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ABSTRACT

Context. The study of the magnetic topology of magnetic fields aims at determining the key sites for the development of magnetic
reconnection. Quasi-separatrix layers (QSLs), regions of strong connectivity gradients, are topological structures where intense-
electric currents preferentially build-up, and where, later on, magnetic reconnection occurs.
Aims. QSLs are volumes of intense squashing degree, Q; the field-line invariant quantifying the deformation of elementary flux tubes.
QSL are complex and thin three-dimensional (3D) structures difficult to visualize directly. Therefore Q maps, i.e. 2D cuts of the 3D
magnetic domain, are a more and more common features used to study QSLs.
Methods. We analyze several methods to derive 2D Q maps and discuss their analytical and numerical properties. These methods can
also be used to compute Q within the 3D domain.
Results. We demonstrate that while analytically equivalent, the numerical implementation of these methods can be significantly
different. We derive the analytical formula and the best numerical methodology that should be used to compute Q inside the 3D
domain. We illustrate this method with two twisted magnetic configurations: a theoretical case and a non-linear force free configuration
derived from observations.
Conclusions. The representation of QSL through 2D planar cuts is an efficient procedure to derive the geometry of these structures
and to relate them with other quantities, e.g. electric currents and plasma flows. It will enforce a more direct comparison of the role
of QSL in magnetic reconnection.

Key words. magnetic fields – magnetic reconnection – magnetohydrodynamics (MHD) – Sun: magnetic topology

1. Introduction

Magnetic reconnection in line-tied low-plasma-β environment
such as the solar corona is linked to the formation of in-
tense field-aligned current sheets. These currents develop
preferentially in specific location of the magnetic field, in partic-
ular regions where the connectivity of the magnetic field is dis-
continuous. Magnetic topology studies aims at determining such
regions (see review of Démoulin 2005). Null points, separatrices
and separators are classical region of magnetic field discontinu-
ity (see review by Longcope 2005). Through the identification
of such regions, magnetic topology studies have been able to ex-
plain the location and shape of flares ribbons (e.g. Gorbachev
& Somov 1989; Mandrini et al. 1995; Démoulin et al. 1997;
Gaizauskas et al. 1998; Bagalá et al. 2000; Mandrini et al. 2006).

However all flares cannot be directly associated with such
magnetic field discontinuity. A generalized topological struc-
ture, the quasi-separatrix layers (QSLs) have been introduced
by Démoulin et al. (1996b, see also review of Démoulin 2006).
QSLs have been defined as regions where the mapping of the
field lines has strong gradient. It includes possible discontinu-
ous mapping, hence the presence of separatrices, as a particular
case. They were localized by the estimation of the norm, N of
the Jacobian matrix of the mapping of the field line connectivity
(see Sect. 2). Titov et al. (2002) improved the concept by defin-
ing the squashing degree, Q, which, unlike N, is invariant along
a field line. QSLs are thus 3D magnetic volumes of high Q, in
which the magnetic connectivity varies strongly.

Similarly to separatrices, flare ribbons could be associated
with QSLs in a large number of events (e.g. Mandrini et al. 1997,
2006; Masson et al. 2009; Chandra et al. 2011). Indeed, QSLs
are also preferential sites for electric current build-up (Milano
et al. 1999; Galsgaard et al. 2003; Aulanier et al. 2005; Buechner
2006; Pariat et al. 2006; Masson et al. 2009; Wilmot-Smith et al.
2009, 2010). Magnetic reconnection develops within QSLs, with
the particularity that field line continuously reconnect with their
neighboring field lines, leading to an apparent slipping of the
field lines (Aulanier et al. 2006, 2007; Török et al. 2009; Masson
et al. 2009, 2011), while classical reconnection at a separatrice
is realized in one step.

QSLs have thus received an increased attention from the
community. As the spatial extension of a QSL is typically a
very thin 3D volume with a complex shape, the representation of
QSLs is typically not straightforward. The 3D representation by
an iso-surface of Q can be used (Titov et al. 2002, 2003; Titov
2007). A complementary way to represent complex QSLs can
be done by studying the distribution of Q on 2D sections of the
studied 3D domain. As the computation of Q is relative to the
choice of boundary for the field line mapping, QSLs are usu-
ally represented at these boundaries (e.g. Démoulin et al. 1997;
Buechner 2006; Masson et al. 2011; Titov et al. 2011). However,
it may be necessary to represent QSLs in particular sections of
the 3D domain (as in Aulanier et al. 2006; Antiochos et al. 2011;
Savcheva et al. 2012a). The aim of this paper is to analyze sev-
eral possible methods to estimate Q inside the 3D domain and to
provide a formulation for the most suitable method. We focus on
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Fig. 1. Left panel: photospheric distribution (grayscale) of the vertical
component of the magnetic field, Bz, for the TD model. The continuous
(resp. dotted) isolevels of Bz corresponds to intensities of ±[1, 2, 3, 4].
Right panel: photospheric distribution (color scale) of Log10 Q. A color
version is available online.

computing Q on 2D cuts because it has important applications
and allows us to focus on the core of the methods.

For illustration, each method will be applied to the example
of the magnetic configuration of Titov & Démoulin (1999, TD
hereafter). It is formed by a twisted flux rope (part of a torus)
in equilibrium in an active-region like magnetic field. The nor-
malized parameters are chosen such as: R = 2, a = 0.45, d = 1,
|L| = 1, and |q| = 1, I0 = 2, where R and a are the large and small
radius of the torus, d and q are the depth below the photospheric
plane (z = 0) and the magnitude of the magnetic sources, L is
half the horizontal distance between the sources, and I0 is the
current intensity of the line current, respectively (see Fig. 2 and
Sect. 2.1 in Titov & Démoulin 1999). With these parameters the
flux rope has a twist of Nt = 2 above z = 0. The photospheric dis-
tributions of Bz and Log10 Q are given in Fig. 1. The TD model
has been chosen because its topology has been thoroughly stud-
ied (Titov & Démoulin 1999; Titov 2007) and because it defines
a structure commonly used as an initial configuration in numeri-
cal simulation of eruptions (e.g. Roussev et al. 2003; Török et al.
2004, 2011a,b; Valori et al. 2010; Cohen et al. 2011; Lugaz et al.
2011).

We also apply the methods to a more complex magnetic field
derived from observations (Savcheva et al. 2012a). This mag-
netic field is based on a non-linear force-free field constrained
by both the photospheric magnetogram and the observed coro-
nal loops. This magnetic field is associated to a long-standing
coronal sigmoid (observed during 6 days) within an active re-
gion. The aim of studying such a field is to test the performance
of the methods on a more structured magnetic field as typically
observed on the Sun.

The paper is organized as follow: after recalling the method
to compute Q at the boundary of the domain in Sect. 2, we will
present in Sect. 3 several methods to derive Q maps within the
domain and investigate how precise they are. Each method is
illustrated by its application to the TD model. Then, we compare
the best two methods using an observed magnetic configuration
(Sect. 4). Finally, we conclude in Sect. 5.

2. Squashing degree estimation at the planar
boundary of a 3D domain

The practical definition of QSLs in the solar context is in-
herently relative to the mapping of magnetic field lines from
one footpoint to the other. The concept is justified by the
fact that field lines are typically line tied in the dense pho-
tosphere, while a more general definition of QSLs is pos-
sible by analyzing the divergence of neighbor field lines

(see Sect. 2.3 in Démoulin et al. 1996b). The computation of
QSLs is therefore relative to the choice of the boundaries of the
studied domain V . The norm N of the mapping and the squashing
degree, Q are defined for given boundaries of the studied domain
(Démoulin et al. 1996b; Titov et al. 2002; Titov 2007). By con-
struction the squashing degree is constant for a given field line
(Titov et al. 2002), hence, once the boundaries of the domain of
study is fixed, Q can be given for the whole domain, each field
line having a single value of Q.

The quantities N and Q, are usually derived from the
Jacobian matrix of the field-line mapping from the boundary of
one footpoint to the other. In the following we will consider that
the boundaries associated with each footpoint are planar and thus
can be represented by two independent cartesian referentials.
For generality we will consider that these planes are arbitrarily
oriented regarding to each others. More commonly these plans
could be two sides of a cubic 3D domain of a numerical simu-
lation. In the particular case of closed magnetic fields such as in
an active region field (and as in the TD model used here) these
two planes are the same one: one compute the mapping between
the positive footpoint to the negative one of a photospheric-like
boundary.

Let us consider a field lines which links the footpoint, r1, of
coordinate (x1, y1) of the plane P1 to the footpoint r2, of coordi-
nate (X2,Y2) of the plane P2 (see Fig. 2). The plane P1 will for
example correspond to footpoint with a positive magnetic flux
while P2 will correspond to a negative flux. Two mapping exist
which associate a footpoint on one plane to the other: the map-
ping Π12 from P1 to P2: r1(x1, y1) 7→ r2(X2,Y2); and the inverse
mapping Π21 from P2 to P1: r2(X2,Y2) 7→ r1(x1, y1).

The Jacobian matrix, D12 & D21 associated to each mapping
are:

D12 =

(
∂X2/∂x1 ∂X2/∂y1
∂Y2/∂x1 ∂Y2/∂y1

)
(1)

D21 =

(
∂x1/∂X2 ∂x1/∂Y2
∂y1/∂X2 ∂y1/∂Y2

)
. (2)

As Π12 and Π21 are inverse functions (Π12 ◦ Π21 = Π21 ◦ Π12 =
Id), D21 is related to D12 by:

D21 = D−1
12 =

1
∆12

(
∂Y2/∂y1 −∂X2/∂y1
−∂Y1/∂x1 ∂X2/∂x1

)
(3)

with ∆12 the determinant of D12.
Evaluating D21 is analytically equivalent using Eq. (2) or (3),

however numerically it is generally not the case. In order to com-
pute the Jacobian matrix, one needs to compute in two orthogo-
nal directions a set of field lines sufficiently close to resolve the
gradient of connectivities. This is achieved by computing pro-
gressively field lines closer to the selected point (cf. Sect. 3 of
Aulanier et al. 2005). It is better numerically to realize such con-
vergence where the value of Q is needed both because of finite
difference precision (selection of the finite difference scale) and
of large connectivity dependence within QSLs. Such fine treat-
ment is needed to compute Q because of the very severe dis-
tortion of the mapping as illustrated in Fig. 2 of Longcope &
Strauss (1994), even for broad QSLs.

In presence of QSLs, the Jacobian matrix components are
typically very large or very small. As they are evaluated by finite
difference of the position of the footpoints of the field lines, it
is numerically more accurate to have a fixed denominator for all
components.

For example, when evaluating the squashing degree Q at r1,
it is better to integrate field lines from fixed points distant of

A78, page 2 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118515&pdf_id=1


E. Pariat and P. Démoulin: Squashing degree within a 3D domain

Fig. 2. Cartoon illustrating the first possible method, but incorrect, to
compute Q at rc.

δx1 = δy1 = δ and centered on r1. The field lines, separated on
P1 along the x1 direction by δx1(=δ), have a footpoint separation
on P2 which component along the X2 and Y2 directions are re-
spectively equal to dX2x1 and dY2x1. In a QSL, dX2x1 and dY2x1
will typically be very large or very small relatively to δ. Because
of numerical errors, the quantities such as ∂X2/∂x1 ' dX2x1/δ
will be evaluated more consistently than the quantities such as
∂x1/∂X2. The same is valid for field lines separated by δy1 on P1.
We conclude that, when numerically evaluating Q and the map-
ping properties at r1, Eq. (1) should be used to compute D12, and
D21 should be derived from Eq. (3) instead of Eq. (2).

Titov et al. (2002) demonstrated that the determinant of
the Jacobian matrix, ∆12 & ∆21 can be related to the ratio of
Bz,1(x1, y1) and BZ,2(X2,Y2), which are respectively the normal
component to P1 and P2 of the magnetic field evaluated in r1
and r2:

|∆12| = |∆21|
−1 =

|Bz,1(x1, y1)|
|BZ,2(X2,Y2)|

(4)

let us note that this expression should be used numerically be-
cause it is much more precise than the computation of the deter-
minant of the Jacobian matrix which involves partial derivatives.

The norms N12 & N21 of the two Jacobian matrix are:

N12 =

√(
∂X2

∂x1

)2

+

(
∂X2

∂y1

)2

+

(
∂Y2

∂x1

)2

+

(
∂Y2

∂y1

)2

(5)

N21 =

√(
∂x1

∂X2

)2

+

(
∂x1

∂Y2

)2

+

(
∂y1

∂X2

)2

+

(
∂y1

∂Y2

)2

(6)

=
N12

|∆12|
(7)

the Squashing degree, Q, for this field line is given by:

Q ≡ Q12 =
N2

12

|Bz,1(x1, y1)/BZ,2(X2,Y2)|
(8)

≡ Q21 =
N2

21

|BZ,2(X2,Y2)/Bz,1(x1, y1)|
(9)

while in theory Q12 is equal to Q21 it may not be the case nu-
merically. In addition of the errors related to the computation of
the Jacobian matrix at each footpoint explained previously, field
line integration errors will also introduce variations. Indeed for a
magnetic field represented in a discrete mesh, integration errors
of the field lines would lead to finite errors on the location of

the footpoints of the field lines. Since QSLs are both associated
to large Q values and large Q gradients, except just in the thin
central part (as in Fig. 1, right panel), a small spatial shift in the
integration of a field line can shift significantly the value of Q.
Therefore, it is more precise to numerically evaluate Q at the lo-
cation where it is needed rather than transferring Q along field
lines.

3. Squashing degree estimation within a 3D domain

Let us now focus on the way to compute Q in the volume of the
studied domain V . The boundaries P1 and P2 stays fixed and the
aim is to determine the value of Q associated to an arbitrary point
rc of V . We define a plane Pc represented by a cartesian referen-
tial such as rc has the coordinates (xc, yc). The plane Pc can be
defined in the neighborhood of rc, Pc(rc), implying than its ori-
entation could depend on rc (for example by taking P′c(rc) per-
pendicular to the local magnetic field, see the end of Sect. 3.4).
In this case, the local plane Pc(rc) can be different for different
rc positions. However, for many applications, it may be more
suited to consider an unique plane Pc, e.g. the large scale 2D cut
on which Q is to be represented. We follow this latter assumption
in the present paper as it simplifies the description and permits
to focus more on the key-points of Q computations.

In order to determine the value of Q at rc, one first needs to
determine the location of the two footpoints of the field line pass-
ing by rc. The field integration is assumed to retain the direction
of the magnetic field and thus the footpoints are supposed to be
properly computed (to the numerical precision) to their respec-
tive plane, e.g. positive on P1 and negative on P2. As Q is con-
stant for all the points of a given field line, it should be possible
to compute Q at any point of the field line. If Q is know analyti-
cally at a given point and the connectivity can be computed, it is
easy to derive Q at rc. This is what is used in Wilmot-Smith et al.
(2009). However for non analytical fields the computation is not
as straightforward and several methods can be possibly used to
derive Q(rc).

3.1. Pseudo-method 1

For didactic purpose, we first analyze an example of a method,
which could appear intuitive, but which is incorrectly computing
the partial derivatives of the connectivity matrices. This illus-
trates how tricky can be the computation of Q, and the cautions
that must be taken.

When one compute a Q map in a 2D cut of V , as field lines
are computed at every mesh point of this map, it is tempting to
directly use the position of the computed field lines on the al-
ready defined grid and directly use Eqs. (1) and (2) to derive D12
or D21 from the position of the footpoints on P1 and P2 only.
This intuitive methodology implies to first compute field lines
from two directions on Pc around the point of interest rc as illus-
trated in Fig. 2. Four field lines are plotted from Pc distant from
a fixed position δ centered on rc (δ being the distance between
field lines position on each side of rc). One obtain the difference
of position of the footpoints of these field lines, dx1, dy1, dX2 and
dY2 on P1 and P2. These distances provides and information on
how the flux tube is squashed. If one focus on the footpoint r1,
Q12 can eventually be approximated with:

Qm1 =

(
dX2
dx1

)2
+

(
dX2
dy1

)2
+

(
dY2
dx1

)2
+

(
dY2
dy1

)2

|Bz,1(x1, y1)/BZ,2(X2,Y2)|
(10)
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Fig. 3. Cartoon illustrating the second method to compute Q at rc.

at first sight, this estimation can look coherent since it converges
to the typical formula to compute Q when Pc converges to P1
(dx1 and dy1 being computed in orthogonal directions). An equiv-
alent relation can be obtained from the footpoint r2. The results
are illustrated in the upper left panel of Fig. 5. One observes val-
ues of Q which are smaller than 2 while Q is theoretically greater
than 2 (Titov et al. 2002).

However, since one does not control the direction and dis-
tance of the location on P1 (field lines are computed from Pc),
the Jacobian matrix D12 is not properly estimated. Starting the
field line integration from two orthogonal directions on Pc, does
not generally implies that the corresponding footpoints on P1
and P2 will form an orthogonal system. Indeed, in a QSL,
a square on Pc is deformed to possibly very elongated non-
orthogonal quadrangles on P1 and P2. At best, only one of the
quadrangle diagonals can be oriented along one of the axes of a
local system of coordinates, while the other diagonal will always
be tilted with respect to the second coordinate axis. The non-
orthogonal diagonals of the quadrangle, or their projection to the
appropriate axis, are not proper jacobian elements, because each
differential of independent variables (e.g. dx1 or dy1) of partial
derivatives must be taken at a constant value of the other vari-
able (y1 or x1, respectively). As the mapping of the field line
integration grid is strongly distorted in a QSL, this leads to im-
portant errors on the computation of Q.

Finally if one compute field lines closer and closer from rc,
using smaller and smaller values of δ, we do not necessarily con-
verge on a more precise value of Q. Indeed the ratios, such as
dX2/dx1, are not necessarily more precisely estimated and the
above problem, of non orthogonal derivative directions, remains.
The estimation of the Jacobian does not converge with a smaller
mesh size on Pc under the approximation done.

The overall issues related to this method are related to the
fact that one tries to compute D12 (and D21) using Eq. (1) (resp.
Eq. (2)) from a grid defined on Pc while Eq. (1) is meant to be
properly evaluated from a neighborhood of r1 (resp. r2).

3.2. Method 2

A more suitable method consists in first integrate the field line
passing through Pc, then choose one of its footpoint, and com-
pute Q using Eq. (8) or (9) from a set of field lines originating
from a neighborhood of this footpoint. The derived value of Q is
then attributed to rc as Q is invariant along a field line. Figure 3
illustrates this method using the footpoint on P1. The Jacobian
matrix D12 is evaluated from a set of field lines integrated from a
distance δ along two orthogonal directions, in the plane P1. The

Fig. 4. Cartoon illustrating the third and most proper method to compute
Q at rc.

components of the field lines footpoint distance on P2, as shown
in Fig. 3, dX2x1, dY2x1, dX2y1 and dY2y1, are used to derive Q in
Eq. (8) approximated such as:

Qm2 =
(dX2x1)2 + (dX2y1)2 + (dY2x1)2 + (dY2y1)2

δ2 |Bz,1(x1, y1)/BZ,2(X2,Y2)|
· (11)

In this method, as Q is not directly computed in rc, field line
integration errors may lead to some miss-location of the actual
values of Q. This will tend to broaden the width of the QSL in
region where QSL are particularly thin, i.e. Q is especially large.
This is illustrated in Fig. 5, lower panels where Q is estimated
from each footpoint in the two panels. Compared to the correct
value of Q (upper right panel, cf. following section), Q presents
a broader structure at the highest values of Q.

One also note some differences between the computation
done from each footpoint. This asymmetry also results from field
integration differences between footpoints. Our field integration
is based on the D02CJF routine of the NAG library for which we
have used a value of TOL equal to 10−8. It means that the loca-
tion of the footpoints are known to better than the 8th decimal
when computing field line from one footpoint to the other (this
can be checked by computing the field line back to the initial
footpoint). Our field line computation is therefore particularly
robust. However, as in the core of the QSL field lines diverge
particularly strongly, even small integration errors leads to dif-
ferences when computing Q from one footpoint or the other.

Another issue with this method is that the precision depends
on δ evaluated on P1 (or P2) and not on Pc. It is not directly
possible to converge on rc, to use a more precise grid over Pc.

3.3. Method 3

In order to properly compute Q at rc, we will use field lines
computed from Pc in a local neighborhood of rc. But instead of
directly trying to evaluate Eqs. (8, 9), we will derive the expres-
sion of Q using the Jacobian matrices derived from the mapping
of the field from Pc to P1 and P2. We can now consider the map-
pings from rc to the corresponding footpoint of the field line:
Πc1 rc 7→ r1; Πc2 rc 7→ r2 and the inverse mapping Π1c & Π2c
from P1 & P2 to Pc: Π1c r1 7→ rc ; Π2c r2 7→ rc (see Fig. 4).

By composition of the function we have: Π12 = Πc2 ◦ Π1c,
hence the Jacobian matrix D12 can be expressed relatively to the
Jacobian matrix D1c and D2c:

D12 = Dc2 D1c. (12)
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Fig. 5. Distribution of Log10 Q in the plane y = 0 for the TD model
using the different methods computed with 5122 points. Upper left:
pseudo-method 1. Upper right: method 3 (proper method). Lower left:
method 2 computed from the first footpoints. Lower left: method 2 com-
puted from the second footpoints. A color version is available online.

The jacobian matrix D1c is equal to:

D1c =

(
∂xc/∂x1 ∂xc/∂y1
∂yc/∂x1 ∂yc/∂y1

)
(13)

with (xc, yc) the cartesian coordinates of rc in Pc. As one start
computing field lines from the plane Pc this quantity can be dif-
ficult to evaluate. It is more precise to use the Jacobian matrix
Dc1. As Π1c = (Πc1)−1 on have:

D1c = D−1
c1 =

1
∆c1

(
∂y1/∂yc −∂x1/∂yc
−∂y1/∂xc ∂x1/∂xc

)
(14)

with ∆c1 the determinant of the matrix Dc1, which is such as

|∆c1| =
|Bn,c(xc, yc)|
|Bz,1(x1, y1)|

(15)

with Bn,c(xc, yc) the value of the magnetic field component nor-
mal to Pc at rc.

Hence, on can derive a form for the Jacobian matrix D12
which only depends on derivative taken along the plane Pc:

D12 = D∗/∆c1 (16)

with

D∗ =


(
∂X2
∂xc

∂y1
∂yc
−

∂X2
∂yc

∂y1
∂xc

) (
∂X2
∂yc

∂x1
∂xc
−

∂X2
∂xc

∂x1
∂yc

)
(
∂Y2
∂xc

∂y1
∂yc
−

∂Y2
∂yc

∂y1
∂xc

) (
∂Y2
∂yc

∂x1
∂xc
−

∂Y2
∂xc

∂x1
∂yc

)
 . (17)

The norm N12 is thus given by:

N12 =
1
|∆c1|

√∑
i j

(
D∗i j

)2
(18)

with D∗i j the elements of D∗. The squashing degree is thus:

Q =
N2

12

|∆12|
=

∑
i j

(
D∗i j

)2

|∆2
c1||∆12|

(19)

=
|Bz,1(x1, y1) BZ,2(X2,Y2)|

|Bn,c(xc, yc)|2
∑

i j

(
D∗i j

)2
. (20)

One verify that if one consider that the plane Pc is equal to the
plane P1 (resp. P2) then Eq. (16) consistently gives Eq. (1) (resp.
D12 = D−1

21 computed by Eq. (2)) and the classical values of
N and Q are found. Titov (2007) has derived a covariant form
of Q for any shapes of boundaries and/or coordinate systems.
The present equations can similarly be generalized following the
concepts presented in that paper.

Practically, to estimate Q from Eq. (19) one needs to com-
pute the footpoints on P1 and P2 from a set of field lines inte-
grated from a distance δ along two orthogonal directions in Pc
around rc. The components of the field lines footpoint distance
on P1 (resp. P2) are as shown in Fig. 4: dX1xc , dY1xc , dX1yc and
dY1yc (resp. dX2xc , dY2xc , dX2yc and dY2yc ). They are used to derive
the norm of the jacobian N12 in Eq. (18), then Q in Eq. (20) is
approximated such as:

Qm3 = ((dX2xc dy1yc − dX2yc dy1xc )
2

+(dX2yc dx1xc − dX2xc dx1yc )
2

+(dY2xc dy1yc − dY2yc dy1xc )
2

+(dY2yc dx1xc − dY2xc dx1yc )
2) f (21)

with

f =
|Bz,1(x1, y1) BZ,2(X2,Y2)|
|Bn,c(xc, yc)|2 δ4 (22)

for the TD model the result of the estimation of Eq. (21) is dis-
played in the upper right panel of Fig. 5. Method 3 corrects
the problems encountered previously with method 2 (broadening
and asymmetry of the Q distribution). The hyperbolic flux tube
(HFT, region of highest Q values Titov et al. 2002) is clearly
identified (especially with the color version of the figure where
the dynamic of the plot is larger). Figure 6 presents two other ex-
amples of 2D Q maps obtained in 2 distinct plane of the 3D stud-
ied domain. The location and shape of the HFT is also clearly
shown in these 2D cuts.

It is also straightforward to obtain a precise computation of
Q over Pc by using smaller and smaller values of δ. This iter-
ation with smaller δ values is very important since the numeri-
cal grid used to compute Q needs to resolve its sharp variations
and δ should be adapted to the local mapping gradient. This im-
plies that the final δ used is a sharp function of the position: δ
should be smaller where Q is larger (e.g. the QSL thickness was
found to scale approximately as 1/N in various magnetic con-
figurations, Démoulin et al. 1996a,b). Equation (21) and the cor-
responding methodology as been used in previously published
papers (Aulanier et al. 2005, 2006; Pariat et al. 2006; Masson
et al. 2011) but with only a very short summary of the procedure
and no comparison with other methods.

3.4. Comparison of method 3 with a previous procedure

Recently, Savcheva et al. (2012a) presented a original method to
derive Q in cross-section of the 3D domain which presents sim-
ilarities to method 3. Instead of determining D∗, as performed
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Fig. 6. Distribution of Log10 Q in the planes x = 0 (top panel) z = 0.229
(bottom panel) and for the TD model, with the photospheric plane z = 0
being the reference boundary for the computation. A color version is
available online.

here, they directly compute Dc2 and Dc1 (using the formulation
introduced in this study). They first consider six points at a dis-
tance δ around rc, two along each cartesian direction, and they
compute their footpoints on P1 and P2. The position differences
of the points are projected on a plane, here called P′c(rc), taken
locally perpendicular to the field line passing by rc (this orthogo-
nal condition was implicitly used in Savcheva et al. 2012a; while
not described, Savcheva, priv. comm.). The use of 6 points en-
sures that at least 4 of the projected points are significantly dif-
ferent. The distances of the six projected points are then related
to the relative positions of the six footpoints on the plane P1 (and
P2). A least square fit of these relationships with a matrix hav-
ing constant coefficients provides Dc1 (resp. Dc2). D1c is then
inverted as in Eq. (14). The squashing degree is then determined
with Eqs. (5, 8). The use of 6 points, while overdetermining the
system to be solved, allow to estimate the precision of the matrix
coefficients.

However, let us note that the field lines passing by the six
original points (outside P′c) are not exactly the same as the field
lines passing by the projections of these points on P′c. Therefore
the matrices which are computed are not strictly the ones which
correspond to the Jacobian matrices of the mapping from P′c to
P1 and P2. As P′c is locally orthogonal to the field in rc, the
difference is relatively small. It can nonetheless be significant
in region of high Q, i.e. where the connectivity change signifi-
cantly. A possible way to improve this would be to recompute
the location of the field line footpoints for the points projected
on Pc. Since in Savcheva et al. (2012a) no convergence is per-
formed around rc, their method is in any case limited in its ability
to compute high value of Q. They indeed limit the value of the
computed Q to 100. The above effect of projection is thus likely
to be insignificant in their study.

Our previous derivation of Sect. 3.3 does not apply for the
particular points where the field lines are tangent to the plane
Pc. Indeed when a field line is strictly tangent to the plane of

cut, the mapping cannot be determined. Practically, on discrete
mesh, this is an extremely seldom situation. However, there are
still some cases where the magnetic field is nearly parallel to
Pc. In such cases, the computation of Q can be less accurate.
Savcheva et al. (2012a) solved this problem by computing Q
on the plane P′c(rc) locally perpendicular to the magnetic field
(Savcheva, priv. comm.).

Method 3 can be modified by using a similar local plane,
P′c(rc). This suppress the problem of field lines tangent to Pc.
The neighboring points being defined after P′c, this allows to
avoid the need to introduce points outside P′c, and the effect of
projection on P′c (as in Savcheva et al. 2012a). This procedure
break down only in the close vicinity of a magnetic null point
where the computation of Q is already not possible (since it di-
verges to infinity). Thus, the use of a local plane P′c to com-
pute Q at any point rc, permits to have 2D cuts (not limited to
a plane) as well as 3D computations of Q within the volume V .
Still, in many applications, it will be sufficient, and indeed rec-
ommended, to select first the plane Pc crossing the QSL in order
to better compare the Q distribution to plasma parameters (e.g.
electric currents, plasma density).

4. Application to an observed configuration

The TD model is an ideal magnetic configuration with a smooth
magnetic field and only one QSL. In solar applications, the
number of photospheric magnetic and electric current polarities
implies a much more complex coronal magnetic field even in
force-free extrapolations. Such complexity can also be present
in MHD simulations. We present below an example of such
complex field which enhance the differences between method 2
and 3.

We have performed a QSL computation on a non-linear
force-free (NLFFF) reconstruction of an observed sigmoid (see
McKenzie & Canfield 2008; Savcheva & van Ballegooijen 2009;
Savcheva et al. 2012a, for more detailed information about the
observational properties of this region). A flux rope insertion
method (van Ballegooijen 2004) has been used to obtain the 3D
magnetic structure of this region (this is explained in details in
Savcheva et al. 2012a). The time of the model, 06:41 UT on
February 12th 2007, precedes a solar eruption by about one hour.
Unlike the TD configuration, the NLFFF model presents a high
degree of complexity. The NLFFF model is indeed based on an
observed magnetogram in which the field has various structures
in a broad range of spatial scales (cf. Figs. 1 and 2 of Savcheva
et al. 2012a). Numerous very thin QSLs are therefore present in
the domain (Savcheva et al. 2012a, Sect. 5).

Figure 7 displays a vertical 2D cut in the middle of the in-
serted flux rope, roughly perpendicular to its axis. While in the
case of the TD model differences between method 2 and 3 were
relatively small (Fig. 5), and mostly located at the HFT, we re-
mark here multiple differences. The method 2 is strongly af-
fected by the complexity of the magnetic field and it tends to
broaden significantly the QSLs. These errors will significantly
affect the precise comparison between the location and width of
the QSLs with other quantities (e.g. current densities).

Moreover, with the method 2, we also note a spotted distri-
bution of Q while the distribution is smooth with the method 3
(Fig. 7). This is present at many locations within QSLs, and it
is better seen in the upper left part of the Q distribution (around
xc = v ≈ −20, yc = z ≈ 40, and better seen on a zoom of the
color representation of Q). This is another effect of the errors
due to the transport of Q values along field lines. This effect is
stronger as the magnetic field is spatially more complex.
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Fig. 7. Distribution of Log10 Q in a vertical cut in the center of a NLFFF
reconstruction of a sigmoid region observed on February 12th 2007 at
06:41 UT. Left: method 2 computed from the positive footpoints. Right:
method 3 (proper method). A color version is available online.

One also observed relatively important differences in the
highest values of Q obtained in the QSLs between method 2 and
3 (Fig. 7). As noted in Fig. 8 of Savcheva et al. (2012a), an HFT
is present in the domain. This region should have the highest
value of Q. However similarly to the TD case, the method 2 also
failed at attributing the correct values at the HFT. This is because
the convergence steps needed to properly resolve the connectiv-
ity gradients is not consistently done with the method 2. With
the method 3, the HFT is directly identified and Q reaches value
of the order of 1022 there.

Finally, let us note that the cut presented here was done in
the vicinity of the cut presented in Fig. 7 of Savcheva et al.
(2012a). In the latter, the absence of convergence, the rela-
tively low resolution and the maximum thresholding value of
100 for Q do not allow an in-depth and quantitative study of the
QSLs, even though similar structures are globally recognizable.
A more detailed study of the magnetic topology of Savcheva
et al. (2012a), in comparison with the TD model and the evo-
lution of an MHD numerical simulation (Aulanier et al. 2010),
using the method 3 presented here, will be presented in a forth-
coming paper (Savcheva et al. 2012b).

5. Conclusion

In the present study we have analyzed some issues related to the
computation of the squashing degree Q inside a 3D domain. We
have analyzed three methods.

The first one is only a pseudo-method explicitly shown as
an example of the possible tricks encountered when computing
Q. Indeed, because such computation involves a combination of
field line mapping, partial derivatives, and a broad range of spa-
tial scales (with much smaller scales than for the magnetic field),
the computation of Q is not straightforward. This is especially
true for QSLs (i.e. where Q is large) since a tiny mesh size is
required there to resolve the huge spatial gradients of the field
line mapping.

The second method is an application of the original Q com-
putation at the domain boundaries with a transport of Q along
field lines within the domain. At a given position, it provides
two values of Q: one transported from each magnetic polarity of
the boundary.

The third method is designed to avoid the limits of the sec-
ond method, in particular to avoid the errors associated to the
mapping of the boundary Q distribution within the domain.
For any point inside the domain, located at rc, the mapping is
computed towards the boundaries in both directions along field

lines. We have derived an analytical expression for Q, Eq. (19),
which needs to be substituted to the initial definition of Eq. (8).
Numerically, the partial derivatives of both mappings are com-
puted by finite differences with four points located in a plane in
the close vicinity of rc. Since the spatial scales involved in the
mapping gradients can change by many orders of magnitude de-
pending on the position of rc, a local convergence is needed to
find a grid finely adapted to resolve the gradients. Method 3 is
indeed designed to more efficiently incorporate this convergence
than method 2. Thus, with method 3, it becomes straightforward
to represent the distribution of Q in a 3D domain and in particu-
lar on planar cuts through the domain.

We have illustrated our approach with two examples. The
first one is a Titov & Démoulin (TD 1999) configuration which
has a flux rope in equilibrium within an active-region like mag-
netic field. It has a smooth magnetic field with a main QSL.
Figures 5, 6 presents examples of 2D Q maps obtained in dis-
tinct planes of the 3D studied domain. The location and shape
of the HFT is clearly shown in this particular configuration. The
second example is derived for the modeled magnetic configu-
ration of an observed sigmoidal region (Savcheva et al. 2012a).
Since the observed magnetogram has many polarities of vari-
ous sizes, the computed coronal field has much more structures
than in the TD configuration. Accordingly, the QSL pattern is
complex (Fig. 7). It also contains an HFT, similarly to the TD
configuration.

The method 2 permits a relatively precise computation of Q,
when a convergence to small scales is implemented, and allows
to determine large Q values (e.g. compare our Fig. 7 to Fig. 8 of
Savcheva et al. 2012a). Differences are nonetheless present even
in a smooth analytical model: artificial broadenings of the QSL;
unequal results depending on the footpoint used to compute Q
(Fig. 5). Method 3 corrects the defaults detected in method 2 by
computing Q where it is needed, both avoiding errors in the Q
transport along field lines and permitting a proper convergence
to small scales. The improvements are already visible for the TD
model (Fig. 5), and more evidently for a complex solar magnetic
field (Fig. 7). We conclude that method 3 provides a useful prac-
tical tool to compute and represent QSLs in numerical domains
issued from analytical, numerical or observation data set. The
results presented above, with Q computed on 2D planar cuts of
a 3D domain, will be useful to precisely compare Q distribution
to the distributions of other quantities (e.g. electric current den-
sity, plasma flows) and to investigate the role of QSLs in solar
physics.
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