs stored in a database
and manually assessed by experts [2]. If the learner’s graph
is recognized among the graphs of the database, then the
matching score is returned to the learner; if it is not recog-
nized, then the learner’s production is manually assessed by

a human expert to enrich the database of graphs.

The lack of work addressing automatic analysis of source
code from a semantic perspective can be explained by the
fact that the semantics of a program can not be calculated.
Our research try to go beyond this limitation and propose
the design of an indicator that reveals the relevance of a
source code regarding a given problem.

3. SPECIFICATION OF THE SEMANTIC

INDICATOR
Our objective is to design an indicator able to evaluate the
distance between two source codes from a semantic perspec-
tive and fulfilling the following requirements: (i) teachers
should only produce a solution to the problems delivered
to students, in contrast, for example, to methods based on
unit tests which are time consuming; (ii) the distance should
decrease as the student approaches the solution, so that an
incomplete script can be evaluated even if it does not fully
address the problem posed. Therefore, if the solution of a
problem is provided by the teacher, then the distance be-
tween this source code and the learners’ productions should
give insights about their ability to solve the problem.

The field of natural language processing has for a long time
studied problems related, for example, to spelling correc-
tion where semantics is naturally taken into account [4]. To
design our semantic indicator, we studied algorithms capa-
ble of processing the edit distance between two sequences
of characters, and built our proposal upon the Levenshtein
algorithm which has been shown very useful for calculating
the distance between two strings of characters.

3.1 Levenshtein distance
The edit distance between two strings of characters, or Lev-
enshtein distance [10], is defined by a cost calculated from
the minimum number of operations (i.e., insertion and dele-
tion of a character, and substitution of one character by
another) required to move from one string to another. In
the case of character strings comparison, the costs asso-
ciated with each of these operations are all set to 1, but
the cost of the substitution of a character by itself which is
0. To apply this algorithm to source code, two challenges
must be tackled: (i) the design of a formal representation
of the source code in order to make it comparable at a high
abstraction level, and (ii) the assignment of a specific cost
to each elementary operation according to the importance
of the modifications to be made to move from one source
code to another. Indeed, substituting two instructions im-
plementing the same functionality should not have the same
cost than replacing an instruction with another one charac-
terized by a very different functionality.

3.2 Formal representation of source code
Our proposal for building a formal representation of source
code relies on two steps: transformation of the source code
as an Abstract Syntax Tree (AST), and transformation of
the AST into a string of elementary instructions.

3.2.1 Production of the abstract syntax tree
We have adopted abstract syntax trees to formally represent
a source code as they do not represent nodes and branches

that do not affect the semantics of a program. We rely
on a parser written in JavaScript that reads a script and
returns the matching abstract syntax tree formatted as a
JSON object; an example illustrating the conversion of a
Bash source code to an AST is given in Figure 1.

With the formal representation proposed above, the mea-
surement of our indicator corresponds to the edit distance
between two abstract syntax trees. However, in order to
adapt Levenshtein distance to our context, we need to con-
vert the AST generated from the source code into a string of
characters; from a terminology point of view, we name to-

kens the characters resulting from the AST transformation
process so as not to confuse them with those contained in
the source code. Thus, we carry out an in-depth exploration
of the AST to create the string of tokens.

3.2.2 Production of the string of tokens
The Bash language, the subject of our study, proposes 17
control structures, each corresponding to a different token.
A token can be of the type Command, of the type Assignation,
or of the type While, Do or Done to indicate the begin-
ning, body or end of a loop respectively. Note that the
tokens Command keep the name of their command and argu-
ments.The transformation of the AST represented in Fig-
ure 1 into a string of tokens is illustrated in Figure 2.

The Levenshtein distance between two strings of tokens is
therefore characterized by a number of costs, or parame-
ters, matching with the different elementary operations of
insertion, deletion and substitution of each token. The 17
tokens of the Bash language lead to the definition of 308
costs: 17+17 costs to create and delete a token, 16x17 costs
to substitute one token by another, 1 cost to substitute a
token Command by another characterized by a different com-
mand name, and finally 1 cost to substitute a token Command

by another characterized by identical names and different ar-
guments. This number of parameters is too high to imple-
ment an effective machine learning method, as it decreases
the density of tests and makes more difficult the search for
"good" values of parameters.

3.3 Reduction of the number of parameters
A first operation to reduce the number of parameters to be
trained consists in ignoring the tokens Until, Subshell and
Pipeline because the matching control structures do not
appear in the dataset used for this study (see Section 5).
We also propose to symmetrisize the problem by assigning
equal costs to the insertion and deletion operations of a to-
ken; similarly, the substitution of the token A by the token
B has a cost equal to the substitution of B by A. This sym-
metrization makes the distance between the scripts S1 and
S2 equal to the distance between S2 and S1, and reduces the
number of parameters to 107.

Finally, we assume a stronger hypothesis by considering that
only certain tokens can replace others. Thus, only the fol-
lowing groups of tokens can substitute each other: {Command,
Assignation}, {If, Case}, {Then, Else, CaseItem}, and
{For, While}. Indeed, it is possible that a script contains a
Case where another script uses a If, but it is unlikely that a
substitution of a For by a If appears frequently, these two
instructions having very different objectives.

These simplifications considerably reduce the number of costs,
since 23 parameters must now be calculated. Let us note θ

the vector containing these 23 costs. Our indicator, noted
d(S, C, θ), is then defined by the edit distance, under the 23
parameters θ, between the string of tokens representing the
script S and the one matching with the script C. The next
section introduces the machine learning criterion leading to
the optimal values of θ.

4. MACHINE LEARNING METHOD
To train the correct values of the 23 costs of the θ parame-
ter, we define the machine learning criterion Score(θ) to be
minimized such that:

Score(θ) =

∑

(S,C)∈Correct

√

d(S, C, θ)
∑

(S,C)∈Incorrect

√

d(S, C, θ)
(1)

where Correct (resp. Incorrect) is the set of pairs composed
of the correct (resp. incorrect) scripts of the learning dataset
(see next section) and the associated corrections.

The Score function is low when the correct scripts are as-
sociated to short distances, and the incorrect scripts to long
distances. We add the square roots of the distances to re-
duce the influence of high values.

We can notice a property of the function d:

∀λ ∈ R
∗

+, d(S, C, λ.θ) = λ.d(S, C, θ) (2)

Then it is obvious that Score(λθ) = Score(θ). This means
that the Score function is constant on all rays from 0, and
that exploring the different costs of the θ parameter, noted
θi such as 0.01 < θi ≤ 1, is sufficient to find the values of
θi minimizing Score. The dataset built from an authentic
learning situation and that was used to determine the θi is
described in the next section.

5. DATASET FOR CALCULATING COST
The dataset was obtained in an IT department of Higher
Education Institute of Technology (HEIT) during an intro-
ductory course on Bash programming attended by 166 first
year students. Learners discover common commands such as
echo, ls, read or cat, variable management, as well as some
control structures of the Bash language (e.g., for, while, if,
case). Students then put these concepts into practice dur-
ing hands-on sessions where they produce Bash scripts to
try to solve a series of problems.

The dataset includes the students’ scripts produced during
five practical sessions of one hour and a half. Each time a
student saves the modifications of her Bash script, a copy
of the script together with its timestamp and the identifier
of the student is saved in a directory to enrich the dataset.
Thus, our sample includes 19232 scripts. However, a number
of nomenclature errors or file numbering made 18% of these
scripts unusable: the dataset is composed of 15794 scripts.

This sample includes, for the same exercise, several scripts
produced by the same student. However, machine learning
methods are effective when they are based on independent
data. We thus only consider, per exercise and per student,
the last script produced by the learner because we assume

Figure 1: Converting a source code into an abstract syntax tree.

Figure 2: Converting an abstract syntax tree into a string of tokens.

that it is the most complete. This choice allows to obtain an
independent dataset, but reduces the sample to 2540 scripts.

Finally, we want to be able to manually classify each script
of the dataset into two distinct categories (i.e., Correct and
Incorrect) expressing their semantic accuracy, in order to
evaluate the accuracy of our indicator as a semantic classifier
(see next section). However, some exercises suggested by the
teachers of this course do not allow for a semantic analysis
of students’ productions. For example, some problems are
related to the understanding of the execution of a script
provided in the statement, while others have instructions
that are too open to assess whether a script represents a
solution to the problem. After this classification process,
the final sample includes 733 scripts spread over 11 different
exercises; 397 scripts are semantically correct, the others
being semantically incorrect.

This dataset was randomly divided into a learning dataset
whose objective is to identify the values of the θ param-
eter that minimize the machine learning criterion, and a
test dataset that aims at evaluating the relevance of the re-
sults obtained during the machine learning phase. These
two samples contain the same number of scripts for each
exercise, and the proportion of semantically correct and in-
correct scripts is preserved. In addition, let us note that a
solution was provided by a teacher for each of the exercises.

6. RESULTS AND EVALUATION
6.1 Values of costs
The learning dataset was used to initialize the gradient de-
scent minimization algorithm. The vector minimizing the

Score function, noted θ, admits values of 0.01 (i.e., the min-
imum value we have set) almost everywhere except for three
parameters: (1) the creation or deletion of a token Command,
whose cost is 1; (2) the creation or deletion of a token If,
whose cost is 0.112; (3) the creation or deletion of a token
Function, whose cost is 0.022.

At this stage, we have the parameter θ which contains the
values of the 23 costs that were obtained by our learning
method. The objective of the tests conducted in the fol-
lowing section with the parameter θ on the test dataset is
twofold: to study the ability of our indicator to distinguish a
semantically correct script from an incorrect script ; to study
the correlation between our indicator and manual scores as-
signed to scripts by teachers.

6.2 Study of prediction
A first approach to assess the relevance of our indicator un-
der the parameter θ is to evaluate its ability to automatically
classify a script as correct or incorrect from a semantics point
of view. In a first step, we calculate the distance d(S, C, θ)
between each script S of the test dataset and the correction
C of the matching problem, in order to obtain a value of our
indicator for each correct and incorrect script.

The next step consists in evaluating the prediction model
resulting from the different values of the indicator. To do
this, we use the ROC metric, which is widely used to observe
the performance of a binary classifier. When the classifier
calculates a metric m that is compared to a σ threshold to
predict the class, the idea of the ROC curve is to vary σ from
1 to 0 and, for each σ value, plot the false positive rate on

Figure 3: ROC curve of our classifier (in blue) and
random bisector (in red).

the abscissa and the true positive rate on the ordinate. The
area under the curve (AUC) then indicates the probability
that the classifier will place a positive in front of a negative.
A classifier that is never wrong has an AUC equal to 1, while
a random classifier has an AUC equal to 0.5.

In our study, if d(S, C, θ) < σ, then the script is classified
in the category Correct ; otherwise it is classified in the
category Incorrect. The ROC curve in Figure 3 illustrates
the ratio of true positives (i.e., fraction of correct scripts that
are actually detected as correct by the classifier) according
to the ratio of false positives (i.e., fraction of incorrect scripts
that are detected as correct by the classifier). The curve is
moderately above the bisector, the area under this curve is
equal to 0.585. Our classifier is therefore slightly better than
a random classifier, but its performance is not very high; we
make assumptions to explain these results in Section 7.

6.3 Study of the correlation with human nota-

tion
One of the objectives of our indicator is to reflect the learner’s
progress towards the solution to the problem, which means
that its value is assumed to decrease as a script moves to-
wards the solution. We therefore study the correlation be-
tween the value of our indicator under the parameter θ for
a given script and the matching correction, and the score
assigned to this script by a human tutor.

This study is performed using a second dataset obtained af-
ter the final exam of the course described in Section 5. Of the
166 students enrolled in this course, 163 participated in the
final exam where learners had to produce a script addressing
a given problem. A teacher then assigned a score out of 10
to each of the 163 scripts. After eliminating grammatically
incorrect scripts, this second dataset comprises 105 scripts.

Figure 4 shows, for each script, the value of the indica-
tor according to the score assigned by the teacher. This
graph shows a negative correlation: the (non-linear) Kendall
correlation has a value equal to −0.319 (p value less than

Figure 4: Value of our indicator according to score
assigned by a human tutor.

2.7 · 10−6), the (linear) Pearson correlation having a value
of −0.446 (p value equal to 1.9 · 10−6). We therefore have
a correlation between the score given by a human tutor and
the value of our indicator. This correlation is not extremely
high, but it may be sufficient to automatically estimate a
student’s progress towards solving a problem.

7. DISCUSSION
Our indicator is able to distinguish a semantically correct
script from a semantically incorrect script, but its perfor-
mance is slightly better than that of a random classifier only.
A hypothesis to explain these results stems from the hetero-
geneous nature of the learning dataset, especially regarding
the size of the scripts it contains. Indeed, the distance cal-
culated by our indicator tends to increase with each token of
a script. So the longer a script is, the more likely it is that
the indicator will return a high value (even if the script ap-
proaches the solution), while a short and incorrect script is
evaluated with a low value due to the low number of tokens.

The correlation study carried out on the second set of data
gives indications about a certain capability of generalization
of our approach. Indeed, unlike the test dataset extracted
from the first dataset, the set of scripts obtained after the
terminal exam corresponds to an exercise that is missing
from the learning dataset. Therefore, our method seems to
apply to exercises that were not used during the learning
phase. However, this correlation is not extremely high, and
scripts that are very poorly evaluated by human tutors are
assigned a value of our indicator that is almost zero. This
can also be explained by the hypothesis formulated above,
since almost empty and therefore incorrect scripts are poorly
rated by the human teacher, while our indicator returns a
low value. Tests should be carried out to investigate how to
adjust the algorithm to process the indicator, in particular
according to the number of tokens comprised in the script
representing the solution to the problem.

Developments have been initiated to return this indicator to
learners during the programming activity. A first visualiza-
tion reflects, as a graphical gauge, the value of the indicator
each time a learner executes a script. A second visualiza-
tion shows the learner’s progress in solving the problem from
the successive values of the indicator for the same script; it
gives the variation of the indicator in the form of a gradient
of colors ranging from green (for a short distance) to red

(for a long distance). The student is thus provided with a
real time and easy to interpret view of the evolution of the
accuracy of his script from a semantic point of view. These
tools to support learners will be experimented in the next
academic year with a new group of first-year students from
HEIT. This experimentation will also make it possible to re-
peat the work presented in this study using a new dataset,
and thus to improve the quality of our indicator.

8. CONCLUSION
In this paper, we conducted a study to design an indicator
whose objective is to act as a foundation for intelligent guid-
ance systems and awareness tools intended for both learners
and teachers during a practical activity dedicated to learning
programming. While a large variety of research is focused
on the syntactic quality of the code produced by learners
to support these learning activities, our originality lies in
studying the semantic quality of the code, i.e., in evaluating
the degree to which a program solves a given problem.

Thus, our main contribution relates on the design of an in-
dicator that reflects a learner’s ability to solve a problem.
To answer the first research question asked in the introduc-
tion, we adapted the Levenshtein distance: from two strings
of tokens representing the abstract syntax tree of the corre-
sponding programs, the indicator returns an estimated value
of the edit distance between the two scripts. To train and
test this indicator, we used a dataset composed of scripts
produced by students in authentic learning situations. The
tests revealed that when it comes to differentiating between
semantically correct and incorrect scripts, our indicator has
slightly better performance than a random classifier. On the
other hand, we observed an inverse correlation between the
value of the indicator and the score assigned by a human
tutor: the higher the human score of a program formulating
a solution to a problem, the smaller the distance between
that program and the solution of the problem.

These encouraging results suggest the opportunity to de-
velop new models and tools dedicated to the semantic analy-
sis of programming learning. However, many improvements
need to be explored to improve the quality of our indicator.
In addition to big amount of data required to refine the pa-
rameters of our indicator, the generalization of our approach
to different programming languages must be checked, as well
as the consideration of more complex programs.

9. REFERENCES
[1] A. Ahadi, S. Lal, J. Leinonen, A. Hellas, and

R. Lister. Performance and consistency in learning to
program. In Proceedings of The Nineteenth

Australasian Computing Education Conference, pages
11–16, Geelong, 2017. ACM.

[2] R. Aiouni, A. Bey, and T. Bensebaa. An automated
assessment tool of flowchart programs in introductory
programming course using graph matching. Journal of

e-Learning and Knowledge Society, 12(2):141–150,
2016.

[3] A. Alammary, A. Carbone, and J. Sheard.
Implementation of a smart lab for teachers of novice
programmers. In Proceedings of The 14th Australasian

Computing Education Conference, pages 121–130,
Melbourne, 2012. ACS.

[4] K. Beijering, C. Gooskens, and W. Heeringa.
Predicting intelligibility and perceived linguistic
distance by means of the levenshtein algorithm.
Linguistics in the Netherlands, 25(1):13–24, 2008.

[5] A. Bey, P. Jermann, and P. Dillenbourg. A
comparison between two automatic assessment
approaches for programming: An empirical study on
moocs. Journal of Educational Technology & Society,
21(2):259–272, 2018.

[6] E. Carter and G. D. Blank. A tutoring system for
debugging: status report. Journal of Computing

Sciences in Colleges, 28(3):46–52, 2013.

[7] P. Denny, A. Luxton-Reilly, and D. Carpenter.
Enhancing syntax error messages appears ineffectual.
In Proceedings of The 2014 Conference on Innovation

& Technology in Computer Science Education, pages
273–278, Uppsala, 2014. ACM.

[8] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, et al. Educational data
mining and learning analytics in programming:
Literature review and case studies. In Proceedings of

The 2015 ITiCSE on Working Group Reports, pages
41–63, Vilnius, 2015. ACM.

[9] M. Karam, M. Awa, A. Carbone, and J. Dargham.
Assisting students with typical programming errors
during a coding session. In Proceedings of The Seventh

International Conference on Information Technology,
pages 42–47, Las Vegas, 2010. IEEE.

[10] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet physics

doklady, 10(8):707–710, 1966.

[11] M. Saeli, J. Perrenet, W. M. Jochems, and
B. Zwaneveld. Teaching programming in secondary
school: A pedagogical content knowledge perspective.
Informatics in Education, 10(1):73–88, 2011.

[12] K. Sharma, P. Jermann, and P. Dillenbourg.
Identifying styles and paths toward success in moocs.
In Proceedings of The 8th International Conference on

Educational Data Mining, pages 408–411, Madrid,
2015. IEDMS.

[13] K. Sharma, K. Mangaroska, H. Trætteberg,
S. Lee-Cultura, and M. Giannakos. Evidence for
programming strategies in university coding exercises.
In Proceedings of The 13th European Conference on

Technology Enhanced Learning, pages 326–339, Leeds,
2018. Springer.

[14] J. Spacco, P. Denny, B. Richards, D. Babcock,
D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise
data. In Proceedings of The 46th ACM Technical

Symposium on Computer Science Education, pages
18–23, Kansas City, 2015. ACM.

[15] A. Taherkhani and L. Malmi. Beacon-and
schema-based method for recognizing algorithms from
students’ source code. Journal of Educational Data

Mining, 5(2):69–101, 2013.

[16] C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course
by logging and analyzing student programming
behavior. In Proceedings of The 13th International

Conference on Advanced Learning Technologies, pages
319–323, Beijing, 2013. IEEE.

