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IoT topic constitutes the center of interest of both academic and industrial sectors [START_REF] Mekki | A comparative study of LPWAN technologies for large-scale IoT deployment[END_REF]. Given that the number of connected devices is in constant increase, the design of the network carrying such IoT connections should be re-considered in order to support such a massive connectivity. In [START_REF] Durisi | Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets[END_REF], the authors defined some theoretical principles that govern the optimization of the transmission of control information in short packets. In an ALOHA protocol, the receiver has no information about the time of arrival of the frame. Moreover, low-cost sensor transceivers impose uncertainty on the modulation frequency. Thus, the frame is affected by a frequency offset. The problem of detection of a frame at low Signal to Noise Ratio (SNR) recently received more attention. In [START_REF] Polyanskiy | Asynchronous Communication: Exact Synchronization, Universality, and Dispersion[END_REF], Polyanskiy showed that asynchronism, even with short packets, does not affect the capacity of the channel: it means that classical methods that use coordination for synchronization and collision avoiding are far from the optimum, since the energy used for coordination is lost.

Moreover, the classical frame structure shown in Fig. 1 is also suboptimal since the header does not carry any information. It could be advantageously replaced by interweaved header-dataredundant bits frame structure. In [START_REF] Bana | Short Packet Structure for Ultra-Reliable Machine-Type Communication: Tradeoff between Detection and Decoding[END_REF], the authors study the trade-off between the energy spent for detection and for decoding using the superposition between the message and the preamble.

In [START_REF] Miyashiro | Improved Multiplierless Architecture for Header Detection in DVB-S2 Standard[END_REF], the structure of the Hadamard code of the Physical Layer Signaling item of a DVB-S2 (satellite TV broadcast standard) frame is used to help the detection of a new start of frame. Fig. 1: Classical vs Preamble-less proposed approach model for transmitting a frame.

In this paper, the authors propose to use the modulation presented in [START_REF] Abassi | Non-Binary Low-Density Parity-Check coded Cyclic Code-Shift Keying[END_REF] to transmit short packet without any additional symbol dedicated to detection and synchronization. This "Preamble-less frame" is hereby referred to as Quasi-Cyclic Short Packet (QCSP) frame. It is based on the use of Cyclic Code Shift Keying (CCSK) modulation scheme [START_REF] Wong | Code-phase-shift keying: a power and bandwidth efficient spread spectrum signaling technique for wireless local area network applications[END_REF] [START_REF] Dillard | Cyclic code shift keying: a low probability of intercept communication technique[END_REF] characterized by inherent correlation property that will help the frame detection and synchronization at the receiver side.

To the best of the authors' knowledge, this is the first paper that addresses the detection of short packets without relying on dedicated preamble symbols. This novel approach, that permits to save transmission power and to reduce the channel uses in a packet transmission, will contribute efficiently in the development of the future IoT networks. The key idea is to consider the whole frame composed of only payload symbols as preamble for detection and timing synchronization.

This idea is performed thanks to the cyclic property of the CCSK modulation that allows the design of efficient detection and synchronization algorithms based on the correlation of the received frame with the cyclically shifted versions of a predefined pseudo random sequence. In addition, this CCSK modulation is jointly designed with powerful Non-Binary (NB) forward error correction codes defined over Galois Field GF(q), where q > 2, such as NB-Low Density Parity Check (NB-LDPC) Codes [START_REF] Voicila | Low-complexity decoding for non-binary LDPC codes in high order fields[END_REF], NB-Turbo [START_REF] Liva | Short Turbo Codes over High Order Fields[END_REF] [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF], NB Turbo Product Codes [START_REF] Zhou | Low-Complexity High-Rate Reed-Solomon Block Turbo Codes[END_REF], and NB-Polar codes [START_REF] Mori | Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes[END_REF]. These non-binary codes offer a capability of error correction, thereby enabling a coding gain that allows the transmission at low power. This family of error correction codes has received the attention of considerable number of researchers in the digital communication community because of its good performance with short packet size and/or the high order modulation compatibility [START_REF] Davey | Low-density parity check codes over GF(q)[END_REF]. These codes benefit from better error-correcting performance than their binary counterpart due to their non-binary nature codes that directly mapped on high order modulation avoiding binary marginalization [START_REF] Pfletschinger | Getting Closer to MIMO Capacity with Non-Binary Codes and Spatial Multiplexing[END_REF]. This approach aims to associate the Direct-Sequence Spread-Spectrum (DSSS) technique using CCSK modulation with high-performance and energy-efficient low-rate channel coding techniques, based on advanced NB error correcting codes [START_REF] Abassi | Non-binary coded CCSK and Frequency-Domain Equalization with simplified LLR generation[END_REF].

The main contribution of this paper is the proposition of a practical detection algorithm of QCSP frame in the Additive White Gaussian Noise (AWGN) channel that does not require a priori knowledge on the time of arrival and on the frequency offset. Using the tools of detection theory, the paper derives the mathematical equations to express the probability of miss-detection and the probability of false alarm according to the QCSP structure and the channel conditions. The detection performance of the proposed system is assessed according to the different parameters being described. In addition, this work gives some insights on the synchronization approach and the joint transmission performance (detection and correction probabilities) that could be obtained with QCSP frame.

The rest of the paper is organized as follows. Section II introduces the system model and the detection problem. Section III describes in detail the detection method and the main metric, called score function. Sections IV gives the theoretical model of the proposed algorithm where the expressions of the correlation functions and Probability Density Functions (PDF) are derived.

In section V, the theoretical model is validated through a comparative study with experimental results obtained with Monte-Carlo simulations over complex AWGN channel, and the effect of different parameters that affect the CCSK-based system is discussed. Then, a detection-correction approachis analyzed using detection performance obtained and the estimated Shannon limit for small packet size done by Polyanskiy [START_REF] Polyanskiy | Channel Coding Rate in the Finite Blocklength Regime[END_REF]. A practical example is also given where the NB-LDPC is used as a decoder in the QCSP system. Finally, Section VI concludes the paper. Table I gives the list of operations and acronyms considered throughout the paper. NOTE: The bold case is used for vectors in the sequel.
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II. SYSTEM MODEL

In this section, we present the principle of a CCSK modulation in the context of its association with Non-Binary codes and the system model being considered. Then, we present the effect of the channel at the receiver side when no time and frequency information is available. Finally, we define the detection problem based on signal detection theory.

A. Association of CCSK and Non Binary Codes

Consider a NB code defined over GF(q), q = 2 p , with K symbols of information and a total length N . The code rate of the code is thus R c = K/N and a codeword contains Kp bits of information. Let P (X) be an irreducible polynomial of degree p over GF [START_REF] Durisi | Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets[END_REF], then by defining GF(q) as Z q (X)/P (X), it is possible to represent any element s of GF(q) as a binary vector

B(s) = (b p-1 , . . . , b 1 , b 0 ) where s = b 0 + b 1 X + . . . + b p-1 X p-1 .
Replacing X by 2 in this expression makes a bijection between GF(q) and Z q . In the sequel, an element of Z q refers implicitly to an element of GF(q) thanks to this bijection. Note other bijections can be used to map GF(q) to Z q .

As shown in Fig 2, the input of the NB-code is a binary message M of size m = K × p information bits, equivalently K Z q symobls. The encoder generates a codeword C of N GF(q) symbols. Using the bijection between GF(q) and Z q , the codeword C is represented as

C = [c 0 , c 1 , . . . , c N -1 ], with c k ∈ Z q , k = 0, 1, . . . , N -1. (1) 
For the goal of DSSS technique, the CCSK modulation uses a pseudo-random binary sequence P 0 = {P 0 (i)} i=0,1,...,q-1 of length q, where P 0 (i) ∈ {0, 1}, with good auto-correlation properties.

The CCSK modulation maps an element s of Z q (which is implicitly an element of GF(q)) to the sequence P s defined as the circular right shift of P 0 by s positions: The CCSK modulation rate can be defined as R m = p/q, and the Spectral efficiency S e (i.e. the number of information bit sent by channel use) is given by S e = R c ×R m = (K ×p)/(N ×q). An example of a mapping is considered in Table II on each of the c k encoded symbols, such that P c k is the circularly right shifted sequence of P 0 by c k positions which corresponds to the GF(q) symbol c k , i.e. the element of Z q . So the CCSK frame F CCSK is defined as the concatenation of N CCSK symbols:

P s = {P 0 (i -s mod q)} i=0,1,...,q-1 . (2) 
F CCSK = [P c 0 , P c 1 , . . . , P c N -1 ] = N -1 k=0 P c k , (3) 
where represents the concatenation operation. Before transmission, the generated frame F is composed of N × q BPSK symbols, which is then shaped by a half raised cosine filter with oversampling factor O (typically between 4 and 8).

From the CCSK and NB-Code association, the demapping (i.e., demodulation) process is particularly simple [START_REF] Abassi | Non-Binary Low-Density Parity-Check coded Cyclic Code-Shift Keying[END_REF]. The input of a NB decoder can be given as the vector of log-likelihood values L = {L(s) log(P(P s |Y )) } s=0,1,...,q-1 , where Y is a block of length q of the received message y that passes through Gaussian channel, and P is the probability that the transmitted sequence is P s given that the received block message Y . For a given element s ∈ GF(q), L(s) can be expressed as the correlation between the received block message Y and expected message

P s , L(s) ∼ = Y , P s : L(s) ∼ = q-1 i=0 Y * (i)P s (i) = q-1 i=0 Y * (i)P 0 (i -s mod q), (4) 
for s = 0, . . . , q -1. Hence, the log-likelihood vector L is the circular correlation between the received block message Y of length q and the spreading sequence P 0 . It can be efficiently computed in the frequency domain as

L = IFFT(FFT(Y ) * FFT(P 0 )). (5) 
The value of L can then be shifted so that at least one of its element is equal to zero. It can be using L = L -L(0), or eventually, L = max(L) -L, to get only positive LLR values.

This vector, measuring the reliability of the different possible sequences, is fed directly to the NB-decoder to perform the decoding process expected to correct the errors encountered during transmission. The proposed coding scheme requires only XOR operations to generate the QCSP frame, which is particularly well-suited for very low cost IoT sensors.

To sum up, this concatenation is direct and adds no complexity to the system since the LLRs calculation at the receiver is efficiently performed by FFT and inverse FFT operations. The non-binary codes show great performance for short data packets transmission and no loss of information between the transmitter and receiver because the decoder fully benefits from the temporal diversity of CCSK sequences.

B. Channel model

In this paper, we assume a low cost sensor that sporadically transmits small messages in an ALOHA protocol, i.e., without prior time and frequency synchronization to the receiver. The message is thus transmitted in an unknown time, and affected by an unknown delay (depending on the distance between sensors and receiver) and an unknown (but limited) frequency offset.

It is thus convenient to express the time of arrival of the frame in the local time domain of the receiver.

Let T c and T (in second) be the duration of a chip and a CCSK symbol respectively, such that T = q × T c . The receiver will oversample the incoming signal with O samples per chip. In other words, the clock frequency F e of the receiver Analog Digital Converter (ADC) is equal to as a real x a = t a /T c and by decomposing x a as

F e = O/
x a = k a + r a /O + a , (6) 
where k a = x a , the integer part of x a represent the time in number of chips, r a the closest index of the clock cycle within a chip (r a ∈ {0, 1, . . . , O -1}) and a is the residual timing synchronization error (with a ∈ [-1 2O , 1 2O ]). In the sequel, it is considered that the oversampling factor is high enough so a is negligible and can be considered equal to 0. Moreover, we will also assume that by testing in parallel all the O hypothesis of the r a value, we can always manage to set r a equals to 0. In summary, the frame will be received at chip index k a and affected by frequency offset f o .

C. Time and Frequency decomposition

The blind detection algorithm splits the time and frequency domain into a regular grid composed of bins, each bin defined by a time span and a frequency span of size T b and F b , respectively. Thus, each bin corresponds to an arrival hypothesis of the frame with a coarse time and frequency precision. The detection method is used in each bin to assess (hypothesis H1) or not (hypothesis H0) the arrival of a frame within the bin. Let be the number of chips inside the duration T b , thus T b = T c . We will assume the frequency offset f o varies between 0 and F max , thus the number of frequency bins is equal to N F = 2Fmax F b . Note that qT c F b = 1 means that the effect of frequency offset is equivalent to apply a single rotation between first chip of a CCSK symbol and first chip of the next CCSK symbol. It is thus convenient to replace f o by ω o = 2πf o T c q to directly translate the impact of frequency offset in a rotation effect on each CCSK symbol.

Every chips ( ≤ q typically), the last N × q received chips are extracted to form the vector y γ = (y(γ + i)) i=0,1,...,N ×q-1 (γ is thus a time index). Then, at the entry of the ρ th frequency detector, y γ,ρ = y γ E ρ , where E ρ = (e -jρω b n/q ) n=0,1,...,N -1 is computed in order to compensate the frequency offset before entering the detector, with ω b = 2πF b T c q.

Let us consider a frame arriving at chip index k a with a frequency offset f o . By decomposing

k a as k a = γ a + ∆, with -/2 < ∆ ≤ /2 and f o as f o = ρ a F b + f o , with -F b /2 < f o ≤ F b /2,
we can deduce that the frame will be optimally detectable in the bin (γ a , ρ a ) since in this bin, the locally time offset and frequency offset is minimized.

Note that several bins can be activated in case of an effective frame arrival. In that case, the precise determination of the actual bin and the fine time and frequency inside the bin should be processed. Those steps, called synchronization, are not described in this paper, and assumed that they can be optimally performed.

To alleviate notation, the frame y γ,ρ processed at bin (γ a , ρ a ) will be denoted as y defined as

y(n) = e j(ωon/q+ϕ) F (n -∆) + z(n), (7) 
where z(n) are independent realizations of a complex Gaussian noise CN (0, σ 2 ) of zero mean and variance σ 2 , ϕ is initial phase offset, with ∆ ∈ {-/2, . . . , /2} and

ω 0 ∈ [-ω b /2, ω b /2].
The frame F (i) is assumed to be zero when i < 0 and i ≥ N q. Without loss of generality, ∆ will be assumed positive, i.e., ∆ ∈ {0, 1, . . . , /2}.

In case of reception of a frame in the optimal bin (hypothesis H1), the base band transmission model is thus a function of 3 parameters: the time offset ∆, the frequency offset ω o and the standard deviation σ of the AWGN.

In case of no reception (Hypothesis H0), the base band transmission model is simply

y(n) = z(n). (8) 

D. Detection problem

The detection problem studied in the paper is how to decide, based on the observation of N × q received samples y = y(n) n=0,1,...,N ×q-1 , which hypothesis is achieved.

The problem is to develop a reliable score function (or match filter) S(y) that takes high values when H1 is fulfilled, and low values when H0 is true. Then, for a given observation, it is possible to take a decision by comparing S(y) to a threshold U 0 in order to decide whether a new frame is present (H1) or not (H0). Let us recall some basic notions in detection theory that will be helpful for the derivation of the theoretical model. In detection theory, the detector can give one of the four different cases:

• Miss Detection: P md = P(S(y) < U 0 | H1) takes an erroneous decision by signaling the absence of any frame while a frame in fact exists.

• Correct detection: P(S(y) ≥ U 0 | H1) correctly detects an existing frame (the probability of correct detection is equal to 1 -P md ).

• False alarm: P fa = P(S(y) ≥ U 0 | H0) takes an erroneous decision by signaling the existence of a frame while a frame in fact does not exist.

• Correct Absence: P(S(y) < U 0 | H0) correctly indicates the absence of a frame (the probability of correct absence is equal to 1 -P fa ).

Based on this definition, we obtain:

P fa = +∞ U 0 f H0 (x)dx, P md = U 0 -∞ f H1 (x)dx, (9) 
where f H0 and f H1 are the probability density functions of the random variable S(y) given that H0 is true, H1 is true, respectively. Note that when only part of a frame is inside the detector filter, the output S(y) may become greater than U 0 , triggering potentially early or late detection.

Since S(y) is maximised under hypothesis H1, it is natural to consider only this hypothesis in the detection theory study. Note that once detected the synchronization task estimates the real time of arrival of the frame. between P fa and P md . In fact, in a perfect detector, both should be equal to zero to decide perfectly the presence or not of a new frame. In practice, high value of U 0 decreases P fa but increases P md , while low value of U 0 has the symmetrical effect. For example, at threshold value U 0 = 1200 that corresponds to P fa = 10 -4 , the probability of miss detection is approximately P md = 10 -4 . This value increases to P md = 5 × 10 -3 for U 0 corresponding to P fa = 10 -10 . The value of U 0 will be selected according to the system requirements, in the sequel P fa will be set to 10 -6 . We will try to minimize P md by proposing an efficient score function, i.e., a score function that is not computationally intensive to be calculated and allows to have low values of P md . The following sections describe first the proposed score function, then the probability density functions f H0 and f H1 are formally derived as a function of the numerous parameters of the problem: number of frame's symbols N , CCSK sequence P 0 and its length q, signal to noise ratio of the transmission (σ 2 ), time delay ∆ and the frequency offset f o .

III. DETECTION METHOD: DESCRIPTION OF SCORE FUNCTION

This section discusses in details the score function S(y), which is the detection algorithm used to detect the CCSK frame. The received data stream y is split in the filter into consecutive segments or blocks Y k , of length q chips each:

y = y(n) n=0,1,...,N ×q-1 = N -1 k=0 Y k , (10) 
where Y k = (y(n)) n=kq,...,kq+q-1 .

Thanks to FFT operations (see ( 5)), a cross correlation is performed between the current block

Y k and the reference sequence P 0 . Let ∆ ∈ [0, /2] as mentioned before, be the time shift (in number of chips) between the effective time of arrival of the frame and the receiver. q, symbols (c 0 , c 1 , c 2 , c 3 ) are associated to the four CCSK sequences (P c 0 , P c 1 , P c 2 , P c 3 ), and a distinct color is associated to each symbol. In vector Y 0 , there are q -∆ chips that are aligned with the first symbol of the received message of the frame, i.e.P c 0 , or the P 0 sequence circularly shifted by c 0 chips. Relatively to Y 0 and because of the delay ∆, the first ∆ chips are null, then the sequence starts at time c 0 + ∆ (mod q) which will be presented at the receiver as another sequence P c 0 +∆ . So q -∆ are aligned with the CCSK sequence P c 0 +∆ . Thus, the correlation vector L k (s) related to vector Y k will give for k = 0, L 0 that has a spike of height q -∆ at index c 0 + ∆ (mod q). Similarly, for vector Y 1 , there are ∆ chips that are aligned with the first symbol P c 0 with an offset of c 0 + ∆ chips (which is the sequence P c 0 +∆ ). Thus, the correlation vector L 1 will have a spike of height ∆ at index c 0 + ∆ (mod q). Moreover, Y 1 contains q -∆ chips aligned with the second symbol of the received message, which gives a spike of height q -∆ for L 1 in position c 1 + ∆ (mod q) (which is the correlation with the sequence P c 1 +∆ and so on).

So, the received block Y k will have q -∆ chips of correlation with the CCSK sequences P c k +∆ and ∆ chips with other sequence P c k-1 +∆ . Y 0 is a special case as it will have q -∆ correlation with the CCSK sequence P c 0 +∆ .

Thus, the Score function can be obtained using a detection filter S(y) of length N acting as forward accumulator:

S(y) = N -1 k=0 max(|L k |). (11) 
In the absence of noise with optimized P 0 auto-correlation properties where P s , P s << q for s = s , the filter output gives S(y) = N × (q -∆).

In order to draw benefit from the second maximum shown in Fig 3, it is possible to sum two consecutive correlation vectors before taking its maximum (SC method, for Sum of Correlation).

The score function becomes

S SC (y) = N -2 k=0 max(|L k + L k+1 |). ( 12 
)
This method is not studied in the paper due to lack of room, but it is worth mentioning that, compared to the score function S(y), S SC (y) gives a slight improvement of detection capacity when ∆ is closed to q/2, and gives a few dB penalty when ∆ is equal to 0. It is also more sensitive to a frequency offset, since the duration of coherent integration is multiplied by 2.

For a given observation received in presence of AWGN noise, the detector can take a decision whether a frame is present or not by comparing S(y) to a threshold T that is found based on the Probabilities of miss detection and false alarm as discussed in section II.

IV. THEORETICAL MODEL

In this section, we derive the formal performance model of the frame detection algorithm discussed in the previous section. This model allows to avoid costly estimation performance through Monte-Carlo simulation and gives insight to better analyze the impact of each parameter on the detection performance.

A. Correlation Expressions

Let us first express the exact expression of L k (s), see ( 4) for each value of s. Then, we derive the probability law of |L k (s)| with and without signal.

1) Definitions and notations: First, let us define the following associated operators, taking into consideration vectors g = [g 0 g 1 . . . g N -1 ], and h = [h 0 h 1 . . . h N -1 ]:

• Sectioning a vector from index p to q:

g q p = [g p g p+1 . . . g q ].

• Concatenation of two vectors g and h:

g h = [g 0 . . . g N -1 h 0 . . . h N -1 ].
• Linear Right and Left shifts of vector g by ∆ positions:

R ∆ (g) = 0 ∆-1 0 g N -∆-1 0 L ∆ (g) = g N -1 ∆ 0 ∆-1 0
, where 0 ∆-1 0 is a zero vector of length ∆.

• Hadamard product of g and h:

g h = [g 0 h 0 g 1 h 1 . . . g N -1 h N -1 ].
Based on the discussion in previous sections, y defined in ( 7) and ( 10) can be rewritten in vector-operational form as:

y = e jϕ R ∆ (F ) Φ + Z, ( 13 
)
where ϕ is the initial phase offset, R ∆ (F ) the delayed CCSK frame by ∆ chips, and Φ = {e j2πfon } 0≤n≤N q-1 a vector representing the effect of frequency offset f o . Z is the complex AWGN vector: Z = Z I + jZ Q , where Z I and Z Q follow Normal distribution N (0, σ 2 2 ). Due to the specific structure of the CCSK modulation (all the sequences are cyclically shifted versions of the reference sequence P 0 ), the delayed Frame R ∆ (F ) in ( 13) can be expressed as:

R ∆ (F ) = 0 ∆-1 0 (P c 0 ) q-∆-1 0 N -1 k=1 (P c k-1 ) q-1 q-∆ (P c k ) q-∆-1 0 . (14) 
Finally, the received vector Y 0 can be written as:

Y 0 =e jϕ R ∆ (P c 0 ) Φ q-1 0 + Z q-1 0 , (15) 
and Y k , k > 0 as:

Y k =e jϕ L q-∆ P c k-1 + R ∆ (P c k ) Φ kq+q-1 kq + Z kq+q-1 kq . ( 16 
)
2) Exact expression of L k (s): Taking into consideration the expression of Y k defined in [START_REF] Abassi | Non-binary coded CCSK and Frequency-Domain Equalization with simplified LLR generation[END_REF] and the linearity property of the scalar product, the correlation L k (s) = Y k , P s can be expressed as

L k (s) = L k (s) -+ L k (s) + + z k (s), (17) 
where

L - k (s) = e jϕ L q-∆ P c k-1 Φ kq+q-1 kq , P s = e jψ k ∆-1 n=0 P (n -c k-1 -∆)P (n -s)e j2πfon , (18) 
L + k (s) = e jψ k q-1 n=∆ P (n -c k -∆)P (n -s)e j2πfon , (19) 
and

z k (s) = Z kq+q-1 kq , P s . (20) 
The phase offset ψ k = ϕ + kq2πf o represents the sum of the initial phase shift ϕ and the contribution of the frequency offset f o on the k th received block Y k .

Let us analyze ( 17), ( 18) and ( 19) in particular useful cases.

a) When k = 0, (17) will be reduced to L 0 (s) = L + 0 (s) + z 0 (s). b) When s = c k-1 + ∆, [START_REF] Beaulieu | An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables[END_REF] gives

L - k (c k-1 + ∆) = e jψ k ∆-1 n=0 e j2πfon = e jψ - k sin (πf o ∆) sin (πf o ) , (21) 
where

ψ - k = ψ k + πf o (∆ -1). c) When s = c k + ∆, (19) gives L + k (c k + ∆) = e jψ + k sin (πf o (q -∆)) sin (πf o ) , (22) 
where ψ + k = ψ k + πf o (q + ∆ -1). d) In the particular case where c k-1 = c k = c, when s = c + ∆:

L k (c + ∆) = e j(ψ k +πfo(q-1)) sin(πf o q) sin(πf o ) + z k (s). (23) 
e) It is worth adding that when there is no phase and frequency offset (ϕ = 0 and f o = 0), then ( 21), ( 22) and ( 23) give

L - k (c k-1 + ∆) = ∆, L + k (c k + ∆) = (q -∆) and L k (c + ∆) = q + z k (s), respectively.
From the formal expression of L k (s) for any value of s, it is possible to derive the exact probability law of max (|L k |) used to compute S(y) in [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF].

Finally, according to [START_REF]Web site on Non-Binary LDPC[END_REF], z k (s) is the sum of q independent Complex Gaussian Random Variable (CGRV) CN (0, σ 2 ) multiplied by +1 or by -1. Thus, z k (s) is a realization of Complex Gaussian distribution of law CN (0, qσ 2 ).

3) Probability law of L k (s): Under the hypothesis H0 (no signal), the terms L - k and L + k of (17) are null and thus, for each s, L k (s) = z k (s) is a CGRV of law CN (0, qσ 2 ) as defined before.

Under the hypothesis H1 (signal exists), when k > 0, L k (s) = L - k (s)+L + k (s)+z k (s). The first two terms are deterministic. Their sum can be expressed in polar coordinate as L - k (s) + L + k (s) = ρ k (s)e jθ k (s) , and thus L k (s) is a CGRV of law CN (ρ k (s)e jθ k (s) , qσ 2 ). Since we are interested in the absolute value of L k (s), the phase θ k (s) has no impact. The value of ρ k (s) = |L - k (s)+L + k (s)| takes particular values for s = c k-1 and s = c k , as shown in IV-A2.

For the first symbol, when k = 0, L 0 (s) = L + 0 (s) + z 0 (s), and thus ρ 0 (s) = |L + 0 (s)|. In next subsections, the distributions of of the absolute values |L k (s)|, s = 0, 1, . . . , q -1, the absolute value of each of the CGRVs are derived.

B. Probability distributions of |L k (s)| and maximum of |L k (s)|

In this section we discuss the Probability Density Function (PDF) as well as the Cumulative Distribution Function (CDF) of |L k (s)| the absolute value of each of the CGRVs representing the elements of the correlation vector L k (s), s = 0, 1, . . . , q -1, defined in previous section.

Then we derive the PDF of the maximum value of |L k (s)| in both hypothesis H0 and H1. | is a Rician distribution with the following PDF and CDF [START_REF] Beaulieu | An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables[END_REF]:

f |L (a,b) (s)| (x) = 2x qσ 2 e (- x 2 +ρ (a,b) (s) 2 qσ 2 ) I 0 2xρ (a,b) (s) qσ 2 , F |L (a,b) (s)| (x) = 1 -Q 1 ρ (a,b) (s) σ q/2 , x σ q/2 , ( 24 
)
where x ∈ [0, +∞[, I 0 (z) is the modified Bessel function of the first kind with order zero and This hypothesis will be assumed in the rest of the paper since the sequence P 0 is carefully selected so that s = s ⇒ P s , P s q. In others words, variables z k (s) will be considered as independent to each others. denoted by F M (a,b) is defined as the product of the elementary CDFs of each element given by marginalizing F M (a,b) (x) over all possible couples, i.e., 

Q 1 is the Marcum Q-function.
F |L (a,b) (s)| , s = 0, 1, ..., q -1 F M (a,b) (x) = q-1 s=0 F |L (a,b) (s)| (x) (25 
F M k (x) = 1 q 2 (a,b) F M (a,b) (x), (26) 
F M 0 (x) = 1 q (b) q-1 s=0 F |L (b) (s)| (x). ( 27 
)
The PDF of the maximum value of the absolute correlation vector denoted by f M k can be obtained by taking the derivative of

F M k . f M k (x) = dF M k (x) dx . ( 28 
)
The detection filter described in [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF] takes the sum of N maximum values over a window of N blocks Y k . Thus the score function can be expressed as:

S = N -1 k=0 M k . ( 29 
)
In the sequel, we will assume that the M k , k = 0, 1, . . . , N -1, are independent and identically distributed random variables with common probability density function f M k . This If N is not too small, the space is explored almost randomly. Thus, the PDF of the random variable S can be defined as the convolution of f M k , k = 0, 1, . . . , N -1:

f S (x) = f M 0 (x) * f M 1 (x) * • • • * f M N -1 (x) = f M 0 (x) * f * (N -1) M k (x), (30) 
where

f N -1 M k (x) is the (N -1)-fold convolution power of f M k (x) and x ∈ [0, +∞[.
It is worth mentioning that as the number of symbols N in a packet increases, f S converges to normal distribution according to central limit theorem. Under the hypothesis H1, f S (x) will be denoted as f H1 S (x). 3) CDF and PDF of the Maximum value of |L k (s)| for H0: The distribution of L k (s) when no frame has been transmitted was given as complex GRV CN (0, qσ 2 ). In this case, the absolute value of the complex number L k (s) is a random variable following the Rayleigh distribution [START_REF] Beaulieu | An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables[END_REF], where the CDF and PDF of |L k (s)| are given in (31) for x ∈ [0, +∞[:

F |L k (s)| (x) = 1 -e (-x 2 qσ 2 ) , f |L k (s)| (x) = 2x qσ 2 e (-x 2 qσ 2 ) . (31) 
Note that (31) is just a particular case of (24) when ρ = 0. The analysis done in section IV-B2 can be applied again. The PDF of the maximum value of |L k (s)| can be obtained by calculating first its CDF,

F M k (x) = q-1 s=0 F |L k (s)| (x) = 1 -e (-x 2 qσ 2 ) q , (32) 
for x ∈ [0, +∞[, that is also illustrated in Fig 4, and then finding its derivative f M k (x) such that,

f M k (x) = 2x σ 2 e (-x 2 qσ 2 ) 1 -e (-x 2 2qσ 2 ) q-1 . (33) 
Finally, under hypothesis H0 the PDF of the random variable S, sum of M k , can be defined as the convolution of f M k , k = 0, 1, . . . , N -1:

f H0 S (x) = f * N M k (x), (34) 
which is the N -fold convolution power of f M k (x). 

V. RESULTS AND DISCUSSIONS

The design of the QCSP system relies on the following set of parameters as shown in the theoretical model: Galois field order q, coding rate R c , number of CCSK symbols in a frame N and the time and frequency offsets. In this section, after the validation of the theoretical approach, first we assess the detection performance of the system according to the parameters based on the detection probabilities P md and P fa under low SNRs. Then, we study the effect of the time and frequency offsets in an asynchronized channel on the system performance. After that, a Detection-Correction approach is analyzed based on the detection results obtained and the frame error-correction rates using the normal approximation equation which is used by Polyanskiy in [START_REF] Polyanskiy | Channel Coding Rate in the Finite Blocklength Regime[END_REF] as the definition of maximal achievable coding rate in the finite code-length regime. Finally, a practical example is given using the NB-LDPC as a decoder to minimize the probability of errors due to transmission of the frame.

A. Confirmation of the Theoretical Model by Monte Carlo Simulation

In the previous section we derived the PDFs f H1 S (x) P(X = S(y)| H1) in (30) and f H0 S (x) P(X = S(y)| H0) in (34) over AWGN channel when the CCSK frame exist or is absent, respectively. In order to check the validity of the hypothesis taken to build the theoretical 

B. Performance Analysis: Effect of Galois Field Order

In this section we study the effect of the length of the spreading sequence, i. e, the order of Galois Field q. Hereafter, we define set of parameters for generating a QCSP frame and illustrating the effect of q on detection performance:

• Number of information bits: m = 120.

• NB-Code rate: R c = 1/3.

• Threshold value U 0 : is determined for a P fa = 10 -6 as discussed in II-D.

• Perfect time and frequency synchronization: ∆ = 0, w 0 = 0.

Fig 6 shows the simulations results of P md versus SNR for q ranging from 64 up to 4096, and for a U 0 value corresponding to P fa = 10 -6 . For q = 64, P md is plotted for three different values of P fa : 10 -4 , 10 -6 and 10 -10 . As expected, P md increases when P fa decreases, i.e., when the U 0 value increases. As previously discussed, the value of U 0 is selected based on the desired trade-off P fa -P md . This observation is valid for q > 64, but the corresponding curves of P md are omitted for the sake of figure simplicity. As shown, the SNR required to obtain an acceptable P md of the order of 10 -4 is -11.05 dB when q = 64, and decreases as q increases to go down to -25.8 dB when q = 4096. This is a very important result that shows that the proposed detector can operate reliably at very low SNR. P md and P fa can be chosen depending on the target application.

Fig. 6: P md and P fa as function of SNR for a CCSK frame of m = 120 bits, R c = 1/3 and different GF(q) orders, in an ideally synchronized channel. Also, P as in (38) as function of SNR for the same frame.

C. Performance Analysis: Effect of time and frequency offset

The effect of both time and frequency shifts on the detector performance is discussed in this section. We consider a frame of length m = 120 bits over GF(64) with R c = 1/3. We can figure out that the rotation of a CCSK frame during q chips by ω o = π/2 radian degrades the minimum SNR by less than 1 dB, while a half rotation when ω o = π is more than 3 dB. For that, in a case where the frequency offset has the effect of ω o ≥ π/2, several filters, one for each frequency offset hypothesis, needs to be performed in parallel. To reduce the overall complexity, we propose to use a similar method to the one proposed by Akopian in [START_REF] Akopian | Fast FFT based GPS satellite acquisition methods[END_REF] for the detection of a GPS signal. An important result to note is the big effect of the time offset ∆. For ∆ = 0, the minimal SNR required is -11.1 dB. This value increases with the increase of |∆| to attain its maximum value, SNR= -7.35 dB at |∆|= 32. The gap between |∆|= 0 and |∆|= q/2 is approximately 3.7 dB.

With the previous defined system parameters, QCSP frame can be reliably detected at -7.2 dB with time shift up to |∆|= q/2, and frequency offset up to π/2. Following this GF(64) system, we can detect also at minimal SNR by changing the values of time and frequency decomposition (time and frequency span for the grids) that discussed before in II-C. For example, we can work at SNR -8.9 dB by limiting the deviation to q/4 = 16 chips at most, but we need 2 filters in parallel. Another solution can be taken at the side, a detection filter that considered every q/2 instead of = q chips, so the last N q chips are extracted the stream of sample and the maximum time synchronization error will be limited to q/4. Also, at -10.1 dB for example, we can tolerate a deviation of q/8 = 8 at most. For that, it will be necessary to have 4 filters in parallel to guarantee the reliable detection needed or at the receiver side the detection filter is considered every = q/4.

Based on the application requirements we can adjust the system either to work on lower SNR with higher complexity due to the decrease in the time and frequency span, or it will be sufficient to work on the minimal SNR for worst case scenario where ∆ = q/2 and ω o = π/2.

D. Detection-Correction approach and a practical example

At very low SNR, the successful transmission of short frames as targeted by the NB-code and CCSK association in QCSP system is a challenging problem. In fact, the overall joint probability of successful transmission in an asynchronous ALOHA system can be expressed as P = P d × P s × P c/s , where P d the probability of detection of the frame, P s is the probability of correct estimation of the synchronization parameters, and P c/s is the probability of correction of all transmission errors by the NB-code which is conditioned by the synchronization accuracy.

Aiming to maximize the probability of successful transmission, we must maximize the probability of detection, synchronization and decoding. Then assuming perfect synchronization, one gets P = P d × P c . The challenge here is to minimize the energy cost of the frame for reliable transmission for finite frame length. In order to interpret this challenge, we need first to find the minimum CCSK frame length N for a given probability of detection P d , where P d = 1 -P md -P fa . Fig 8 shows the minimum CCSK frame length N q = N × q in chips as function of SNR, for p = 6

(right-most curve) to p = 12 (left-most curve), needed for P md = 10 -4 and P fa = 10 -6 , in an ideally synchronized channel (no frequency and no time offset).

At different SNR values, we can find the minimum size of the code in chips to guarantee target probabilities of detection (P md ≤ 10 -4 and P fa ≤ 10 -6 ) that corresponds to each order of CCSK modulation p. It is worth noticing that a QCSP frame contains at least one CCSK symbol, i.e., q chips. It explains the flat region at high SNRs, where a unique CCSK symbol is able to guarantee both (P md ≤ 10 -4 and P fa ≤ 10 -6 ). Fig. 8: Minimum CCSK frame length in chips, needed for P md ≤ 10 -4 and P fa ≤ 10 -6 , for different p values in an ideally synchronized channel.

On the other side, the maximum achievable coding rate, denoted by R * c , for error correction codes with error probability P (where P c = 1 -P ), can be tightly approximated as in [START_REF] Polyanskiy | Channel Coding Rate in the Finite Blocklength Regime[END_REF] by

R * c ≈ R - V N Q -1 (P ) (35) 
where R is the channel capacity (maximum rate achievable in the asymptotic regime), V is the channel dispersion (defined in [START_REF] Polyanskiy | Channel Coding Rate in the Finite Blocklength Regime[END_REF]) and Q -1 the inverse Q function where Q

(x) = 1 √ 2π ∞ x exp -u 2 2
du. We use the above approximation (known as the normal approximation)

as a definition of the maximum achievable coding rate in the finite code-length regime. In [START_REF] Polyanskiy | Channel Coding Rate in the Finite Blocklength Regime[END_REF] the channel dispersion parameter is defined as

V = H 2 (U |Y ) -H(U |Y ) 2 , (36) 
where H(U |Y ) is the conditional entropy of the channel input U given the channel output Y , and

H 2 (U |Y ) E Y   - s∈Zq L(s)(log q (L(s)) 2   (37) 
where L(s) P(U = s|Y ) as in (4) denotes the conditional probability distribution of U given Y . Hence, H 2 (U |Y ) can be conveniently estimated by Monte-Carlo simulation.

In practice, we fix the NB-Code rate R c in QCSP system to R c = 1/3 so we can use (35) to find the error probability defined as:

P = Q - R * c -R V /N (38) 
where R * c = R c = 1/3. Let us consider a QCSP frame over GF(q) with payload of m = 120 bits of information. Also, we assume a perfectly synchronized reception (∆ = 0, ω o = 0). Fig. 6 shows both the evolution of P and P md as a function of the SNR for several values of the Galois Field order q. One can note that, as q increases, detection becomes more problematic than correction.

Finally, as a practical case study, P for q = 6 in Fig. 6 is replaced by real simulation results where the ideal code is replaced by the GF(64)-LDPC code of rate 1/3, m = 120 defined in [START_REF]Web site on Non-Binary LDPC[END_REF].

Two types of decoding algorithm are used: the Belief Propagation (BP) [START_REF] Davey | Low density parity check codes over GF(q)[END_REF] with 50 decoding iterations and the Extended Mean Sum (EMS) with 30 decoding iterations and n m = 20 (see [START_REF] Boutillon | Design of a GF(64)-LDPC Decoder Based on the EMS Algorithm[END_REF] for the definition of the EMS algorithm). The resulting probabilities of error P are given in Fig. 9. This figure shows also the joint effect of miss detection and probability of error of the decoder, giving the overall probability of miss-reception defined as P mr = P md + (1 -P md )P , where P md is obtained with ∆ = q/8 and ω o = 0, and P the probability of error of the EMS-based decoder.

As can be seen, P mr is mainly impacted by P md at SNRs bellow -10 dB, then by P at SNRs higher than -10 dB. It should be noted that the SNR gap between Polyanskiy's bound and actual performance (abeilt perfect synchronization) is bounded by 1.2 dB for FER greater than 10 -5 .

In the general case, finding for a given SNR and a given payload the optimal QCSP structure (code rate, q size) that minimize P mr for a given receiver complexity is still an open problem.

VI. CONCLUSION

The paper proposed a new frame structure called Quasi Cyclic Short Packet for transmission of short packets in low power wide area network. QCSP frame relies on the combination of CCSK modulation and non-binary error control codes. The whole frame can be considered either as a preamble sequence to perform detection and synchronization, or as a noisy codeword to perform the non-binary error correcting process. Thanks to this structure, QCSP frame offers the capability of blind detection and self-synchronization without additional overhead.

A formal performance model of the frame detection algorithm has been derived. This model gave some insight on the impact of each parameter on detection performance according to the QCSP frame structure (size and GF order) and the time and frequency offset. The trade-off between detection performance and correction performance has been presented. Finally, as a case study, it is shown that a QCSP frame over GF(64) with a payload of 120 bits can be received (detection and correction) correctly with frame error rate of 10 -4 at an SNR of -9.75 dB, just 1.2 dB from Polyanskiy bound.

The work will be extended in several directions. First, the synchronization process will be studied and its impact on performance be evaluated (some preliminary results let us predict that synchronization is not a critical issue). Second, the discussion of Detection-Correction approach in section V.D opens an interesting theoretical question on the optimal frame structure to fulfil the requirement of an application with the minimum energy cost at the transmission side. Finally, the paper deals only with the AWGN channel, future work will extend the study to multipath channels.

To conclude, we believe that QCSP scheme can be useful in many applications. It could challenge existing solutions such as LORA, SIGFOX of NB-LTE solutions in a low power wide area network. It could be also used to establish a communication link in an ALOHA protocol between a terminal and a communication infrastructure (constellation of low earth orbital satellites, base station of a mobile network, etc).
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 2 Fig. 2: CCSK-based System Model

  T c , with O the over-sampling factor (typically between 4 up to 8). Indexing the time by duration T c of a chip (i.e. O clock cycles), it is possible to determine the time of arrival t a
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 5 Fig 5 (a) illustrates three different threshold values that correspond to various probabilities of false alarm P fa = 10 -4 , 10 -6 and 10 -10 versus the output of the correlation filter over a Gaussian channel. It can be clearly inferred from Fig 5 (a) that the threshold value U 0 allows a trade-off
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 3 Fig. 3: Illustration of frame detection principle
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 1 PDF and CDF of the absolute value of L k (s), |L k (s)|: The dependency of |L k (s)| on the index k > 0 depends only on the couple (c k-1 , c k ). It is thus convenient to replace k by the couple (c k-1 , c k ), or simply by (a, b) to lighten notation. With this notation, L (a,b) (s) is CGRV of law CN (ρ (a,b) (s)e jθ (a,b) (s) , qσ 2 ), where ρ (a,b) (s) and θ (a,b) (s) are the module and the phase of L - (a,b) (s)+L + (a,b) (s), respectively. Thus, |L (a,b) (s)

  For a given couple a = c k-1 and b= c k , F |L (a,b) (s)| (x) is plotted in Fig 4 for s = c k-1 + ∆, s = c k + ∆ and the other q -2 cases when s = c k-1 + ∆, s = c k + ∆.2) PDF and CDF of the Maximum value of |L k (s)| for H1: Let us define our first hypothesis of the proposed theoretical model. According to[START_REF]Web site on Non-Binary LDPC[END_REF], for any couple (s, s ), we have the intercorrelation E[z k (s), z k (s )] between z k (s) and z k (s ) equal to P s , P s . Since z k (s) and z k (s ) are both Gaussian variables of zero mean, they are independent if, and only if, E[z k (s), z k (s )] = 0.

  Let us first consider k > 0 and let defined M (a,b) as the maximum of the absolute values of L (a,b) (s), i.e. M (a,b) = max{|L (a,b) (s)|, s ∈ GF (q)}. The independence hypothesis of the z (a,b) (s) variables also implies the independence of the |z (a,b) (s)| variables. Thus, the CDF of the M (a,b)
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 4 Fig. 4: Illustration of different CDF equations for a given GF(64) received block Y k at SNR=-7 dB, ∆ = 24 chips and ω o = π/4.

  as shown in Fig 4 also. When k = 0, M 0 depends only on c 0 and we can replace the index 0 by the value (b) to be consistent with the previous notation, i.e., M 0 = M (b) . Thus

  is an approximation because two consecutive values |L k (s)| and |L k+1 (s)| are not necessarily uncorrelated since the same c k value is used in both of them. Nevertheless, considering the set of couple L 2k , k = 1..N/2 are thoroughly random, as for the set L 2K+1 , k = 0, ..., N/2 -1.
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 5 Fig. 5: MC and Theoretical PDFs in both hypothesis H0 and H1, for a CCSK frame of N=20 symbols in GF(64) for the first scenario (a) SNR = -10 dB, ∆ = 0, no frequency offset and for the second scenario (b) SNR = -10 dB, ∆ = 16, ω o = π/2.

  model, we compare it with the Monte Carlo (MC) simulation, when 10 6 CCSK frames are transmitted, in case of a frame length N = 20 GF(64) symbols over AWGN channel of SNR = -10 dB. Two different scenarios are tested, the first one (see Fig 5.a) assesses perfect synchronization conditions (∆ = 0, w o = 0), and the second case (see Fig 5.b) is considered for ∆ = q/4 and w o = π/2. As we can see in both cases, the probability distribution functions in the theoretical model fit exactly the Monte-Carlo simulation. It is worth noting that in the theoretical modelwe can go through very small numbers in probabilities (here 10 -10 ) without the need to run 10 10 iterations for a MC simulation for transmitting 10 10 CCSK frames for example. Thus, the detection performance can be found through the derived theoretical model without the need to conduct extensive MC simulations.

  Fig 7 plots the minimum SNR needed, for predefined probabilities (P fa = 10 -6 and P md = 10 -4 ), as a function of temporal offsets ∆ for different frequency offsets ω o .
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 7 Fig. 7: Minimum SNR required as function of different ∆ and ω 0 values, for defined probabilities (P fa = 10 -6 and P md = 10 -4 ), in a CCSK frame of q = 64, m = 120 bits and R c = 1/3.
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 9 Fig.9: Joint frame error rates due to P , P md and to P fa = 10 -6 for m = 120, R c = 1/3 and GF(2 6 ).

TABLE I :

 I Notations

		Operations
	GF(q)	Galois Field of order q
	P 0	Pseudo random binary sequence
	FFT/IFFT	Fast Fourier Transform and Inverse FFT
	N (µ, σ 2 )	Normal distribution of mean µ and variance σ 2
	CN (µ, σ 2 )	Complex normal distribution of mean µ and variance σ 2
	mod	modulo operation
	max(X)	Maximum element in the vector of real elements X
	|X|	Absolute value of X
	X	

*

Conjugate of vector X.

  over Z 8 . The CCSK modulation is constructed from a basic sequence of length 8 with P 0 = {11101000}. Then CCSK modulation is applied

TABLE II

 II 

		: CCSK codes of GF(8)
	c k ∈ Z8 CCSK sequence P k
	0	11101000
	1	01110100
	2	00111010
	3	00011101
	4	10001110
	5	01000111
	6	10100011
	7	11010001
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