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Abstract

Digital image correlation (DIC) is a full-field measurement technique. In instantaneous
approaches (i.e., registering two images), DIC only gives access to displacement (or
velocity) fields. Consequently, acceleration fields are not one of the primary measured
variables. To evaluate acceleration fields, a regularization scheme has to be used. The
latter may be either heuristic or mechanically motivated. The key idea of the paper is to
use spatiotemporal analyses in order to explicitly measure acceleration fields. Various
regularization schemes will be assessed, and their relative merits will be studied when
performing uncertainty quantifications. Pyrotechnic cutting simulations will provide a
set of artificial pictures to be studied in order to validate the new implementations. This
analysis enables the measurement performances to be evaluated for the new
implementations.

Keywords: Acceleration fields, Digital image correlation (DIC), Dynamic regularization

Introduction
Pyrotechnic devices are currently used in the aerospace industry to cut different parts
of a launcher or activate on-board systems. However, it is hard to quantify the impact
of detonations on such complex structures [1,2]. This observation calls for experimen-
tal validations of the numerical predictions. The present paper deals with the issue of
acceleration measurements as a way of assessing the reliability of pay-loads against such
loadings. Near the source of the shock, the actual loads are hard to quantify. A solution to
circumvent the problem consists inmeasuring acceleration fields induced by shockwaves.
Experiments onmock-ups typically consist in the separation of two bolted plates using a

pyrotechnic device. Today, the kinematic measurements are performed with accelerome-
ters and strain gauges. These point measurements have limited frequency and amplitude
ranges. The purpose of the present study is to evaluate the feasibility of acceleration
measurements via full-field measurements, namely, digital image correlation (DIC [3–5]).
With the development of digital high speed cameras [6], studies focusing on high strain

rate experiments have been published. The first paper to report displacement, velocity,
acceleration, strain and strain rate fields [7] was based on instantaneous stereocorrelation
with a commercial code. Since then, very few publications presented acceleration fields
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measured via DIC [8]. Virtually all results required post-processing and filtering proce-
dures from instantaneousDIC analyses [7,9–12]. A first alternative consists in performing
local time interpolations to measure directly, say, strain rate fields [13] and possibly accel-
eration fields. In global spatiotemporalDIC [14,15], the acceleration field becomes a direct
output via exact differentiation of temporal shape functions [8]. Exact differentiation may
also be performed after a post-processing (smoothing) of the data, but the reliability of
such an data processing is never checked with respect to the original input images, in
contrast to global spatiotemporal DIC. Other types of temporal regularization were pro-
posed within the proper generalized decomposition (PGD) framework [16,17]. Although
second order differentiability is not directly ensured, supplementing PGD with a suited
additional regularization may provide the needed regularity.
In the following, it is proposed to extend the concept of mechanical regularization [18–

20], which was applied to static problems, to dynamic analyses. The outline of the paper
is as follows. First, spatiotemporal DIC is introduced, and its declination with the use of
orthonormal modes is briefly summarized. Uncertainty quantifications are performed to
illustrate the gain of temporal regularization accounting for piece-wise linear and con-
tinuous acceleration fields. Second, dynamic regularization is discussed as an extension
of static regularization. Uncertainty quantifications are also performed. Last, a numerical
test case illustrates the relative merits of spatiotemporal and dynamic regularizations.

Spatiotemporal digital image correlation
Instantaneous DIC is based on the registration of two frames [3]. Conversely, spatiotem-
poral DIC analyses the full movie of an experiment [14]. Let us consider a time interval
[t0; tn], where t0 corresponds to the first frame and tn the last frame of the movie. Simi-
larly, the spatial domain is definedby the so-called regionof interest (ROI). Spatiotemporal
analyses will seek displacements minimizing the gap to gray level conservation over the
whole set of frames

u(x, t) = argminυ‖ft (x + υ(x, t)) −̂f (x)‖2ROI×[t0;tn] (1)

where ̂f denotes the image of the reference configuration, which is either the picture
ft0 (x) of the reference configuration [14] or its denoised estimate [15,16]. Equation (1)
accounts for the apparent motion of any point of the ROI over time and corresponds to
the optical flow [21]. It is worth noting that in the present setting is Lagrangian since
the sought spatiotemporal displacement field is determined with respect to the reference
configuration.
The global DIC residual, �C , reads

�2
C =

∑

x∈ROI

∑

t∈[t0;tn]
[̂f (x) − ft (x + υ(x, t))]2 (2)

The spatiotemporal displacement field υ(x, t) is parameterized as

υ(x, t) =
∑

i

∑

j
αijθi(x)φj(t) (3)

where θi are spatial shape functions, φj temporal shape functions, and αij the sought nodal
(spatiotemporal) displacements when a finite element setting is chosen. Thus, high order
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temporal continuity can be assumed between images by using appropriate temporal shape
functions φj [8].
In the following, aGauss–Newton scheme is selected to iterativelyminimize Eq. (1). The

corrections to the spatiotemporal amplitudes δαij are computed using the spatiotemporal
Hessian matrix [H st ] and residual vector {B}

[H st ]{δα} = {B} (4)

with

Hst
ijkl =

∑

ROI×[t0;tn]

(

θi(x) · ∇̂f (x)φj(t)
) (

θk (x) · ∇̂f (x)φl(t)
)

(5)

and

Bij =
∑

ROI×[t0;tn]

(

θi(x) · ∇̂f (x)φj(t)
)

ρ̃(x, t) (6)

where υ̃ denotes the current estimate of the displacement field, and ρ̃ the corresponding
gray level residuals

ρ̃(x, t) =̂f (x) − ft (x + υ̃(x, t)) (7)

evaluated at any pixel position x within the ROI, and any time t between t0 and tn at which
an image was acquired.
By constructing an orthonormal temporal basis [14], the previous system reduces to

analyses that are formally identical to instantaneous DIC problems, and can be imple-
mented in a non intrusive way in any standard DIC code [14,15,17]. For instance, consid-
ering the temporal mode k , the modal correction vector {δαk} becomes

[H s]{δαk} = {βk} (8)

where [H s] denotes the spatial Hessian matrix (just as if the temporal shape function was
a Dirac, i.e., instantaneous DIC)

Hs
ij =

∑

ROI

(

θi(x) · ∇̂f (x)
) (

θj(x) · ∇̂f (x)
)

(9)

and {βk} the residual vector associated with the temporal mode ψk

{βk} =
∑

t
{b(t)}ψk (t) (10)

where the temporal shape function ψk weights {b(t)}, the column vector gathering all
instantaneous contributions

bi(t) =
∑

ROI

(

θi(x) · ∇̂f (x)
)

ρ̃(x, t) (11)

In the following analyses, cubic B-splines were used as temporal shape functions φj .
By construction, the displacements and velocities can be made continuous. However, the
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acceleration field is only piece-wise continuous with such a setting. Additional constraints
were added to also enforce full temporal continuity, thereby reducing the total number of
kinematic unknowns (Appendix A). For the spatial discretization, 3-noded (T3) elements
(with linear interpolation) were selected and regular meshes were constructed. All DIC
analyses reported herein were performed within the Correli 3.0 framework developed at
LMT [22] in a Matlab� environment. The most computation-intensive operations of the
Gauss–Newton scheme are related to the computations of the instantaneous Hessian and
residual vector. The latter is updated at each iteration as the gray level residuals change.
They were performed by calling binary MEX files generated from optimized C++ kernels.
It is proposed to evaluate measurement uncertainties thanks to a 500 frame film of

a speckle pattern with no external load acquired with a Photron camera (SA-Z 2100 k,
20,000 fps, definition: 1024 × 1024 px, the physical size of one pixel is 200 µm). Then
DIC analyses were carried out for different spatial discretizations. The latter ones were
characterized by a typical length scale chosen to be the square root of the mean element
surface, which is referred as element size �x throughout the paper. It is worth noting that
since an FE-based kinematic basis was used, the element size does not correspond to the
spatial resolution of the registration scheme. With the uniform mesh used herein, the
spatial resolution of inner nodes was equal to

√
6�x (i.e., each node is shared by 6 T3

elements), of edge nodes is
√
3�x (i.e., each node is shared by 3 elements),

√
2�x (i.e., each

node is shared by 2 elements).
The variance was evaluated in time for each nodal displacement ui(t) = αijφj(t)

(σ u
i )

2 = vart(ui(t)) (12)

Then, the standard displacement uncertainty was calculated for all spatial degrees of
freedom

σu =
√

meani((σ u
i )2) (13)

The same type of quantities was computed for nodal velocities vi(t) = αijφ̇j(t) (not used
hereafter) or accelerations ai(t) = αijφ̈j(t)

(σ a
i )

2 = vart (ai(t)) and σa =
√

mean((σ a
i )2) (14)

The latter will be referred to as standard acceleration uncertainty. Let us stress that
although these quantities are important, they only provide a partial view of the global
uncertainty that would require the full covariance matrix. The above variances are the
restriction of this matrix to its diagonal elements. The proper use of the acceleration data
(e.g., for comparison to models) should make use of the entire covariance matrix to be
optimal [23].
In Fig. 1, the standard displacement and acceleration uncertainties are reported as

functions of the element size �x. Two different sets of results are compared, namely,
(i) instantaneous analyses in which no temporal regularization was used, and (ii) spa-
tiotemporal analyses with 20 pictures per temporal element (i.e., �t = 1 ms). As for the
spatial resolution, �t does not correspond to the temporal resolution. A first order approx-
imation is

√
2�t . For any reported quantity, the lower the element size, the higher the

measurement uncertainty. This trend corresponds to the classical compromise between
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Fig. 1 Standard displacement (a) and acceleration (b) uncertainties for instantaneous and spatiotemporal
analyses (�t = 1 ms). The physical size of one pixel is 200 µm. The dash-dotted lines show the estimates
based on the inverse DIC Hessians. The standard compromise between measurement uncertainty and spatial
resolution is illustrated for both kinematic quantities. The benefit of temporal regularization is substantial for
accelerations, and more limited for displacements

spatial resolution and measurement uncertainty [3,4,24]. It is equally valid for displace-
ment and acceleration uncertainties.
The standard displacement uncertainties were compared to the levels obtained from the

inverse of the instantaneous Hessian [H s] multiplied by the variance of acquisition noise
(since the reference image was denoised), which is equal to the covariance matrix [14].
The square root of the mean diagonal terms (i.e., variances) is reported in Fig. 1a. A good
agreement was observed between these two ways of assessing the displacement uncer-
tainties. For spatiotemporal analyses, the spatiotemporal Hessian [H st ] was considered
instead in the covariance matrix. The use of the spline functions allowed the variances of
the spatiotemporal degrees of freedom to be reduced by a factor of more than 10, thereby
leading to a decrease of the standard displacement uncertainties by a multiplicative factor
of 0.3.
For the standard acceleration uncertainties, the gain is significantly higher and from the

previous results, it leads to a gain of 0.35 ≈ 2.7 × 10−3. This prediction is close to what
is observed from the a posteriori estimates shown in Fig. 1b. It is worth noting that the
gain for velocity uncertainties is expected to be of the order of 0.33 ≈ 3 × 10−2. When
comparing the performance in terms of temporal regularization, there is a very significant
gain for the acceleration uncertainties, and a more limited one for the displacement
uncertainties [8].
This uncertainty quantification allows us to conclude that only the spatiotemporal anal-

ysis provides a good acceleration measurement at higher acquisition rates. Similar trends
were observed when an Euler Bernoulli kinematics was selected and uncertainties in
terms of displacement and curvature were compared with standard discretizations [25].
The present regularization can be seen as an ad hoc choice of the time shape functions
as called for by the needed regularity. Yet, it does not refer to the physics at play in the
observed phenomena. The following section aims at adding such prior knowledge in the
acceleration measurement.
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Dynamic regularization
The interest of implementing mechanical regularization lies in the fact that artifactual
high spatial frequency noise produced by DICmeasurements can be filtered out as shown
for static analyses [19,20]. There, the DIC functional was regularized with a weighted
equilibrium gap functional [18], thereby dampening out displacement fluctuations that
were not mechanically admissible. Such static regularization may not be compatible with
dynamic experiments for which the kinetic energy is not negligible with respect to the
strain energy.
The linear momentum balance equation reads

∇ · σ + f = ρü (15)

where σ denotes the Cauchy stress tensor, ρ themass density, ü the acceleration field, and
f body forces. In the absence of body forces, and assuming linear elasticity, the discretized
equation becomes [26]

[K ]{u} + [M]{ü} = {0} (16)

where [K ] is the stiffness matrix, [M] the mass matrix, {u} the column vector gathering
all nodal displacements, and {ü} the column vector gathering all nodal accelerations for
time t.
Dynamic residuals are therefore formed as the L2-norm of instantaneous load residuals

{f res(t)} = [K ]{u} + [M]{ü} (17)

to be summed over the whole time domain

�2
D =

∑

t∈[t0;tn]
‖[K ]{u} + [M]{ü}‖2 (18)

The quantity to be minimized in dynamically regularized DIC �2
R corresponds to the DIC

functional �2
C penalized by the dynamic functional �D

�2
R = �2

C + wD · �2
D (19)

where wD is the weight put on the dynamic residual, namely, the higher the weight, the
more regularized the measured displacement (and acceleration) fields. The value of this
weight will be discussed later on.
With the present spatiotemporal setting, the computation of dynamic residuals is

straightforward. The nodal displacements {uk (t)} and accelerations {ük (t)} for the tem-
poral mode k read

uki (t) = αk
i ψ

k (t) and üki (t) = αk
i ψ̈

k (t) (20)

and the corresponding dynamic residuals become

�2
D({α}) =

∑

k

∑

t
‖[K ]{αk}ψk (t) + [M]{αk}ψ̈k (t)‖2

= {α}�[�]{α} (21)



Gourriérec et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:30 Page 7 of 18

where the penalization matrix [�k ] for mode k is expressed as

[�k ] =
∑

t

[

[K ]ψk (t) + [M]ψ̈k (t)
]� [

[K ]ψk (t) + [M]ψ̈k (t)
]

(22)

The iterative minimization (8) becomes

([Hs] + wD [�k ]){δαk} = {βk} − wD [�k ]{α̃k} (23)

where {α̃k} is the current estimate of the modal amplitudes, and {δαk} their corrections.
As for static regularizations, the weight wD is proportional to a regularization length �D

(in pixels) raised to the power 4, as can be shown by a simple power counting in Fourier
space [23]. In order to set the prefactor so that this regularization length scale is given a
direct meaning, a trial displacement field u∗ is chosen to normalize the regularization cost
function. A convenient choice is a plane wave u∗ = u0 sin(x/L) whose characteristic scale
is defined as L (i.e., half the largest length in the ROI). The DIC and mechanical residual
norms are computed from this trial field

�2
C ({α∗}) = {α∗}�[Hs]{α∗}

�2
D({α∗}) = {α∗}�[�]{α∗} (24)

where {α∗} is the FE discretization of u∗. With these notations, when the regularization
at scale �D is sought, the weight reads

wD =
(

�D
L

)4 �2
C ({α∗})

�2
D({α∗}) (25)

The effect of dynamic (and static) regularization on uncertainty quantification was
analyzed by using the same type calculations as in the previous section. For the static
regularization, the contribution of the kinetic energy in the estimation of the mechanical
residuals (Eq. 18) was discarded. The corresponding residual is denoted by �S (instead of
�D). In the following, only one (fine) spatial discretization was considered (i.e., �x = 3mm
or 15 px) and one temporal element size (i.e., �t = 1 ms). The regularization lengths
corresponding to the dynamic and static regularizationswere varied and their effect on the
standard displacement and acceleration uncertainties are shown in Fig. 2. The same trade-
off between measurement uncertainty and regularization lengths is observed, namely, the
higher the regularization length, the higher the penalization weight, and the lower the
uncertainties. Even though the spatial discretization was small, the uncertainty level was
controlled by the regularization length (once it becomes greater than the element size).
Further, the static and dynamic regularizations led to virtually the same uncertainty

levels. In both cases they act as low pass filters, and the higher the regularization lengths,
the lower the measurement uncertainties. When compared to spatiotemporal DIC, the
order of magnitude of the measurement uncertainties was identical. This observation
shows that, if discretization errors are not considered, the effect of dynamic regularization
is similar to temporal discretization changes. Such a trend was also observed for static
regularizations [18,20]. However, the regularization strategy allows the mesh size to be
decreased at will, provided the regularization length remains sufficiently large. In the
extreme case, pixel-scale discretizations may be considered as was proven for digital
volume correlation [27,28].



Gourriérec et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:30 Page 8 of 18

Fig. 2 Standard displacement (a) and acceleration (b) uncertainties as functions of the static (�S ) and
dynamic (�D) regularization lengths. Comparison with instantaneous and spatiotemporal analyses. The
physical size of one pixel is 200 µm. The same type of compromise between measurement uncertainty and
spatial resolution is found in comparison with instantaneous and spatiotemporal DIC

Virtual test case
Numerical experiment

The following proof of concept is a numerical simulation of pyrotechnic cutting. It corre-
sponds to the dynamic separation of two assembled aluminium alloy plates with a density
ρ = 2710 kg/m3, Poisson’s ratio ν = 0.33, and Young’s modulus E = 69 GPa (see Fig. 3).
The acceleration amplitude reaches 50,000g, which corresponds to the so-called zone Z1
of pyrotechnic cutting [1,29]. The boundary conditions consist in applying a load history
on the plate (at rest at t = 0), which models linear pyrotechnic cutting [30]. The corre-
sponding acceleration history is shown in Fig. 4a for the cutting signal due to ignition in
the cord, and the induced shock wave in the plate (Fig. 4b). The maximum acceleration
amplitude is 600,000g for the former and 300,000g for the latter.
Its history was assumed to be acquired at a 1 Mfps acquisition rate with a definition

of 320 × 192 pixels (Fig. 12a). The resolution was to equal to 500 µm/pixel, which was
selected to measure displacements of the order of 20 µm over an area of 160 × 96 mm2

(Fig. 3). This size was a compromise between the low displacement amplitude of the
observed shock wave and a reasonably large zone of the plate. It is worth noting that such
definition and temporal sampling are compatible with existing hardware (e.g., Shimadzu
HPV-X ultra-high speed camera [8,31]).

Fig. 3 Horizontal displacement field (expressed in µm) of the pyrotechnic cutting simulation (when
t = 85 µs). The blue area shows the ROI analyzed via DIC
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Fig. 4 Acceleration history of one node of the numerical simulation of linear pyrotechnical cutting.
a Ignition in the cord of pyrotechnic cutting, b shock wave in the plate

To create artificial frames, the simulated displacement field was linearly interpolated
at every time t of the acquisition procedure. Then, the reference speckle pattern was
deformed (see Appendix B). If not otherwise stated, the gray level interpolation scheme is
based on cubic splines. To be representative of an actual acquisition, the series of reference
images that were deformed were corrupted by acquisition noise (whose mean standard
deviation is equal to 3.1 gray levels for 8-bit pictures, see Fig. 12b). The number of frames
was determined according to the camera acquisition parameters and the duration of the
film (i.e., 180 µs in the present case).

Qualitative analysis

The following analyses are based on a spatial discretization of the displacement field with
elements of average size �x = 7.5 mm (or 15 pixels). For the temporal interpolation,
B-spline elements of size �t = 10 µs (or 10 frames) were considered. For the dynamic
regularization, different regularization lengthswere selected. Figure 5a shows thedisplace-
ment history of the mesh center. The maximum amplitude was equal to 120 µm (i.e., less
than 0.25 pixel). The displacement levels were reasonably well captured, as soon as some
dynamic regularization was applied. Conversely, when no regularization was selected,
the agreement was less good. This trend was even more pronounced in the accelera-
tion history (Fig. 5b) for which the unregularized case led to very high discrepancies that
were less important for spatiotemporal DIC, and even lower for the two regularization
lengths. For the instantaneous analysis, unrealistic levels were measured even though the
displacements were rather well captured.
Thedynamic (mechanical) nodal residuals are shown inFig. 6 for different regularization

lengths at a given time t = 85 µs. Their levels decrease as the regularization length
increases in accordance with Eq. (17).

Quantitative results

Let us now compare spatial fields and temporal histories obtained with the different DIC
implementations, namely, instantaneous analyses, spatiotemporal registrations without
or with dynamic regularization (�D = 75 pixels) with respect to the reference solution
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Fig. 5 Temporal change of displacement (a) and acceleration (b) with three different dynamic
regularizations on 180 frames of a 1 Mfps film. The physical size of one pixel is 500 µm. The more the DIC
analyses are regularized, the closer the measurement to the reference solution

Fig. 6 Dynamic residuals (in arbitrary units) at t = 110 µs with various regularization lengths. The higher the
regularization weight (i.e., the higher �D), the lower the dynamic residuals

taken from the pyrotechnic cutting simulation. Displacement fields are shown in Fig. 7
at time t = 85 µs (i.e., for the 86th frame). It is representative of the first propagation
of the shock wave (Fig. 3). All analyses captured reasonably well the spatial distribution.
The instantaneous and unregularized spatiotemporal analyses led to RMS differences of
8–9 µm (i.e., less than 0.02 pixel), which is very small given the noise level (Fig. 12b).
The dynamically regularized solution lowered the RMS difference by a factor of 2 in
comparison with the previous levels.
The various acceleration fields are reported in Fig. 8. For instantaneous DIC, they

were computed via centered finite differences and were not filtered. The correspond-
ing field is not representative of the shock wave simulation. It is too noisy and dis-
plays amplitudes greater than 3 × 106 m/s2, while the expected level is less than
5 × 105 m/s2. The RMS difference with respect to the reference solution is greater
than the maximum amplitude. The spatiotemporal analysis with no dynamic regular-
ization leads to lower nonphysical fluctuations (RMS difference ten times lower than
in the previous case). A clear gain is observed with such approach. Even closer results
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Fig. 7 Displacement fields (in µm) along x at t = 85 µs. a Reference solution, b instantaneous DIC,
c spatiotemporal DIC, d dynamically regularized DIC (�D = 75 pixels). All analyses lead to very low RMS
differences between measured displacement fields and the reference solution. The dynamically regularized
solution lowers the RMS difference by a factor of 2 in comparison with the other two analyses

to the reference solution are obtained for the spatiotemporal scheme with dynamic
regularization.
The acceleration history of the central node is plotted in Fig. 9a to highlight the interest

of dynamic regularization. As for the previous results, the acceleration from the instanta-
neous analysis is primarily corrupted by noise. If no filtering is applied, this result disqual-
ifies this type of approach in the present case. All spatiotemporal analyses better captured
the accelerations. Further, when a small regularization length is chosen, the results are
close to those with no dynamic regularization. Conversely, for a larger regularization
length, the results are very close to the reference solution (Fig. 9b). It is worth noting that
the regularization was voluntarily turned off for the first 10 and last 10 frames and leads to
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Fig. 8 Acceleration fields along x at t = 85 µs. a Reference solution, b instantaneous DIC, c spatiotemporal
DIC, d dynamically regularized DIC (�D = 75 pixels). The spatiotemporal analysis with no dynamic
regularization leads to lower nonphysical fluctuations (RMS difference 10 times lower than instantaneous
DIC). Even closer results to the reference solution are obtained with dynamic regularization

higher nonphysical fluctuations. For the displacements (Fig. 9c), the previous conclusion
also applies.
The change of the mechanical residuals with the regularization length (Fig. 10a) proves

the efficiency of the dynamic regularization in comparison with the static regularization
(i.e., the contribution of the mass matrix was turned off). The two gray level interpolation
schemes (Appendix B) do not yield the same results in the case of static regularization.
Conversely, this effect is not observed for the dynamic regularization.
Figure 10b focuses on the gray level residuals. In the present case, the dynamic regular-

ization does not make them vary much with an increase of the regularization length �D.
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Fig. 9 Temporal acceleration (a, b) and displacement (c) measurements of the central node of the mesh.
The physical size of one pixel is 500 µm. All regularized analyses better capture the accelerations and
displacements. For a larger length, the results are very close to the reference solution

Fig. 10 Change of wD�D , �C and �R (in percentage of the dynamic range) with the regularization length.
Two different gray level interpolation schemes were tested. These results prove the efficiency of the dynamic
regularization in comparison with the static regularization

They are always less than 1.7% of the dynamic range for a spline interpolation of the gray
levels, and 2.2% for the linear interpolation. In the present case, the gray level interpolation
scheme has a more significant influence.
Last, Fig. 10c shows the global residuals �R as functions of the regularization length.

When the latter increases, static residuals increase while dynamic residuals remain essen-
tially constant. This trend proves that the dynamic model describes more faithfully a
shock wave, because, even if the penalization with the mechanical model increases, the
total residuals do not vary much. Conversely, for the static regularization, the regulariza-
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tion length should not be too large as it would cut-off physical phenomena. This obser-
vation does not hold for the linear gray level interpolation scheme. These last results
validate the dynamic regularization and its implementation. The effect of the gray level
interpolation scheme is also observed with identical trends as those in the gray level
residuals.

Conclusion
Spatiotemporal DIC analyses can be used to measure acceleration fields that are, say,
continuous (in time and space when global registrations are performed). Such tempo-
ral regularization enables displacement and more importantly acceleration uncertainties
to be lowered in comparison with instantaneous approaches. Such expectations were
supported by uncertainty quantifications based on actual acquisitions with a high-speed
camera.
Within such spatiotemporal framework, it is straightforward to add a dynamic penaliza-

tion, which dampens out displacement fluctuations that are not mechanically admissible.
Such approach corresponds to an enhancement of the static penalization based upon the
equilibrium gap functional [32], which was introduced in DIC analyses [18–20]. Uncer-
tainty quantifications showed that similar levels (as previously observed) could be achieved
for displacements and accelerations with fine spatiotemporal meshes when dynamic reg-
ularization was enforced.
The benefit of dynamic regularization was also shown on an artificial test case in which

deformed pictures were constructed from simulation results of the pyrotechnic cutting of
a plate. Adequate choices of temporal shape functions andof the regularizationmodel pro-
vide acceleration measurements with the expected magnitude and with mitigated influ-
ence of acquisition noise. It was shown that measurements via DIC were possible with the
spatiotemporal code when dynamically regularized to quantify acceleration amplitudes of
the order of 10,000g.
The next step of such analyses would be to test them under real experimental conditions

to further validate the analyses preformed herein. Further, the mechanical residuals were
computed within the small perturbation framework and in linear elasticity. Geometric
and material nonlinearities may also be accounted for. Last, the same type of procedures
could be used to analyze vibration tests.
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Appendices
Appendix A: B-spline shape functions

When considering cubic B-splines, four shape functions φi, with i ∈ {1, 2, 3, 4}, for any
dimensionless time τ ∈ [0; 1] are defined as

φ1(τ ) = 2τ 3 − 3τ 2 + 1
φ2(τ ) = τ 3 − 2τ 2 + τ

φ3(τ ) = −2τ 3 + 3τ 2

φ4(τ ) = τ 3 − τ 2

(26)

with τ = (t − ti)/(ti+1 − ti), where ti is the beginning and ti+1 the end of the temporal
interval of element i. The displacement interpolation becomes

ui(t) =
∑

j
αi
jφj

( t − ti
ti+1 − ti

)

when ; ti ≤ t ≤ ti+1 (27)

The displacement continuity between two neighboring elements i and i + 1 at time ti+1
(i.e., ui(ti+1) = ui+1(ti+1)) leads to the following condition (sinceφ3(1) = 1 andφ1(0) = 1)

αi
3 = αi+1

1 (28)

Similarly, the continuity of the velocities at time ti+1 is expressed as (since φ′
4(1) = 1 and

φ′
2(0) = 1)

αi
4

ti+1 − ti
= αi+1

2
ti+2 − ti+1

(29)

Last, the acceleration continuity at time ti+1 requires that

6αi
1 + 2αi

2 − 6αi
3 + 4αi

4
(ti+1 − ti)2

= −6αi+1
1 + 4αi+1

2 − 6αi+1
3 + 2αi+1

4
(ti+2 − ti+1)2

(30)

Figure 11 illustrates the temporal interpolation with two B-spline elements that are not
evenly distributed in the time domain. With three continuity conditions, out of the eight
shape functions, only five are independent (see Fig. 11a) but defined over the whole time
domain. Figure 11b proves that the acceleration fieldwill be continuous since all five shape
functions are continuous over the considered time domain.
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Fig. 11 Cubic splines (a) and 2nd order derivatives (b) for 2 elements (temporal node at time increments 0,
40 and 60) when continuities in terms of displacement, velocity and acceleration are prescribed. These results
prove that the accelerations are piece-wise linear and continuous in the present implementation

Appendix B: Virtual deformation of images

In the present study, the reference images ft (x) were constructed by using actual pictures
of the uncertainty analyses. Consequently, they included the effect of acquisition noise
(and its dependence with the gray levels) so that each of themwas different. The denoised
reference imagêf was constructed by considering the mean (over time) of all pictures
ft (x), see Fig. 12. Acquisition noise η(x, t) was then computed as the difference, for each
pixel and each time, of ft (x) −̂f (x). Figure 12b shows that η(x, t) is Poissonian since its
variance σ 2

η is proportional to the gray level of ̂f . The Anscombe transform could be used
to account for such effect [33,34].
With the selected resolution (i.e., 500 µm per pixel), the numerical mesh was overlaid

and the displacements were interpolated for any position according to the shape func-
tions of 3-noded (linear) elements. Similarly, the temporal changes were interpolated on
the time basis of the acquisition device, which is not necessarily identical to that of the
numerical simulations. In the present case, 250 pictures were generated eachmicrosecond
with a definition of 320 × 192 pixels (Fig. 12a).
The construction of the picture in the deformed configuration gt requires the gray

levels to be evaluated at pixel positions ξ. Therefore, an inverse mapping is required to
determine the position x in the reference configuration such that x + υ(x, t) = ξ [35]. In

Fig. 12 a Denoised picturêf in the reference configuration of the virtual test case. b Variance of acquisition
noise σ 2

η as a function of the gray level of the denoised picture.̂f is constructed by using an actual picture
series of the uncertainty analyses. Its definition is 320× 192 pixels. The acquisition noise is Poissonian since its
variance is proportional (solid red line) to the considered gray level



Gourriérec et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:30 Page 17 of 18

the present case, a Newton’s method was used to determine x. Once the position x(ξ) was
known, a gray level interpolation scheme enables ft (x(ξ)) to be computed, and invoking
gray level conservation, it is equal to gt (ξ). This operation was repeated for all pixels
and all frames considered in the analysis. In the studies presented herein two gray level
interpolation schemeswere considered, namely, bilinear and cubic splines as implemented
in Matlab� [36].
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