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Guiding the training of users with a pattern similarity biofeedback to
improve the performance of myoelectric pattern recognition.

Etienne de Montalivet1, Kevin Bailly1, Amélie Touillet2, Noël Martinet2, Jean Paysant2 and Nathanaël Jarrassé1

Abstract— Next generation prosthetics will rely massively
on myoelectric ”Pattern Recognition” (PR) based control ap-
proaches, to improve their users’ dexterity. One major identified
factor of successful functioning of these approaches lies in
the training of amputees and in their understanding of how
those prosthetics works. We thus propose here an intuitive
pattern similarity biofeedback which can be easily used to
train amputees and allow them to optimize their muscular
contractions to improve their control performance. Experiments
were conducted on twenty able-bodied participants and one
transradial amputee. Their performance in controlling an inter-
face through a myoelectric PR algorithm was evaluated; before
and after a short automatic user training session consisting in
using the proposed visual biofeedback for ten participants, and
using a generic PR algorithm output feedback for the others ten.
Participants who were trained with the proposed biofeedback
increased their classification score for the retrained gesture (by
39.4%), without affecting the overall classification performance
(which progressed by 10.2%) through over-training and in-
crease of False Positive rate as observed in the control group.
Additional analysis indicates a clear change in contraction
strategy only in the group who used the proposed biofeedback.
These preliminary results highlight the potential of this method
which does not focus so much on over-optimizing the pattern
recognition algorithm or on physically training the users, but
on providing them simple and intuitive information to adapt
or change their motor strategies to solve some misclassification
issues.

I. INTRODUCTION

Since the early seventies, the standard way for upper-limb
amputees to control a powered active prosthesis is based
on the use of myoelectric signals measured over the stump
as control inputs. Such approach, initially developed in the
late sixties in the U.S.S.R. [1], simply relies on the use of
ElectroMyoGraphic signals (EMG) from two antagonistic
muscles of the residual limb. Often, each active prosthetic
joint that composes the substituting limb is sequentially con-
trolled by the same control inputs. So, despite the potential
possibilities offered by the new biomimetic prostheses like
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whole robotic arms [2] or polydigital hands [3], their control
remains complex, as it is far from intuitive, and offers few
functional Degrees of Freedom (DoF) [4].

A. Pattern recognition (PR) techniques

To overcome these limitations, pattern-recognition (PR)
approaches have been developed since the late 60s/70s [5],
[6], [7] aiming a more precise decoding of myoelectric
signals in order to improve the recognition of different
muscle activation patterns and thus to control more types
of movements. This requires the use of multiple recording
sites, a precise extraction of signal characteristics and a mul-
tidimensional classification architecture relying on machine
learning techniques. While well established and extensively
studied in the context of research, such approaches have
hardly been applied to commercially available prostheses.

Indeed, although successful in research facilities (with
classification rates over 90% reported in the literature [8], [9]
for sets of more than 10 different movements), the current
limited robustness of those PR techniques remains a major
obstacle to every day use by amputees. Misclassification of
myoelectric patterns can come from the user (variability in
muscular contractions because of effort modulation, motor
intention variations or muscle fatigue) but also from numer-
ous external factors like the changes in the stump posture, the
movements of electrodes or the sweat and variations of skin
impedance [10]. These factors will affect the sEMG signals
and thus decrease the successful classification rate and lead
to user dissatisfaction.

Yet numerous solutions are actually developed that could
compensate for the listed issues. Examples of these solutions
are (1) robustness to electrodes shift [11], [12], (2) use
of osseointegration [13] to eliminate the issues due to the
socket, (3) electrode implantation [14] minimizing the issue
with skin impedance and movements, and of course (4) more
robust architectures of PR, integrating the stump posture
(tracked through IMUs) to integrate the actual arm posture
in the signal classification [15].

B. Training of users and algorithms

Another major factor of successful recognition of sEMG
signals lies in the training of amputees and in their under-
standing of the functioning of prosthesis control algorithms.
Indeed, myoelectric control, especially PR, principally relies
on the consistency of muscular patterns, and these are
complex to obtain for two reasons. First, we can contract
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our muscles in numerous different ways to perform a similar
gesture (thanks to muscle redundancy [16]) and second,
we have a limited sensory feedback concerning our muscle
contractions. Additionally, this last effect is worse with an
amputated limb that suffered from a neuromuscular reor-
ganization and does not offer any visual feedback of the
movement generated by the muscular contractions. Thus,
even for conventional myoelectric control schemes, training
of users and algorithms have been intensively studied within
the last years, with the development of numerous dedicated
approaches and tools such as virtual environments ([17],
[18]) or effective mobile games [19] for myoelectric con-
trol training, dedicated systems for the training of precise
control of muscular contraction amplitudes [20], or visual
biofeedback to train user’s in regulating their grasping force
and stabilize their muscle contractions [21], among other
numerous research works.

Similarly, for the specific case of machine-learning based
control (such as PR or regression), several recent studies
have been focusing on the training of participants control
abilities, in addition to adaptive algorithms able to adapt to
the variations of subject’s patterns across training sessions.
Indeed, as shown in a study investigating the changes in
EMG classification performance over 11 consecutive days,
the performance of the motor tasks is consistent over prac-
ticing time, resulting in more repeatable EMG patterns than
at initial use, even when no performance feedback was used
[22]. Hahne et al. [23] also verified that man-machine co-
adaptation (closed-loop real-time learning schemes in which
both the user and the machine learn simultaneously to follow
a common target) was helpful to improve a regression-based
myoelectric control. Scheme et al. [24] were able to improve
PR performance by training the users to modulate their
myoelectric contraction amplitude as required by generic
proportional control. Powell et al. [25] studied the effect of
training sessions with visual feedback and training guided
by a therapist on transradial amputees and found that the
control was improved after two weeks of training with
a virtual prosthesis. Nonetheless, their protocol required
an important implication of the experimenter who, during
dedicated sessions and based on the PR confusion matrices
analysis, guided the amputated participants to modify their
gesture accordingly and to iteratively refine each subject’s
muscle contraction during training. On the contrary, a recent
study [26] on 37 able-bodied population showed that the
effects of training were the same, whether visual feedback
or experimenter coaching were used or not during training.
Whatever the nature of training, it is clearly becoming a
mandatory step for amputees fitted with prosthetics.

Since providing a visual feedback on the PR algorithm’s
raw output may not be sufficient to guide the adaptation of
subject motor behavior, several teams developed dedicated
feedbacks to assist users during training protocols. For
example in [27], a polar plot of EMG amplitude as a
function of electrode location was used to assist one
transradial amputee in improving his control performance
through training. In [28] an innovative classifier-feedback-

based user training strategy is used to provide real-time
”clustering-feedback” (i.e. 2D projected representation of
online EMG signal input as well as the centroids of the
training samples) to help subject’s adjusting their muscular
contraction strategy. Yet, very little research has been
conducted on developing a visual biofeedback to guide,
during the PR training phase, the users in modulating their
way of performing a phantom limb gesture (i.e. exhibiting
a muscular contraction pattern) with the aim of maximizing
the differences between contraction patterns and minimizing
similarities between movement classes and thus ease the PR
algorithm performance.

In this study we thus propose, based on a generic PR archi-
tecture, an intuitive visual feedback providing -in real-time-
information on the distinguishability of the contraction pat-
tern according to the other to be used as control inputs, along
with some feedback on the muscular contraction level (to
encourage users in regulating their effort). An experimental
campaign was conducted on twenty able-bodied participants
and one transradial amputee. Their training session consisted
in using the proposed intuitive visual biofeedback for one
(experimental) group and using a standard PR algorithm
output feedback for the other (control) group. Before and
after this training session, their performance in controlling
an interface through an automatic PR algorithm (i.e. without
any skilled experimenter guidance) was evaluated. In order to
evaluate the potential of the proposed approach, differences
in the PR algorithm performances before and after the
training session were analyzed through different metrics.

II. PRINCIPLE

We first want to address a critical issue of the current
PR training protocols, that require users to perform discrete
generic gestures (like ”closing the hand”) to be used as
”references”. Those gestures generally have a large intra-
variability and can be performed in numerous different
kinematic way. This results in numerous different muscu-
lar contraction patterns, that are still labeled by the same
name for the PR algorithm. What we propose here is a
visual biofeedback on the muscle contraction patterns from
a machine’s (here a PR algorithm) point of view, which can
be used by users to explore their muscular strategies, to find
more efficient and robust strategies, and then, once identified,
to update the training of the PR algorithm accordingly.

While such approach could be used with numerous type
of PR architecture, we chose in this study to use a linear dis-
criminant analysis (LDA) classifier [29] which is commonly
used for myoelectric pattern recognition.

A. Concept

It is generally possible to improve the classification perfor-
mance of physiological signals, by involving the participant
in more or less guided training and exploration steps:

- Step 1: PR training → PR testing
- Step 2: Subject training/exploration (through practice,

guided or not)
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- Step 3: PR training update → PR testing
- Step 4: Repetition of Steps 2 & 3 (until performance

improves)
Such steps can then be repeated several times, across several
sessions and days, with the aim of improving the overall
performance.

The generic method, such as that used in [25], trains the
participants (by allowing them to explore strategies) in Step 2
with the discrete output (i.e., the label of the recognized
class) of the classifier (created in Step 1) as a feedback. The
subject should then understand which movements lead to the
right classification. Such raw output feedback (RF) helps the
subject to improve its repeatability. The creation of the train-
ing set in Step 1 is thus decisive since the improvement of the
classifier’s performance will rely on the precise reproduction
of those initial movement demonstrations. We hypothesize
that, if a participant generates confusing training samples
labelled as class C1 in a three classes set {C1, C2, C3} as
illustrated in Fig 1, Step 2 will help the subject minimizing
the variability in his movement repetition which will generate
a convergence of the data towards the associated class
centroid m1 of the cluster of data associated to class C1.
If the participant do not attend to explore by himself -even
accidentally- novel strategies, or is guided to do so, after
retraining, new cluster C1RF variability should decrease but
its centroid m1RF would remain the same. We also believe
that with Pattern Similarity biofeedback (PSB), a participant
could be trained to change his/her way to exhibit an unwell-
classified movement (identified at the end of step 1 during
the PR testing phase). During the training/exploration of
Step 2, instead of the discrete raw output of the PR algorithm,
such continuous biofeedback would inform the subject of
the similarity of performed gesture with the others of the
training set that were built in Step 1, from a classification
point of view. With such a method, we expect that the
training will lead to a displacement of the centroid of the
cluster associated to the retrained movement, far from other
centroids. More explanation on cluster and centroid definition
in LDA can be found in [30].

Such a method should help the participant to find new
ways of performing a muscle contraction for a given class in
light of the other contractions patterns to be used, from the
machine’s point of view. Considering the classification of 3
movements {M1,M2,M3} with therefore a three classes set
{C1, C2, C3} with their associated centroids {m1,m2,m3},
we hypothesize here that, if a participant has an unwell-
classified movement (defined by cluster C1 and centroid m1

in Fig 1), the user training (Step 2) will help him/her to find a
way of performing the given gesture that moves the centroid
of the new cluster C1OB away from the other class centroids
m2 and m3. Such biofeedback method takes advantage of
the fact that a class of movements can be achieved through
several strategies: there is indeed no unique physiological
way of closing a hand, opening a pinch, or turning a wrist.
Similarly, for amputees, there is generally not only a single
way of performing one given ”phantom movement” type.
Thanks to this feedback, users could, for example, test sev-

eral ways of performing a gesture of one class and determine
the one that makes the associated contraction patterns very
different from the gestures of the other classes, with distance
being measured from the machine’s point of view (i.e. in the
projected multidimensional space of data features extracted
from sEMG signals).

Fig. 1: Hypothetical effect of training with raw output
feedback (RF) and pattern similarity biofeedback (PSB).
Clusters represent multidimensional ensembles of data (fea-
tures) associated to the movement classes projected onto a
2D subspace (i.e., the training space created at step 1). C1

has been retrained with the two methods (resulting in C1RF

and C1OB).

The proposed protocol of use of such tool is as follows:
the final testing of step ”1)” (as listed in Section II-A) is
used to determine the problematic class (the one with the
lowest classification scores); then the subject is asked, during
training step ”2)”, with help of guidance provided by the
pattern similarity biofeedback, to find a way of performing
the movement of the problematic class that is less confusing
for the PR algorithm. Once the user has determined a more
efficient ways to perform their gesture, the classification
training data for the given movement are updated, with
this new set of data replacing the one of the previously
confusing sets. Such steps can then be repeated to improve
other problematic classes.

B. Pattern Similarity biofeedback design

While it has been showed that discrete feedback during
training improves classification [31], we expect that provid-
ing, a biofeedback -during the exploration stage- informing
the subject in a continuous and quantified way on the
similarity of the achieved movement with movements of
the other classes, will have beneficial effects. To this aim,
rather than providing dense information on the different
muscle contraction amplitudes like in [27], we designed a
simplified index showing the similarity of a given muscular
contraction pattern with the other movement classes, and this,
from the point of view of the PR algorithm. Concretely,
we compute the distance between the point representing a
given performed gesture (of the class to be retrained) to the
centroids of the other classes in a previously constructed
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projected subspace. The majority of pattern recognition algo-
rithms used for prosthetic control exploit numerous different
features (characterizing signal aspects such as its frequency,
complexity, etc.) in addition to the RMS value of the EMG
channels. We therefore decided to build a dedicated visual
feedback providing more representative information (i.e.
similar to what the classifier really analyses) rather than just
providing EMG RMS radar plots as it has been done in some
other studies.

For each class, except the current retrained one, the
distance ri in the projected training space between the current
posture and all the centroids of the classes is computed:

∀i ∈ [1; c]r cr, ri =

√√√√(c−1)∑
j=1

(xj −mij)2 (1)

Where cr is the current retrained class, x is the current
sample from the sensor projected in training space, mi the
centroid of class i. All the distances are represented on a c-1
radar plot. On each branch is plotted the ith centroid ci at the
distance ri from the center. The center represents the current
sample which is the current explored posture projected in the
training space. In order to reduce the dimensionality of r and
make the feedback more intuitive and simple to understand
(especially in real-time) for the participant, a circle is plotted
in real-time with radius R = min ri, i ∈ [1; c]r cr.

Fig. 2: Pattern similarity biofeedback illustration for a 6-
classes classifier. Class 3 is here retrained.

During the exploration stage, the class to be retrained
is not taking into account because a new better way of
performing the gesture associated to this class is to be found.
The circle is continuously changing size, depending on how
far from centroids (of other gestures) the current posture is.
Because the rest posture is often very-well classified, the
circle should almost be a point when subject is not moving.
Then, exploring a new posture will increase its diameter as
much as the explored posture’s projected sample is far from
the projected centroids: the bigger the circle is, the further
the closest centroid is in the projected training space. In
order to avoid strategies using stronger muscle contractions
to differentiate one gesture from the others (which would
lead to more muscular fatigue) a pure RMS-based feedback

is also used. Based on the RMS values of the first training set,
average and max values are computed and used to modulate
in real-time the circle’s color accordingly, from green for no
contraction, to red indicating that the maximum RMS value
(measured during the first training) is reached, as shown in
Fig. 2.

III. MATERIAL AND METHODS

In order to validate the efficiency of the proposed biofeed-
back compared to state-of-the art training approaches, two
tests with a similar setup were performed: one preliminary
on twenty able-bodied participants and one on a transradial
amputated participant.

A. Experimental setup

Measurement of the surface myoelectric activity of
the forearm is done by a dedicated 8 channel electro-
physiological signal-recording system (Myoband c© from
Thalmic Labs) with an 8-bit resolution. No specific skin
preparation was used before placing the armband on the
participants. Armband was placed on the forearm at approx-
imately 5 cm from the elbow joint (as shown on Fig. 3) left.

The PR algorithm is executed on a Raspberry Pi 3 run-
ning on Jessie OS (Linux Debian). The real-time program
(coded in C) reads the armband data through a Bluetooth
communication and processes the classification. The sEMG
are acquired at a 200Hz frequency, while the features are
computed from the sEMG using a 256-ms-sliding analysis
window with a 64-ms-overlap between successive windows.
The root mean square value [32], the first 4 autoregressive
coefficients [33], [34], the zero crossing and the wave lenght
of the sEMG were extracted from each channel and used to
create the feature vector (which dimension is here equal to
56). Output data are broadcast through wifi to the graphical
user interface.

The Graphical User Interface (GUI) is running on Matlab.
For the steps 1 and 3, the interface only provides readable
instructions to the participant (i.e. the current movement
to achieve or rest). For the user training phase (step 2),
depending on the participant group, a specific feedback was
displayed.

B. Participants

Twenty naive able-bodied participants (in the 21-68 age
range) were recruited among the laboratory members. One
amputated participant with unilateral transradial amputation
of traumatic origin was selected to participate to the study.
This study was carried out in accordance with the recom-
mendations of the Université Paris Descartes ethic committee
CERES (N◦IRB 20151900001072), which had approved the
protocol. All participants provided written informed consent
to participate in the study, and the patient gave written
permission for publication of photographs for scientific and
educational purposes. The protocol was performed in accor-
dance with the Declaration of Helsinki.

A 26 year old male participant with a traumatic right
forearm amputation (2/3 of the forearm left) who had a past
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experience of myoelectric control (use, on a daily basis, of
a myoelectric prosthesis composed of an active wrist rotator
and a polydigital hand) was also recruited to preliminary
assess the effects of the proposed approach on a more
realistic case. The amputated participant was followed-up
at the Louis Pierquin Centre of the Regional Institute of
Rehabilitation, Nancy, France.

C. Experimental protocol

Two distinct experimental campaigns were conducted: a
first one on able-bodied participants to evaluate the effects
of the pattern similarity biofeedback (PSB) compared to a
control group training with a raw output feedback (RF),
a second one on the amputated participant to validate the
observed effect in a more realistic scenario. All experiments
followed the protocol presented in Section II-A.

Fig. 3: Left: amputated participant equipped with the My-
oBand during the experiment. Right: View of the two differ-
ent graphical interfaces used during the experiments. Top:
Pattern Similarity Biofeedback GUI used with Group A
(PSB-group) and amputated participant. Bottom: Raw-output
feedback GUI used with Group B (RF-group).

1) Preliminary experiment with able-bodied participants:
The twenty able-bodied participants were randomly assigned
to two groups of the same size: Group A (PSB-group) attends
a user training (step 2) with a Pattern Similarity Biofeedback
and Group B (RF-group) attends user training (step 2) with
a Raw-output Feedback. Preparation and both steps 1 and 3
(as defined in II-A) were identical for the two groups. The
participants were seated on a chair with their arm placed
along the body. They faced the screen to read instructions
on the graphical interface. Once the armband was placed
over their right forearm, participants kept it during all the
experiment without removing it. Rest were first recorded
to compute thresholds used to automatically cut off labeled
records.

The following protocols were followed:
Step 1 consisted for participants in executing the instructions.
It lasted approximately 3 minutes. 5 repetitions for each
of the 6 chosen movements were randomly displayed, each
execution lasting 3 seconds, following by 3 seconds of rest.
The seven movements to classify were the Wrist Pronation
(WP) and Supination (WS), the Hand Closing (HC) and
Opening (HC) and the Pinch Closing (PC) and Opening
(PO) and the rest. The choice of having a specific pinch

opening class, different from the whole hand opening one,
was motivated by a practical observation. Indeed, in present
polydigital prosthetic hands, there exists a common and
largely used “quick grip” (hand posture mode) for precise
manipulation which place the 3 last fingers closed and leaves
only the thumb and index active (opening and closing) to
perform a precise pinch (i.e. the “Standard precision pinch
closed” in iLimb/Ossür c© Touch Bionics hands) without
being bothered by the other fingers movements. Thus two
separate opening classes were used. The LDA projected
space was then created, and the PR testing started. Again,
the participants were asked to perform the 30 randomly
displayed postures. The confusion matrix were then plotted
and used to determine the worst-classified class cr to be
retrained.
Step 2 which lasted about 3 minutes, consisted in performing
30 repetitions of the movement of the class cr to retrain.
Each group was provided with a different visual feedback,
as shown in Fig. 3 right. For Group A, the graphical interface
displayed the pattern similarity biofeedback described in II-
B. Participants were asked to explore movements trying to
maximize the size of the circle without turning it into red
(i.e., without using excessive muscle force). For Group B,
the graphical interface displayed a 6 boxes plot showing the
raw output of the classifier. The color of the box of the
detected class was modulated similarly to the feedback of
Group A to provide information on the muscle contraction
level. Participants were asked to explore movements while
trying to activate the retraining movement corresponding box
on the plot without turning it into red.
Step 3 was the exact reproduction of Step 1 (same duration),
except that participants were asked to perform the movement
of the class cr in the optimal way which was discovered
during Step 2. The entire protocol lasted approximately 10
minutes.

2) Experiment with amputated participant: One forearm
amputee tested the protocol with the pattern similarity
biofeedback only. The protocol was exactly the same as
group A, except that he had 5 seconds to exhibit movements
during the 30 random repetitions.

D. Metrics

Three metrics were used to assess the improvement al-
lowed by the training with the two different feedbacks.
The classification scores variations were computed for both
groups considering all movement classes and the retrained
movement class only. The False Positive rate variation was
also analyzed. Performance variations for both groups were
compared, also by computing the Bootstrapped CI (confi-
dence intervals).
Data analysis was performed in Python 3 (Python Soft-
ware Foundation, http://www.python.org using SciPy. The
normality of data distribution was assessed by the Shapiro-
Wilk test. Comparisons were made by using non-parametric
test (Mann Whitney) for the sample data with non-normal
distribution, and Student’s t-tests for the other data. The level
of significance was set at p < 0.05. The class separability
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Fig. 4: First row: classification scores for all movement classes before (blue) and after (red) training with the Group A using
pattern similarity biofeedback (Left) and the group B using raw PR output feedback (Right). Second Row: classification
scores for the retrained class before and after training with the Group A (Left) and the group B (Right).

was assessed by computing J3, an index based on scatter
matrix (taken from [35]), defined as J3 = trace(S−1

w .Sb)
where Sw is the within-class scatter matrix and Sb is the
between-class scatter matrix. In addition, the variation of the
overlapping in clusters distribution obtained after training
was computed (see Appendix VII-A). Finally, some radar
plots illustrating the average RMS contraction level on each
sEMG channel associated to the class retrained in step 2
were generated to study the variation in muscle contraction
strategies before and after the training of the participants.

IV. RESULTS

A. Preliminary experiments on able-bodied participants

1) Variation in classification performance after training:
As shown in Figure 4 Group A started with a before-training
average global classification score of 76.8% with a 95%(C.I.)
of [76.7, 80.8] and Group B with an after-training average
classification score of 77.6% with a 95 %(C.I.) of [77, 80.6].
Group A ended with an after-training average global clas-
sification score of 86.9% with a 95%(C.I.) of [85, 89] and
Group B with an after-training average classification score of
77.8% with a 95%(C.I.) of [76, 79.8]. Statistical difference
is observed in performance between groups after training
(p = 0.003) but not before (p = 0.804), which indicates a
clear effect of the feedback method.

Fig. 5: Averaged classification score variation, for the two
groups A and B, after training with representation (as error
bars) of the 95% Confidence Interval, for all movement
classes (A) and for the retrained class only (B). Evolution
of False Positive percentage for the retrained class is also
shown (C).

Figure 5 shows that, when considering all the movement’s

classes and all group participants, Group A (PSB-group)
obtained an average increase in classification score of 10.2%
with a 95% Confidence Interval (C.I.) of [9.3, 10.6] while
the control Group B (RF-group) obtained a lower increase of
0.2% with a 95% (C.I.) of [−0.8, 1.3]. Statistical difference
is observed in global performance variation between groups
after training for group A (p = 0.006) but not for group B
(p = 0.945), which indicates a clear effect of the feedback
method.

Looking only at the ”retrained” class, Group A (PSB-
group) obtained a statistically significant (p < 0.001) average
increase of the classification score of 39.4% with a 95%
(C.I.) of [33.3, 50.4] while the control group B obtained
an average increase of 40.4% (C.I.) of [22.7, 44.2] (with
p = 0.002). No statistical difference in performance between
groups for the retrained class could be observed, whether
before (p = 0.099) or after training (p = 0.197), indicating
no clear effect of the feedback method.

Observing the variation of the percentage of False Positive
(FP) for the retrained class (cf. Figure 5), Group A obtained
a 11% decrease in FP (95% CI of [−25, 0.2]) without
statistical significance (p = 0.093) while Group B obtained
a statistically significant (p = 0.036) increase of 19% in
FP (95% CI of [16.5, 28.8]). When comparing groups, a
statistical effect of the feedback method was observed on
the evolution of FP rate after training (p = 0.009).
Improvement’s difference in overall classification score
doesn’t seem to be due to a better classification of the
retrained class (as shown in Fig. 5.B). Instead, this difference
appears to be due to a decrease in False Positives for that
class with the proposed feedback while Raw output feedback
lead to an increase in False Positives (as shown in Fig. 5.C).

2) Separability and overlapping between clusters of
classes: The Figure 7 shows the averaged evolution of the
separability between clusters measured by ratio J3 for both
groups. While the separability index were not statistically
different between groups before the training (p = 0.98),
a significant (p = 0.003) difference in class separabil-
ity variation can be seen with a 0.31 J3 mean-value for
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Fig. 6: Matrices representing the variation of the overlapping between clusters after the retraining of a class (marked with
a red square) for each participant of the two groups. Decrease of overlapping is shown in non-diagonal cells with green
background, while its increase is shown in non-diagonal cells with red background. Empty cells indicates the absence of
variation after the retraining. See Appendix 1 for additional information on the definition of these matrices.

Group A and 0.06 for Group B. This indicates a clear
overall effect of the proposed biofeedback on the class
separability. Figure 6 shows the variations of the clusters

Fig. 7: Variation of averaged class-separability ratio index
(J3) after training for the two groups A and B, with repre-
sentation (as error bars) of the 95% Confidence Interval.

overlapping matrices (computed as described in Appendix
VII-A) for each participants between before and after the
training of user with feedback. Green background cells
indicate an improvement, while red background cells show
a deterioration. On the diagonal terms, green cells indicate
an increase of the classification score after training, while
red cells show its decrease. On the non-diagonal terms,
green cells indicate a decrease of the overlapping space
between given classes, while red cells show an increase of
the overlapping space between given classes. Empty cells
indicate a negligible variation (between −5% and +5%)
after the retraining. Considering all the movement classes
and their associated clusters, after the training, clusters in
Group A decrease on average their overlapping space with
others of 5.7% with a 95% (C.I.) of [5, 6.5] while in group
B it is decreased by 0.9% with a 95% (C.I.) of [−1.9, 1.7],
with a statistical difference observed between the two groups
(p = 0.002). Considering only the cluster of the retrained
movement (marked with a red square on the Fig. 6), its
overlapped space with other clusters decreases of 22.9%
with a 95% (C.I.) of [16.9, 23.6] for Group A, showing

a statistical difference (p = 0.041) with Group B which
presents an overlapping increase of 7.9% with a 95% (C.I.)
of [5.6, 10.9]. Indeed, all participants in Group A but PA

4 ,
PA
5 and PA

8 (which had already a initially well distributed
space between clusters) have a better spatial organization
of clusters after the retraining, with less overlapped clusters
after the optimization. The absence of overlapping of the C.I.
on the computed overlapping variations for the two groups
indicating a clear effect of the feedback method. Looking at
individual results in Group A, most of the participants (apart
from PA

8 ) decreased the overlapping of their retrained class
(green cells in the diagonal) with, apart from participants
PA
1 , PA

4 and PA
5 , a decreased number of other movement

cluster getting closer of another (reduced number of red
cells in the non-diagonal cells). In Group B, no variation
of overlapping for the retrained class were observed in half
participants (PB

2 , PB
4 , PB

5 , PB
6 , PB

10). While the overlaps
of the retrained cluster with other clusters did only clearly
increased for 2 participants (PB

1 and PB
4 ), the training had

a visible negative effect (red cells outside of the diagonal)
on other classes in almost all participants apart PB

2 .

3) Variations of muscles contraction strategies: Figure
9 presents with radar plots the average spatial repartition
of muscle contractions (i.e. the averaged and normalized
RMS amplitude on each sEMG channel) associated to the
retrained movement class, before and after training, for each
participant.

Comparing the shapes of associated octagons, the muscle
contraction patterns in Group A appears changed rather
importantly after retraining (especially for PA

2 , PA
4 , PA

5 ,
PA
7 , PA

8 and PA
9 ), compared to Group B in which a muscle

contraction scaling effect (rather than a shape variation) can
be observed in most participants (except PB

2 , PB
4 and PB

10)
thus indicating a minimal variation of activation patterns and
associated motor strategies.
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Fig. 8: Results of the amputated participant. A: Confusion
matrices before and after training with the Pattern Similarity
Biofeedback (the percentage over each matrix indicates the
average global classification score). B: Variation of the
overlapping between clusters after the retraining of a class
(marked with a red square). C: average muscular contraction
(normalized RMS of sEMG signals) pattern for the retrained
movement, before and after training.

B. Amputated participant

Figure 8.A shows that, when considering all the move-
ment’s classes, the participant obtained an average increase in
classification score of respectively 4.8% after the retraining
with the pattern similarity biofeedback. Nonetheless, looking
only at the ”retrained” pinch opening class (marked with a
red square on Fig. 8.A), the use of training with proposed
biofeedback allowed an increase of 55% in the recognition
rate. False positive for class PO did not vary significantly
since its rate increased by only 4% after training.

Considering the variation of overlapping between clusters
of classes shown in Fig. 8.B, it can be seen that the pinch
opening cluster tend to move away from other clusters with
a 11.9% reduction in overlapping. As shown in Fig. 8.C, the
participant appears to have found a novel optimal muscular
contraction strategy to perform the pinch opening, which is
rather different from the one initially used.

V. DISCUSSION

A. The need of improved biofeedback to train users

Mastering precise myoelectric control through multi-
electrodes and PR control approaches remains diffi-
cult to master for amputated participants [4]. Users of
those systems have to go through rather complex train-
ing and learning processes. With the recent availabil-
ity of more active DoF and associated PR control ap-
proaches in commercial products (e.g., the COAPT c© system,
http://www.coaptengineering.com/, or the recent OttoBock
Myo Plus c©, https://www.ottobock.com/), there is definitively
a growing need for adapted tools and protocols to train users
in a simple and efficient way, particularly in clinical envi-
ronments with medical staff which are not machine learning
experts and have a limited ability to master the tuning of
those technical tools. It has been shown that user’s learning
step could generally happen without any external feedback,
yet with extended training phases [22]. More recently, able-
bodied participants were shown to be able to train and

improve their PR control without coaching or external feed-
back, just relying on inner focus [26]. Nonetheless, several
studies illustrated the possible enhancement permitted on the
learning ability and the reduction of learning time when
adequate external feedback is provided [25], [28], whether
it is brought by a visual feedback or by the experimenters.
Similarly, [26] showed that, in able-bodied participants, the
absence of feedback did affect the quality of the EMG
patterns by leading to the exhibition of higher amplitude
patterns in participants.

One major challenge with these PR control algorithms -
generally appearing as complex ”black boxes”- is to provide
simple, understandable and intuitive information allowing
user to close their sensorimotor control loop to be able to
learn in a faster and easier way the use of PR control and
adapt their motor behavior accordingly.

B. Effect on classification performance in able-bodied par-
ticipants

We here proposed a simple pattern similarity biofeedback
which is intended to help users improving the distinguishabil-
ity of the muscle activity pattern associated to a movement
class with recognition issues, without affecting the overall
classification performance (i.e. the successful recognition
of other patterns) through over-training. The results of the
experimental sessions provides a preliminary demonstration
of the possibilities offered by this approach.

Experiments on naive able-bodied participants retraining
only one problematic movement class, showed that the
proposed biofeedback allowed an overall classification im-
provement of 10.2% compared to the 0.2% obtained with
conventional training based on raw PR output feedback. This
last method, while leading to similar improvement of the
recognition score of the retrained class (40.4% vs 39.4% for
the proposed method), tends to have a limited or negative
impact on the overall PR recognition score (as seen on Fig.5),
due to in increase in false positives for the retrained class.

The improvement obtained in overall classification score
(10.5%), is smaller than the one of 23% obtained by [26]
after 30-minutes training sessions during 5 days, but is
promising since it was obtained after a single 3 minutes
session. Similarly to [28], we observed that providing con-
tinuous feedback on classifier’s clustering map rather than
a raw output (class label) allows an accelerated increase in
classification performance, with a rather similar evolution of
the scores.

Similarly, [25] obtained an important increase of 16.9% of
classification score, but after a 2-weeks training period (with
a session duration over 1 hour). Extending session duration
and number of repetitions could possibly lead to even higher
improvements with our method, even if the goal of our
objective is rather to make the participant change his/her
motor behavior rather than refining it through extended
training. Nonetheless the limited duration of the training in
our experiment is probably not sufficient for participants
to keep in mind the new optimized gesture (discovered
during exploration with feedback) for a long period of time.

8



Fig. 9: Average muscular contraction (RMS of sEMG signals, normalized for each participant according to the maximum
RMS value measured during first training) patterns for the retrained movement, before and after training, for each participant.

The regular repetition of the protocol would probably be
necessary, at least for this novel optimal motor strategy to
become natural and automatic to the participants.

In conclusion, similarly to [27], we observed that a struc-
tured training during one single session could improve the
myoelectric control of a multi-functional device. Nonethe-
less, we show here that visual feedback can be used to drive
users in finding more decodable muscle contraction strategies
rather than making them better in using a predefined fixed
strategy.

C. Guiding users toward different motor strategies

The analysis of the separability and variations of the over-
lapping between clusters after the retraining of the classes
(see Fig. 7 and Fig. 6) indeed showed that the proposed
method allowed users to find new ways in performing muscu-
lar patterns which improves the distinguishability of patterns
(i.e. the inter-class separability and overlapping) rather than
just improving user’s ability to repeat a given pattern used to
train the PR algorithm. The changes in the spatial distribution
of muscular activities after the user training step (as shown
in Fig. 9), which are more important for the participants
trained with our pattern similarity biofeedback, support
this hypothesis. Participants were more likely to find new
and different muscle contraction strategies when feedback
provided information on the distance to other patterns of
the PR training set (PSB-group) rather than information on
the similarity with those (RF-group). It is also important
to highlight the fact that this improvement was achieved
without the need of a PR expert guiding the user, without
providing any precise and complex explanation of the overall
PR principles, nor without the participants having to decode
information from complex and rich visual feedback.

D. Experiments on amputated participant

Preliminary experiments on oneamputee experienced with
myoelectric control showed more modest improvements.
Nonetheless it allowed him to find a novel way of ”open-
ing the pinch” with his phantom limb which improved its
recognition by the classifier, and this without the help or
instruction of the experimenter. Thus, such approach could

be particularly useful for amputated participant which may
have sometimes trouble providing clear information about
the nature of the phantom limb mobilization or muscular
pattern contraction they are exhibiting, which in return makes
it hard for an, even skilled, experimenter to provide hints
on strategy modification to improve the overall performance.
We also believe that such method could make an even bigger
difference in larger sets of classes (including individual finger
movements for example) in which there are more chances to
have overlapping between classes.

E. Study limitations and future work

This work is a preliminary demonstration that the proposed
feedback might be useful, but the experimental protocol in
this study remains far from the envisioned clinical appli-
cation. Thus a more clinically relevant protocol involving
more participants, in longer training protocols, possibly with
multiple classes training (one after the other) and a repetition
of training sessions across days or weeks would be necessary
to study stability of improvement and ensure that the novel
muscular strategies are sustainably learned and not only a
temporary motor adaptation. Experimental comparison with
other existing training protocols (without feedback, or for ex-
ample, with EMG radar plots as in [27]) would be necessary,
also to distinguish effect of feedback from training time. Our
results were also obtained in a controlled environment with
limited variations of arm posture, muscle fatigue, or more
variations in the contractions force levels or timings, which
are known to be perturbing parameters in PR. Robustness
of PR is fundamental and thus performing evaluations in a
perturbed environment would be necessary to fully appreciate
the possibility of the proposed method. Finally, a statistical
analysis to determine possible influencing factors (like the
retrained class, the age of participants or their amount of
experience with myoelectric control, etc.) will be the subject
of a future work. While we principally focused on the
adaptation of user behavior, alternative approaches, which
rather focus on the continuous adaptation and optimization
of the prosthetic control policies but directly driven by
simple feedback from user (discrete reward), through the
user of reinforcement-based machine learning framework
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as described in [31] could also contribute to additional
personalization and control performance increase.

VI. CONCLUSIONS

An intuitive visual biofeedback dedicated to train opti-
mally participants in using myoelectric PR based control
approaches was proposed. Such tool used during user’s
training phases allows them to learn to adapt and mod-
ulate their muscular contraction strategies to improve the
distinguishability of their muscular patterns. Experiments
conducted on a group of able-bodied participants and one
amputee confirmed the potential of the proposed approach
compared to generic feedback, allowing (in a reduced amount
of training time) an increase of the classification score for
a given problematic class without impacting the others or
affecting the overall classification performance. These first
encouraging results clearly highlight the potential of such
online biofeedback method which does not focus so much
on extensively training users than on providing them with
information to adapt or even radically change their motor
strategies to solve some PR misclassification issues.

Future work will be focused on conducting extended
experimental protocols with more amputated participants
in a more realistic and thus perturbed environment, to
clearly evaluate the real possibilities of our pattern similarity
biofeedback.

VII. APPENDIX

A. Metrics to characterize the variation of overlapping in
clusters distribution

This metric allows to compare the clusters distribution
between the different LDA projected spaces created in steps
1 and 3 (PR training before and after subject’s training
with feedback). Basically, this metrics evaluates with generic
confusion matrices how good is the training to classify
itself, i.e. testing the PR algorithm capacity to classify the
same training data used to initially train it. Practically, a
LDA space is first created using training data. Then, each
point of this same training dataset is classified using the
LDA classifier. Such classification should lead to a perfect
classification score if the training data are not overlapped
in the projected LDA space. Similarly, all the non diagonal
terms (misclassification points) appearing on the obtained
confusion matrices will indicate the existence of overlapping
between classes clusters in the LDA space. Such confusion
matrices are thus first created separately for step 1 and step
3. Then, the variation between the two confusion matrices is
plotted to illustrate the evolution of overlapping between the
two steps, as shown in Fig. 10.

A specific color code is used to ease the reading on
this generated matrix: green color indicates an improvement
while red color a deterioration. More precisely, on the
diagonal terms, green cells indicate an increase after training
of the classification score for the given class, while red cells
indicate a decrease after training of the classification score.
On the non-diagonal terms, green cells indicate a decrease of
the overlapping space between given classes corresponding

Fig. 10: Confusion training matrices of step 1 and 3 for
participant P1 of group A, along with the matrix representing
the variation of the overlapping between clusters after the
retraining of a class (marked with a red square).

to a positive evolution. Red cells indicate an increase of the
overlapping space between given classes corresponding to a
negative evolution. Empty cells indicate a negligible variation
(between −5% and +5%) after the retraining.
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