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HYDRODYNAMIC LIMIT FOR A BOUNDARY DRIVEN
SUPER-DIFFUSIVE SYMMETRIC EXCLUSION

CÉDRIC BERNARDIN, PEDRO CARDOSO, PATRÍCIA GONÇALVES, STEFANO SCOTTA

ABSTRACT. We study the hydrodynamic limit for a model of symmetric exclusion processes
with heavy-tailed long jumps and in contact with infinitely extended reservoirs. We show how
the corresponding hydrodynamic equations are affected by the parameters defining the model.
The hydrodynamic equations are characterized by a class of super-diffusive operators that are
given by the regional fractional Laplacian with some additional reaction terms and various
boundary conditions. This work solves some questions left open in [2] about the same model.
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1. INTRODUCTION

The understanding of the macroscopic behavior of a physical system, from the microscopic
description of its molecules, is the main goal of statistical mechanics. Stochastic interacting
particle systems (IPS), introduced in the mathematics community by [29], have been inten-
sively used to obtain, rigorously, the macroscopic laws which rule the space-time evolution
of the conserved quantities of a system. These macroscopic laws take the form of partial
differential equations (PDEs) whose nature depends on some features of the underlying IPS.
The PDEs associated with an IPS are derived thanks to a scaling parameter N →∞, which
connects the macroscopic space, where the solutions of the PDE live, with the microscopic
space, a discrete space where the particles of the IPS evolve. The exclusion process is the most
studied IPS in the mathematical literature. Its dynamics consists in a large system of particles
evolving on the lattice Z like independent continuous-time random walks, but with the rule
that any jump, which would result in the occupation of a site by more than one particle, is
suppressed. This “exclusion” condition characterizes the interactions between particles and
gives its name to this Markov process. The number of particles is preserved and the goal is
then to understand how does the particles’ density evolves in space and time. The transition
probability of the underlying random walks is denoted by p : Z×Z→ [0, 1].

When the transition probability p is translation invariant, i.e. p(x , y) = p(y−x), with zero
mean and finite variance, the density is governed by the heat equation with a constant diffu-
sion coefficient equal to the variance of p. Different boundary conditions (Dirichlet, Robin,
Neumann) can be imposed by putting the system in contact with some stochastic reservoirs.
The nature of the boundary conditions depends on the reservoirs’ model and their intensity
via some scaling parameter. If p has heavy tails, in particular, if the variance is infinite, the
density evolves superdiffusively according to a fractional diffusion equation [19], which is
a non-local PDE. Putting the system in contact with reservoirs gives then rise to a bunch of
boundary conditions which are much more difficult to describe than in the diffusive case.
This is due to the fact that a boundary condition has usually a local nature while the PDE, in
this case, does not have.

The exclusion process we analyze in this work was first introduced in [2, 3, 5]. We recall
here how it is defined. Let N > 1 and call “bulk” the lattice ΛN = {1, . . . , N − 1}. On the
right and on the left of the bulk we put stochastic reservoirs, which means that, according to
some rules that we will explain in details later, the sets {x ≤ 0 ; x ∈ Z} and {x ≥ N ; x ∈ Z}
interact with the particles in the bulk, creating or annihilating them. The particles inside the
bulk move according to an exclusion process with long jumps: this means that particles can
perform jumps of any length but they can not jump to a site where there is already a particle
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(exclusion rule). This kind of dynamics is determined by a symmetric probability transition

p : z ∈ Z→ p(z) =
cγ
|z|γ+1
1{z 6=0}, (1.1)

depending only on the length of the jump and on a parameter γ > 0. Hence the constant cγ
is a normalizing constant equal to

cγ =
∑

z 6=0

1
|z|γ+1

. (1.2)

Associated with this transition probability we denote its second moment byσ2 :=
∑

z∈Z z2p(z) ∈
[0,∞] and we also introduce the quantity m :=

∑

z≥0 zp(z) ∈ [0,∞]. The strength of the
reservoirs is regulated by a factor κ/Nθ depending on two parameters κ > 0 and θ ∈ R.
We will see how the macroscopic behavior of the system changes drastically according to the
values of θ . We call the reservoirs “slow” (or “weak”) if θ ≥ 0 and “fast” (or “strong”) if
θ < 0. Moreover, we introduce two more parameters α ∈ (0,1) and β ∈ (0, 1) regulating,
respectively, the density of the left reservoir and of the right reservoir. The precise description
of the evolution of the process is given in Section 2.1. Figure 1 gives an illustration of the
dynamics just described.
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FIGURE 1. Example of the dynamics of the model with N = 14 and the config-
uration η = (0,0, 1,1, 0,0, 0,0, 0,1, 0,1, 0); the sites in the region colored in
blue act as reservoirs.

In [1] the exclusion process evolving onΛN , with nearest-neighbour jumps (p(1) = p(−1) =
1/2) and only one reservoir at each endpoint of the bulk is considered and depending on the
value of θ , three different hydrodynamic equations are derived: the heat equation, either
with Dirichlet (0 ≤ θ < 1), Robin (θ = 1) or Neumann (θ > 1) boundary conditions. The
hydrodynamic behavior of the exclusion process with long jumps given by a symmetric p was
studied in [3] when p has finite variance (γ > 2) for all the regimes of θ . There, it is shown
that the hydrodynamic equations involve the standard Laplacian operator and in particular,
they are very similar to the ones found in [1], where the reservoirs are present only at {0}
and at {N}. In both models, when the reservoirs are strong, (the rate of entering and exit-
ing the system is high) the hydrodynamic equation is simply a reaction equation where the
diffusive operator is not present since the dynamics caused by the reservoirs are influencing
the system much more than the interactions between particles inside ΛN .

In [2] the authors treat the case when p has infinite variance and m is finite (1 < γ < 2)
and the reservoirs are quite strong, i.e. θ ≤ 0. As in the equilibrium setting of [19], in this
regime, the standard Laplacian operator is replaced by the fractional Laplacian, but since
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in [2] the process evolves in a macroscopic finite domain, the fractional operator on R is
replaced by the regional fractional Laplacian, which is defined in Subsection 2.2, with some
specific boundary conditions. Also there, it is possible to see that when the reservoirs are very
strong (θ < 0) the fractional operator disappears and the PDE involved is a simple reaction
equation. All these results are reviewed in the lecture notes [13]. Partial results in the case
of asymmetric heavy tailed p with infinite mean and without boundary conditions have been
obtained in [28] (see also [4]).

The aim of this work is to complete the analysis of this model for all the values of the
parameters involved, namely, the regimes in which the variance is infinite and which were
not treated in [2]. In [2] the authors proved that for γ ∈ (1,2) and θ < 0, the hydrodynamic
equation is a reaction equation, while for θ = 0, the hydrodynamic equation is a “regional
fractional reaction-diffusion equation” with Dirichlet boundary conditions. The other regimes
(θ > 0 and 1 < γ < 2; and 0 < γ < 1) were left open. Here we complete the scenario of
the hydrodynamic limits for this process for all the values of θ and 0 < γ < 2 except for the
pathological cases γ = 1,2. In particular, in [2], it was conjectured that the hydrodynamic
equation, in a regime where θ > 0 sufficiently small, is still a regional fractional diffusion
equation with Dirichlet boundary conditions, by looking at the convergence as κ→ 0 of the
solution of the hydrodynamic equation in the case θ = 0. In this article, we prove this con-
jecture and identify precisely its domain of validity, which is 0 < θ < γ − 1. By the way,
we propose some weak formulation of fractional diffusion equations with various boundary
conditions which seem to be new in the PDE’s literature. We believe that this work could
also be of interest to understand the non-equilibrium properties of systems of oscillators in
contact with Langevin baths at their boundaries (see e.g. [6,23]).

The hard part of the proof of the conjecture formulated in [2] is to derive the Dirichlet
boundary conditions from the particle system, i.e. to show, for example, when γ ∈ (1,2) and
0 < θ < γ− 1, that the empirical density in a box of size εN around site 1 is close to α in
the limit N →∞ and then ε→ 0. In [2] the authors manage to avoid a proof of this claim
by imposing the boundary condition at the PDE level in some indirect way. This argument
fails when θ > 0. The derivation of the Dirichlet boundary condition we obtain in this pa-
per, valid even for θ = 0, is explained in Section 5.2 and differs drastically from the method
used in [2]. It relies on the result that we present in Section 5.3 and on a renormalization
procedure. In the first step of this renormalization procedure we show that we can replace
the occupation number at site 1 by its average in a box of length `0 for a certain value of `0,
which is, unfortunately, not big enough to conclude the proof. Then, we use a multi-scale
argument (reminiscent of [12, 14]) which has the following role: we increase the size of `0
by doubling it until we reach the needed size bεNc of the box. Finally, we show that the
occupation number at site 1 can be replaced by α in a proper regime of θ . The error that we
get by increasing the size of the box from `0 to bεNc is estimated in Section 5.3. In particular,
it permits us to estimate the change of energy of the system when we change the position
of particles. This result (Lemma 5.8) was difficult to prove since particles can perform long
jumps and so there is a high number of different configurations contributing to the change of
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energy. Hence, we had to carefully consider all these possibilities to prove the final estimate
that we used to show that the PDE actually satisfies the Dirichlet boundary conditions.

Another difficulty we faced in the remaining regimes was to derive the convergence of the
discrete version operator that appears from the random underlying dynamics to the regional
fractional Laplacian. In [2], the authors prove a uniform convergence on smooth test func-
tions with compact support. In this work, we show that this convergence holds in the L1

sense for any smooth test function (even if not compactly supported) so that at the hydrody-
namics level we may consider test functions that do not have compact support and therefore,
see the boundary conditions. This result is proved in Subsection 5.1.

Our results are summarized in Figure 2 and the proper statement is given below in Theo-
rem 2.18.
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FIGURE 2. Hydrodynamic behavior depending on the values of θ (vertical axis)
and γ (horizontal axis). The case γ > 2 is treated in [3]. The case γ ∈ (1,2)
and θ ≤ 0 is treated in [2]. In this work we analyse all the other regimes,
apart from the critical cases γ= 1 and γ= 2, that are left to a future work.

The paper is organized as follows: in Section 2, we define precisely the model and we
present the hydrodynamic equations we obtained and the definition of weak solutions that
we use. Moreover, in the same section, we state the main result of this paper. We also
comment on the stationary profiles associated with the hydrodynamic equations. In order to
derive these stationary profiles from the microscopic dynamics, we advise that it is possible
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to follow the strategies presented in [30] and [5]. At the end of Section 2, we present also
some heuristic results on possible variations of the model considered. Section 3 contains the
proof of the convergence of the empirical measure to a weak solution of the PDEs introduced
in Section 2. In Section 4 we prove that the weak solutions of the hydrodynamic equations
we defined are unique, which completes the proof of the main result. Section 5 is devoted
to the proof of some technical lemmas that we need during the proofs of these results.

2. STATEMENT OF RESULTS

2.1. The model. The Markov process we consider is analogous to the one introduced in [3]
and [2], so we will use the same notation.

The dynamics of the process we are interested in is determined by the interactions between
particles inside the set, defined for N ≥ 2 byΛN := {1, · · · , N−1} called “bulk”. The evolution
of the configuration of particles is described by a function of timeη·, taking values in the space
ΩN := {0,1}ΛN of functions which associate to any point of ΛN either the value 1 or 0. Thus,
if we fix some horizon time T > 0, at time t ∈ [0, T], the configuration ηt is fully described
by the values of ηt(x) for x ∈ ΛN : if ηt(x) = 1 it means that there is a particle at site x at
time t, otherwise if ηt(x) = 0 it means that the site x is empty at time t.

The dynamics of this process is explained in detail in [2, 3]. We recall it here briefly. It is
easier to understand it separating bulk and reservoirs dynamics:

• bulk dynamics: each pair of sites (x , y) ∈ ΛN ×ΛN carries a Poisson process of in-
tensity one. When there is an occurrence in this process we exchange the value of
η(x) and η(y) with probability p(y − x)/2;

• reservoirs dynamics: let us start describing the dynamics associated to the left reser-
voirs. Every pair of points (x , y) ∈ {x ∈ Z : x ≤ 0} × ΛN carries a Poisson process
of intensity one. When there is an occurrence in this process we exchange η(y)
with 1 − η(y) with rate α κ

Nθ p(y − x) if η(y) = 0 and with rate (1 − α) κNθ p(x , y)
if η(y) = 1. The right reservoirs act in an analogous way: every pair of points
(x , y) ∈ {x ∈ Z : x ≥ N} × ΛN carries a Poisson process of intensity one. When
there is an occurrence in this process we exchange η(y) with 1 − η(y) with rate
β κ

Nθ p(y − x) if η(y) = 0 and with rate (1− β) κNθ p(y − x) if η(y) = 1.

The infinitesimal generator of the process considered, which depends on some parameter
α,β ∈ (0, 1), κ > 0 and θ ∈ R, is defined as

LN = L0
N +κN−θ L l

N + κN−θ L r
N , (2.1)
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and acts on functions f : ΩN → R as

(L0
N f )(η) =

1

2

∑

x ,y∈ΛN

p(x − y)[ f (σx ,yη)− f (η)],

(L l
N f )(η) =

∑

x∈ΛN
y≤0

p(x − y)cx(η;α)[ f (σxη)− f (η)],

(L r
N f )(η) =

∑

x∈ΛN
y≥N

p(x − y)cx(η;β)[ f (σxη)− f (η)]

(2.2)

where

(σx ,yη)(z) =







η(z), if z 6= x , y,
η(y), if z = x ,
η(x), if z = y

, (σxη)(z) =

�

η(z), if z 6= x ,
1−η(x), if z = x ,

and for δ ∈ (0, 1) and x ∈ ΛN , we define

cx(η;δ) := [η(x) (1−δ) + (1−η(x))δ] . (2.3)

We will consider the Markov process in the time scale tΘ(N), where Θ(N) is defined in
(2.26). In order to have a lighter notation we will denote ηN

t := ηtΘ(N), so that the process
ηN
· has as infinitesimal generator Θ(N)LN .

2.2. Topological setting and fractional operators in bounded domains. In this subsec-
tion, we introduce the notation, the operators and the spaces of functions that we will use in
the rest of this work.

First, let us fix some notation. For h : [0, 1] → [0,∞) a Borel function we will consider
frequently the Hilbert space L2([0, 1], h(u)du) that we denote simply by L2

h([0, 1]). The inner
product and the norm associated to this space will be denoted respectively by 〈·, ·〉h and || · ||h.
When h = 1, we will work with the standard L2([0, 1], du) space, and in the norm and the
inner product, we will omit the index h = 1. For any interval I ⊆ R, we denote C k(I) (resp.
C k

c (I)) the space of continuous real-valued functions (resp. with compact support included
in I) with the first k-th derivatives being continuous as well. Moreover, for T > 0, we will say
that a function H ∈ Cm,n([0, T]× I) if H(·, x) ∈ Cm([0, T]) and H(t, ·) ∈ Cn(I) for any x ∈ I
and t ∈ [0, T]. Analogously H ∈ Cm,n

c ([0, T]× I) if H ∈ Cm,n([0, T]× I) and H(t, ·) ∈ Cn
c (I)

for any t ∈ [0, T]. If one (or more) superscript is equal to ∞ it means that the function
considered is smooth in the respective variable. We will use equivalently the notation Ht(u)
and H(t, u), so the subscripts have not to be confused with partial derivatives. We will denote
the derivatives of a function H ∈ Cm,n([0, T]×I), by ∂t H if the derivative is in the time variable
and ∂uH if the derivative is in the space variable.

We will write hereinafter f (u) ® g(u) if there exists a constant C independent of u such
that f (u) ≤ C g(u) for every u; moreover, we will write f (u) = O(g(u)) if the condition
| f (u)|® |g(u)| is satisfied.
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We recall now the definition of the fractional operators and the spaces that we will use.
The fractional Laplacian (−∆)γ/2 with exponent γ/2, for γ ∈ (0, 2), is the operator acting

on functions f : R→ R such that
∫ ∞

−∞

| f (u)|
(1+ |u|)1+γ

du<∞ (2.4)

as

− (−∆)γ/2 f (u) = cγ lim
ε→0

∫ ∞

−∞
1|u−v|≥ε

f (v)− f (u)

|u− v|1+γ
dv, (2.5)

for any u ∈ R, if the previous limit exists and where cγ is defined in (1.2). The interested
reader may have a look at [26] for more details. In a finite domain we introduce the regional
fractional Laplacian L on the interval I ⊂ R which acts on functions f : I → R such that

∫

I

| f (u)|
(1+ |u|)1+γ

du<∞

as

(L f )(u) = cγ lim
ε→0

∫

I

1|u−v|≥ε
f (v)− f (u)

|u− v|1+γ
dv, (2.6)

for any u ∈ I provided the limit exists. In this work we will always consider the case in
which I is the interval (0,1) and in this particular case L f is well defined, for example, if
f ∈ C2([0,1]).

On (0, 1) we introduce the semi inner-product 〈·, ·〉γ/2, and the corresponding semi-norm
|| · ||γ/2 = 〈·, ·〉γ/2, defined by

〈 f , g〉γ/2 =
cγ
2

∫∫

[0,1]2

( f (u)− f (v))(g(u)− g(v))

|u− v|1+γ
dudv, (2.7)

where f , g : (0, 1)→ R are functions such that ‖ f ‖γ/2 <∞ and ‖g‖γ/2 <∞.

We have the following integration by parts formula (Theorem 3.3 and 3.4) in [16]:

Proposition 2.1 ( [16]). If f , g ∈ C2([0, 1]) then

〈 f ,−Lg〉= 〈−L f , g〉= 〈 f , g〉γ/2.

If f , g : [0,1]→ R are such that L f ∈ L1([0,1], du) and if g is such that
∫∫

[0,1]2

| f (u)− f (v)| |g(u)− g(v)|
|u− v|1+γ

dudv <∞ (2.8)

then
〈−L f , g〉= 〈 f , g〉γ/2.

As observed in [16], L f ∈ L1([0,1], du) as soon as f ∈ C1([0,1]) for 0 < γ < 1 and
f ∈ C2([0,1]) for 1< γ < 2.

In Corollary 7.6 of [16] the following generalization is also established for γ ∈ (1, 2).
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Proposition 2.2 ( [16]). Let γ ∈ (1, 2) and g ∈ C2([0,1]). Let f : [0, 1] → R be such that
u→ f (u)u1−γ and u→ f (u)(1− u)1−γ are in C2([0, 1]). Then,

〈−Lg, f 〉= χγ [g(1)Dγ f (1)− g(0)Dγ f (0)] + 〈−L f , g〉 (2.9)

where χγ is a constant defined below equation (7.4) in [16] and

(Dγ f )(0) = lim
u→0+

f ′(u)u2−γ, (Dγ f )(1) = lim
u→1−

f ′(u)(1− u)2−γ. (2.10)

In order to have later a lighter notation it is useful to introduce a family of fractional
operators {Lκ}κ≥0, defined in [2] as

Lκ := L− κV1, where V1(u) := r−(u) + r+(u)

and, for any u ∈ (0,1),

r−(u) := cγγ
−1u−γ, r+(u) := cγγ

−1(1− u)−γ. (2.11)

We also define, for any u ∈ (0,1) and α,β ∈ (0, 1),

V0(u) = αr−(u) + β r+(u). (2.12)

Remark 2.3. Observe that the operators Lκ defined above are symmetric in L2([0, 1], du) .
Moreover, for κ = 1, we recover the so-called restricted fractional Laplacian (see [11]), for any
f ∈ C∞c ((0,1)):

∀u ∈ (0, 1), −(−∆)γ/2 f (u) = (L f )(u)− V1(u) f (u) := (L1 f )(u), (2.13)

while for κ= 0 we get the regional fractional Laplacian L defined in (2.6).

Remark 2.4. It is well known that the fractional Laplacian −(−∆)γ/2 is the infinitesimal gen-
erator of a γ-stable Lévy jump process on R. In the finite domain (0, 1), the regional fractional
Laplacian L is also associated to a Markov process which roughly corresponds to the Lévy jump
process above reflected at the boundaries of (0,1). Because it is a jump process, making sense
of the previous sentence is not trivial (see [16]). Following [16], the process with generator L
is called the “reflected symmetric γ-stable process". Its behavior is strongly dependent on the
exponent γ. For γ ∈ (0,1], it is essentially the same as the “symmetric γ-stable censored process"
defined in [7] and which is obtained from the Lévy jump process on R by suppressing its jumps
from (0, 1) to its complement. It is proved that for γ ≤ 1, the censored (or equivalently the
reflected) process will never touch the boundaries, so that in some sense the process does not see
the boundaries. This is not the case if γ > 1.

Definition 2.5. Let us denote by H γ/2 := H γ/2([0, 1]) the Sobolev space containing all the
functions g ∈ L2([0,1]) such that ||g||γ/2 <∞. This is a Hilbert space endowed with the norm
|| · ||H γ/2 defined by

||g||2H γ/2 := ||g||2 + ||g||2
γ/2.

If γ ∈ (1,2) its elements coincide a.e. with continuous functions. The spaceH γ/2
0 :=H γ/2

0 ([0,1])
is defined as the completion of C∞c ((0,1)) for the norm just introduced. If γ ∈ (1, 2), its ele-
ments coincide a.e. with continuous functions vanishing at 0 and 1 and as pointed out in [9], on
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H γ/2
0 , the norms || · ||H γ/2 and || · ||γ/2 are equivalent. If γ ∈ (0,1),H γ/2

0 =H γ/2 (see Theorem
3, Section 2.4 of [27]).

Remark 2.6. The main difference between the case γ ∈ (0, 1) and the case γ ∈ (1,2) is that the
trace on {0,1} of a function u ∈H γ/2 exists if γ > 1 while it does not exist (a priori) if γ < 1.

The weak solutions of the hydrodynamic equations that we will define live in the space
L2(0, T ;H γ/2) which is the set of measurable functions f : [0, T]→H γ/2 such that

∫ T

0

‖ ft‖2
H γ/2 d t <∞.

The spaces L2(0, T ;H γ/2
0 ) and L2(0, T ; L2

h) are defined in an analogous way, using the spaces
L2([0,1], h(u)du) andH γ/2

0 instead ofH γ/2.
The regional fractional Laplacian can be extended to the spaceH γ/2. Indeed for any ρ ∈

H γ/2 we can define the distribution Lρ on (0,1) by its action on functions f ∈ C∞c ((0,1)):

〈Lρ, f 〉= 〈ρ,L f 〉.
The proof that Lρ is indeed a well defined distribution can be found in [2].

2.3. Hydrodynamic equations. Now, that we have introduced all the notation and the
spaces of functions that we will use, we can define the PDEs and respective notions of weak
solutions, which are involved in the hydrodynamic limit of this model.

Definition 2.7. Let γ ∈ (0,2)\{1} and g : [0, 1] → [0, 1] be a measurable function. We say
that ρ : [0, T]× [0, 1]→ [0,1] is a weak solution of the regional fractional diffusion equation
with fractional Neumann boundary conditions and initial condition g:







∂tρt(u) = Lρt(u), (t, u) ∈ [0, T]× (0,1),
(Dγρκ̂t )(0) = (D

γρκ̂t )(1) = 0,
ρ0(u) = g(u), u ∈ (0, 1),

(2.14)

if :
i) ρ ∈ L2(0, T ;H γ/2).

ii) For all t ∈ [0, T] and all functions G ∈ C1,∞([0, T]× (0, 1)) we have that

FNeu(t,ρ, G, g) := 〈ρt , Gt〉 − 〈g, G0〉 −
∫ t

0

¬

ρs,
�

∂s +L
�

Gs

¶

ds = 0. (2.15)

Definition 2.8. Let γ ∈ (0, 2)\{1}, κ̂ > 0 be some parameter and g : [0,1] → [0,1] be a
measurable function. We say that ρκ̂ : [0, T]× [0, 1]→ [0, 1] is a weak solution of the regional
fractional reaction-diffusion equation with non-homogeneous Dirichlet boundary conditions and
initial condition g:







∂tρ
κ̂
t (u) = Lκ̂ρ

κ̂
t (u) + κ̂V0(u), (t, u) ∈ [0, T]× (0, 1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ (0, T],
ρκ̂0 (u) = g(u), u ∈ (0, 1),

(2.16)
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if :

i) ρκ̂ ∈ L2(0, T ;H γ/2).
ii)
∫ T

0

∫ 1

0

¦

(α−ρκ̂t (u))
2

uγ + (β−ρ
κ̂
t (u))

2

(1−u)γ

©

du d t <∞.
iii) For all t ∈ [0, T] and all functions G ∈ C1,∞

c ([0, T]× (0, 1)) we have that

FRD(t,ρ
κ̂, G, g) :=




ρκ̂t , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρκ̂s ,
�

∂s +Lκ̂
�

Gs

¶

ds− κ̂
∫ t

0

〈Gs, V0〉ds = 0.

(2.17)

Remark 2.9. Observe that in Definition 2.8, the second item is automatically satisfied if γ ∈
(0, 1) since ρκ̂ is uniformly bounded by 1. If γ ∈ (1, 2) the second item implies that for a.e. time
t we have that ρκ̂t (0) = α and ρκ̂t (1) = β . We conjecture that this remains true for γ ∈ (0, 1)
even if the weak formulation (2.17) does not seem to imply trivially these boundary conditions.

Definition 2.10. Let γ ∈ (1,2). Let g : [0,1]→ [0, 1] be a measurable function. We say that
ρ : [0, T]× [0, 1]→ [0, 1] is a weak solution of the regional fractional diffusion equation with
non-homogeneous Dirichlet boundary conditions and initial condition g:







∂tρt(u) = Lρt(u), (t, u) ∈ [0, T]× (0,1),
ρt(0) = α, ρt(1) = β , t ∈ (0, T],
ρ0(u) = g(u), u ∈ (0, 1),

(2.18)

if :

i) ρ ∈ L2(0, T ;H γ/2).
ii) For all t ∈ [0, T] and all functions G ∈ C1,∞

c ([0, T]× (0, 1)) we have that

FDir(t,ρ, G, g) := 〈ρt , Gt〉 − 〈g, G0〉 −
∫ t

0

¬

ρs,
�

∂s +L
�

Gs

¶

ds = 0. (2.19)

iii) for t a.s. in (0, T], ρt(0) = α and ρt(1) = β .

Definition 2.11. Let κ̂ ≥ 0, γ ∈ (1,2) and let g : [0,1] → [0,1] be a measurable function.
We say that ρκ̂ : [0, T]× [0,1]→ [0, 1] is a weak solution of the regional fractional diffusion
equation with fractional Robin boundary conditions and initial condition g:







∂tρ
κ̂
t (u) = Lρ

κ̂
t (u), (t, u) ∈ [0, T]× (0,1),

χγ(Dγρκ̂t )(0) = κ̂m(α−ρκ̂t (0)), χγ(Dγρκ̂t )(1) = κ̂m(β −ρκ̂t (1)),
ρκ̂0 (u) = g(u), u ∈ (0, 1),

(2.20)

if:

i) ρκ̂ ∈ L2(0, T ;H γ/2).
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ii) For all t ∈ [0, T] and all functions G ∈ C1,∞([0, T]× (0, 1)) we have that

FRob(t,ρ
κ̂, G, g) :=




ρκ̂t , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρκ̂s ,
�

∂s +L
�

Gs

¶

ds

− κ̂m

∫ t

0

�

Gs(0)(α−ρκ̂s (0)) + Gs(1)(β −ρκ̂s (1))
	

ds = 0.

(2.21)

Remark 2.12. Observe that in (2.21), the terms ρκ̂s (0) and ρκ̂s (1) are well defined for a.e. time
s since ρκ̂ ∈ L2(0, T ;H γ/2) so that for a.e. time s ρκ̂s has a continuous representative on [0, 1].

Definition 2.13. Let γ ∈ (0, 2)\{1} and κ̂ > 0 be some parameter and let g : [0,1]→ [0,1]
be a measurable function. We say that ρκ̂ : [0, T] × [0, 1] → [0, 1] is a weak solution of the
reaction equation with non-homogeneous Dirichlet boundary condition and initial condition g:







∂tρ
κ̂
t (u) = −κ̂ρ

κ̂
t (u)V1(u) + κ̂V0(u), (t, u) ∈ [0, T]× (0,1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ (0, T],
ρκ̂0 (u) = g(u), u ∈ (0,1),

(2.22)

if:

i)
∫ T

0

∫ 1

0

¦

(α−ρκ̂t (u))
2

uγ + (β−ρ
κ̂
t (u))

2

(1−u)γ

©

du d t <∞.
ii) For all t ∈ [0, T] and all functions G ∈ C1,∞

c ([0, T]× (0, 1)) we have

FReac(t,ρ
κ̂, G, g) :=




ρκ̂t , Gt

�

− 〈g, G0〉 −
∫ t

0




ρκ̂s ,∂sGs

�

ds

+ κ̂

∫ t

0




ρκ̂s , Gs

�

V1
ds− κ̂

∫ t

0

〈Gs, V0〉 ds = 0.

(2.23)

Remark 2.14. Observe that if γ ∈ (0,1) the first item is trivial since ρκ̂ is uniformly bounded
by 1. Moreover, as proved in [2], the equation (2.22) has an explicit solution in the sense of
Definition 2.13 which is given by

V0(u)
V1(u)

+
�

g(u)−
V0(u)
V1(u)

�

e−tκ̂
V0(u)
V1(u) , (2.24)

for any u ∈ [0,1] and any t ∈ [0, T]. Therefore is trivial to show that ρκ̂t (0) = α and ρκ̂t (1) = β
for any t ∈ (0, T].

Remark 2.15. The reader can easily check that thanks to Proposition 2.2 the notion of weak
solution coincides formally 1 with the corresponding strong PDE formulation for each of the
definition given above.

Proposition 2.16. The weak solutions of equations(2.14),(2.16), (2.18), (2.20) and (2.22)
given in the definitions above are unique.

Proof. It is detailed in Section 4. �
1It is only formal since the regularity properties of the solution of the PDE are not known.
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2.4. Hydrodynamic limit. Let M+ be the space of positive measures on [0,1] with total
mass bounded by 1 equipped with the weak topology. For any configuration η ∈ ΩN , we
define the empirical measure πN (η, du) ∈M+ by

πN (η, du) =
1

N − 1

∑

x∈ΛN

η(x)δ x
N
(du) , (2.25)

where δa is a Dirac mass on a ∈ [0, 1] and we denote

πN
t (du) := πN (ηN

t , du).

Fix T > 0. We denote by PµN
the probability measure in the Skorohod space D([0, T],ΩN )

induced by the Markov process ηN
· with initial distribution µN and we denote by EµN

the
expectation with respect to PµN

. Let {QN}N≥1 be the sequence of probability measures on
D([0, T],M+) induced by the Markov process {πN

t }t≥0 and by PµN
.

Definition 2.17. Let ρ0 : [0, 1]→ [0, 1] be a measurable function. We say that a sequence of
probability measures {µN}N≥1 on ΩN is associated with the profile ρ0(·) if for any continuous
function G : [0, 1]→ R and every δ > 0

lim
N→∞

µN

�

η ∈ ΩN :

�

�

�

�

�

1
N

∑

x∈ΛN

G
�

x
N

�

η(x)−
∫ 1

0

G(q)ρ0(q)dq

�

�

�

�

�

> δ

�

= 0.

The next statement is the main theorem of this work. The result is summarized in Figure
2. The proof is given in details in the next sections.

Theorem 2.18 (Hydrodynamic limit).
Let g : [0,1]→ [0,1] be a measurable function and let {µN}N≥1 be a sequence of probability

measures in ΩN associated to g(·). Then, for any 0≤ t ≤ T,

lim
N→∞
PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
�

x
N

�

ηN
t (x)−

∫ 1

0

G(u)ρκt (u)du

�

�

�

�

�

> δ

�

= 0,

where the time scale is given by

Θ(N) =

�

Nγ+θ θ < 0;
Nγ θ ≥ 0;

(2.26)

and ρκt is the unique weak solution of:
• (2.14) if θ > 0 and γ ∈ (0, 1) or if θ > γ− 1 and γ ∈ (1, 2);
• (2.16) with κ̂= κ, if θ = 0 and γ ∈ (0, 2)\{1};
• (2.18) if θ ∈ (0,γ− 1) and γ ∈ (1,2);
• (2.20) with κ̂= κ, if θ = γ− 1 and γ ∈ (1, 2);
• (2.22) with κ̂= κ, if θ < 0 and γ ∈ (0, 2)\{1}.

To prove this theorem we will use the entropy method introduced in [17]. Therefore, we
will prove that the sequence {QN}N∈N is tight and we will characterize uniquely the limiting
point Q by showing that it is a Dirac measure over the trajectory πt(du) = ρ(t, u)du, where
ρ(t, u) is the unique weak solution of the corresponding hydrodynamic equation.
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2.5. Few words about stationary solutions. In this subsection we discuss some facts about
the study of stationary solutions limt→∞ρ

κ
t of the hydrodynamic limits, presented in Theo-

rem 2.18, and their possible derivations from the stationary state of the microscopic model
(hydrostatic limit).

• If γ ∈ (0,1) and θ > 0 or if γ ∈ (1,2) and θ > γ−1, we conjecture that the stationary
solution depends on the initial condition g and it is given by the constant

∫ 1

0
g(u)du.

On the other hand, in these regimes the hydrostatic profile is different and explicitly
given by

ρ∞(u) =

∫ 1

0

V0(w)
V1(w)

dw=
α+ β

2

for any u ∈ [0,1]. The hydrostatic limits can be derived by following the recent strat-
egy developed in [30].

• If γ ∈ (0,2)\{1} and θ < 0 the stationary solution is given by

ρ∞(u) =
V0(u)
V1(u)

for any u ∈ [0, 1] and coincides with the hydrostatic profile which can probably be
derived by following the strategy presented in [5] combined with the methods used
in this paper.

• In the other regimes the stationary solution is expected to be unique, but not explicit,
connecting α to β , apart from the case of Robin boundary conditions (γ ∈ (1,2),
θ = γ−1). Here it should also coincide with the hydrostatic profile which can, likely,
be derived by following the strategy presented in [5] and the results of the present
paper.

The hydrostatic profiles obtained numerically are represented in Figure 3 below. We ob-
serve that apart from the flat case, they are nonlinear and not smooth at the boundaries.

2.6. Variations of the dynamics. In this section we present some results about three models
with different dynamics but which can be studied with the techniques developed in this paper.
We do not write the details of the proofs. We consider only the infinite variance case (γ < 2).

2.6.1. Super-diffusive model with reservoirs acting only on one site. This particular variant of
our model has the same dynamics inside the bulk but the reservoirs are only located at the
sites 0 and N and they act only on the sites 1 and N−1, respectively. It means that the action
of the reservoirs is exactly the same as the one presented in [1] while the bulk dynamics is
the same as the one presented in Subsection 2.1. Therefore the generator associated to this
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FIGURE 3. Here are represented some numerical simulations of the stationary
solutions for the various PDEs, according to the value of γ and θ as in the
legend.

model is defined by its action on functions f : ΩN → R as:

LN f (η) =
1
2

∑

x ,y∈ΛN

p(x − y)[ f (σx ,yη)− f (η)]

+
κ

Nθ
[α(1−η(1)) + (1−α)η(1)] f (σ1η)− f (η)]

+
κ

Nθ
[β(1−η(N − 1)) + (1− β)η(N − 1)] f (σN−1η)− f (η)].

(2.27)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(1− β)
κ

Nθ

p(3)
2α

κ

Nθ

/ /

FIGURE 4. Example of the dynamics of the model presented in Section 2.6.1,
with N = 14.

In this case we need to accelerate the system by a factor which does not depend on θ and
which is constantly equal to Θ(N) = Nγ. Then, following the same strategies used in this
work, it is possible to prove that the hydrodynamic limits associated to this model are given
by the following hydrodynamic equations (summarized in Figure 5):
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• if θ < γ− 1 we get the equation of Definition 2.7;
• if θ = γ− 1 we get the equation of Definition 2.11 with m= 1 and κ̂= κ;
• if θ > γ− 1 we get the equation of Definition 2.7.

Frac. Diff.
& Robin b.c.

Frac. Diff. & Neumann b.c.

Frac. Diff. & Dirichlet b.c.

γ
=

2

γ
=

1

γ
=

0

θ = 0

θ = −1

θ = 1

θ = γ− 1

FIGURE 5. Summary of result on hydrodynamic limits for the model introduced
in Section 2.6.1.

2.6.2. Diffusive model with reservoirs acting on all the sites. In this other variation of our
model, the reservoirs have the same dynamics as the one described in Section 2.1, while in
the bulk the particles move according to the nearest-neighbour dynamics defined in [1], that
is in the bulk the transition probability p(·) has range 1. Therefore the generator associated
to this model is given by its action on functions f : ΩN → R as:

LN f (η) =
N−2
∑

x=1

[ f (σx ,x+1η)− f (η)]

+
κ

Nθ

∑

x∈ΛN

∑

y≤0

p(x − y)cx(η;α)[ f (σxη)− f (η)]

+
κ

Nθ

∑

x∈ΛN

∑

y≥N

p(x − y)cx(η;β)[ f (σxη)− f (η)]

(2.28)

where cx(η,α) and cx(η,β) were defined in (2.3).
The hydrodynamic equations associated to this model (summarized in Figure 7) are given

by:
• For θ > 2 − γ, if we accelerate the system by a factor Θ(N) = N 2, we get the heat

equation with Neumann boundary conditions i.e.






∂tρt(u) =∆ρt(u) u× t ∈ (0,1)× [0, T];
∂uρt(0) = ∂uρt(1) = 0 t ∈ [0, T];
ρ0(u) = g(u) u ∈ (0,1);

(2.29)
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. . . . . .−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1− β)
κ

Nθ
p(3)

/

α
κ

Nθ
p(4)

1
2

FIGURE 6. Example of the dynamics of the model presented in Section 2.6.2,
with N = 14.

for some arbitrary initial condition g : [0, 1]→ R and with the notion of weak solu-
tion introduced in Definition 2.7 of [1];
• For θ = 2−γ, if we accelerate the system by a factor Θ(N) = N 2, we get the reaction-

diffusion equation with Dirichlet boundary conditions i.e.






∂tρt(u) =∆ρt(u) + V0(u)ρt(u) u× t ∈ (0, 1)× [0, T];
ρt(0) = α and ρt(1) = β t ∈ [0, T];
ρ0(u) = g(u) u ∈ (0,1);

(2.30)

for some arbitrary initial condition g : [0, 1]→ R and with the notion of weak solu-
tion introduced in Definition 2.2 of [3] but with σ2/2 that now is equal to 1;
• For θ < 2−γ, if we accelerate the system by a factorΘ(N) = Nγ+θ we get the reaction

equation introduced in Definition 2.13 with κ̂= κ.

Reac. Diff. & Dirichlet b.c.

Diffusion & Neumann b.c.

Reaction & Dirichlet b.c.

γ
=

2

γ
=

1

γ
=

0

θ = 0

θ = 2

θ = 2− γ

FIGURE 7. Summary of the results on hydrodynamic limit for the model intro-
duced in Section 2.6.2.

2.6.3. One site reservoirs’ with long jumps. Another interesting case which deserves a mention
is the model with the same dynamics as the ones introduced in Subsection 2.1 but with
reservoirs only at the sites 0 and N . This was studied in the lecture notes [13] and the



18 CÉDRIC BERNARDIN, PEDRO CARDOSO, PATRÍCIA GONÇALVES, STEFANO SCOTTA

analysis is almost analogous to the one we do in this work and therefore we will not treat
this case here.

3. PROOF OF THEOREM 2.18

3.1. Heuristics for the hydrodynamic equations. In this section we give the main ideas
of the proof of the derivation of the weak solution of the hydrodynamic equation for each
regime of θ and γ. Let us, by now, assume that the probability measureQN onD([0, T],M+)
defined above, converges to a measure Q on the same space, concentrated on a trajectory of
measures πt(dq), which is absolutely continuous with respect to the Lebesgue measure with
a density ρ(t, q). We will prove the aforementioned convergence, up to a subsequence, in
the next subsections.

For simplicity we will forget the time dependence on the test functions, which would only
make the notation heavier without bringing additional difficulties. Therefore, consider a test
function G : [0,1] → R for which LG is well defined. From Dynkin’s formula (Lemma A.5
of [21]) we have that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

Θ(N)LN 〈πN
s , G〉ds, (3.1)

is a martingale with respect to the natural filtration {F N
t }t≥0, where F N

t := σ({ηN
s }s≤t) for

all t ∈ [0, T]. In the previous display we denoted by 〈πN
s , G〉 the integration of the function

G on [0,1] with respect to the empirical measure πN
s , i.e.

〈πN
s , G〉=

1
N − 1

∑

x∈ΛN

G
�

x
N

�

ηN
s (x).

Now, we compute the explicit value of the integrand function in (3.1), which is given by

Θ(N)LN〈πN
s , G〉=

Θ(N)

N − 1

∑

x∈ΛN

(LN G)( x
N )η

N
s (x)

+
κΘ(N)

(N − 1)Nθ

∑

x∈ΛN

G( x
N )
�

r−N (
x
N )(α−η

N
s (x)) + r+N (

x
N )(β −η

N
s (x))

�

,

(3.2)

where, LN G is defined on test functions G by

(LN G)( x
N ) =

∑

y∈ΛN

p(y − x)
�

G( y
N )− G( x

N )
�

, (3.3)

for all x ∈ ΛN with (LN G)(0) = (LN G)(1) = 0 and r±(x/N) are defined as

r−N (
x
N ) =

∑

y≥x

p(y) and r+N (
x
N ) =

∑

y≤N−x

p(y). (3.4)

We have to study the various terms in (3.2) in the different regimes of γ ∈ (0, 2) \ {1} and
θ ∈ R. Recall that the cases θ ≤ 0 and γ ∈ (1,2) were already treated in [2] and, for that
reason, they will not be considered in this work.
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3.1.1. Case θ < 0 and γ ∈ (0,1). In this regime the time scale is given by Θ(N) = Nγ+θ and
the test functions are in C∞c ([0,1]). Let us first analyze the first term on the right-hand side
of (3.2). Recalling (3.3) and performing a Taylor expansion of G around x/N , we can bound
from above this term by a constant times

Nγ+θ

N 2

∑

x∈ΛN

∑

y∈ΛN
y 6=x

1

|y − x |γ
(3.5)

plus lower order terms with respect to N , since G′ is uniformly bounded and |ηN
s (x)| ≤ 1.

Then, changing variables, that term can be rewritten as

2
Nγ+θ

N 2

N−1
∑

x=2

x−1
∑

z=1

1

|z|γ
® Nθ−1

N−1
∑

x=2

∫

x−1
N

1
N

u−γdu® Nθ−1
N−1
∑

x=2

( x−1
N )

−γ+1 ® Nθ . (3.6)

So, since θ < 0, the term in the last display vanishes, as N goes to infinity.
Let us now analyze the second terms on the right-hand side of (3.2). We treat in details

just the term involving r−N since the other one is completely analogous. That term can be
rewritten as

κ

N − 1

∑

x∈ΛN

G( x
N )
�

Nγr−N (
x
N )− r−( x

N )
�

(α−ηN
s (x)) +

κ

N − 1

∑

x∈ΛN

G( x
N )r

−( x
N )(α−η

N
s (x)). (3.7)

We will show now that the term on the left-hand side in the previous display vanishes as N
goes to infinity. In order to do that, we use the estimate

|Nγr−N (
z
N )− r−( z

N )| ≤ cγN
−1( z

N )
−γ−1

when z/N > a for some fixed a ∈ (0,1), proved in the Appendix of [5]. Using this estimate,
the fact that (α−ηN

s (x)) is uniformly bounded and G has compact support, we get that the
term on the left-hand side of (3.7) is bounded from above by a constant times

κ

N 2

∑

x∈ΛN

( x
N )
−γ−1 ®

1

N

∫ 1

1/N

u−γ−1du® Nγ−1, (3.8)

and since γ < 1, it vanishes as N goes to infinity. Finally, we prove that the second term of
(3.7) converges to

κ

∫ 1

0

αG(u)r−(u)du− κ
∫ 1

0

G(u)r−(u)ρκs (u)du, (3.9)

provided thatπN
s converges to an absolutely continuous measure, with respect to the Lebesgue

measure on [0,1], with density ρκs (·). In order to do that let us denote H := Gr− which is a
function in C∞c ([0, 1]). Then, the last term in (3.2) is equal to

κ

N − 1

∑

x∈ΛN

H( x
N )(α−η

N
s (x)), (3.10)
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plus terms vanishing as N goes to infinity. Which, under the hypothesis of the convergence
of πN that we just did, is exactly the Riemann series converging to (3.9).

Repeating the same proof for the term on the right-hand side of (3.2) involving r+N , we get
that the whole term converges to

κ

∫ 1

0

G(u)V0(u)du− κ
∫ 1

0

G(u)V1(u)ρ
κ
s (u)du, (3.11)

as N goes to infinity, which is the term involved in the definition of the weak solution for this
regime of θ and γ.

3.1.2. Case θ = 0 and γ ∈ (0,1). In this regime the time scale is Θ(N) = Nγ and the test
functions are again in C∞c ([0, 1]). Then, the first term on the right-hand side of (3.2) can be
written as

1

N − 1

∑

x∈ΛN

�

Nγ(LN G)( x
N )−LG( x

N )
�

ηN
s (x) +

1

N − 1

∑

x∈ΛN

LG( x
N )η

N
s (x). (3.12)

The first term on the left-hand side of the previous display vanishes as N goes to infinity, as
a consequence of the fact that |ηN

s (x)| ≤ 1 and Lemma 5.1. Now, using an argument similar
to the one used in the proof of Lemma 5.1, it is possible to approximate the operator L by
an operator Lε in such a way that LεG is a continuous function on (0,1) and limε→0 ||LεG −
LG||L1(0,1) = 0.

Therefore we can rewrite the term on the right-hand side of (3.12) as

1

N − 1

∑

x∈ΛN

�

LG( x
N )−LεG(

x
N )
�

ηN
s (x) +

1

N − 1

∑

x∈ΛN

LεG(
x
N )η

N
s (x).

Then, reasoning as we did in the proof of Lemma 5.1, it is possible to show that the first term
of the previous display vanishes as ε → 0 and the second one converges, as N →∞ and
ε→ 0, to

∫ 1

0

LG(u)ρκs (u)du. (3.13)

The second term on the right-hand side of (3.2) can be treated exactly as in the previous
case, where we showed that it converges to (3.9) as N goes to infinity. Note that (3.13) and
(3.9) are exactly the terms involved in the definition of weak solution in this regime of θ and
γ.

3.1.3. Case γ ∈ (0,1) and θ > 0 or γ ∈ (1, 2) and θ > γ−1. In these regimes the time scale is
again Θ(N) = Nγ and the test functions are in C∞([0, 1]). In both cases, the analysis of the
first term in (3.2) is completely analogous to the one that we did in the previous subsection.
Indeed, using Lemma 5.1 it is possible to show, with the assumption on the convergence of
πN , that this term converges to (3.13) with G ∈ C∞([0,1]). This is the only term involved in
the definition of weak solution in these regimes. Indeed, we show now that the second term
on the right-hand side of (3.2) vanishes, as N goes to infinity. Since G( x

N ) and α−ηN
s (x) are
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bounded, we can rewrite the part involving r−N on the second term on the right-hand side of
(3.2) as a constant times

Nγ−θ−1
∑

x∈ΛN

r−N (
x
N ). (3.14)

Now, observe that:

• in the case γ ∈ (0, 1) the sum in (3.14) is diverging so we have to bound it in some
way. Observing that y−γ−1 is a decreasing function we can perform the following
bound

∑

x∈ΛN

r−N (
x
N ) = cγ

∑

x∈ΛN

∑

y≥x

y−γ−1 ® r−N (
1
N ) +

N−1
∑

x=2

∑

y≥x

y−γ−1

≤
1
2
+

N−1
∑

x=2

∫ +∞

x−1

y−γ−1d y ≤ C +
1
γ

N−2
∑

x=1

x−γ ≤
1
2
+

N−γ+1

γ
,

(3.15)

since r−N (
1
N ) =

1
2 . So, we can bound (3.14) by

Nγ−θ−1

2
+

N−θ

γ
® N−θ

and it vanishes, as N goes to infinity;
• in the case γ ∈ (1, 2) the sum in (3.14) is converging since, in this regime,

∑

x∈ΛN
r−N (

x
N )

converges to m (see [2]). So the order of the whole term is Nγ−θ−1, therefore it van-
ishes, as N goes to infinity, since θ > γ− 1.

The term involving r+N in (3.2) is treated in the same way. Notice that the integration by
parts formula (Proposition 2.1) plus the boundary conditions of Definition 2.7 implies (2.15)
(under the assumption of convergence of πN ).

3.1.4. Case γ ∈ (1, 2) and 0< θ < γ− 1. In this regime the time scale is Θ(N) = Nγ and the
test functions are in C∞c ([0, 1]). The analysis of the first term at the right-hand side of (3.2)
is analogous to the one of the previous case.

Let us then show how we treat the second term on the right-hand side of (3.2). We will
use the fact that the test function G satisfies G(x) = 0 for x ∈ {0, 1}. Observe indeed that
the term in (3.2) involving r−N can be rewritten as a constant times

Nγ−θ−1
∑

x∈ΛN

x−γG( x
N ),

since the order of r−N (x/N) is x−γ when we are considering x > aN for some fixed a ∈ (0,1)
(see Lemma 3.3 of [5]) and this is true whenever the test function has compact support. Then,
performing a Taylor expansion on G around 0 we can bound it from above by a constant times

Nγ−θ−2
∑

x∈ΛN

x−γ+1,
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plus lower order terms in N . Therefore, since the sum in the last display is of order N−γ+2,
the order of the whole term in the last display is N−θ , and it vanishes as N goes to infinity.
The same analysis can be done for the term involving r+N in (3.2).

The item (iii) of Definition 2.10 also holds, indeed the fact that ρt(0) = α and ρt(1) =
β follows by standard arguments thanks to Proposition 5.3 (see Appendix A.4 of [13] for
details).

3.1.5. Case γ ∈ (1, 2) and θ = γ−1. In this regime the time scale is Θ(N) = Nγ and the test
functions are in C∞([0,1]). The analysis of the first term on the right-hand side of (3.2) is
analogous to the previous cases and is done using Lemma 5.1.

The analysis of the second term on the right-hand side of (3.2) is a bit different from the
previous cases.

Consider first the part involving r−N . For any ε > 0, we can rewrite it as

κNγ

(N − 1)Nγ−1
(α−−→η εN

s (0))
∑

x∈ΛN

G( x
N )r

−
N (

x
N )+

κNγ

(N − 1)Nγ−1

∑

x∈ΛN

G( x
N )r

−
N (

x
N )(
−→η εN

s (0)−η
N
s (x)),

where −→η εN
s (0) is defined in (5.28). On the other hand, the term on the right-hand side of

the previous display vanishes, as N goes to infinity and then as ε goes to 0, thanks to Remark
5.10.

The term on the left-hand side of the last display, performing a Taylor expansion on G, can
be written as

κNγ

(N − 1)Nγ−1
G(0)(α−−→η εN

s (0))
∑

x∈ΛN

r−N (
x
N ) +

κ

N − 1
G′(0)(α−−→η εN

s (0))
∑

x∈ΛN

x r−N (
x
N ) (3.16)

plus lower order terms in N . Observe that the term on the right-hand side of the previous
display can be bounded by a constant times

1

N − 1

∑

x∈ΛN

x−γ+1 = O(N−γ+1),

which goes to 0 as N goes to infinity, since γ > 1. The remaining term in (3.16) converges in
some sense to G(0)(α−ρκs (0))m, as N goes to infinity, since limN→∞

∑

x∈ΛN
r−N (

x
N ) = m (see,

for example, [2], for details about this computation) and since, in some sense, well explained
in [13], −→η εN

s (0)→ ρ
κ
s (0). Then, reasoning in a similar way as before, we can conclude that,

for N going to infinity, the second term on the right-hand side of (3.2) converges to

mG(0)(α−ρκs (0)) +mG(1)(β −ρκs (1)).

This is exactly the term involved in (2.21) and also that gives us, using the integration by
parts formula (see Proposition 2.1), the boundary conditions in the Definition 2.11.
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3.2. Tightness. In this subsection we prove that the sequence {QN}N≥1 is tight. We use
Proposition 4.1.6 in [21], from where it is enough to show that, for all ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�〈πN
τ+τ̄, G〉 − 〈πN

τ
, G〉

�

�> ε
�

= 0, (3.17)

for any function G belonging to C0([0, 1]) . Above TT is the set of stopping times bounded
by T and we implicitly assume that all the stopping times are bounded by T , thus, τ + τ̄
should be read as (τ+ τ̄)∧ T . Indeed, we prove below that (3.17) is true for any function in
C2

c ([0, 1]), and then, by using an L1 approximation procedure (as it is done in [3]), we can
extend the result to functions in C0([0,1]).

Proposition 3.1. The sequence of measures {QN}N≥1 is tight with respect to the Skorohod topol-
ogy of D([0, T],M+).

Proof. The proof is almost analogous to the one done presented in [2] so we will omit most
of the details. We are going to prove (3.17) for functions G in C2

c ([0,1]). Recall now (3.1).
Then, in order to prove (3.17), it is enough to show that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�
�

�

�

�

∫ τ+τ̄

τ

Θ(N)LN 〈πN
s , G〉ds

�

�

�

�

�

= 0 (3.18)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N
τ
(G)−M N

τ+τ̄(G)
�2�

= 0. (3.19)

The proof of (3.18) is completely analogous to the one in [2], therefore we omit it.
We have now to prove (3.19). By Dynkin’s formula (see Appendix 1 in [21]) we know that

�

M N
t (G)

�2
−
∫ t

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds,

is a martingale with respect to the natural filtration {Ft}t≥0. Proceeding as in [2] it is possible
to prove that the previous display is bounded from above by a constant times

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y) +
κΘ(N)

(N − 1)2Nθ

∑

x∈ΛN

�

G
�

x
N

��2 �
r−N (

x
N ) + r+N (

x
N )
�

. (3.20)

Then, we can bound the term on the left-hand side of the previous display from above in
the following way:

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y)®
Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)1−γ ®
Θ(N)

N
N−γ ≤ N−1.

The remaining term in (3.20) is of order less than an O (1), since performing a Taylor expan-
sion on G around 0 we can rewrite it as a constant times

κΘ(N)
(N − 1)2N 2+θ

(G′(0))2
∑

x∈ΛN

x−γ+2
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plus lower-order terms in N . Then, since the sum is diverging this term is at most of order
Θ(N)N−γ−θ−1, which, for any value of Θ(N) given by (2.26), vanishes as N goes to infinity.

Thus, since τ is a bounded stopping time we have that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N ,G
τ
−M N ,G

τ+τ̄

�2�

= lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

∫ τ+τ̄

τ

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds

�

= 0.

Therefore, we have proved (3.17) for functions G in C2
c ([0,1]) and, as we have recalled in

the beginning of the proof, this is enough to conclude tightness. �

3.3. Energy estimates. We prove in this subsection that any limit point Q of the sequence
{QN}N≥1 is concentrated on trajectories {πt(u)du}t∈[0,T] with finite energy, i.e., π belongs
to the space L2(0, T ;H γ/2). The latter is the content of Theorem 3.2 stated below. Fix a
limit point Q of the sequence {QN}N≥1 and assume, without loss of generality, that the whole
sequence QN converges to Q, as N goes to infinity.

Theorem 3.2. For θ ≥ 0 and γ ∈ (0,2) \ {1}, the measure Q is concentrated on trajectories
of measures of the form {πt(u)du}t∈[0,T], such that for any interval I ⊂ [0, T] the density π
satisfies Q-a.s.

∫

I

‖πt‖2
γ/2d t ® |I |.

Before we prove Theorem 3.2, we establish some estimates on the Dirichlet form which
are needed for the proof. Let ρ : [0, 1]→ [0, 1] be a function such that α ≤ ρ(u) ≤ β , for
any u ∈ [0, 1], and assume that ρ(0) = α and ρ(1) = β . Let νN

ρ(·) be the inhomogeneous
Bernoulli product measure on ΩN with marginals given by

νN
ρ(·){η : η(x) = 1}= ρ

�

x
N

�

. (3.21)

We denote by HN (µ|νN
ρ(·)) the relative entropy of a probability measure µ on ΩN with respect

to the probability measure νN
ρ(·). For exclusion processes on a finite domain and for any initial

measure µN , it is easy to prove the existence of a constant C0, such that

H(µN |νN
ρ(·))≤ C0N , (3.22)

see for example [3] for the proof. We remark here that the restriction α,β /∈ {0, 1} comes
from last estimate since the constant C0 above is given by C0 = − log(α∧(1−β)), when α < β .
On the other hand, for a probability measure µ onΩN and a density function f : ΩN → [0,∞)
with respect to µ we introduce

D0
N (
p

f ,µ) := 1
2

∑

x ,y∈ΛN

p(y − x) Ix ,y(
p

f ,µ), (3.23)
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Dl
N (
p

f ,µ) :=
∑

x∈ΛN

∑

y≤0

p(y − x) Iαx (
p

f ,µ) =
∑

x∈ΛN

r−N (
x
N )I

α
x (
p

f ,µ), (3.24)

Dr
N (
p

f ,µ) :=
∑

x∈ΛN

∑

y≥N

p(y − x) Iβx (
p

f ,µ) =
∑

x∈ΛN

r+N (
x
N )I

β
x (
p

f ,µ). (3.25)

Above, we used the following notation

Ix ,y(
p

f ,µ) :=

∫

�
Æ

f (σx ,yη)−
Æ

f (η)
�2

dµ,

Iδx (
p

f ,µ) :=

∫

cx(η;δ)
�
Æ

f (σxη)−
Æ

f (η)
�2

dµ, δ ∈ {α,β}.
(3.26)

Our goal is to express, for the measure νN
ρ(·), a relation between the Dirichlet form defined

by 〈LN

p

f ,
p

f 〉νN
ρ(·)

and the quantity

DN (
p

f ,νN
ρ(·)) := (D0

N + κN−θDl
N +κN−θDr

N )(
p

f ,νN
ρ(·)). (3.27)

That relation is given by the following Lemma, already proved in Section 3.3.1 of [2].

Lemma 3.3. There exists a constant C > 0 such that for any positive constant B and any density
function f with respect to νN

ρ(·), we have that

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −
Θ(N)
4NB

DN (
p

f ,νN
ρ(·)) +

CΘ(N)
NB

∑

x ,y∈ΛN

p(y − x)
�

ρ( x
N )−ρ(

y
N )
�2

+
CκΘ(N)
Nθ+1B

∑

x∈ΛN

n
�

ρ( x
N )−α

�2
r−N (

x
N ) +

�

ρ( x
N )− β

�2
r+N (

x
N )
o

.

(3.28)

Remark 3.4. Note that, as a consequence of the previous lemma, for a Lipschitz function ρ(·)
such that α≤ ρ(u)≤ β and ρ(0) = α and ρ(1) = β , we have that

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −
Θ(N)
4NB

DN (
p

f ,νN
ρ(·)) +

CΘ(N)(κ+ Nθ )
BNγ+θ

. (3.29)

Remark 3.5. Recasting the bound found in Lemma 3.3 when ρ(·) is equal to a constant we get
that: if γ ∈ (1,2), the bound is

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −
Θ(N)
4NB

DN (
p

f ,νN
ρ(·)) +

CκΘ(N)
BNθ+1

(3.30)

and for γ ∈ (0, 1), the bound is

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −
Θ(N)
4NB

DN (
p

f ,νN
ρ(·)) +

CκΘ(N)
BNγ+θ

. (3.31)

The difference between the two previous bounds comes from the behavior of the sum
∑

x∈ΛN
r±N (

x
N )

according to the value of γ.
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Remark 3.6. Now we can establish the properties that we need to impose on the profile ρ(·) in
order to have a good approximation of 〈LN

p

f ,
p

f 〉νN
ρ(·)

via DN (
p

f ,νN
ρ(·)). This is equivalent to

find the condition on ρ(·) such that the last two terms on the right-hand side of (3.28) vanish
when we send first N to infinity and then B to infinity. Thanks to the previous two remarks in
order to have this property we need to take:

• ρ(·) = ρ ∈ (0,1) constant if γ ∈ (0,1) and θ ≥ 0 or if γ ∈ (1,2) and θ ≥ γ− 1;
• ρ(·) Lispchitz such that ρ(0) = α and ρ(1) = β in all the other regimes.

3.3.1. Proof of Theorem 3.2. The proof of this theorem is almost analogous to the proof of
item i) of Theorem 3.2 in [2] (where the authors proved it for the regime γ ∈ (1,2) and
θ ≤ 0). We write here the main steps. We want to show that π· ∈ L2(0, T ;H γ/2) Q-almost
surely. In order to do that we will show the next bound

EQ

�∫

I

||πt ||2γ/2d t

�

® |I |, (3.32)

which implies the result in the statement above.
Recall that the system is speeded up on the time scale Θ(N), defined by (2.26). Let ρ(·)

be a macroscopic profile chosen according to Remark 3.6. Let ε > 0 be a small real number.
Let F ∈ C0,∞

c (I × [0,1]2), where I is a subinterval of [0, T]. By the entropy and Jensen’s
inequality and Feynman-Kac’s formula (see Lemma A.7.2 in [21]), we have that

EµN

�∫

I

Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)(ηN
t (y)−η

N
t (x))d t

�

≤ C0 +

∫

I

sup
f

�

Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)

∫

(η(y)−η(x)) f (η)dνN
ρ(·)

+Θ(N)N−1
¬

LN

p

f ,
p

f
¶

νN
ρ(·)

�

d t

(3.33)

where the supremum is taken over all densities f on ΩN with respect to νN
ρ(·). Now, denoting

the antisymmetric part of Ft by F a
t with

F a
t (u, v) =

1

2

�

Ft(u, v)− Ft(v, u)
�
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for all t ∈ I and (u, v) ∈ [0, 1]2, we can rewrite the first term inside the supremum in (3.33)
as

Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

(η(y)−η(x)) f (η)dνN
ρ(·)

=Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

η(y) ( f (η)− f (σx ,yη)) dνN
ρ(·)

+Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

η(x) f (η) (θ x ,y(η)− 1) dνN
ρ(·),

(3.34)

where the equality follows from the change of variables η 7→ σx ,yη and

θ x ,y(η) =
dνN

ρ(·)(σ
x ,yη)

dνN
ρ(·)(η)

.

Now, we have to split the proof in two cases: the case in which ρ(·) = ρ is constant
(corresponding to the regimes (θ ,γ) ∈ [0,∞)× (0, 1) and (θ ,γ) ∈ [γ− 1,∞)× (1,2)) and
the case in which ρ(·) is a Lipschitz profile (corresponding to the regime (θ ,γ) ∈ (0,γ−1)×
(1, 2)).

In the case in which ρ(·) = ρ is constant we have that θ x ,y(η) − 1 = 0. Therefore, by
Young’s inequality, the fact that f is a density and |η(y)| ≤ 1, we have that, for any A > 0,
(3.34) is bounded from above by a constant times

cγAΘ(N)N
−2+γ

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N , y

N

��2

| x
N −

y
N |1+γ

+
2Θ(N)N−1

A
D0

N (
p

f ,νN
ρ(·)).

Then, using (3.30) and (3.31), we can bound (3.33) in the following way:

EµN

�

∫

I

Θ(N)N−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)(ηN
t (y)−η

N
t (x)) d t

�

= EµN

�∫

I

−2cγ〈πN
t , gN

t 〉 d t

�

®
∫

I

N−2
∑

x ,y∈ΛN
|x−y|≥εN

cγ
�

F a
t (

x
N , y

N )
�2

| x
N −

y
N |1+γ

d t + |I |(κ+ 1),

(3.35)

where the function gN is defined on I × [0,1] by

gN
t (u) =

1

N − 1

∑

y∈ΛN

1�
�

y
N −u

�

�≥ε

F a
t

�

u, y
N

�

|u− y
N |1+γ
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and it is a discretization of the smooth function g defined on (t, u) ∈ I × [0,1] by

gt(u) =

∫ 1

0

1{|v−u|≥ε}
F a

t (u, v)

|u− v|1+γ
dv.

Now, we can proceed exactly in the same way as in the proof of Theorem 3.2 of [2] to conclude
that

EQ



sup
F

(

∫

I

∫∫

Qε

(πt(v)−πt(u))Ft(u, v)

|u− v|1+γ
− C

�

Ft(u, v)
�2

|u− v|1+γ
dudvd t

)



® |I |(κ+ 1), (3.36)

where Qε = {(u, v) ∈ [0, 1]2 ; |u− v| ≥ ε}. That bound, passing to the limit ε→ 0, by the
monotone convergence Theorem, implies the statement (3.32).

The case in which ρ(·) : [0,1]→ [α,β] is Lispchitz continuous and such that ρ(0) = α and
ρ(1) = β can be analyzed exactly in the same way as it was proved in Theorem 3.2 of [2]
therefore we will omit this part of the proof.

3.4. Characterization of the limit points. In this subsection we characterize all limit points
Q of the sequence {QN}N≥1, which we know that exist from Proposition 3.1. Let us assume
without loss of generality, that {QN}N≥1 converges toQ, as N goes to infinity. Since there is at
most one particle per site, it is easy to show thatQ is concentrated on trajectories of measures
absolutely continuous with respect to the Lebesgue measure, i.e. πκt (du) = ρκt (u)du (for
details see [21]). In Proposition 3.7 below we prove, for each range of θ and γ, that Q
is concentrated on trajectories of measures whose density ρk

t satisfies a weak form of the
corresponding hydrodynamic equation. Moreover, we have seen in Theorem 3.2 that Q is
concentrated on trajectories of measures whose density satisfies the energy estimate, i.e.
ρκ ∈ L2(0, T ;H γ/2) when θ ≥ 0 and γ ∈ (0, 2) \ {1}.

Proposition 3.7. If Q is a limit point of {QN}N≥1 then

Q
�

π· ∈ D([0, T],M+) : Fθ ,γ(t,ρ
κ, G, g)

�

= 0,

for each θ and each γ, where Fθ ,γ is defined by

Fθ ,γ(t,ρ
κ, G, g) :=



























FReac(t,ρκ, G, g) if θ < 0,γ ∈ (0, 1);
FRD(t,ρκ, G, g) if θ = 0,γ ∈ (0, 1);
FNeu(t,ρ0, G, g) if θ > 0,γ ∈ (0, 1) or θ > γ− 1,γ ∈ (1,2);
FRob(t,ρ, G, g) if θ = γ− 1,γ ∈ (1,2);
FDir(t,ρ, G, g) if θ ∈ (0,γ− 1),γ ∈ (1,2).

(3.37)

where Cθ ,γ = C1,2([0, T]× [0, 1]) if θ > 0 and γ ∈ (0,1) or if θ ≥ γ− 1 and γ ∈ (1,2), while
in all the other regimes it is Cθ ,γ = C1,2

c ([0, T]× [0, 1]).

Proof. The proof is very similar to the one in [2] and for that reason some details are omitted.
Note that in order to prove the proposition, it is enough to verify, for δ > 0 and G in the
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corresponding space of test functions, that

Q
�

π· ∈ D([0, T],M+) : sup
0≤t≤T

�

�Fθ ,γ(t,ρ
κ, G, g)

�

�> δ

�

= 0, (3.38)

for each θ and each γ in the respective domains.
We have that

Fθ ,γ(t,ρ
κ, G, g) =




ρκt , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρκs ,
�

∂s + 1{θ≥0}L
�

Gs

¶

ds

+1{θ≤0}1{γ∈(0,1)}κ

∫ t

0




ρκs , Gs

�

V1
ds− 1{θ≤0}1{γ∈(0,1)}κ

∫ t

0

〈Gs, V0〉 ds

−1{θ=γ−1}1{γ∈(1,2)}κ

∫ t

0

mGs(0)(α−ρκs (0)) +mGs(1)(β −ρκs (1))ds = 0.

(3.39)

From here on, in order to simplify notation, we will erase π· from the sets that we have to
look at. By (3.39) we can bound from above (3.38) by the sum of

Q
�

sup
0≤t≤T

�

�Fθ ,γ(t,ρ
κ, G,ρ0)

�

�>
δ

2

�

(3.40)

and

Q
�

|〈ρ0 − g, G0〉|>
δ

2

�

. (3.41)

We note that (3.41) is equal to zero since Q is a limit point of {QN}N≥1 and QN is induced by
µN which is associated to g(·). Now we deal with (3.40).

Notice that by Proposition A.3 of [10], the set inside the probability in (3.40) is an open set
in the Skorohod topology. Therefore, from Portmanteau’s Theorem we bound (3.40) from
above by

lim inf
N→∞

QN
�

sup
0≤t≤T

�

�Fθ ,γ(t,ρ
κ, G,ρ0)

�

�>
δ

2

�

.

Summing and subtracting

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds to the term inside the previous absolute

value, recalling (3.1), (3.39) and the definition ofQN , we can bound the previous probability
from above by the sum of

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�
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and

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds−

∫ t

0




ρκs ,1{θ≥0}LGs

�

ds

+ 1{γ∈(0,1)}1{θ≤0}κ

∫ t

0




ρκs , Gs

�

V1
ds− 1{γ∈(0,1)}1{θ≤0}κ

∫ t

0

〈Gs, V0〉 ds

−1{θ=γ−1}1{γ∈(1,2)}κ

∫ t

0

mGs(0)(α−ρκs (0)) +mGs(1)(β −ρκs (1))ds
�

�

�>
δ

4

�

.

(3.42)

By Doob’s inequality we have that

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

®
1
δ2
EµN

�

∫ T

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds

�

.

In the proof of Proposition 3.1 we have proved that the term inside the time integral in the
previous expression vanishes, as N goes to infinity. It remains to prove that (3.42) vanishes
as well when we send N to infinity. Recalling (3.2), we can bound (3.42) from above by the
sum of the following terms

PµN

�

sup
0≤t≤T

�

�

�

�

�

∫ t

0

Θ(N)

N − 1

∑

x∈ΛN

LN Gs(
x
N )η

N
s (x)ds−

∫ t

0




ρκs ,1{θ≥0}LGs

�

ds

�

�

�

�

�

>
δ

24

�

, (3.43)

PµN

�

sup
0≤t≤T

�

�

�

�

∫ t

0

§

κΘ(N)
Nθ (N − 1)

∑

x∈ΛN

(Gsr
−
N )(

x
N )(α−η

N
s (x))

− 1{γ∈(0,1)}1{θ≤0}κ

∫ 1

0

(Gsr
−)(u)(α−ρκs (u))du

− 1{θ=γ−1}1{γ∈(1,2)}κmGs(0)(α−ρκs (0))
ª

ds

�

�

�

�

>
δ

24

�

. (3.44)

and

PµN

�

sup
0≤t≤T

�

�

�

�

∫ t

0

§

κΘ(N)
Nθ (N − 1)

∑

x∈ΛN

(Gsr
+
N )(

x
N )(β −η

N
s (x))

− 1{γ∈(0,1)}1{θ≤0}κ

∫ 1

0

(Gsr
+)(u)(β −ρκs (u))du

− 1{θ=γ−1}1{γ∈(1,2)}κmGs(1)(β −ρκs (1))
ª

ds

�

�

�

�

>
δ

24

�

. (3.45)

For θ ≥ 0, since Θ(N) = Nγ and Lemma 5.1 holds for any G at least C2 in the space variable,
applying Markov’s inequality we have that (3.43) goes to 0, as N goes to infinity. For θ < 0
and γ ∈ (0,1) we also have that (3.43) vanishes as N goes to infinity thanks to Markov’s
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inequality and the same analysis that we did in Subsection 3.1.1. The boundary terms (3.44)
and (3.45) can be treated in a similar way, therefore we explain in details why they vanish just
referring to (3.44). In the case γ ∈ (0,1) and θ ≤ 0, it is enough to use Markov’s inequality
and what we did in Subsection 3.1.1 to show that (3.44) vanishes, as N goes to infinity. In
the case γ ∈ (1, 2) and θ = γ− 1 we again use Markov’s inequality and then we repeat the
computations we did in Subsection 3.1.5 to see that also in this case (3.44) vanishes, as N
goes to infinity. In all the other regimes that we are considering the only term we have to
estimate using Markov’s inequality is

EµN

��

�

�

�

∫ t

0

§

κNγ

Nθ (N − 1)

∑

x∈ΛN

(Gsr
−
N )(

x
N )(β −η

N
s (x))ds

�

�

�

�

�

(3.46)

and it vanishes, as N goes to infinity, thanks to the analysis that we did in Section 3.1 relative
to these regimes. This finishes the proof of Proposition 3.7. �

3.5. Conclusion. Note that Proposition 3.1, Theorem 3.2 and Proposition 3.7 just proved,
imply that the sequence {QN}N≥1 converges up to subsequences to a measureQ concentrated
on an absolutely continuous measure with respect to the Lebesgue measure of density ρκ,
where ρκ is the weak solution of the hydrodynamic equation chosen accordingly to the values
of the parameters of the model (as stated in Theorem 2.18). Moreover, thanks to Lemma
2.16 which grants the uniqueness of the weak solutions, we can conclude that this limiting
measure is unique and this proves completely Theorem 2.18.

4. UNIQUENESS OF WEAK SOLUTIONS

In this section we prove uniqueness of the weak solutions we defined in Subsection 2.3.
Since the PDEs are linear, the strategy is standard. We consider two weak solutions starting
from the same initial condition, take their difference and write down the integral formulation
for the difference of the two solutions. Then, chose a proper test function, plug it into the
integral formulation and from there obtain that the difference is 0 in some topology, which
implies the uniqueness result we need.

4.1. Uniqueness of weak solutions of (2.14). Fix T > 0 and γ ∈ (0, 2)\{1}. Consider ρ1

and ρ2 two weak solutions of (2.14) starting from the same initial condition and denote by
ρ their difference: ρ = ρ1 − ρ2 ∈ L2(0, T ;H γ/2). The set C1,∞([0, T] × (0,1)) is dense
in L2(0, T ;H γ/2). Therefore we can consider a sequence {Gn}n∈N ⊂ C1,∞([0, T] × (0,1))
converging to ρ with respect to the norm of L2(0, T ;H γ/2). Now, we consider a special set
of test functions, defined as Hn(t, u) :=

∫ T

t
Gn(s, u)ds, for any t ∈ [0, T] and any u ∈ [0, 1].

It is easy to check that Hn are suitable test functions. Now we state the Lemma 6.1 of [2]
adapting its proof to our case.

Lemma 4.1. Let {Hn}n∈N defined as above. Then we have

(1) limn→∞

∫ T

0
〈ρs,∂sHn(s, ·)〉ds = −

∫ T

0
||ρs||2ds;

(2) limn→∞

∫ T

0
〈ρs,LHn(s, ·)〉ds = −

1

2

�

�

�

�

�

�

∫ T

0
ρsds

�

�

�

�

�

�

2

γ/2
;
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Proof. The proof of item (1) is completely analogous to the one which can be found in [2].
Let us now prove item (2). We want to apply the integration by parts formula stated in Propo-
sition 2.1. Therefore let us check the hypothesis. First, we have that LHn(s, ·) ∈ L1([0, 1])
because Hn(s, ·) is at least C2([0,1]) (see the comment just after Proposition 2.1). Let us now
check (2.8). Since ρ(·) is uniformly bounded by 1 and Hn uniformly Lipschitz, we have to
show that

∫ 1

0

∫ 1

0

|Hn(s, v)−Hn(s, u)|
|u− v|γ−1

dudv ®
∫ 1

0

∫ 1

0

|u− v|2−γdudv <∞ (4.1)

which trivially holds for γ < 2. Therefore we can apply Proposition 2.1 and get that
∫ T

0

〈ρs,LHn(s, ·)〉ds =

∫ T

0

〈ρs, Hn(s, ·)〉γ/2ds. (4.2)

The rest of the proof of item (2) is then analogous to the one given in [2]. �

Thanks to this Lemma, we just have to plug in (2.19) the test function Hn, and then pass
to the limit when n goes to infinity, as done in [2], to get

∫ T

0

||ρs||2ds+
1

2

�

�

�

�

�

�

∫ T

0

ρsds
�

�

�

�

�

�

2

γ/2
= 0.

This implies that for almost every time s ∈ [0, T] the function ρs = 0 and this means that ρ1

coincides with ρ2 almost at every time. So, the weak solution of (2.14) is unique.

4.2. Uniqueness of weak solutions of (2.16). The uniqueness of the solution to (2.16) in
the case γ ∈ (1, 2) has been proved in [3]. Hence we assume now γ ∈ (0,1) and prove
the uniqueness of the weak solution to (2.16). The proof relies on the following Hardy’s
inequality proved in [8]

∀H ∈ C∞c ((0,1)), ‖H‖V1
® ‖H‖H γ/2 . (4.3)

Since C∞c ((0, 1)) is dense in L2
V1
([0, 1]) and inH γ/2

0 and since for γ < 1, we have the equality

H γ/2
0 = H γ/2 we have in fact that (4.3) holds for any H ∈ L2

V1
([0,1]) ∩H γ/2. Once this

observed, the proof follows the same arguments as in [3] for the case γ ∈ (1, 2).

Remark 4.2. Remark that the crucial difference between the case γ ∈ (1,2) and the case
γ ∈ (0,1) is that in the case γ ∈ (1, 2) the weak solutions are assumed to satisfy the Dirichlet
boundary conditions so that the difference of two weak solutions belongs to H γ/2

0 and Hardy’s
inequality can be used for the difference. In the case γ ∈ (0, 1), we do not know if weak solutions
satisfy in the strong sense Dirichlet boundary conditions. Hence the difference of two weak solu-
tions does not necessarily vanishes at the boundary (we do not even know if it has a continuous
representative). Fortunately if γ ∈ (0,1),H γ/2

0 =H γ/2, so that it is not a real problem.
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4.3. Uniqueness of weak solutions of (2.18). We have γ ∈ (1, 2). Fix T > 0. Consider ρ1

and ρ2 two weak solutions of (2.18) starting from the same initial condition and denote by
ρ their difference: ρ = ρ1−ρ2 ∈ L2(0, T ;H γ/2). Since the continuous representatives of ρ1

and ρ2 satisfy Dirichlet boundary conditions, we have in fact that ρ ∈ L2(0, T ;H γ/2
0 ). The

set C1,∞
c ([0, T] × (0, 1)) is dense in L2(0, T ;H γ/2

0 ). Therefore we can consider a sequence
{Gn}n∈N ⊂ C1,∞

c ([0, T]× (0, 1)) converging to ρ with respect to the norm of L2(0, T ;H γ/2
0 ).

Now, we consider a special set of test functions, defined as Hn(t, u) :=
∫ T

t
Gn(s, u)ds, for any

t ∈ [0, T] and any u ∈ [0,1]. It is easy to check that Hn are suitable test functions that can
be used in (2.19). Lemma 4.1 holds and we get then

∫ T

0

||ρs||2ds+
1

2
















∫ T

0

ρsds
















2

γ/2

= 0

which implies that ρ = 0 and shows uniqueness.

4.4. Uniqueness of weak solutions of (2.20). We have γ ∈ (1, 2). Fix T > 0. Con-
sider two weak solutions of (2.20) denoted by ρκ̂,1 and ρκ̂,2, starting from the same ini-
tial condition. Let the difference be ρκ̂ = ρκ̂,1 − ρκ̂,2. We have that ρκ̂ ∈ L2(0, T ;H γ/2).
Since γ > 1 we may consider a continuous representative (for a.e. time) of ρκ̂. The set
C1,∞([0, T] × (0, 1)) is dense in L2(0, T ;H γ/2). Therefore, we can consider a sequence
{Gκ̂n}n∈N ⊂ C1,∞([0, T]× (0,1)) converging to ρκ̂ with respect to the norm of L2(0, T ;H γ/2),
and we use as test functions H κ̂

n (t, u) :=
∫ T

t
Gκ̂n (s, u)ds, for any t ∈ [0, T] and any u ∈ [0, 1].

Observe that Lemma 4.1 holds for these test functions. Plugging the test functions H κ̂
n in

(2.21) and passing to the limit as n goes to infinity we get
∫ T

0

||ρκ̂s ||
2ds+

1

2

�

�

�

�

�

�

∫ T

0

ρκ̂s ds
�

�

�

�

�

�

2

γ/2
+
κ̂m

2

�

�

�

∫ T

0

ρκ̂s (0)ds
�

�

�

2
+
κ̂m

2

�

�

�

∫ T

0

ρκ̂s (1)ds
�

�

�

2
= 0, (4.4)

if we can prove that

lim
n→∞

∫ T

0

H κ̂
n (s, 0)ρκ̂s (0)ds =

1

2

�

�

�

∫ T

0

ρκ̂s (0)ds
�

�

�

2
(4.5)

and similarly with the point 0 replaced by the point 1. This will imply the uniqueness of weak
solutions for (2.20).

To prove (4.5) we observe, by using Fubini’s Theorem, that
∫ T

0

H κ̂
n (s, 0)ρκ̂s (0)ds =

∫∫

0≤s≤r≤T

Ĝκ̂n (r, 0)ρκ̂s (0)drds.

To conclude it is sufficient to prove that Gκ̂n (·, 0) converges to ρκ̂· (0) in L2([0, T], d t). Let us
denote fn = Gκ̂n −ρ

κ̂. We know that { fn}n∈N converges to 0 in L2([0, T];H γ/2), as n goes to
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infinity. By Theorem 8.2 in [9] we have that for any s ∈ [0, T]

sup
u,v∈[0,1]2

| fn(s, u)− fn(s, v)| ® |u− v|
γ−1

2 ‖ fn(s, ·)‖H γ/2 ® ‖ fn(s, ·)‖H γ/2 .

By the triangular inequality, averaging and Cauchy-Schwarz inequality, we get that for any
s ∈ [0, T] and any 0< R< 1

| fn(s, 0)|®
1

R

∫ R

0

| fn(s, v)|dv + ‖ fn(s, ·)‖H γ/2

®
1
p

R
‖ fn(s, ·)‖ + ‖ fn(s, ·)‖H γ/2 ®

1
p

R
‖ fn(s, ·)‖H γ/2 .

It follows that
∫ T

0

| fn(s, 0)|2ds ®
1

R

∫ T

0

‖ fn(s, ·)‖2
H γ/2 ds.

The right-hand side of the previous inequality goes to 0, as n goes to infinity, so that the same
holds for the left-hand side. This completes the proof.

4.5. Uniqueness of weak solutions of (2.22). Here we assume γ ∈ (0,1) since the case
γ ∈ (1, 2) has been considered in [3]. The idea in this case is similar to the ones above. But,
first we have to note that a weak solution ρκ̂ belongs to L2(0, T ; V1), i.e for any T > 0 we
have

∫ T

0

||ρκ̂s ||
2
V1
<∞. (4.6)

This is trivial since γ ∈ (0, 1) and ρκ̂ is uniformly bounded by 1. Hence if we consider two
different weak solutions ρκ̂,1 and ρκ̂,2, then their difference ρκ̂ := ρκ̂,1 − ρκ̂,2 belongs to
L2(0, T ; V1). This observation being done we can perform the same proof done in [2] for the
uniqueness of (2.22) in the regime γ ∈ (1,2).

5. TECHNICAL LEMMAS

In this section we state and prove the main lemmas we used in this work.

5.1. Convergence of a discrete operator to the regional fractional Laplacian. The first
lemma we prove in this section establishes the convergence in L1 of the discrete operator
NγLN defined by (3.3) to the regional fractional laplacian L when applied to smooth test
functions. This result differs from the one proved in [2], where the authors showed that for
a function G ∈ C∞c ([0,1]), the limit

lim
N→∞

NγLN G(u) = LG(u)

holds uniformly for any u ∈ [a, 1− a] for an arbitrary small a > 0. Hence, in the following
lemma we consider a weaker form of convergence, but in this way we are able to prove the
convergence result for a larger set of functions, namely for all functions in C∞([0, 1]).
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Lemma 5.1. For any G ∈ C∞([0, 1]) and γ ∈ (0,2), the following convergence holds

lim
N→∞

N−1
∑

x∈ΛN

|Nγ(LN G)( x
N )− (LG)( x

N )|= 0. (5.1)

Proof. Fix a small ε > 0, then the left-hand side of (5.1) is bounded from above by

limsup
N→∞

N−1

�

∑

1≤x≤εN

|Nγ(LN G)( x
N )− (LG)( x

N )|+
∑

εN<x≤(N−1)/2

|Nγ(LN G)( x
N )− (LG)( x

N )|

+
∑

(N−1)/2<x<N−1−εN

|Nγ(LN G)( x
N )− (LG)( x

N )|+
∑

N−1−εN≤x≤N−1

|Nγ(LN G)( x
N )− (LG)( x

N )|
�

.

(5.2)

First, we focus on the sum over 1≤ x ≤ εN . In this case, we can bound the term on the left-
hand side of the previous display by using the triangular inequality and get that it is bounded
from above by

lim sup
N→∞

N−1
∑

1≤x≤εN

|Nγ(LN G)( x
N )|+ lim sup

N→∞
N−1

∑

1≤x≤εN

|(LG)( x
N )|. (5.3)

Now, notice that in this case (1≤ x ≤ εN) we can write

(LN G)( x
N ) =

x−1
∑

y=1

p(y)θ x
N
( y

N ) +
N−1−x
∑

y=x

p(y)(G( x+y
N )− G( x

N )), (5.4)

where we introduced

θ x
N
(z) := G( x

N + z) + G( x
N − z)− 2G( x

N ). (5.5)

Therefore, the term on the left-hand side of (5.3) is bounded from above by

limsup
N→∞

N−1
∑

1≤x≤εN

�

�

�Nγ
x−1
∑

y=1

p(y)θ x
N
( y

N )
�

�

�+limsup
N→∞

N−1
∑

1≤x≤εN

�

�

�Nγ
N−1−x
∑

y=x

p(y)(G( x+y
N )−G( x

N ))
�

�

�. (5.6)

Performing a second order Taylor expansion in θ x
N

, we can bound from above the term on

the left-hand side of the previous display in the following way:

limsup
N→∞

N−1
∑

1≤x≤εN

�

�

�Nγ

x−1
∑

y=1

p(y)θ x
N
( y

N )
�

�

�® limsup
N→∞

N−1
∑

1≤x≤εN

Nγ−2
x−1
∑

y=1

y1−γ

® limsup
N→∞

Nγ−3
∑

1≤x≤εN

x2−γ ® ε3−γ
(5.7)

which goes to 0 as ε → 0. In order to prove that the first term of (5.3) goes to 0, we still
have to treat the term on the right-hand side of (5.6). Performing a Taylor expansion on G,
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we get

lim sup
N→∞

N−1
∑

1≤x≤εN

�

�

�Nγ

N−1−x
∑

y=x

p(y)(G( x+y
N )− G( x

N ))
�

�

�

® limsup
N→∞

N−1
∑

1≤x≤εN

Nγ−1
N−1−x
∑

y=x

y−γ

® limsup
N→∞

Nγ−2
N−1
∑

y=1

∑

1≤x≤εN
x≤inf{y,N−1−y}

y−γ

® limsup
N→∞

Nγ−2
� ∑

y≤εN

y−γ+1 +
∑

y>εN

εN y−γ
�

® ε−γ+2

(5.8)

and so it goes to 0 for γ < 2 when we pass to the limit ε→ 0.
Now, we have to estimate the term on the right-hand side of (5.3). In order to do that, we

first get an upper bound for
�

�LG( x
N )
�

� for 1 ≤ x ≤ εN . By definition of the operator L, we
have that

LG( x
N ) := cγ lim

ε′→0

∫ 1

0

1| xN −ν|>ε′
G(ν)− G( x

N )

| x
N − ν|γ+1

dν. (5.9)

We use a second order Taylor expansion to write
∫ 1

0

1| xN −ν|>ε′
G(ν)− G( x

N )

| x
N − ν|γ+1

dν= G′
�

x
N

�

∫ 1

0

1| xN −ν|>ε′
ν− x

N

| x
N − ν|γ+1

dν + RN ,x ,ε,ε′,G, (5.10)

where the remainder term can be bounded as follows

|RN ,x ,ε,ε′,G|®
∫ 1

0

1| xN −ν|>ε′
| x

N − ν|
1−γdν® 1.

Moreover, by changing variables and taking ε′ ≤ 1/N ≤ ε, we can write the integral on the
right-hand side of (5.10) as

∫ 1−
x
N

−
x
N

1{|z|>ε′} z|z|−γ−1dz =

∫ 1−
x
N

ε′

zz−γ−1dz +

∫ −ε′

−
x
N

z(−z)−γ−1dz

=

∫ 1−
x
N

ε′

z−γdz −
∫

x
N

ε′

z−γdz =
(1− x

N )
−γ+1 − ( x

N )
−γ+1

−γ+ 1
.

(5.11)

Therefore, since G′ is uniformly bounded, if γ ∈ (1,2) we have the following bound:

lim
N→∞

N−1
∑

1≤x≤εN

|(LG)( x
N )|® lim

N→∞
N−1

∑

1≤x≤εN

�

( x
N )

1−γ + 1
�

≤ ε2−γ (5.12)

which goes to 0 if we send ε to 0. Otherwise, if γ ∈ (0, 1) we have

lim
N→∞

N−1
∑

1≤x≤εN

|(LG)( x
N )|® lim

N→∞
N−1

∑

1≤x≤εN

1® ε (5.13)
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which also goes to 0 as ε → 0. This concludes the proof of the fact that the term on the
left-hand side of (5.2) vanishes.

Let us now focus on the second term of (5.2), namely the one involving the sites εN < x <
(N − 1)/2. We can bound this term by the limit for N going to infinity of

N−1
∑

εN<x<(N−1)/2

|Nγ(LN G)( x
N )− (LG)( x

N )| ≤N−1
∑

εN<x<(N−1)/2

|Nγ(LN G)( x
N )− (LεG)(

x
N )|

+ N−1
∑

εN<x<(N−1)/2

|(LεG)(
x
N )− (LG)( x

N )|,

(5.14)

where we defined

LεG(
x
N ) := cγ

∫ 1

0

1| xN −ν|>ε
G(ν)− G( x

N )

| x
N − ν|γ+1

dν. (5.15)

By changing variables in LεG(
x
N ) we can rewrite it as

LεG(
x
N ) = cγ

∫

x
N

ε

|z|−(1+γ)θ x
N
(z)dz + cγ

∫ −
x
N

x
N −1

G( x
N − z)− G( x

N )

|z|γ+1
dz, (5.16)

since εN < x < (N − 1)/2. Notice now that we can in the same way re-write

LG( x
N ) = lim

ε′→0
cγ







∫

x
N

ε′

|z|−(1+γ)θ x
N
(z)dz +

∫ −
x
N

x
N −1

G( x
N − z)− G( x

N )

|z|γ+1
dz







. (5.17)

Thus the second term at the right-hand side of (5.14) can be bounded by

N−1
∑

εN<x<(N−1)/2

|(LεG)(
x
N )− (LG)( x

N )|= N−1
∑

εN<x<(N−1)/2

|(LεG)(
x
N )− lim

ε′→0
ε′<ε

(Lε′G)(
x
N )|

= lim
ε′→0
ε′<ε

N−1
∑

εN<x<(N−1)/2

�

�

�

�

∫ ε

ε′

z−(1+γ)θ x
N
(z)dz

�

�

�

�

® lim
ε′→0
ε′<ε

(ε2−γ − (ε′)2−γ) = ε2−γ,

(5.18)

where the last inequality is obtained by performing a Taylor expansion of the second order
on G and using the fact that ||G′′||∞ is bounded. So, we have proved that this term goes to
0 when ε goes to 0 if γ < 2.

We estimate now the first term on the right-hand side of (5.14). Observe that, by changing
variables, we can write in this case (εN < x < (N − 1)/2)

(LN G)( x
N ) =

∑

εN≤y≤x−1

p(y)θ x
N
( y

N ) +
∑

1≤y<εN

p(y)θ x
N
( y

N ) +
∑

x≤y≤N−1−x

p(y)(G( x+y
N )− G( x

N )).

(5.19)
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Then, recalling (5.16), we have to estimate the following quantity:

N−1
∑

εN<x<(N−1)/2

|Nγ(LN G)( x
N )− (LεG)(

x
N )|

® N−1
∑

εN<x<(N−1)/2

§

�

�

�

�

Nγ

x−1
∑

y=εN

p(y)θ x
N
( y

N )− cγ

∫

x
N

ε

|z|−(1+γ)θ x
N
(z)dz

�

�

�

�

+

�

�

�

�

Nγ

εN−1
∑

y=1

p(y)θ x
N
( y

N )

�

�

�

�

+

�

�

�

�

Nγ

N−1−x
∑

y=x

p(y)(G( x+y
N )− G( x

N ))− cγ

∫ 1−
x
N

x
N

|z|−(1+γ)(G( x
N + z)− G( x

N ))dz

�

�

�

�

ª

= N−1
∑

εN<x<(N−1)/2

{(I) + (I I) + (I I I)}.

(5.20)

We can treat the term (I) in the previous sum as

(I) =

�

�

�

�

x−1
∑

y=εN

cγ

∫

y+1
N

y
N

�

( y
N )
−(1+γ)θ x

N
( y

N )− z−(1+γ)θ x
N
(z)
�

dz

�

�

�

�

®
�

�

�

�

x−1
∑

y=εN

∫

y+1
N

y
N

�

( y
N )
−(1+γ) − z−(1+γ)

�

θ x
N
( y

N )dz

�

�

�

�

+

�

�

�

�

x−1
∑

y=εN

∫

y+1
N

y
N

z−(1+γ)
�

θ x
N
( y

N )− θ x
N
(z)
�

dz

�

�

�

�

®
x−1
∑

y=εN

∫

y+1
N

y
N





θ x
N
(·)






∞((
y
N )
−(1+γ) − z−(1+γ))dz +

x−1
∑

y=εN

∫

y+1
N

y
N

z−(1+γ)




θ ′x
N
(·)






∞|
y
N − z|dz

®
x−1
∑

y=εN

∫

y+1
N

y
N

(( y
N )
−(1+γ) − z−(1+γ))dz + N−1

∫ 1

ε

z−(1+γ)dz.

(5.21)

Above we have used the fact that ‖θ x
N
(·)‖∞ and ‖θ ′x

N
(·)‖∞ are uniformly bounded in x . Now,

it is not difficult to check that

∫

y+1
N

y
N

(( y
N )
−(1+γ) − z−(1+γ))dz ® Nγ y−(2+γ). (5.22)

Thanks to these computations we conclude that (recall that ε will go to 0 after N being sent
to infinity)

lim
N→∞

N−1
∑

εN<x<(N−1)/2

(I)® lim
N→∞

N−1
∑

εN<x<(N−1)/2

(Nγ

x−1
∑

y=εN

y−(2+γ) + ε−γN−1) = 0. (5.23)



HYDRODYNAMIC LIMIT FOR A BOUNDARY DRIVEN SUPER-DIFFUSIVE SYMMETRIC EXCLUSION 39

Now we estimate the term involving (I I):

lim
N→∞

N−1
∑

εN<x<(N−1)/2

(I I)≤ lim
N→∞

N−1
∑

εN<x<(N−1)/2

�

�

�Nγ

εN
∑

y=1

p(y)θ x
N
( y

N )
�

�

�

® lim
N→∞

N−1
∑

εN<x<(N−1)/2

�

�

�Nγ−2
εN
∑

y=1

y1−γ
�

�

�

® lim
N→∞

N−1
∑

εN<x<(N−1)/2

ε2−γ ® ε2−γ,

(5.24)

which goes to 0, as ε goes to 0.
In order to conclude, we have to prove that the term involving (I I I) goes to 0. We have

that

(I I I) =
�

�

�

N−1−x
∑

y=x

cγ

∫

y+1
N

y
N

�

( y
N )
−(γ+1)(G( x+y

N )− G( x
N ))− z−(γ+1)(G( x

N + z)− G( x
N ))
�

dz
�

�

�

®
�

�

�

N−1−x
∑

y=x

∫

y+1
N

y
N

�

( y
N )
−(γ+1) − z−(γ+1)

�

(G( x+y
N )− G( x

N ))dz
�

�

�

+
�

�

�

N−1−x
∑

y=x

∫

y+1
N

y
N

z−(γ+1)
�

G( x+y
N )− G( x

N + z)
�

dz
�

�

�

(5.25)

By the mean value theorem applied to the function f : u→ u−(γ+1) and to the function G
we have

(I I I) ®
1

N 2

N−1−x
∑

y=x

�

y
N

�−(γ+1)
≤

1
N 2

N−1−x
∑

y=x

∫

y
N

y−1
N

u−(γ+1)du ®
1

N 2

� x
N

�−γ
. (5.26)

It follows that

N−1
∑

εN<x<(N−1)/2

(I I I)® Nγ−2
∑

εN<x<(N−1)/2

1
xγ

. (5.27)

If γ ∈ (1, 2) the series
∑

x≥1 x−γ is converging and so the term to estimate is of order Nγ−2

(uniformly in ε) and goes to 0, as N goes to infinity. If γ < 1, for fixed ε > 0 the sum is of
order N−γ+1 and so the global order is N−1 and then goes to 0, as N goes to infinity. This
proves that the first two terms of (5.2) vanishes, as N goes to infinity and then ε goes to 0.

The analysis of the last two terms in (5.2) can be done in the same way of the first two,
just performing the following change of variables x 7→ N − 1− x . �
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5.2. Fixing the value of the profile at the boundary. The aim of this subsection is to show
that, in the case 0≤ θ < γ−1 and γ ∈ (1, 2), the profile ρ(·) satisfies the Dirichlet boundary
conditions stated in item iii) of Definition 2.10. This will be a consequence of Proposition
5.3 which is a consequence of a series of results that we state below. Some of these auxiliary
lemmas will also be used in the case θ = γ − 1. First, we define the following empirical
averages:

−→η `s(x) =
1
`

x+
∑̀

y=x+1

ηN
s (y) and ←−η `s(x) =

1
`

x−1
∑

y=x−`

ηN
s (y), (5.28)

where x ∈ {0, . . . , N} and ` is a positive integer such that, in the sum on the left-hand side
we have x + `≤ N − 1 and on the right-hand side we have x − `≥ 1.

Remark 5.2. We always assume that in the size of the boxes involved, the number of sites on
which we compute the mean is an integer. When it is not we approximate with the closest greater
integer, for example −→η εN (0) shall be read as −→η dεNe(0). We do not write it in each step in order
to leave the computations more readable.

Proposition 5.3. In the regime 0 ≤ θ < γ− 1 and γ ∈ (1, 2), for any T > 0 and ε > 0, the
following convergences hold

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

(α−−→η εN
s (0))ds

�

�

�

�

= 0, (5.29)

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

(β −←−η εN
s (N))ds

�

�

�

�

= 0, (5.30)

where −→η εN
s (0) and←−η εN

s (N) are defined in (5.28).

Proof. The proof of this lemma is a trivial consequence of Lemmas 5.4, 5.5 and 5.6 in which
is proved (5.29). In Remark 5.7 we explain how to adapt this proof to show (5.30). �

We present first how to pass from the occupation variable ηN
s (1) to the mean of the values

of the occupations variables in the first εN sites. It is done in two steps and it is the content
of the next two lemmas. Finally, we show in Lemma 5.6 that ηN

s (1), in some way, is a good
approximation of α.

In the next lemma we show that it is possible to replace the occupation variable ηN
s (1) by

its empirical mean in a box of size `0 = εNγ−1 sites in the double ordered limit N →∞ and
then ε→ 0.

Lemma 5.4 (First approximation). In the regime 2 0≤ θ ≤ γ−1 and γ ∈ (1,2), for any T > 0,
ε > 0 and `0 = εNγ−1, it holds

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

(ηN
s (1)−

−→η `0
s (0))ds

�

�

�

�

= 0, (5.31)

2We observe that this lemma is true for any value of θ ≥ 0 and γ < 2, but we restrict to these values of θ ,γ
since we only need the result in this regime.
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where −→η `0
s (0) is defined in (5.28).

1 2 3 . . .
l0

FIGURE 8. First step, we can replace ηs(1) with its empirical mean in the box {1, . . . ,`0}.

Proof. Consider an arbitrary Lipschitz function ρ : [0,1]→ [α,β] such that ρ(0) = α,ρ(1) =
β and define the product measure νN

ρ(·) on ΩN by (3.21). By entropy and Jensen’s inequalities
we bound the expectation in the statement, for any B > 0, by

H(µN |νN
ρ(·))

BN
+

1
BN

logEνN
ρ(·)

�

eBN
�

�

∫ T
0 (η

N
s (1)−

−→η `0s (0))ds
�

�

�

. (5.32)

It is possible to remove the absolute value in the exponential above observing that e|x | ≤
max{ex , e−x}. Now, using the entropy bound (3.22) and Feynman-Kac’s formula, there exists
a constant C0 > 0 independent of N such that the last expression can be bounded by above
by

C0

B
+ sup

f

�∫

(η(1)−−→η `0(0)) f (η)dνN
ρ(·) +

Nγ−1

B
〈LN

p

f ,
p

f 〉νN
ρ(·)

�

(5.33)

where the supremum is carried on all the probability densities with respect to νN
ρ(·). We use

(3.29) which, in this case, becomes (for a constant C > 0 independent of N)

Nγ−1

B
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −

Nγ−1

4B
DN (

p

f ,νN
ρ(·)) + C

κN−θ + 1
B

. (5.34)

Observe that the integral inside the supremum in (5.33) can be rewritten, using the defi-
nition of −→η `0(0), as

1
`0

∫ `0
∑

x=1

(η(1)−η(x)) f (η)dνN
ρ(·) =

1
`0

∫ `0
∑

x=1

x−1
∑

z=1

(η(z)−η(z + 1)) f (η)dνN
ρ(·) (5.35)

where the equality follows from a simple telescopic argument. Now, by writing (5.35) as
twice its half and summing and subtracting appropriate terms, we can write it as the sum of
the following two terms:

1
2`0

`0
∑

x=1

x−1
∑

z=1

∫

(η(z)−η(z + 1))( f (η)− f (σz,z+1η))dνN
ρ(·), (5.36)
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1
2`0

`0
∑

x=1

x−1
∑

z=1

∫

(η(z)−η(z + 1))( f (η) + f (σz,z+1η))dνN
ρ(·). (5.37)

Let us now focus on (5.36), which is equal to

1
2`0

∫ `0
∑

x=1

x−1
∑

z=1

(η(z+1)−η(z))(
p

f (η)−
p

f (σz,z+1η))(
p

f (η)+
p

f (σz,z+1η))dνN
ρ(·) , (5.38)

and from Young’s inequality, it can be bounded from above, for any A> 0, by the sum of

1
2A`0

∫ `0
∑

x=1

x−1
∑

z=1

(
p

f (η)−
p

f (σz,z+1η))2dνN
ρ(·) (5.39)

and
A

2`0

∫ `0
∑

x=1

x−1
∑

z=1

(η(z)−η(z + 1))2(
p

f (η) +
p

f (σz,z+1η))2dνN
ρ(·). (5.40)

Observe now that if DNN (
p

f ,νN
ρ(·)) :=

∑N−2
z=1

∫

(
p

f (η)−
p

f (σz,z+1η))2dνN
ρ(·) we have that

DNN (
p

f ,νN
ρ(·)) ® DN(

p

f ,νN
ρ(·)). This means that we can bound (5.39) from above by a

constant times
1

2A`0

`0
∑

x=1

DN (
p

f , dνN
ρ(·))≤

1
2A

DN (
p

f , dνN
ρ(·)).

Let us now treat (5.40). Using (a + b)2 ® a2 + b2, changing variables (η 7→ σz,z+1η) and
remembering that νN

ρ(·) is a product measure with ρ(·) Lipschitz profile, we can bound from
above (5.40) by a constant times

A
2`0

∫ `0
∑

x=1

x−1
∑

z=1

(η(z)−η(z + 1))2 f (η)dνN
ρ(·).

Therefore, since f is a density and the difference (η(z)− η(z + 1))2 ≤ 1, we can bound the
previous display from above by a constant times

A
2`0

∫ `0
∑

x=1

x−1
∑

z=1

(η(z)−η(z + 1))2 f (η)dνN
ρ(·) ® A`0.

We have thus obtained that

(5.36)®
1

2A
DN (

p

f , dνN
ρ(·)) + A`0. (5.41)

In order to treat (5.37), we introduce the configuration η̃z ∈ Ωz,z+1
N := {0,1}Λ

z,z+1
N where

Λz,z+1
N := ΛN \ {z, z + 1}. Using the notation f (η) = f (η̃,η(z),η(z + 1)) we can rewrite the

sum of densities inside the integral in (5.37) as
∑

η̃∈Ωz,z+1
N

¦

f (η̃, 0, 1) + f (η̃, 1, 0)
©�

ρ( z
N )(1−ρ(

z+1
N ))−ρ(

z+1
N )(1−ρ(

z
N ))
�

ν̃N
ρ(·)(η̃), (5.42)
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where ν̃N
ρ(·) is the marginal density associated to νN

ρ(·) restricted to the configurations η̃ ∈
Ωz,z+1

N . Then, since ρ(·) was chosen to be Lispchitz continuous and f is a density, then (5.42)
is of order 1/N . Then we obtained that

(5.37)®
1
`0

`0
∑

x=1

x−1
∑

z=1

1
N
®
`0

N
. (5.43)

Hence (5.34), (5.41) and (5.43) give that (5.33) is bounded from above by

C
�1

B
+

1
2A

DN (
p

f , dνN
ρ(·)) + A`0 +

`0

N

�

−
Nγ−1

4B
DN (

p

f ,νN
ρ(·)) + C

κN−θ + 1
B

.

where C is a constant depending on γ,α,β . By choosing A = 2BN−γ+1C−1, then, for the
choice `0 = εNγ−1, the last display is less or equal than a constant times

1
B
+ Bε+ εNγ−2 +

κN−θ + 1
B

.

Since γ ∈ (1,2) and θ ≥ 0, the previous display and thus (5.33) vanishes as N →∞, then
ε→ 0 and finally B→∞. This concludes the proof of the lemma. �

Finally, the following lemma shows that we can approximate (in some sense) the empirical
mean of the occupation variable with respect to the first `0 sites by the one with respect to the
first εN sites. It is done using an iterative procedure, doubling the number of sites involved
in the empirical mean at each step up to reach the final size εN .

Lemma 5.5 (Multi-scale argument). Consider the case 0 ≤ θ ≤ γ− 1 and γ ∈ (1,2). Then,
for any T > 0,

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

(−→η `0
s (0)−

−→η εN
s (0))ds

�

�

�

�

= 0. (5.44)

. . .
`01 `1 `2

FIGURE 9. Multi-scale argument: we double the box {1, . . . ,`0} a finite number
of times M until reaching the final box of size 2M`0 = `M = εN . Here we
illustrate the first two steps, until reaching `2 = 22`0.

Proof. Consider a Bernoulli product measure νN
ρ(·), as defined in (3.21), with a Lipschitz pro-

file ρ : [0,1]→ (0, 1) such that ρ(0) = α and ρ(1) = β . Now, proceeding exactly as we did
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in the beginning of the proof of Lemma 5.4, using entropy and Jensen’s inequality and then
Feynman-Kac’s formula, we are reduced to prove that

C
B
+ sup

f

�∫

(−→η `0(0)−−→η εN(0)) f (η)dνN
ρ(·) +

Nγ−1

B
〈LN

p

f ,
p

f 〉νN
ρ(·)

�

, (5.45)

vanishes in the triple limit N →∞, then ε→ 0 and finally B→∞. In the previous formula
the supremum is carried over all the densities f with respect to νN

ρ(·).
Let us call `i := 2i`0, and choose M := MN such that 2M`0 = εN . Note that this M is

independent of ε and of order log N since `0 = εNγ−1. With this notation we can write

−→η `0(0)−−→η εN (0) =
M
∑

i=1

�−→η `i−1(0)−−→η `i(0)
�

=
M
∑

i=1

�

1
`i−1

`i−1
∑

y=1

η(y)−
1
`i

`i
∑

y=1

η(y)

�

=
M
∑

i=1

1
`i

`i−1
∑

y=1

�

η(y)−η(y + `i−1)
�

,

(5.46)

where the last equality comes from the definition of the `i ’s.
Thanks to the previous display, the first term in the supremum of (5.45) can be rewritten

as the sum of

1
2

∫ M
∑

i=1

1
`i

`i−1
∑

y=1

(η(y)−η(y + `i−1))( f (η)− f (σ y,y+`i−1η))dνN
ρ(·) (5.47)

and

1
2

∫ M
∑

i=1

1
`i

`i−1
∑

y=1

(η(y)−η(y + `i−1))( f (η) + f (σ y,y+`i−1η))dνN
ρ(·). (5.48)

Recall (3.26). Using Young’s inequality as we did in Lemma 5.4, we bound from above
(5.47) by the sum of

∫

1
4

M
∑

i=1

1
Ai`i

`i−1
∑

y=1

(
p

f (η)−
p

f (σ y,y+`i−1η))2dνN
ρ(·) =

1
4

M
∑

i=1

1
Ai`i

`i−1
∑

y=1

I y,y+`i−1
(
p

f ,νN
ρ(·))

(5.49)
and

∫

1
4

M
∑

i=1

Ai

`i

`i−1
∑

y=1

(η(y)−η(y + `i−1))
2(
p

f (η) +
p

f (σ y,y+`i−1η))2dνN
ρ(·) , (5.50)

for some arbitrary positive Ai that we are going to properly choose. Choosing

Ai = A0

B`γi−1

Nγ−1`i
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with a suitable A0 > 0 we can apply Lemma 5.8 to bound the right-hand side of (5.49) by 3

Nγ−1

4B
DN (

p

f ,νN
ρ(·)).

Let us estimate now (5.50). Since f is a density and the η(y)’s are uniformly bounded,
recalling that 2M`0 = εN , we can bound from above (5.50) by a constant times

B
4Nγ−1

M
∑

i=1

`
γ

i−1

`2
i

`i−1
∑

y=1

1=
B

4Nγ−1

M
∑

i=1

`
γ+1
i−1

`2
i

=
B`γ−1

0

4Nγ−1

1
2γ+1

M
∑

i=1

2i(γ−1) ®
B(2M`0)γ−1

Nγ−1
® Bεγ−1.

Hence we obtained that there exists a constant C > 0 (independent of N ,ε, B) such that

(5.47)≤
Nγ−1

4B
DN(

p

f ,νN
ρ(·)) + CBεγ−1. (5.51)

We still have to estimate (5.48). Reasoning as we did in (5.42), we can rewrite the sum of
the densities inside the integral in (5.48) as

∑

η̃∈Ωy,y+`i−1
N

¦

f (η̃, 0, 1) + f (η̃, 1, 0)
©�

ρ( y
N )(1−ρ(

y+`i−1
N ))−ρ( y+`i−1

N )(1−ρ( y
N ))
�

dν̃N
ρ(·), (5.52)

where now we denote η̃ as the configuration η restricted to the sites in ΛN\{y, y + `i−1}.
So, the configuration (η̃, 0, 1) coincides with the configuration η where η(y + `i−1) = 1 and
η(y) = 0, and ν̃N

ρ(·) is the marginal density associated to νN
ρ(·) restricted to the configurations

η̃ ∈ Ωy,y+`i−1
N := {0,1}ΛN\{y,y+`i−1}. Since ρ(·) was chosen to be Lipschitz continuous and f is

a density, the previous display is of order `i−1/N . Therefore we get that

(5.48)®
M
∑

i=1

1
`i

`i−1
∑

y=1

`i−1

N
®

1
N

M
∑

i=1

`2
i

`i
®

1
N

M
∑

i=1

2i`0 ®
2M`0

N
= ε (5.53)

since M is such that 2M`0 = εN .
Hence, recalling (3.29), (5.51) and (5.53), we get that the term inside the supremum in

(5.45) can be bounded from above by a constant times

Bεγ−1 + ε+
Nγ−1(κ+ Nθ )

BNγ+θ
.

It follows that
lim sup

B→∞
limsup
ε→0

lim sup
N→∞

(5.45)= 0.

This concludes the proof. �

In the next lemma we prove that, in the regime θ ∈ (0,γ− 1) and γ ∈ (1,2), it is possible
to replace, when integrated in time, the occupation variable ηN

s (1) by α (and, analogously,
ηN

s (N − 1) by β), as N goes to infinity.

3We choose A0 to be exactly the inverse of the constant which appear implicitly in Lemma 5.8.
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Lemma 5.6. For any T > 0, 0≤ θ < γ− 1 and γ ∈ (1,2) it holds:

lim
N→∞
EµN

�

�

�

�

∫ T

0

(ηN
s (1)−α)ds

�

�

�

�

= 0, (5.54)

lim
N→∞
EµN

�

�

�

�

∫ T

0

(ηN
s (N − 1)− β)ds

�

�

�

�

= 0, (5.55)

Proof. We present the proof for the first expectation, but the proof of the other one is exactly
the same. The first step in this proof is analogous to the beginning of the proof of Lemma 5.4
therefore we omit some of the steps. We use Feynman-Kac’s formula, entropy and Jensen’s
inequality to prove (5.54) it is sufficient to show that in the double limit (N →∞ and then
B→∞) the term

C

B
+ sup

f

�∫

(η(1)−α) f (η)dνN
ρ(·) +

Nγ−1

B
〈LN

p

f ,
p

f 〉νN
ρ(·)

�

(5.56)

vanishes. Here C is a constant independent from N and the supremum is carried over all the
densities with respect to νN

ρ(·) defined in (3.21)where ρ(·) is a Lipschitz continuous profile
such that for all u ∈ [0,1], α ≤ ρ(u) ≤ β and ρ(0) = α, ρ(1) = β . The first term inside the
supremum above can be rewritten as

1

2

∫

(η(1)−α)( f (η)− f (σ1η))dνρ(·) +
1

2

∫

(η(1)−α)( f (η) + f (σ1η))dνN
ρ(·). (5.57)

Recall (3.26). From Young’s inequality and (a − b) = (
p

a −
p

b)(
p

a +
p

b), we can bound
the first term in the previous display from above by

A

2
Iα1 (
p

f ,νN
ρ(·)) +

1

2A

∫

(η(1)−α)2(
p

f (η) +
p

f (σ1η))2dνN
ρ(·)

for any arbitrary positive constant A. Now observe first that by (3.24), D`N (
p

f ,νN
ρ(·)) ≤

r−1 (
1
N )I

α
1 (
p

f ,νN
ρ(·)) and secondly, that since f is a density and ρ(·) is Lipschitz the second

term in the last display is bounded from above by a constant times 1/N + 1/A (see Lemma
5.5 of [3] for details). Hence we get that the first term in (5.57) is bounded from above by

A

2r−1 (
1
N )

Dl
N (
p

f ,νN
ρ(·)) + C

�

1
A
+

1
N

�

(5.58)

for some constant C > 0 independent of N , B, A. Therefore, if we chose

A= 1
2κB−1Nγ−θ−1r−1 (1/N)

we can bound the previous display by

κNγ

4BNθ+1
Dl

N (
p

f ,νN
ρ(·)) + C

�

2BNθ+1

κNγr−1 (1/N)
+

1
N

�

. (5.59)
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Since κN−θDl
N (
p

f ,νN
ρ(·)) ≤ DN (

p

f ,νN
ρ(·)), by using (3.29), we get that (5.56) is bounded

from above by a constant times

1
B
+

2BNθ+1

κNγr−1 (1/N)
+

1
N

.

Since r−N (1/N) is bounded from bellow by a constant independent of N and θ < γ− 1 the
proof ends. �

Remark 5.7. The proof of (5.30) is completely analogous and it is a consequence of Lemma 5.6,
Lemmas 5.4 and 5.5, when we replace α by β , ηN

s (1) by ηN
s (N −1) and −→η `s(0) by←−η `s(N). The

details are left to the reader.

5.3. Moving particle lemma. In this section we present a useful result to estimate the ‘cost’
of a change of position of particles in our model. In other words, how much the exchange
of position of a particle from a site y ∈ ΛN to a site y + ` ∈ ΛN , for some ` > 0, changes the
‘energy’ of the system in terms of the quantity (3.27).

Lemma 5.8. Fix `0 ≤ N − 1 and define `i := 2i`0 for any i ∈ {1, . . . , M} where M is a positive
integer such that `M < N − 1. Let f be a density with respect to νN

ρ(·) on ΩN , where νN
ρ(·) is

defined as in (3.21) with ρ : [0, 1]→ (0,1) such that ρ(0) = α and ρ(1) = β . Then

M
∑

i=1

`i−1
∑

y=1

I y,y+`i−1

�

p

f ,νN
ρ(·)

�

`
γ

i−1

® DN

�

p

f ,νN
ρ(·)

�

where DN (
p

f ,νN
ρ(·)) is defined in (3.27) and I y,y+`i−1

in (3.26) .

Proof. We can assume without loss of generality that `0 is even (the argument is easy to
extend to an odd `0) and then `i−1 is an even number for any i ∈ {1, . . . , M}.

Fix i ∈ {1, . . . , M}. For every y ∈ {1, . . . ,`i−1} consider the `i−1
2 possibilities that a particle

has to jump from y to y + `i−1 in at most two steps. Hence for any j ∈ {1, . . . , `i−1
2 }, define

z0, j := z i
0, j(y) = y, z1, j := z i

1, j(y) = y +
`i−1

2
+ j z2, j := z i

2, j(y) = y + `i−1, (5.60)

which correspond to one jump of length `i−1
2 + j from z0, j = y to z1, j and one jump of length

`i−1
2 − j from z1, j to z2, j = y +`i−1. Observe that for j = `i−1

2 , we are moving from y to y +`i−1
with only one jump and z1, j = z2, j.

Recall (3.26). Observe that
Æ

f (σ y,y+`i−1η)−
Æ

f (η) =
Æ

f (σz0, j ,z2, jη)−
Æ

f (η) (5.61)

is not 0 if, and only if, η(z0, j) 6= η(z2, j). We want to rewrite (5.61) using the point z1, j. To do
that we consider separately the possible combinations of values of the zi, j with i ∈ {0,1, 2}.
First, assume that η(z0, j) = 1 and η(z2, j) = 0. In this case we have two possibilities:
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a. when η(z1, j) = 0, we observe that the action of the operator σz0, j ,z2, j on the config-
uration η is equivalent to the action in sequence (and in that order) of σz0, j ,z1, j and
then σz1, j ,z2, j . So, in this particular case we can write (5.61) as
�
Æ

f (σz1, j ,z2, j(σz0, j ,z1, jη))−
Æ

f (σz0, j ,z1, jη)
�

+
�
Æ

f (σz0, j ,z1, jη)−
Æ

f (η)
�

. (5.62)

b. when η(z1, j) = 1, the action of the operator σz0, j ,z2, j on the configuration η is equiva-
lent to the action in sequence (and in that order) of σz1, j ,z2, j and then σz0, j ,z1, j . So, in
this particular case we can write (5.61) as
�
Æ

f (σz0, j ,z1, j(σz1, j ,z2, jη))−
Æ

f (σz1, j ,z2, jη)
�

+
�
Æ

f (σz1, j ,z2, jη)−
Æ

f (η)
�

. (5.63)

Then, we have to consider the case in which η(z1, j) = 0 and η(z2, j) = 1. Then, reasoning
similarly to what we did above, if η(z1, j) = 0 we can rewrite (5.61) as (5.63), otherwise, if
η(z1, j) = 1 we can rewrite (5.61) as (5.62).

Let us now consider the configurations in which we can rewrite (5.61) as (5.62) and call
the set of these configurations

Ω̃1
N = {η ∈ ΩN : η(z0, j) = 1,η(z1, j) = 0,η(z2, j) = 0 or η(z0, j) = 0,η(z1, j) = 1,η(z2, j) = 1}.

In a similar way let us define the following set of configurations

Ω̃2
N = {η ∈ ΩN : η(z0, j) = 1,η(z1, j) = 1,η(z2, j) = 0 or η(z0, j) = 0,η(z1, j) = 0,η(z2, j) = 1},

which are the ones corresponding to the case in which we can rewrite (5.61) as (5.63).
Observe that Ω̃1

N ∩ Ω̃
2
N = ;. Now, thanks to the reasoning that we did above and using the

inequality (a+ b)2 ≤ 2(a2 + b2), we can write

I y,y+`i−1
(
p

f ,νN
ρ(·)) =

∫

(
Æ

f (ηy,y+`i−1)−
Æ

f (η))2dνN
ρ(·)

=

∫

Ω̃1
N

��
Æ

f (σz1, j ,z2, j(σz0, j ,z1, jη))−
Æ

f (σz0, j ,z1, jη)
�

+
�
Æ

f (σz0, j ,z1, jη)−
Æ

f (η)
��2

dνN
ρ(·)

+

∫

Ω̃2
N

��
Æ

f (σz0, j ,z1, j(σz1, j ,z2, jη))−
Æ

f (σz1, j ,z2, jη)
�

+
�
Æ

f (σz1, j ,z2, jη)−
Æ

f (η)
��2

dνN
ρ(·)

®
∫

Ω̃1
N

�
Æ

f (σz1, j ,z2, j(σz0, j ,z1, jη))−
Æ

f (σz0, j ,z1, jη)
�2

dνN
ρ(·)

+

∫

Ω̃1
N

�
Æ

f (σz0, j ,z1, jη)−
Æ

f (η)
�2

dνN
ρ(·)

+

∫

Ω̃2
N

�
Æ

f (σz0, j ,z1, j(σz1, j ,z2, jη))−
Æ

f (σz1, j ,z2, jη)
�2

dνN
ρ(·)

+

∫

Ω̃2
N

�
Æ

f (σz1, j ,z2, jη)−
Æ

f (η)
�2

dνN
ρ(·).

(5.64)
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Note that
∫

Ω̃i
N

�p

f (σx ,yη)−
p

f (η)
�2

dνN
ρ(·) ≤ Ix ,y

�p

f ,νN
ρ(·)

�

, for any i = 1,2 and any x , y ∈
ΩN . Moreover, by the properties of νN

ρ(·) (product measure associated to a Lipschitz profile

which is never 0 nor 1), the Radon-Nikodym derivatives of the form
dνN
ρ(·)(σ

x ,yη)

dνN
ρ(·)(η)

, for any x , y ∈
ΛN , are bounded by a positive constant independent of x , y and N . Hence, last display can
be bounded from above by a constant times

Iz1, j ,z2, j
(
p

f ,νN
ρ(·)) + Iz0, j ,z1, j

(
p

f ,νN
ρ(·)) + Iz0, j ,z1, j

(
p

f ,νN
ρ(·)) + Iz1, j ,z2, j

(
p

f ,νN
ρ(·)). (5.65)

Therefore, we obtained that

I y,y+`i−1

�

p

f ,νN
ρ(·)

�

®
2
∑

k=1

Izk−1, j ,zk, j

�

p

f ,νN
ρ(·)

�

. (5.66)

Observe now that by construction we have [p(zk, j − zk−1, j)]−1 ® `1+γ
i−1 (the longest possible

jump is equal to `i−1). Hence, we have

I y,y+`i−1
(
p

f ,νN
ρ(·))®

2
∑

k=1

Izk−1, j ,zk, j
(
p

f ,νN
ρ(·))® `

1+γ
i−1

2
∑

k=1

p(zk, j − zk−1, j)Izk−1, j ,zk, j
(
p

f ,νN
ρ(·)).

(5.67)
This is true for any j ∈ {1, . . . , `i−1

2 }, so we can write

`i−1I y,y+`i−1
(
p

f ,νN
ρ(·))® `

1+γ
i−1

`i−1/2
∑

j=1

2
∑

k=1

p(zk, j − zk−1, j)Izk−1, j ,zk, j
(
p

f ,νN
ρ(·)), (5.68)

which implies that
M
∑

i=1

`i−1
∑

y=1

I y,y+`i−1
(
p

f ,νN
ρ(·))

`
γ

i−1

®
M
∑

i=1

`i−1
∑

y=1

`i−1/2
∑

j=1

2
∑

k=1

p(zk, j − zk−1, j)Izk−1, j ,zk, j
(
p

f ,νN
ρ(·)). (5.69)

Recall (5.60) and, in particular, that the zk, j ’s depend in fact on i and y . We claim that when
i, y, j, k describe the sets involved in last sum, the couples (zk−1, j, zk, j) := (z i

k−1, j(y), z i
k, j(y))

are all different, i.e.

Φ : (i, y, j, k)→ (z i
k−1, j(y), z i

k, j(y)) ∈ ΛN ×ΛN is injective. (5.70)

Therefore, recalling (3.27), we can bound from above the term on the right-hand side of
(5.69) by

∑

v,w∈ΛN
v≤w

p(w− v)Iv,w(
p

f ,νN
ρ(·))® DN (

p

f ,νN
ρ(·)). (5.71)

Putting together (5.71) and (5.69) we get the statement.
We still have to prove (5.70) to conclude the proof. Let us assume that

Φ(i, y, j, k) = Φ(i′, y ′, j′, k′)

and let us prove that (i, y, j, k) = (i′, y ′, j′, k′). We distinguish four cases according to the
values of k and k′.
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• k = k′ = 1: then z i
0, j(y) = z i′

0, j′(y
′) and z i

1, j(y) = z i′
1, j′(y

′) imply that

y = y ′, `i−1
2 + j = `i′−1

2 + j′.

Since 1≤ j ≤ `i−1/2 and 1≤ j′ ≤ `i′−1/2 we have that

1+ `i−1
2 ≤

`i−1
2 + j ≤ `i−1 and 1+ `i′−1

2 ≤
`i′−1

2 + j′ ≤ `i′−1. (5.72)

If i ≤ i′ − 1 then `i−1 ≤
`i′−1

2 <
`i′−1

2 + 1 and the equality `i−1
2 + j = `i′−1

2 + j′ is then
in contradiction with (5.72). If i′ ≤ i − 1 then `i′−1 ≤

`i−1
2 < 1 + `i−1

2 the equality
`i−1

2 + j = `i′−1
2 + j′ is then again in contradiction with (5.72). Hence i = i′ and conse-

quently j = j′. We are done.

• k = 1 and k′ = 2: then z i
0, j(y) = z i′

1, j′(y
′) and z i

1, j(y) = z i′
2, j′(y

′) imply that

y = y ′ + `i′−1
2 + j′, y + `i−1

2 + j = y ′ + `i′−1,

and hence by replacing y in the second equality by y ′ + `i′−1
2 + j′, we get

y = y ′ + `i′−1
2 + j′, `i−1

2 + j = `i′−1
2 − j′.

Since 1≤ y ≤ `i−1, 1≤ y ′ ≤ `i′−1, 1≤ j ≤ `i−1/2 and 1≤ j′ ≤ `i′−1/2 we have that

1≤ y ≤ `i−1 and 2+ `i′−1
2 ≤ y ≤ 2`i′−1,

1+ `i−1
2 ≤

`i−1
2 + j ≤ `i−1 and 0≤ `i−1

2 + j ≤ `i′−1
2 − 1.

(5.73)

If i ≤ i′ − 1 then `i−1 ≤
`i′−1

2 < 2+ `i′−1
2 and there is a contradiction with the first line

of (5.73). If i′ ≤ i then `i′−1 ≤ `i−1, hence `i′−1
2 −1< 1+ `i−1

2 , which is in contradiction
with the second line of (5.73). Hence this case is not possible and we are done.

• k = 2 and k′ = 1: by symmetry this case is equivalent to the previous one.

• k′ = 2 and k = 2: then z i
1, j(y) = z i′

1, j′(y
′) and z i

2, j(y) = z i′
2, j′(y

′) imply that

`i−1
2 + j + y = `i′−1

2 + j′ + y ′, `i−1 + y = `i′−1 + y ′.

The second equality and the fact that 1≤ y ≤ `i−1, resp. 1≤ y ′ ≤ `i′−1 implies that

1+ `i−1 ≤ y + `i−1 ≤ 2`i−1 and 1+ `i′−1 ≤ y + `i−1 ≤ 2`i′−1. (5.74)

If i ≤ i′ − 1 then 2`i−1 ≤ `i′−1 < `i′−1 + 1 which is in contradiction with (5.74). Simi-
larly if i′ ≤ i − 1 then 2`i′−1 ≤ `i−1 < `i−1 + 1 is in contradiction with (5.74). Hence
i = i′ and consequently we deduce that y = y ′ and j = j′.

This concludes the proof of the lemma.
�
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5.4. Auxiliary result. The next proposition is used in order to define a notion of weak solu-
tion in the case θ = γ− 1 and γ ∈ (1,2). The strategy of the proof is similar to the one used
in the previous lemmas, so we will just sketch its proof.

Lemma 5.9. Fix θ = γ− 1, γ ∈ (1,2). For any T > 0, for any G ∈ C∞([0,1]) it holds

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )(η

N
s (x)−

−→η `0
s (0))ds

�

�

�

�

= 0,

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

+
N (

x
N )(η

N
s (x)−

←−η `0
s (N))ds

�

�

�

�

= 0,

where `0 = εNγ−1.

Proof. We prove only the part involving r−N , since the other one can be proved analogously.
By the triangular inequality we can bound the expectation in the statement by the sum of

EµN

�

�

�

�

∫ T

0

∑

x∈ΛN
x≤`0

G( x
N )r

−
N (

x
N )(η

N
s (x)−

−→η `0
s (0))ds

�

�

�

�

(5.75)

and

EµN

�

�

�

�

∫ T

0

∑

x∈ΛN
x>`0

G( x
N )r

−
N (

x
N )(η

N
s (x)−

−→η `0
s (0))ds

�

�

�

�

. (5.76)

The last display can be bounded from above by a constant times
∑

x∈ΛN
x>`0

|G( x
N )||r

−
N (

x
N )| ≤ ||G||∞

∑

x∈ΛN
x>`0

|r−N (
x
N )|.

Since r−N (
x
N ) ® x−γ the right-hand side of the last display can be bounded from above, using

Riemann integral approximation, by a constant times

(`0)
−γ+1 = ε−γ+1(Nγ−1)−γ+1 = ε−γ+1N−(γ−1)2 = 0,

and it vanishes in the limit N →∞,ε→ 0. This means that in order to prove the statement
of the Lemma we only need to show that the limit (5.75) is 0.

We proceed as we did in the proof of Lemma 5.4. Let ρ ∈ (0, 1) be a constant. By Jensen’s
and entropy inequalities plus Feynman-Kac’s formula, we are reduced to show that

C0

B
+ sup

f

�∫

∑

x∈ΛN
x≤`0

G( x
N )r

−
N (

x
N )(η(x)−

−→η `0(0)) f (η)dνN
ρ
+

Nγ−1

B
〈LN

p

f ,
p

f 〉νN
ρ

�

(5.77)

vanishes in the limit N →∞, ε→ 0 and then B→∞. As usual C0 is a constant independent
from N and the supremum is carried over all the densities with respect to the Bernoulli
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product measure νN
ρ

. From (3.30) and recalling that θ = γ− 1, the term on the right-hand
side of last display becomes bounded from above by

−
Nγ

4NB
DN (

p

f ,νN
ρ
) +

Cκ
B

(5.78)

where C is a constant independent of N , B (and ε). The first term inside the supremum of
(5.77) can be written as

1
`0

∫

∑

x∈ΛN
x≤`0

G( x
N )r

−
N (

x
N )
�

x
∑

y=1

x−1
∑

z=y

(η(z + 1)−η(z)) +
`0
∑

y=x

y−1
∑

z=x

(η(z)−η(z + 1))
�

f (η)dνN
ρ

.

Now, since the profile in the product measure νN
ρ

is a constant we can rewrite the last term,
by a change of variable as

1
2`0

∫

∑

x∈ΛN
x≤`0

G( x
N )r

−
N (

x
N )
�

x
∑

y=1

x−1
∑

z=y

(η(z + 1)−η(z))( f (η)− f (σz,z+1η))

+
`0
∑

y=x

y−1
∑

z=x

(η(z)−η(z + 1))( f (η)− f (σz,z+1η))
�

dνN
ρ

.

(5.79)

Hence, using Young’s inequality on both the terms in the last display with the same constant
A> 0 we can bound from above the whole term by

1
4`0

∫

∑

x∈ΛN
x≤`0

�

�G( x
N )r

−
N (

x
N )
�

�

�

A
x
∑

y=1

x−1
∑

z=y

(η(z + 1)−η(z))2(
p

f (η) +
p

f (σz,z+1η))2

+ A
`0
∑

y=x

y−1
∑

z=x

(η(z)−η(z + 1))2(
p

f (η) +
p

f (σz,z+1η))2

+
1
A

`0
∑

y=1

`0
∑

z=1

(
p

f (η)−
p

f (σz,z+1η))2
�

dνN
ρ

.

(5.80)

Since f is a density and |η(z)| ≤ 1 for any z, we can bound from above the whole last term
by (recall the definition (3.26))

1
4`0

∫

∑

x∈ΛN
x≤`0

�

�G( x
N )r

−
N (

x
N )
�

�

�

A
`0
∑

y=1

`0
∑

z=1

2+
1
A

`0
∑

y=1

`0
∑

z=1

Iz,z+1(
p

f ,νN
ρ
)

�

≤
C ′A`0

2
+

1
4A

DN (
p

f ,νN
ρ
),

(5.81)

where C ′ is a constant independent of N ,ε, B (this because
∑

x∈ΛN
x≤`0

|G( x
N )r

−
N (

x
N )| ® 1 and

∑`0

z=1 Iz,z+1(
p

f ,νN
ρ
)≤ DN (

p

f ,νN
ρ
)).
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Then, taking A= BN 1−γ the second term on the right-hand side of (5.81) cancels with the
first of (5.78). Summarising we bounded (5.77) and hence the expectation in (5.75) by

Cκ
B
+ C ′

BN 1−γ`0

2
®

1
B
+ Bε. (5.82)

So, sending ε to 0 and then B to infinity, the proof is concluded. �

Remark 5.10. Observe that if we apply Lemma 5.9 and then Lemma 5.5 it is easy to show that

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )(η

N
s (x)−

−→η εN
s (0))ds

�

�

�

�

= 0.

Indeed the expectation above can be bounded from above by

EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )(η

N
s (x)−

−→η `0
s (0))ds

�

�

�

�

+EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )(
−→η `0

s (0)−
−→η εN

s (0))ds
�

�

�

�

.

(5.83)

The first expectation above vanishes, as N goes to infinity and ε goes to 0, thanks to Lemma 5.9.
Now, call CN :=

∑

x∈ΛN
G( x

N )r
−
N (

x
N ), which is of order 1 since the sum is convergent. Then, the

second expectation above vanishes, as N goes to infinity and ε goes to 0, thanks to Lemma 5.5.
Moreover, not that by the symmetry property of this model, the results that we used works also
when we study the right boundary (see Remark 5.7). So, it is possible to show in the same way
as above that

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ T

0

∑

x∈ΛN

G( x
N )r

+
N (

x
N )(η

N
s (x)−

←−η εN
s (N))ds

�

�

�

�

= 0.
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