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Abstract: Hall-Héroult process is a complex electrolysis procedure to produce aluminum. Due
to the extreme operational conditions, it is difficult to continuously measure certain important
values. This paper presents an approach to model and estimate the alumina concentration and
anode-cathode distance based on the available measurements. Initially, a state affine model is
obtained using a combination of physical-chemical relations and system identification. Then,
a linear Kalman observer is designed to recover the desired signals. The proposed approach is
validated on an industrial platform.
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1. INTRODUCTION

Hall-Héroult process is the electrolysis method to produce
aluminum at industrial scale (Grjotheim andWelch, 1980).
In short, it is based on an electrochemical reaction that
requires the dissolution of alumina (Al2O3) in molten
cryolite bath under a high-temperature condition. During
the electrolysis process, carbon anodes are dipped in the
solution, while the produced liquid aluminum is accumu-
lated at the bottom of the cell and carbon dioxide gas is
expelled out of the system. The process is summarized by
the following chemical equation:

Al2O3(diss) +
3

2
C(anode) → 2Al(l) +

3

2
CO2(g) (1)

In large industrial plants, each cell has a large number of
anodes connected in parallel and supported by a common
busbar. The height of this bar can be set during the
operation to adjust the anode-cathode distance (ACD).
High DC current, in the order of kilo-amps, is applied to
each anode. This large intensity is required to increase
the amount of aluminum produced. The chemical reagent,
alumina, is periodically injected into the system as powder
by feeders along with the pot cell. A simple schematic view
of a Hall-Héroult cell is shown in Figure 1.

The hazardous conditions inside the pot such as high
temperature, magnetic field and the presence of corrosive
elements, make it difficult to develop sensors for contin-
uous measurement. Moreover, some important state vari-
ables of the process are not measured at any time during
the operation. This inconvenient can lead to inaccurate
results (Jakobsen et al., 2001) and it restrains the process
production efficiency (Yao and Bao, 2018).

⋆ This research was partially supported by project PIANO.

Fig. 1. Pot Schematic View

Some researchers have been developing nonlinear estima-
tors to overcome this information limitation and obtain the
desired process states (Kol̊as et al., 2008; Jakobsen et al.,
2001; Hestetun and Hovd, 2005). However, those works are
mostly based on the approximate Extended Kalman Filter
(Moore and Anderson, 1979), and do say not much about
the underlying physics.

The present paper aims to provide a simple model for
the Hall-Héroult process, yet capturing the main features
of a regular operation by combining physical-chemical
aspects with experimental models. In continuation of the
work developed in (da Silva Moreira et al., 2020), the
system is modeled in a state affine form, so as to allow an
observer implementation here using exact Linear Kalman
results, in the spirit of (Ţiclea and Besançon, 2013) for
instance. An identification procedure for a first model



calibration is then presented. This procedure is validated
with operational collected data and tested for different
conditions in APX pot cell of Rio Tinto Laboratoire des
Recherches de Fabrications (LRF) located in Saint Jean de
Maurienne, France. For confidentiality reasons, the data in
the y-axis in all plots have been removed.

The paper goes on as follows: section 2 gives an overview of
the problem we consider, section 3 presents the modeling
that we propose, and section 4 provides online state
estimation implementation and results. Some conclusions
are summarized in section 5.

2. PROBLEM DESCRIPTION

The process efficiency is directly related to the distance
gap between the cathode and anode, (ACD) (Côté et al.,
2017). This value is not constant during the operation due
to the chemical reaction. The carbon anodes are consumed
and they are replaced after some time. Moreover, the
liquid aluminum layer increases its height because of
the production. Furthermore, current perturbations and
bath composition can also affect the ACD. However, the
hazardous conditions inside the pot make it impossible
to develop a sensor for continuous measurement. The
ACD is critical since a large distance decreases the pot
cell production and a small value can cause a short-
circuit between the produced aluminum and the anode
(Keniry et al., 2001). Unfortunately, only a few papers
have modeled this dynamical behavior (Jakobsen et al.,
2001; Yao et al., 2017).

The dissolved alumina concentration (wAl2O3) is also an
important quantity that is not continuously measured.
Commonly, just a few samples per week are manually
taken, which makes it difficult to obtain an experimental
model. This quantity is again very important: A low con-
centration triggers the so-called ”anode effect” (Bearne,
1999) which can cause interruptions on the production and
produces greenhouse gases. Conversely, a high concentra-
tion makes it possible to see sludge formation.

In practice, only the line current (I), line voltage (V ), the
busbar position (BM), and the frequency of the alumina
feeding (F ) are continuously collected by sensors. For
the system regulation, an indirect measurement called
the pseudo-resistance (R) is commonly used to adjust
the ACD and wAl2O3. It is calculated according to the
following formula:

R(t) =
V (t)− Vext

I(t)
(2)

where Vext is the voltage intercept of cell voltage versus
current extrapolated from a small change in current to
zero current.

Based on the pseudo-resistance value, the alumina feeding
frequency is modified. It alternates between two pre-
determined periods to have faster or slower feeding. This
value is adjusted by the ACD regulation to ensure control
stability and obtain a good current efficiency (Homsi et al.,
2016). A nonlinear relation between R, ACD and wAl2O3

is also known to take the form of Fig. 2 (Haupin, 2016).
From this complex relation, it is not easy to obtain some
information. All this motivates the development of a model

for the unknown state dynamics, and an observer to get
an online estimation for it.
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Fig. 2. Typical pot resistance curve as function of alumina
concentration and ACD

3. MODELING

The aim of this section is to obtain a discrete-time
model that explicitly relates ACD and wAl2O3 to the
pot pseudo-resistance R. The model is obtained using a
hybrid approach that combines physical-chemical aspects
and information extracted from data.

3.1 Anode-Cathode Distance

From the problem description, it is possible to define the
ACD variation ( d

dt
ACD) as the height variation between

the aluminum ( d
dt
Alheight) and carbon ( d

dt
Cheight) layers,

plus the anodes busbar beam movement ( d
dt
BM):

d

dt
ACD(t) =

d

dt
Alheight(t)−

d

dt
Cheight(t)+

d

dt
BM(t) (3)

Each element height can be written as a function of
the mass production by the density relation. Hence, the
aluminum and carbon height variation become:

d

dt
Alheight(t) =

1

ρAlS

[

d

dt
mAl(t)

]

(4)

d

dt
Cheight(t) =

1

ρCS

[

d

dt
mC(t)

]

(5)

where ρAl is the liquid aluminum density, mAl is the
aluminum produced mass, ρC is the carbon density, mC is
the carbon produced mass, and S is the average reaction
surface area.

The produced aluminum mass rate ( d
dt
mAl) is given by the

Faraday’s law of electrolysis:
d

dt
mAl(t) =

CeAlm

3F
I(t) (6)

where Ce is the current efficiency, Alm is the aluminum
molar mass, I(t) is the instantaneous current applied to
the pot, F is the Faraday’s constant, and 3 is the valency
number of ions of the aluminum given by:

4Al3+ + 6O2− + 3C(anode) → 4Al(l) + 3CO2(g) (7)

From the chemical balance of equation (1), it is possible
to relate the aluminum mass production with the carbon



mass consumption. This leads to the carbon mass con-
sumption rate d

dt
mC formula:

d

dt
mC(t) =

Cm

4F
I(t) (8)

where Cm is the aluminum molar mass and 4 is the
stoichiometric coefficient.

Hence, equation (3) can be rewritten using the above
expressions:

d

dt
ACD(t) =

1

SF

(

CeAlm

3ρAl

−
Cm

4ρC

)

I(t) +
d

dt
BM(t) (9)

The beam movement derivative is considered as one of the
system inputs (u1):

u1(t) =
d

dt
BM(t) (10)

Hence, by defining β as:

β =
1

SF

(

CeAlm

3ρAl

−
Cm

4ρC

)

(11)

And using equation (11) in (9), the ACD dynamics results:

d

dt
ACD(t) = βI(t) + u1(t) (12)

Using Euler discretization in equation (12), it is possible
to obtain a discrete-time model for the ACD:

ACD[n+ 1] = ACD[n] + Ts(u1[n] + βI[n]) (13)

where Ts is the sampling time.

As it is not possible to measure the ACD during the
operation of the plant, β cannot be obtained experimen-
tally. Hence, this parameter is calculated using theoretical
values.

3.2 Alumina Concentration

The dynamics of alumina concentration wAl2O3 can be
modeled as the difference between the quantity injected by
the feeders (wAl2O3in) and the consumed by the chemical
reaction (wAl2O3cons):

d

dt
wAl2O3(t) = wAl2O3in(t)− wAl2O3cons(t) (14)

The quantity injected by the feeders at time t can be
represented by:

wAl2O3in(t) =
Nmin

M
F (t) (15)

where N is the number of feeders in the pot, min is the
amount of mass injected by feeders, M is the total bath
mass, and F is the frequency of feeders. The alumina
injected in the system does not dissolve instantaneously.
This effect can be approximated by a time delay D
introduced in equation (15):

wAl2O3in(t) =
Nmin

M
F (t−D) (16)

The frequency of the feeders is considered as one of the
system inputs (u2):

u2(t) = F (t−D) (17)

Then, equation (16) becomes:

wAl2O3in(t) =
Nmin

M
u2(t) (18)

The Al2O3 consumption is given by the Faraday’s law
divided by the bath mass:

wAl2O3cons(t) =
Al2O3mCe

6FM
I(t) (19)

where Al2O3m is the alumina molar mass and 6 is the num-
ber of electrons required for the electrolysis to perform.

Replacing equations (18) and (19) in (14):

d

dt
wAl2O3(t) =

Nmin

M
u2(t)−

Al2O3mCe

6FM
I(t) (20)

And defining:

α1 =
Nmin

M
, α2 =

Al2O3mCe

6FM
(21)

Equation (20) can be written as:

d

dt
wAl2O3(t) = α1u2(t)− α2I(t) (22)

Using Euler discretization in equation (22):

wAl2O3[n+ 1] = wAl2O3[n] + Ts(α1u2[n]− α2I[n]) (23)

Then, it is possible to obtain a discrete-time model for
the alumina concentration. The next step is to identify
parameters D, α1 and α2.

The time-delay is estimated as a result of an unconstrained
nonlinear optimization problem. The cost function is de-
fined as the mean square error between the resistance
measurements and simulated values from a model using
ACD and wAl2O3 values in many data sets. Then, the
optimization searches the best time-delay to decrease fit-
ting error.

Just a few alumina concentration measurements are
recorded during an operational day without constant sam-
pling time. Using the data collected at times [τ0 τ1 · · · τN ],
it is possible to organize equation (23) in a matrix form as
follows:

(24)









wAl2O3(τ1)− wAl2O3(τ0)
wAl2O3(τ2)− wAl2O3(τ1)

...
wAl2O3(τN )− wAl2O3(τN−1)









= Ts





























τ1
∑

k=τ0

u2(k) −

τ1
∑

k=τ0

I(k)

τ2
∑

k=τ1

u2(k) −

τ2
∑

k=τ1

I(k)

...
...

τN
∑

k=τN−1

u2(k) −

τN
∑

k=τN−1

I(k)





























[

α1

α2

]

Based on this structure, it is possible to identify the
parameters α1 and α2 by least square estimation. Fig. 3
shows a comparison between the model simulated with
estimated parameters α1 and α2 and the alumina con-
centration values collected on the plant. The model is
initialized with measurement and the simulation is started
using the signals of u2 and I. Every time a new alu-
mina concentration measurement is available, the model



is reinitialized to improve the accuracy of the prediction
provided by the model. Following this approach, the mean
absolute relative error between the model outputs and the
measurement is 3.52 %.
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Simulation
Data

Fig. 3. Alumina Concentration Model Validation

3.3 Pseudo-Resistance

As for the pot pseudo-resistance, an approximate poly-
nomial can be obtained from Fig. 2. Considering regular
process operation in which alumina concentration varies
between 2% and 4%, this model takes the following form:

(25)R(t) = cwAl2O
2
3(t) + (d+ eACD(t))wAl2O3(t)

+ (f + gACD(t))

where c, d, e, f , and g are some parameters to be
determined. By differing the equation (25), it is possible
to obtain a dynamic behavior model for the pseudo-
resistance:

d

dt
R(t) = eACD(t)

d

dt
wAl2O3(t)

+

(

2c
d

dt
wAl2O3(t) + e

d

dt
ACD(t)

)

wAl2O3(t)

+ d
d

dt
wAl2O3(t) + g

d

dt
ACD(t)

(26)

Using Euler discretization in equation (26), it is possible
to obtain the resistance variation model:

R[n+ 1] = R[n] + Ts (e∆wAl2O3[n]ACD[n]

+ (2c∆wAl2O3[n] + e∆ACD[n])wAl2O3[n]

+ d∆wAl2O3[n] + g∆ACD[n])

(27)

where:

∆ACD[n] :=
ACD[n]−ACD[n− 1]

Ts

(28)

∆wAl2O3[n] :=
wAl2O3[n]− wAl2O3[n− 1]

Ts

(29)

Equations (28) and (29) can be respectively approximated
by:

∆ACD[n] ≈ u1[n] + βI[n] (30)

∆wAl2O3[n] ≈ α1u2[n]− α2I[n] (31)

Notice that equation (27) needs an initial ACD value
and this values is not measurable. Indeed, only the ACD
variation is calculated by equation (13). This problem can
be solved by considering the initial ACD as an additional
parameter to be identified.

For t = NTs, equation (27) turns into:

∆R(NTs) = 2c∆wAl2O3(NTs)wAl2O3(NTs)

+ d∆wAl2O3(NTs)

+ e{∆wAl2O3(NTs)[ACD(0)

+

N
∑

k=1

Ts[u1((k − 1)Ts) + βI((k − 1)Ts))]

+ ∆ACD(NTs)wAl2O3(NTs)}

+ g∆ACD(NTs)

(32)

where:

∆R(NTs) :=
R(NTs)−R((N − 1)Ts)

Ts

(33)

Defining:

γ1N :=

N
∑

k=1

Ts[u1((k − 1)Ts) + βI((k − 1)Ts)) (34)

Equation (32) becomes:

(35)

∆R(NTs) = 2c∆wAl2O3(NTs)wAl2O3(NTs)

+ d∆wAl2O3(NTs)

+ e{∆wAl2O3(NTs)[ACD(0) + γ1N ]

+ ∆ACD(NTs)wAl2O3(NTs)}

+ g∆ACD(NTs)

Then, using N samples at [Ts, 2Ts, · · · NTs], it is possible
to organize equation (32) in a matrix form:







∆R(Ts)
...

∆R(NTs)






=







a11 a12 a13 a14
...

...
...

...
aN1 aN2 aN3 aN4













c
d+ eACD(0)

e
g







(36)

where:

a11 := 2∆wAl2O3(Ts)wAl2O3(Ts)

a12 := ∆wAl2O3(Ts)

a13 := ∆wAl2O3(Ts)γ11 +∆ACD(Ts)wAl2O3(Ts)

a14 := ∆ACD(Ts)

aN1 := 2∆wAl2O3(NTs)wAl2O3(NTs)

aN2 := ∆wAl2O3(NTs)

aN3 := ∆wAl2O3(NTs)γ1N +∆ACD(NTs)wAl2O3(NTs)

aN4 := ∆ACD(NTs)

Then, the parameters can be identified using a least square
estimation algorithm. In Fig. 4, a comparison between
the model output and actual measurements is shown. The
mean absolute error computed for this data set is 2.21%.
However, a small drift can be observed. This happens
because the model structure from equation (27) repro-
duces the resistance variation and needs an initial value.



This difference between the model and the measurements
accumulates because of the integrator dynamics inside of
the model. Nevertheless, the parameter estimation can be
considered valid since the mean absolute error is small.

700 800 900 1000 1100 1200
Time (min)

 

Pot Resistance

Data
Simul.

Fig. 4. Resistance Model Validation

4. STATE ESTIMATION

Based on the obtained models for ACD, wAl2O3, and R in
equations (13), (23), and (27), respectively, and consider-
ing the current intensity as a measured disturbance in the
system, it is possible to define a discrete-time state-space
model of the plant:

(37)















x[n+ 1] =





1 a12[n] a13[n]

0 1 0

0 0 1



x[n] +





b1[n]

b2[n]

b3[n]





y[n] =
[

1 0 0
]

x[n]

where:

a12[n] = e(α1u2[n]− α2I[n]) (38)

a13[n] = (2c(α1u2[n]− α2I[n]) + e(u1[n] + βI[n]) (39)

b1[n] = (d(α1u2[n]− α2I[n]) + g(u1[n] + βI[n])) (40)

b2[n] = (u1[n] + βI[n]) (41)

b3[n] = (α1u2[n]− α2I[n]) (42)

which all the parameters known and the state vector is:

x[n] =

[

x1[n]
x2[n]
x3[n]

]

=

[

R[n]
ACD[n]

wAl2O3[n]

]

(43)

Notice that model (37) is affine in the state. This makes it
possible to easily design an observer providing an estimate
of the state x by using measurements of the resistance. To
perform the state estimation, it is used a Time-Varying
Linear Kalman Filter (Kalman, 1960) as a state observer.
The Kalman filter equations are given as follows:

Prediction:

x̂[n+ 1]− = A[n]x̂[n] +B[n]

P [n+ 1|n] = A[n]P [n|n]A[n]T +Qnoise

Update:

K[n] = P [n|n− 1]CT (CP [n|n− 1]CT +Rnoise)
−1

x̂[n] = x̂[n]− +K[n](y[k]− Cx̂[n]−)

P [n|n] = (I −K[n]C)P [n|n− 1]

where x̂ is the state estimate vector, P is the covariance,
Qnoise is the process noise and Rnoise is the measurement

noise matrices. Moreover, the matrices A, B and C come
from the state affine system (37):

A[n] =

[

1 a12[n] a13[n]
0 1 0
0 0 1

]

(44)

B[n] = [b1[n] b2[n] b3[n]]
T

(45)

C = [1 0 0] (46)

To implement the observer, it is necessary to tune conva-
riance and noise matrices. The initial covariance matrix
P [0|0] is defined as:

P [0|0] =





10−1 0 0
0 103 0
0 0 10−1



 (47)

The largest entry in the P matrix is related to the ACD.
As it is not possible to measure this state, we tune the
covariance matrix to somehow assign more priority to the
estimate of this state. The process and measurement noise
matrices, Qnoise and Rnoise respectively are chosen as:

Qnoise =





10−5 0 0
0 10−5 0
0 0 10−5



 , Rnoise = 10−5 (48)

The observer efficiency was tested in two data sets with
different initial conditions in order to predict the next
states measurements. For each test, it was used a dif-
ferent combination of ACD and wAl2O3 initial values
in a certain operational range, while the R values were
initialized using the actual measurement. The resulting
estimates are shown in Fig. 5 and 6, the solid line is
the pot resistance measurement, the dashed lines are the
states estimations and the ”x” markers are the alumina
concentration measurements.

In Fig. 5, it is possible to notice a fast convergence, for
all estimate independently of the chosen initial condition.
Convergence can be verified from the final standard de-
viation indexes listed in Table 1. The standard deviation
of the states R and wAl2O3 are smaller than that of the
ACD since they are experimentally validated. Fig. 6 shows
the estimates provided by the observer for a long period
and compare those with the measurements of wAl2O3.
The values of the mean absolute error reported in Table
1 confirm the effectiveness of the proposed estimation
strategy.

Table 1. Estimations Final Values Comparison

Standard deviation Mean Absolute Relative Error

R 2.91e-09 µΩ 0.09%

ACD 0.0387 cm -

wAl2O3 2.29e-06 % 6.75 %

5. CONCLUSIONS

In this paper, the Hall-Héroult process is modeled by
a state affine dynamic system that combines physical-
chemical aspects and experimental data. Following this
approach, we provide a Linear Kalman filter to estimate
the states for the system.

Based on the obtained experimental results, it was possible
to validate a state affine model for a complex chemical
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Fig. 5. States Estimations - Data Set 1
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process. Moreover, the chosen observer strategy proved to
be reliable by estimating with accuracy the desired states
for unknown initial conditions.
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