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Abstract Background: Since the mechanical behavior of pantographic metamaterials de-

pends upon the properties of their microstructure, accurate descriptions of unit cells are

needed. Objective: The present effort is motivated by this requirement to characterize the

detailed deformation of unit cells formed of two orthogonal sets of 3 beams. Methods: Their

deformations in a bias extension test were measured via digital image correlation performed

at different scales. Results: Thanks to the gray level residuals, the microscale results were

found in better agreement with the experiment than mesoscale and macroscale analyses.

Fine analyses around the hinges showed that relative displacements occurred between the
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two beam layers. Conclusions: Such experimental analyses supply full-field data to validate

models (e.g., as a starting point in homogenization procedures) for describing the mechani-

cal behavior of pantographic metamaterials.

Keywords Digital Image Correlation (DIC) · Finite element · Gray level residuals ·

Metamaterial ·Multiscale analyses

1 Introduction

At least three different characteristic scales can be distinguished when studying panto-

graphic structures [4]. The description at the microscale considers the metamaterial as con-

stituted by a standard Cauchy continuum whose shape is detailed as the union of rectangular

and circular cylinders (see Figure 1(b)). At this scale, the detailed deformation of the con-

sidered body is fully described. The material is geometrically complex but its constitutive

equations are those of a simple first gradient isotropic continuum. At the mesoscale, the

metamaterial may be considered as made of elastic, extensional and flexible beams inter-

connected by possibly elastic constraints. At the macrolevel, it is possible to introduce, as

a predictive model, a second gradient continuum whose geometry is particularly simple.

However, it is governed by more complex deformation energy functionals.

The pantographic structure that is considered herein is characterized, at the mesoscale,

by two families of equally spaced beams interconnected at their intersection points by means

of deformable cylinders. The question addressed herein concerns the description of the de-

formation phenomenology involving these cylinders, namely, can they be modeled as hinges

(i.e., constraints prescribing equality of displacements and allowing for relative rotations)

possibly with a deformation energy related to these rotations? Or is it necessary to assume

that relative displacements occur at these interconnection points?
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Structures constituted by the pantographic cells shown in Figure 1 can be fabricated via

additive manufacturing (3D printing) [5]. They supply an interesting example of metamate-

rials synthesizing second gradient continua [26,4]. Further, these material systems undergo

large deformation (> 50 % stretch) while remaining elastic. In recent years, refined mathe-

matical models have been proposed to replicate such behavior [23,8]. They can be classified

as either continuum or discrete models. The necessary continuum models for describing the

complex kinematics of these metamaterials are those in which the strain energy depends

upon the second gradient of deformation. Conversely, discrete Hencky spring-link models

offer an alternative approach for describing the deformation of pantographic systems. Qual-

itative comparisons of the predictions obtained with both discrete and continuous models

with experimental results were carried out [23,26].

Since the mechanical behavior of pantographic structures at the macroscale depends

upon the properties of their microstructure, accurate mathematical description of panto-

graphic unit cells is needed. The present effort is motivated by this requirement to charac-

terize the detailed deformation of unit cells formed of two orthogonal sets of 3 beams. They

were subjected to a tensile experiment and digital image correlation (DIC) was conducted

to extract the details of their deformation.

DIC consists in registering a series of images acquired during mechanical tests [20,

19]. From such analyses, displacement, strain and residual fields are obtained. When deal-

ing with pantographic metamaterials, FE-based DIC was applied at the macroscale [26]

and mesoscale [4] for which the mesh was tailored to the pantograph surface with simple

morphological operations. In both cases, regularized DIC [16,22] was selected since the

random contrast was very weak in the analyzed experiments. An alternative route consists

in backtracking, via regularized DIC, nominal meshes to fit the experimental reference con-

figuration [5]. Both approaches will be used herein.
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For the experiment reported herein, FE-based DIC was applied at three different scales.

Hencky-type regularization (i.e., incremental elastic regularization) was implemented. Thanks

to such type of regularization, large strains can be captured without penalizing too much the

registration scheme. Further, focused analyses about the hinges will also be carried out via

local and global DIC at the microscale.

2 Multiscale DIC

It has been previously noted that the considered mechanical system is characterized by its

multiscale structure. It is therefore natural to perform DIC analyses at different scales. In the

pantographic metamaterial considered herein, meshes using 3-noded finite elements were

constructed. The interpolation functions are then linear within each element, and the nodal

displacements become the unknowns to be determined by minimizing the sum of squared

gray level residuals [12,17] over the considered region of interest (ROI)

ϕ
2
c ({υ}) = ∑

ROI
ρ

2(x) (1)

with respect to the nodal displacements υi, which are gathered in the column vector {υ},

such that the displacement u of any material point x reads

u(x) = ∑
i

υiNi(x) (2)

whereNi are finite element shape functions. The pixel-wise gray level residual reads

ρ(x) = f (x)−g(x+u(x)) (3)

where f is the picture in the reference configuration, g the picture in the deformed con-

figuration. The root mean square (RMS) of ρ computed over the ROI defines the overall

registration quality associated with any selected kinematic basis of measured displacement

fields.
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The minimization of ϕ
2
c is performed via Gauss-Newton iterations

[Hc]{∂υ}= {hc} (4)

where [Hc] denotes the DIC Hessian, {hc} the DIC residual vector. These two quantities

are obtained by assembly of elementary Hessians for each element e

(He
c ) jk = ∑

Ωe
(∇∇∇ f (x) ·N j(x))(∇∇∇ f (x) ·Nk(x)) (5)

and elementary DIC vectors

(he
c) j = ∑

Ωe
( f (x)−g(x+ ũ(x))) (∇∇∇ f (x) ·N j(x)) (6)

where Ωe is the part of the ROI covered by element e, and ũ corresponds to the current

estimate of the displacement field. The minimization scheme consists in gradually correcting

the successive estimates {υ̃} of the total nodal displacement vector {υ}. After each iteration,

the image g corrected by the measured displacement field ũ (i.e., g(x+ ũ(x))) is updated

for any pixel x belonging to the ROI. The DIC vectors are subsequently re-evaluated and a

new iteration starts. In the present setting, the DIC Hessian is computed once for all since it

only depends on the gradient of the picture in the reference configuration (Equation (5)).

The DIC functional is penalized with a second one [21], which is constructed by com-

puting the norm of the nodal forces for Hencky elasticity (i.e., minimizing the equilibrium

gap [3] written in terms of the incremental displacements {δυ} between two consecutive

pictures [5])

ϕ
2
m({υ}) = {δυ}>[K]>[K]{δυ} (7)

The minimization of ϕ
2
t = ϕ

2
c +wmϕ

2
m is performed via Gauss-Newton iterations

[Hcm]{∂υ}= {hc}−wm[K]>[K]{δ υ̃} (8)
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with

[Hcm] = [Hc]+wm[K]>[K] (9)

where {δ υ̃} denotes the current estimate of the incremental displacement, and [K] the

stiffness matrix. The weight of this functional wm is proportional to a length `reg raised to

the power 4 [16,22]. With such regularization scheme, there are two length scales, namely,

one associated with the element size `, and another one with the mechanical regularization

(i.e., `reg). This length defines the physical size of the zone over which Hencky elasticity

applies.

Last, kinematic constraints will be added to deal with perfect hinges (i.e., the displace-

ment of the top and bottom beam will be assumed identical at the hinge axis, and the corre-

sponding rotation is free). In the present case, Lagrange multipliers, which are gathered in

the column vector {λ}, characterize pseudo-cohesive forces (associated with the DIC for-

mulation) that need to be applied to satisfy the considered constraint (i.e., no displacement

jump at the hinges). The minimization procedure then consists in iteratively solving[Hcm] [L]
>

[L] [0]



{∂υ}

{∂λ}

=


{hc}−wm[K]>[K]{δ υ̃}

{0}

 (10)

where [L] gathers all constraint equations written on nodal displacements of different parts

of the mesh.

Once any of the previous Hessians is available, the corresponding DIC vectors are it-

eratively computed as the nodal displacements are updated. The convergence criterion con-

sists in having the L2-norm of the nodal displacement increments {δυ} become less than

10−3 px, which, given the very large amplitude of the displacements of the reported experi-

ment (i.e., greater than 220 px), is very severe. All results reported hereafter were obtained

after such convergence was achieved.
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The DIC analyses were performed using the Correli 3.0 framework [11] in which the

above described elastic regularization was implemented (Table 1). With the selected regu-

larization length (i.e., `reg = 150 px), the standard displacement uncertainty was less than

0.005 px irrespective of the various meshes that will be analyzed herein (i.e., their char-

acteristic sizes were always lower than the regularization length, so that the measurement

uncertainty is controlled by `reg). These results were obtained by registering the first two

images acquired during the experiment for which the crosshead of the testing machine did

not move.

Table 1 DIC analysis parameters

DIC software Correli 3.0 [11]

Image filtering none

Element length (mean) 12, 10 and 11 px

Shape functions linear (T3)

Mesh see Figures 2(d), 3(b) and 4(b-c)

Matching criterion penalized sum of squared differences

Regularization length 150 px

Interpolant cubic

Displacement noise-floor < 0.005 px

3 Multiscale Meshes

The analyses performed herein involved different scales for the description of the kinematics

of pantographic cells. Such descriptions were tailored to the corresponding models that may

be developed. Macroscale registrations utilized simple discretizations of the kinematics in

which the local details of the microstructure were not accounted for (i.e., the solid phase

and air are meshed). In mesoscale analyses, the external morphology of the solid phase was
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described. However, the internal kinematics was approximated by continuous displacement

fields. Conversely, the local details of the internal kinematics associated with the hinges

was investigated in microscale studies. For each of these scales, different meshes based on

3-noded elements were constructed.

3.1 Millimetric Pantograph

The specimen considered in this analysis was designed to represent the unit cell behavior

of pantographic metamaterials. Their geometries were generated using the CAD software

SolidWorks (Dassault Systems SolidWorks Corporation, Waltham, MA, USA). The samples

were fabricated using the 3D printer Formiga P 100 (EOS GmbH, Munich, Germany). The

printer used the SLS (selective laser sintering) technology to fabricate pantographic unit

cells using polyamide powder (PA2200) with average grain size of 56 µm. Figure 1 gives a

schematic view of the studied structure, the pantographic unit cell indicating the geometrical

parameters, and the printed sample. For the tested specimen, the geometrical parameters

were as follows: p = 13 mm, L = 39 mm, a = b = 1 mm, d = 0.9 mm, h = 2 mm, θ = 90°,

and φ = 45°.

(a) (b) (c)

Fig. 1 (a) Schematic view of the pantographic structure studied herein, and (b) corresponding unit cell.

Printed cells (p = 13 mm, L = 39 mm, a = b = 1 mm, d = 0.9 mm, h = 2 mm, θ = 90°, φ = 45°)
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3.2 Macroscopic Meshes

First, a series of macroscopic meshes encompassing the pantographic structure was consid-

ered (Figure 2). In the present case, structured meshes were created from nodal sequences

of a rectangular ROI. Four different discretizations were constructed, namely for average

element sizes ` ranging from 90 px for the coarsest mesh down to 12 px for the finest mesh.

The element size was defined as the square root of the mean element surface for any consid-

ered mesh. The sought kinematics thus corresponded to the macroscopic response of such

materials.

(a) `= 90 px (b) `= 39 px (c) `= 18 px (d) `= 12 px

Fig. 2 Different meshes used in DIC analyses at the macroscale. The reference configuration of the panto-

graphic metamaterial is also shown. The insets show meshing details of the underlying hinge

3.3 Mesoscopic Meshes

Second, FE-based DIC registrations were also performed at the mesoscale. In those cases,

the external geometry of the pantographic structure was explicitly accounted for, but the

kinematics was that of an underlying FE mesh in which the hinges were not explicitly de-
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scribed (Figure 3). The mesh was tailored to the pantograph surface via simple morpholog-

ical operations [4] in order to create a mask of the solid phase. Each boundary was then

interpolated using B-splines to avoid its pixellization. These contours were used to prepare

the geometrical features (i.e., points, lines, line loops and surfaces) as input to GMSH [6]

in which the mesh density can be varied at will. Three different discretizations were chosen

(i.e., average element sizes ` ranging from 20 px down to 5 px).

(a) `= 20 px (b) `= 10 px (c) `= 5 px

Fig. 3 Different meshes used in DIC analyses at the mesoscale. The insets show meshing details of the

underlying hinge

3.4 Microscopic Meshes

To account for the 11 hinges (Figure 4(a)), a third (i.e., microscopic) mesh was constructed.

Each beam of the pantograph was individually meshed (Figure 4(b)) with a mean element

size ` = 11 px. Consequently, the two meshes overlapped in the intersection areas about

each hinge. Another option for specifically tracking the hinge motions was to mesh small

zones of interest centered about each hinge (Figure 4(c)). In the present case, four 11-px
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triangles were centered about each hinge to form a square window. From such analyses, the

first order kinematics of the pantograph (i.e., the motions of the hinges) was measured. This

type of analysis is typically suited for discrete models [23,25]. For such local approaches,

the elastic regularization was not as effective, which led to a standard uncertainty less than

0.025 px. This level was greater than for the previous cases (Table 1), yet still very low for

a DIC analysis with such small interrogation windows.

(a) (b) (c)

Fig. 4 Meshes used in DIC analyses at the microscale (`= 11 px). (a) Location and labels of the 11 hinges.

(b) Meshed beams for global analysis. (c) Zones of interest centered about each hinge for the local approach.

The insets show meshing details of the underlying hinge

To obtain the mesh shown in Figure 4(b), an additional operation was needed, namely

backtracking the mesh constructed on the nominal geometry of the pantograph. Figure 5(a)

shows the initial configuration composed of two series of beams (in blue), and the two

supports (in red and green). The supports were only coarsely meshed as the only relevant

information is the displacement of the four connections with the beams (i.e., hinges #1, 2,

3, 4). From this mesh, a mask was created for which the gray level was equal to the average
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gray level of the pantograph. The background had a uniform gray level identical to that of

the true experiment.

This first mesh was backtracked to fit as best as possible the actual geometry via reg-

ularized DIC. An auxiliary and structured (yellow) mesh was constructed on the picture in

the reference configuration (Figure 5(b)). With this mesh, the experimental configuration

(Figure 5(b)) was registered with respect to the nominal configuration (Figure 5(a)). At con-

vergence, the nominal mesh (Figure 5(c)) was then backtracked by moving back all nodes

(Figure 5(d)). A very good match is observed.

(a) (b) (c) (d)

Fig. 5 Procedure of mesh backtracking. (a) Nominal mesh over the mask. (b) Experimental reference config-

uration and auxiliary mesh. (c) Nominal mesh laid over the picture of the reference configuration. (d) Back-

tracked mesh laid over the picture of the reference configuration. The insets show meshing details of the

underlying hinge

The perfect hinges were then recreated by using Lagrange multipliers prescribing the

corresponding kinematic constrains (in terms of nodal displacements) in the registration

systems to solve (see Equation (10)). The beams were therefore allowed to rotate about each
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hinge, which was not possible in the mesoscopic analyses. The two supports of the pan-

tographs were also meshed with two triangular elements and connected to the corresponding

hinges of the pantograph.

The choice of any discretization was probed by computing the correlation residual field

ρ (Equation (3)) and its RMS level over the ROIs of any DIC calculation. The lower the

residual, the more trustworthy the measured displacement field. Given the fact that the three

scales did not consider the same region of interest, the gray level residuals of the macro-

scopic analyses cannot be directly compared to those at the meso- and micro-scales.

4 Analysis of Tensile Test

The pantographic unit cell specimen was subjected to tensile loading in step-by-step quasi-

static conditions. The experimental setup and testing procedure are briefly described here

for completeness (see for other details in Refs. [14,27]). The experiment was performed us-

ing Bose ElectroForce 3200 (now TA Instrument) testing device controlled by the software

WinTest Material Testing System. Reaction forces were measured using a load cell with

measurement range of ±22 N, a standard measurement uncertainty of 0.1 %, and a noise

floor of 0.001 N. The test was conducted in displacement control mode with a crosshead

velocity of 0.1 mm/s, where the displacement was measured using the built-in transducer

with the range of ±6.5 mm, a standard measurement uncertainty of 0.1 % and a noise floor

of 1 µm. The grips connecting the specimen to the loading machine were designed to apply

an axial tensile action and resist the overall specimen rotation about the loading axis. Conse-

quently, the specimen was restricted from Poynting effect related to specimen rotation about

the loading axis observed for pantographic metamaterials under stretch [13]. The crosshead

displacement amplitude was 12 mm.



14 F. Hild et al.

For evaluations of the displacement fields, the specimen grips were sprayed on their

surface to make a black speckle pattern prior to the testing. However the surfaces of the

beams were just marked by a set of crosses whose distance was about 30 px. Such situa-

tion required the regularization to be adapted and a size of `reg = 150 px enabled all DIC

calculations reported herein to converge. The hardware parameters of the optical setup are

reported in Table 2. A series of 80 pictures was acquired when one loading and unloading

cycle was performed.

Table 2 DIC hardware parameter

Camera NIKON D300

Definition 4288×2848 pixels (RGB image)

Gray Levels amplitude 8 bits

Lens AF-S VR Micro-Nikkor 105mm f/2.8G ED

Aperture f /4.5

Field of view 74×111 mm2

Image scale 52 µm/px (B&W image)

Stand-off distance ≈ 40 cm

Image acquisition rate 1/3 fps

Exposure time 20 ms

Patterning technique Sprayed black paint and black crosses

Pattern feature distance 30 px (crosses)

Figure 6 shows three particular images of the test, namely, the reference configuration,

one picture at the middle of the loading cycle, and the last of the loading cycle. This case

is deemed challenging for DIC for the following reasons. First, there was virtually no pat-

tern on the beams. As mentioned above, this observation explains why regularization had to

be implemented. Otherwise, only the black features could have been tracked. Second, the
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pantographic metamaterial deformed a lot. Third, because of the pantographic nature of the

metamaterial, material points gradually disappeared since the motion of two superimposed

layers of beams were analyzed. Last, but not least, the local kinematics of such metamateri-

als was complex.

(a) (b) (c)

Fig. 6 Gray level images of the reference configuration (a, image #0), and two deformed configurations at

the middle (b, image #19) and at the end (c, image #39) of the loading ramp

Figure 6 also shows the reference frame associated with matrices of pixels. All results

reported hereafter will refer to this frame.

4.1 Macroscale Results

Figure 7 shows the change of the correlation residual (i.e., RMS(ρ)) for the four different

meshes used in macroscopic registrations (Figure 2). The higher the applied displacement,

the higher the residuals for all meshes. Further, there is a clear difference between the cor-

relation residual for the coarse mesh (i.e., average of RMS(ρ) was equal to 21 gray levels)

and that of the finest discretization (i.e., average of RMS(ρ) reduced to 14 gray levels).
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The 12-pixel discretization led to residuals very close to the 18-px mesh (i.e., average of

RMS(ρ) equal to 15 gray levels). Both meshes (i.e., `= 12,18 px) are therefore considered

to be equivalent in this first series of tests.

Fig. 7 RMS gray level residuals in DIC analyses at the macroscopic scale

The RMS residuals observed in this first case were very high in comparison with gener-

ally accepted levels in DIC analyses [9], which is typically of the order of one percent of the

dynamic range (i.e., ca. 2-3 gray levels for 8-bit pictures and conventional cameras). This is

only the case for the first picture pair for which the test had not started. Early on, the fact

that the residuals are higher is an indication that the kinematic hypotheses are not fully con-

sistent with the experimental reality, and proves that DIC analyses were very challenging in

the present case. Last, let us note that the RMS variations for pictures 19-21 and 59 were due

to lighting variations. Brightness and contrast corrections could have been applied [9,2,1];

they were not because these fluctuations remained sufficiently low in comparison with other

sources of error. The small increase for the last picture (79) was due to small contractions of

the metamaterial (starting at picture 72).
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To better understand these differences, Figure 8(a-d) shows the gray level residual fields

for the 19-th picture (i.e., corresponding to about half the maximum prescribed displace-

ment).

(a) `= 90 px (b) `= 39 px (c) `= 18 px (d) `= 12 px

(e) `= 90 px (f) `= 39 px (g) `= 18 px (h) `= 12 px

Fig. 8 Gray level residual fields for the four different meshes used in DIC analyses at the macroscale of the

19-th (top row) and 39-th (bottom row) images
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The local deformations of the pantograph were better captured with the two finest dis-

cretizations. The coarsest mesh was not satisfactory in that case. For the 39-th picture, which

refers to the maximum applied displacement, Figure 8(e-h) shows that the coarsest mesh did

not capture at all the kinematic details of the test. The deformations were better described,

even imperfectly (Figure 7), by the two finest discretizations.

4.2 Mesoscale Results

In Figure 9, the change of the RMS gray level residuals are reported for the three different

meshes used in mesoscopic registrations (Figure 3). The average RMS residuals are all three

of the order of 10 gray levels. The influence of the discretization is not as important as at the

macroscale (Figure 7). Further, the two finest meshes at the macroscale led to correlation

residuals that were higher (i.e., about 40 %) than those at the mesoscale. Last, let us note

that all RMS “jump” observed at the macroscale also occurred in the present case for the

same reasons.

Fig. 9 RMS gray level residuals in DIC analyses at the mesoscopic scale

The quasi mesh-independence of the DIC results at the mesoscale is confirmed for the

gray level residual fields computed for the 19-th picture (see Figure 10(a-c)). The differences

with the macroscopic analyses (Figure 8(a-d)) prove that when the mesh could be fully
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adapted to the mesostructure, the corresponding kinematics was better accounted for the

experiment, especially in the vicinity of the hinges for the finest discretizations.

(a) `= 20 px (b) `= 10 px (c) `= 5 px

(d) `= 20 px (e) `= 10 px (f) `= 5 px

Fig. 10 Gray level residual fields for the three different meshes used in DIC analyses at the mesoscale of the

19-th (top row) and 39-th (bottom row) images

The differences between mesoscopic and macroscopic analyses are more striking for

picture #39 (see Figures 8(e-h) and 10(d-f)). The registration had failed for the macroscopic
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analysis with the coarse mesh but was better with finer discretizations. Conversely, the mesh

density influenced the registrations at the mesoscale essentially in the close vicinity of the

hinges. The mesoscale analyses showed that there was a clear benefit by accounting for all

the geometric details of the mesostructure of such metamaterials. What was still lacking was

a better kinematic description close to the hinges. The following analyses aim at addressing

this point.

4.3 Microscale Results

For the first series of analyses at the microscale (i.e., for meshed beams, see Figure 4(b)),

the residuals were very low for the 19-th picture (Figure 11). This result shows that the

selected description of the hinges was faithful. Conversely, for the 39-th picture, the residuals

increased, especially close to some of the hinges. This observation proves that the hypothesis

of perfect hinge is violated.

(a) (b) (c)

Fig. 11 Gray level residual fields for the microscopic mesh for the 19-th (a) and 39-th (b) images. (c) RMS

gray level residuals for DIC analyses at the microscopic scale
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The previous trends are now summarized in Figure 11(c) that shows the change of the

correlation residuals for the two analyses at the microscopic scale (Figure 4(b-c)). For the

mesh explicitly accounting for the hinges (Figure 4(b)), the average RMS residual was equal

to 7.5 gray levels. This level can be compared to those observed with mesoscale analyses

since the ROIs were virtually identical. These results show that the explicit modeling of the

hinges leads to the best results (i.e., correlation residuals on average 25% lower in compari-

son with mesoscale analyses).

If discrete meso-models are to be used, the only relevant information is related to the

motions of the hinges [23]. The discretization shown in Figure 4(c) was tailored for that

purpose. The corresponding residuals remained quite high (Figure 11(c)) in comparison

with all other cases. This trend is due to the fact that the actual kinematics in the close

vicinity of the hinges is complex, and that the analyzed zones were precisely focussing on

the hinges. This result does not mean that such analyses should be discarded. However, it

calls for attention when comparing such measurements to numerical simulations.

From these first analyses, it is concluded that the macroscopic kinematics is too poor to

properly capture the local deformations of the studied pantographic structure. This is espe-

cially true for coarse discretizations. The underlying model may yield limited predictions.

Overall, the mesoscale kinematics better captured the actual deformations of the sample,

which is proven by lower gray level residuals in comparison to the macroscopic analyses.

The microscopic results are the most faithful (i.e., they lead to the lowest residuals).

4.4 Comparison of Different Kinematic Hypotheses

The following discussion deals with the kinematic fields. Figure 12(a-d) shows the longi-

tudinal displacement fields, expressed in pixels (i.e., 1 px ≡ 52 µm), when the applied

displacement reached half the maximum level (i.e., picture #19).
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(a) macro (b) meso (c) micro (d) micro

(e) macro (f) meso (g) micro

Fig. 12 (a-d) Longitudinal displacement fields (expressed in pixels, 1 px ≡ 52 µm) for DIC analyses at var-

ious scales. (e-g) Corresponding maximum principal strain fields for the continuous approaches. The applied

displacement is half its maximum level (i.e., picture #19).

All following fields are plotted on the deformed meshes. For visual comparison pur-

poses, the image of the deformed configuration is shown in the background. The meshes

at the meso- and micro-scale follow rather well the experimental sample deformation. Sim-
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ilarly, the local analyses are following the motions of the 11 hinges. Such statements can

be made qualitatively thanks to the pictures of the deformed configuration. More quantita-

tively, the gray level residual fields (Figures 8, 10, and 11(c)) prove that the registrations

were generally successful.

From the displacement fields, the strain fields were computed by exact differentiation

of the shape functions of T3 elements. In the present case, the Green-Lagrange strain mea-

sure was selected. The maximum level of the color bars corresponds to 1.5 times the over-

all Green-Lagrange strain (i.e., computed from the length variation between the two sup-

ports). Figure 12(e-g) shows the maximum principal strain field for global DIC analyses

(image #19) at different scales with approximately the same mesh size (i.e., 11 px). For the

macroscopic mesh (Figure 12(e)), the strains were very high over most of the ROI except

in the two supports. This result was not found for the other meshes. Figure 12(f) shows that

most of the strains were concentrated about the hinges, and significantly lower in the other

parts. This observation applies to a lesser degree for the microscopic mesh (Figure 12(g)).

From the residual fields, it was concluded that the strain fields at the microscopic scale were

the closest to the experiment.

Figure 13(a-d) shows the longitudinal displacement fields when the applied displace-

ment reaches the maximum level. Even though the mesoscopic and microscopic registrations

led to higher residuals (Figures 10 and 11(a-b)) in comparison to image #19, the sample de-

formation was rather well captured. Such remark also applied for the macroscopic analyses

(Figure 8).
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(a) macro (b) meso (c) micro (d) micro

(e) macro (f) meso (g) micro

Fig. 13 Longitudinal displacement fields (expressed in pixels, 1 px ≡ 52 µm) for DIC analyses at various

scales for picture #39 (maximum level). (e-g) Corresponding maximum principal strain fields for the contin-

uous approaches.

For image #39 (i.e., for the maximum applied displacement), Figure 13(e-g) shows the

maximum principal strain field for global DIC analyses at different scales. For the macro-

scopic mesh (Figure 13(e)), the strains were still higher than in the previous case (Fig-
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ure 12(e)), as expected. For the other two meshes (Figure 12(f-g)), the strains were also

concentrated in the vicinity of the hinges, but the beams also experienced significant elon-

gations, except those that were connected to the two supports.

4.5 Analysis of the Hinges

Since the kinematic admissibility of the hinges was enforced via Lagrange multipliers {λ}

for each component of the relative displacement of hinges, their level indicates whether this

constraint is physically realistic or not. High levels of Lagrange multipliers thus call for

attention (i.e., the pseudo-cohesive forces become very high). Figure 14(a) shows the La-

grange multiplier vector (in arbitrary unit) for the 19-th and 39-th image. Very high levels

were observed for the three central hinges. The hypothesis of perfect hinge thus is ques-

tionable. For the other hinges, the amplitudes of the Lagrange vectors were lower, thereby

indicating that the kinematic constraint was plausible. For the 19-th image, the overall levels

were significantly smaller. In that case, the assumption of perfect hinges was better satisfied.

The present analysis of experimental results therefore indicates that a two-field model [18]

for pantographic sheets may be necessary.

Figure 14(b-c) shows the history of the horizontal and vertical components of the La-

grange multiplier vectors. The overall trend coincides with the applied displacement. The

three central hinges led to the highest levels in both directions. Conversely, the Lagrange

multipliers associated with the two left hinges had very small levels during the whole test.
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(a) (b) (c)

Fig. 14 (a) Lagrange multiplier vectors (in arbitrary units) for the 19-th (red arrows) and 39-th (yellow

arrows) images. History of Lagrange multiplier in the vertical (b) and horizontal (c) directions. The numbers

correspond to the labels of the hinges (Figure 4(a))

All these results suggest to relax the kinematic constraints on each hinge as a displace-

ment jump may have occurred at the nodes of the two meshes that coincide for the hinge

center. As a consequence, the macromodel for pantographic metamaterials would have to

be formulated by using two distinct placement fields (i.e., two sets of positions correspond-

ing to the hinges that experience relative rotations and translations), one for each beam

array. Figure 15(a) shows the history of the correlation residuals with this new kinematic

hypothesis (i.e., the constrains prescribed by the matrix [L] were no longer enforced in the

minimization scheme (10)). When compared to the results with Lagrange multipliers (Fig-

ure 11(c)), there was clear gain when suppressing the corresponding constraints. The mean

RMS residual was equal to 4.5 gray levels. This 40% decrease fully validated this last hy-

pothesis, namely, the hinges experienced displacement jumps at their connections with the

top and bottom beam layers.
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(a) (b) (c)

Fig. 15 (a) RMS gray level residuals for DIC analyses at the microscopic scale. Gray level residual fields for

the microscopic mesh for the 19-th (b) and 39-th (c) images with no kinematic constraints at the hinges

Figure 15(b-c) shows the gray level residuals for the 19-th and 39-th pictures. For the

19-th image, the residuals remained very low except around very small zones, some of them

close to the hinges. For the 39-th image, the residuals were evenly distributed irrespective

of the hinge locations. This observation further validates the new kinematic hypothesis.

Figure 16(a) shows the displacement jump vector at the 11 hinges for the 19-th and

39-th images. For the 39-th picture, as for the Lagrange multipliers, very high levels were

observed for two (out of three) central hinges, which proved that the hypothesis of perfect

hinge was not valid. For most of the other hinges, the amplitudes of displacement jumps

were lower, yet not vanishing. For the 19-th image, the overall levels were significantly

smaller. Figures 16(b-c) show the history of the horizontal and vertical components of the

displacement jump vectors. The overall trend coincides with the applied displacement for

the horizontal component. For the vertical component, the general trends were less obvious,

which points to the fact that the experiment had no symmetry because of various imperfec-
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tions (e.g., boundary conditions, initial pantograph geometry, 2D hypotheses). All hinges

experienced non-vanishing displacement jumps.

(a) (b) (c)

Fig. 16 (a) Displacement jump vectors for the 19-th (red arrows) and 39-th (yellow arrows) images. History

of displacement jump (expressed in pixels, 1 px ≡ 52 µm) in the vertical (b) and horizontal (c) directions.

The numbers correspond to the labels of the hinges (Figure 4(a))

Figure 17 shows the maximum principal strain field for images #19 and #39. For the first

case, the strain levels remained very low everywhere and did not concentrate around hinges.

Conversely, the strains were higher in the second case, which indicates that, at that level of

stretch, some strain energy was stored in the metamaterial.
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(a) (b)

Fig. 17 Maximum principal strain for DIC analyses at the microscopic scale for the 19-th (a) and 39-th (b)

images with no kinematic constraints at the hinges

5 Conclusion

In the present paper, the analysis of the deformations of elementary pantographic cells was

studied at three different scales in a bias extension test. These cells constitute the elementary

pattern of so-called pantographic metamaterials. At the macroscopic scale, the behavior of

such metamaterials is expected to follow second gradient theories [7,23,15]. At an interme-

diate (meso)scale, pantographic metamaterials can be described as a set elastic extensional

and rotational springs [24]. With the models introduced up to now, the details of the 2D

morphology were taken into account but the deformation of the hinges was not explicitly

accounted for. Conversely, at the microscale, the deformation of the deformable cylinders

interconnecting the arrays of beams can be explicitly described [7]. In order to supply an

experimental support to the modeling assumptions to be made for describing at all these

three scales the pantographic metamaterial that was considered, different analyses were per-

formed and their results were compared.
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It is worth noting that the microstructure of pantographic metamaterials is not classi-

cal for DIC analyses in which, usually, the material is considered as a continuum. Further,

the sample was not totally patterned. Such situation required regularization strategies to be

implemented. Since the material underwent very large deformations, Hencky-type regular-

ization was selected to avoid penalizing too much the measurements. The results reported

herein show the feasibility of performing DIC analyses at three different scales related to

the microstructure of pantographic metamaterials. They showed that, depending on the mea-

surement scale, the kinematics was more or less trustworthy in comparison with the studied

experiment. Such type of analyses can be extended and compared to numerical simulations

of various models. The gray level residuals will then constitute an objective way of probing

each model with respect to the image set acquired during experiments.

The morphology of the pantographic cells and their kinematics made DIC analyses very

challenging as evidenced by gray level residuals that were very high in comparison to regu-

lar cases. Such observation does not mean that DIC was not applicable. However, it probes

whether various kinematic hypotheses were consistent with the experimental data (i.e., the

set of images acquired during the bias extension test). The first analysis at the microscale was

obtained by prescribing kinematic compatibility between the top and bottom beams via La-

grange multipliers. The second one relaxed such constraints and enable displacement jumps

to be evaluated for each hinge. This last path led to the best results (i.e., the lower correlation

residuals). A local analysis tracking only the mean displacement of hinges was also carried

out. This analysis will guide the derivation of discrete models. Other kinematic hypotheses

may be considered in future DIC studies such as those provided by beam elements [10].

The experimental quantifications reported herein give important indications about the

mechanical behavior of the considered pantographic cells and supply important indications

for future modeling efforts. It was proven that around the interconnecting circular cylinders
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(modeled as hinges at the microscale), relative displacements occur. They are related to

non-negligible deformation energy. Consequently, the two-beam layers in a pantographic

metamaterial must, in some specific situations, have to be described at the macrolevel by a

two-field continuum model. This conclusion supports the assumptions made by Spagnuolo

et al. [18].
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