
HAL Id: hal-02884406
https://hal.science/hal-02884406

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing HuPf Algorithm for the Inverse
Kinematics of General 6R/P Manipulators

Jose Capco, Saraleen Mae Manongsong

To cite this version:
Jose Capco, Saraleen Mae Manongsong. Implementing HuPf Algorithm for the Inverse Kinematics of
General 6R/P Manipulators. Computer Algebra in Scientific Computing, Aug 2019, Moscow, Russia.
pp.78-90, �10.1007/978-3-030-26831-2_6�. �hal-02884406�

https://hal.science/hal-02884406
https://hal.archives-ouvertes.fr


Implementing HuPf Algorithm for the Inverse Kinematics
of General 6R/P Manipulators

Jose Capco1⋆ and Saraleen Mae Manongsong2⋆⋆

1 Research for Symbolic Computation, Johannes Kepler University, Linz, Austria
jcapco@risc.jku.at

2 Institute of Mathematics, University of the Philippines Diliman, 1101 Quezon City, Philippines
smmanongsong@gmail.com

Abstract. We reformulate and extend the HuPf algorithm (see [7]), which was originally
designed for a general 6R manipulator (i.e. 6 jointed open serial chain/robot with only rota-
tional joints), to solve the inverse kinematic (IK) problem of 6R/P manipulators (6-jointed
open serial robot with joints that are either rotational or prismatic/translational). For the
algorithm we identify the kinematic images of 3R/P chains with a quasi-projective variety
in P7 via dual quaternions. More specifically, these kinematic images are projections of the
intersection of a Segre variety with a linear 3-space to an open subset of P7 (identified with
the special Euclidean group SE(3)). We show an easy and efficient algorithm to obtain the
linear varieties associated to 3R/P subchains of a 6R/P manipulator. We provide examples
showing the linear spaces for different 3R/P chains (a full list of them is available in an up-
coming paper). Accompanying the extended HuPf algorithm we provide numerical examples
showing real IK solutions to some 6R/P manipulators.

Keywords: Inverse Kinematics · Elimination Theory · Serial Manipulator

1 Introduction

The Study quadric is given by the
∑3

i=0 xixi+4 for points

(x0 : · · · : x7) ∈ P7(C)

There is a bijection between the special linear group SE(3) and a quasiprojective subset of the
quadric via dual-quaternions. In this article we will give a rough idea what this means:

Let H be the classical (Hamiltonian) skew field of quaternions. One first shows a bijection
between the quotient of multiplicative group H∗/R∗ and the special orthogonal group SO(3) (which
is well-known, see [7,10]). The ring H[x]/⟨x2⟩ (indeterminate x commuting with coefficients in H)
is called the ring of dual quaternions and denoted D. The elements in D are often written as p+ ϵq
where ϵ is the equivalence class of x and p, q are quaternions in H (we compare this construction
to construction of dual numbers in algebraic number theory). Clearly H is a subring of D and there
is an injection from the elements of SE(3) to the quotient of multiplicative group D∗/R∗ and it is
well-defined if we know how pure translations and pure rotations are mapped. Pure rotations are
mapped to H which is in D. Pure translations are mapped via

t 7→ 0 + ϵ

(
t

2

)
where t ∈ R3\{0} is a non-zero translation vector and we regard elements in H as 4-tuples (H is a
four-dimensional R-algebra). One shows that this fully defines a group homomorphism SE(3) → D∗

⋆ Supported and funded by the Austrian Science Fund (FWF): Project P28349-N32 and W1214-N14
Project DK9

⋆⋆ Supported by the Office of the Chancellor of the University of the Philippines Diliman, through the
Office of the Vice Chancellor for Research and Development, for funding support through the Outright
Research Grant.



1. INTRODUCTION

and if we compose it with the canonical quotient D∗ → D∗/R∗ we even have an injective group
homomorphism. Since D is an eight-dimensional R-algebra we can identify elements in D∗/R∗

with points in a subset of P7(R). In fact the image of the composed map we just described
SE(3) ↪→ D∗/R∗ can be identified with points

{(x0 : · · · : x7) ∈ P7(R) : x0 ̸= 0, . . . , x7 ̸= 0 and
3∑

i=0

xixi+4 = 0}

which is a quasi-projective variety in P7(R). For more details, we refer to [7,10] or our upcoming
paper.

For engineering and applications, we deal with the real points of the Study quadric, but we
also consider complex points because we discuss finiteness and existence of solutions to the inverse
kinematic (IK) problem which involve some basic intersection theory where an algebraic closed
base field (e.g. when using Hilbert’s Nullstellensatz) is important. This allows us to give a general
statement whether HuPf algorithm will work or not. We note that, we only assume that we are
solving the inverse kinematic of regular values for a general 6R/P manipulator (finite solutions),
complicated algorithms in real algebraic geometry like cylindrical algebraic decomposition (CAD,
see [3]) to solve the real solutions is not necessary (there are at most 16 solutions, see [9]). Using
CAD to describe real higher dimensional solutions (like the inverse kinematic of a redundant, e.g.
7 jointed, robot or the solutions within a kinematic singularity) is however very attractive but is
beyond the scope of this work (we plan to investigate this in the future). Knowing if there are real
solutions is usually done in the middle of the HuPf algorithm e.g. when solving for the roots of a
resultant to find the coordinates of the middle link of a 6R/P-chain. Thus, our objective in this
manuscript is threefold:

1. We describe the algorithm to compute all the parameterized hyperplanes needed for the HuPf
algorithm for different permutations of 3R/P joint-types and for different parameterization of
joints in the 3R/P sub-chains (as described in [9,7,8]).

2. We discuss efficient choice of parameterized linear spaces when computing IK. We also discuss
preprocessing (e.g. the linear spaces for the left 3-chain can be fully preprocessed) to make
real-time IK computation possible.

3. We discuss special cases, i.e. cases when, for a given 3R/P chain, all the parameterized linear
spaces defined by each of the parameterizing joints are inside the Study quadric (i.e. the HuPf
algorithm may fail because there are infinite solution to the IK problem).

We shall use the Denavit-Hartenberg (DH) convention when describing relationship between
two frames. More precisely, the transformation between the frames (of joints) is given by the
following rule:

– The z-axis of the reference frame will be the axis of rotation if the joint is revolute or the
translational direction if the joint is prismatic

– To obtain the next frame, one starts with a rotation about the z-axis of the reference frame,
called the rotation, followed by

– a translation along the z-axis of the reference frame, called the offset, followed by
– a translation along the x-axis, called the distance, followed by
– a rotation about the x-axis, called the twist

It is worth mentioning that, in order to solve IK from a system of polynomial equations, all
rotations are parameterized by tangent of half-angles. In short, the transformation between frame
i to frame i+ 1 is given by

Rz(vi)Tz(di)Tx(ai)Rx(li)

where Rz, Tz, Tx, Rx are rotations or translations with respect to z- or x-axis parameterized by
tangent of half-angle rotation vi, offset di, distance ai and tangent of half-angle twist li of the i-th
frame (i-th joint). More thorough discussion on DH-parameters and the DH-convention is given
in [11].

2



1. INTRODUCTION

In the first step of the HuPf algorithm, one wants to compute a set of at least four hyperplanes
which describes a parameterized linear space whose projection to P7 contains the image of the
kinematic map. The way to compute this for a 6R manipulator is discussed in [9]. We give this
algorithm when prismatic joints are also involved:

Algorithm 1: Computing 3-chain hyperplane parameterized by joint k ∈ {1, 3}
Input: DH-parameter of a 3-chain, k ∈ {1, 3}, boolean parameterized
Output: Hyperplane of 2-chains (non-parameterized) or hyperplane pencils parameterized by joint

k in P7 (3-chain)
1 Let νi, νj , νk be the three joint parameters with i, j ∈ {1, 2, 3}
2 Compute the forward kinematic image σ = (s0 : · · · : s7) ∈ P7 of the 2-chain not containing k, with

coordinates parameterized by νi, νj
3 Write each coordinate of σ as a 2-variate polynomial in R[νi, νj ] with multi-degree at most (1, 1)
4 Create a 4× 8 matrix M with l-th column having entries which are coefficients of 1, νi, νj , νiνj

respectively in sl
5 Compute the null space of the matrix M spanned by linearly independent vectors w1, . . . , wm each

of length 8
6 if not parameterized then

7 return the linear forms Hl :

7∑
n=0

wlnxn ∈ R[x0, . . . , x7], where wln is the n-th coordinate of a

representative of wl, with l = 1, . . . ,m
8 end
9 else

10 if k = 1 then
11 Regard (x0 : · · · : x7) as a dual quaternion and pre-multiply it with a dual quaternion

defined by motion of ν1 to get (x′
0 : · · · : x′

7)

12 end
13 else
14 Regard (x0 : · · · : x7) as a dual quaternion and post-multiply it with a dual quaternion

defined by motion of ν3 to get (x′
0 : · · · : x′

7)

15 end

16 return the linear forms Hl :

7∑
n=0

wlnx
′
n(x0, . . . , x7) ∈ R[x0, . . . , x7], with l = 1, . . . ,m

17 end

In Algorithm 1 (and further algorithms), the joint parameter νi is di if the i-th joint is prismatic
otherwise it is vi (i.e. if the i-th joint is revolute).

Algorithm 2: Computing 3-chain hyperplane parameterized by second joint
Input: DH-parameter of a 3-chain
Output: Hyperplane parameterized by 2nd joint in P7 corresponding to 3-chain motion

1 Let ν := (ν1, ν2, ν3) be the three joint parameters
2 Compute the forward kinematic σ = (s0 : · · · : s7) ∈ P7 of the 3-chain with coordinates

parameterized by all the joint parameters
3 Write each coordinate of σ as a 3-variate polynomial R[ν1, ν2, ν3] each of multi-degree at most

(1, 1, 1)
4 Create an empty 12× 16 matrix M
5 Set the l ≤ 8 column of M have entries which are coefficients of να, where α ≤ (1, 1, 2), of sl
6 Set the l > 8 columns of M have entries which are coefficients of να, where α ≤ (1, 1, 2), of ν2sl
7 Compute the null space of the matrix M spanned by vectors w1, . . . , wm each of length 16

8 Choose independent linear forms from the linear forms Hl :

7∑
n=0

(wl,n + wl,n+8ν2)xn with

l = 1, . . . ,m
9 return these independent linear forms

To compute the special cases, i.e. case for which hyperplane parameterized by any of the joints
lie inside the Study quadric, one follows almost the same procedure as Algorithm 1 and 2. However,

3



2. THE HYPERPLANES

since now the hyperplane may not lie in general position (i.e. the DH-parameters may be very
specific for them to all lie in the Study quadric), care must be taken when computing the null
space of the coefficient matrices.

2 The Hyperplanes

For an efficient algorithm it is vital to choose the linear space that is described by linear forms
with least complexity. Usually the linear space parameterized by the second joint is the most
complex case. So one first computes linear space parameterized by the first joint and look for (DH
parameter) conditions for which this linear space may lie in the Study quadric (say for RRR, this
condition is when the twist half-angle tangent satisfies l2 = 0 or the offset satisfies a2 = 0). In
the case that the linear space parameterized by ν1 (see Algorithm 1) cannot be chosen, we look
at the third joint and immediately apply the condition (so in our example if l2 = 0 or a2 = 0
then we immediately apply this in the set of equations), we then use Algorithm 1 to find the
hyperplanes parameterized by ν3. Finally if for this case the linear space lies in the Study quadric
(in our example, this would be either a1 = 0 or l1 = 0 with the additional condition from the first
investigation that a2 = 0 or l2 = 0), we immediately apply these conditions and look at Algorithm
1 to get hyperplane parameterized by ν2. To summarize, the hyperplanes we provide cannot be
used in general case but in cases of increasing level of complexity. One should use these steps in
order when chosing the computed linear spaces in our work:

1. Check if T (ν1) is applicable (for RRR we check if a2 ̸= 0 and l2 ̸= 0)
2. If not, check if T (ν3) is applicable (for RRR, we check if (a2 = 0∨ l2 = 0)∧ (a1 ̸= 0∧ l2 ̸= 0))
3. If not, supposing we are not in a special case (i.e. kinematic image of the 3-chain does not

describe a planar, pure translation or spherical motion) then we use T (ν2).

Because of the level of complexity of the equations describing the general T (ν2), inverse kine-
matic computation using the algorithm will be much slower. So one tries to avoid this if either
T (ν1) or T (ν3) is possible. Due to the length of the equations, we do not show all of the simplified
T (ν2) for all 3R/P chains. But we can show for all the subcases in the 3R-chain (for T (ν1) and
T (ν3) one can look at other literatures which will have them in detail).

For the 3R/P chain these are the conditions to not choose T (ν1) (in Step 1. above) respectively
T (ν3) (in Step 2. above, assuming we cannot choose T (ν1)):

3R/P 7T (ν1) 7T (ν3)

RRP l2 = ±1 a1 = 0 or l1 = 0
RPR l2 = ±1 l1 = ±1
RPP1 All l1 = ±1
PRR a2 = 0 or l2 = 0 l1 = ±1
PRP l2 = ±1 l1 = ±1
PPR1 l2 = ±1 All
RRR a2 = 0 or l2 = 0 a1 = 0 or l1 = 0

Table 1: DH conditions for not choosing the linear space. For a given 3R/P if the condition in
column 2 is satisfied, we have to look at column 3 and if that is also satisfied we may possibly
choose T (ν2)

Notice in the above table we disregarded PPP because this 3-chain describes a purely transla-
tional motion so its kinematic image lies in a 3-space living in the Study quadric. In fact, increasing
prismatic joints should theoretically make it easier for us to compute inverse kinematics.
1 we exclude the case that the two consuctive prismatic joints allow movement in the same direction (i.e.

twist angle is 0). This is a degenerate case that is not interesting and in this case a solution to the IK
problem imply infinite solutions so that classical HuPf algorithm is not applicable.

4



2. THE HYPERPLANES

Here we show simplified parameterized (by a selected joint parameter) linear spaces of some
3R/P chains. By simplified we mean the following: the coordinates (x0 : · · · : y3) are given up to
post- or pre- multiplication by some fixed element in SE(3). For instance with the DH-parameter
the kinematic image of an 3R chain parameterized by v1 is given by:

Rz(v1)Tz(d1)Tx(a1)Rx(l1)M

where M is the kinematic image of a 2R-chain. But we can simply commute Rz and Tz and
consider the image of

Rz(v1)Tx(a1)Rx(l1)M

reducing the number of variables so we are able to display simpler linear forms (the actual hyper-
plane can be obtained by an easy transformation, in this case by a premultiplication of Tz(d1)).
Though, in all our cases, we assume for brevity that d1 is always 0 (otherwise another simple
transformation will yield the inverse kinematic).

Often T (ν2) is very complicated and involves many subcases (in order to improve efficiency in
the C++ implementation and the algorithm). So we will only show this in RRR and RRP case. For
RRR the linear spaces T (v1) and T (v3) are well-studied (see [9,7,8]) so we will not show this.

2.1 RRR Hyperplanes, T (v2)

For T (v2) with [a1, a2] = [0, 0]:

H1 : d2l1l2v2x3 + d2l1l2x0 − d2v2x3 + d2x0 − 2l1l2v2x4 +2 l1l2x7 − 2v2x4 − 2x7

H2 : d2l1v2x2 + d2l1x1 + d2v2x2l2 − d2x1l2 − 2l1v2x5 +2 l1x6 +2 v2l2x5 +2 l2x6

H3 : − d2l1v2x1 + d2l1x2 − d2v2x1l2 − d2x2l2 − 2l1v2x6 − 2l1x5 +2 v2l2x6 − 2l2x5

H4 : − d2l1l2v2x0 + d2l1l2x3 + d2v2x0 + d2x3 − 2l1l2v2x7 − 2l1l2x4 − 2v2x7 +2 x4

For T (v2) with [a1, l2] = [0, 0]:

H1 : a2l1v2x0 − a2l1x3 − v2x3d2 − 2v2x4 + x0d2 − 2x7

H2 : − a2v2x1 − a2x2 + v2x2d2l1 − 2v2l1x5 + x1d2l1 +2 l1x6

H3 : − a2v2x2 + a2x1 − v2x1d2l1 − 2v2l1x6 + x2d2l1 − 2l1x5

H4 : a2l1v2x3 + a2l1x0 + v2x0d2 − 2v2x7 + x3d2 +2 x4

For T (v2) with [l1, a2] = [0, 0]:

H1 : a1l2v2x0 − a1l2x3 − v2x3d2 − 2v2x4 + x0d2 − 2x7

H2 : − a1v2x1 + a1x2 − v2x2d2l2 − 2v2l2x5 + x1d2l2 − 2l2x6

H3 : − a1v2x2 − a1x1 + v2x1d2l2 − 2v2l2x6 + x2d2l2 +2 l2x5

H4 : a1l2v2x3 + a1l2x0 + v2x0d2 − 2v2x7 + x3d2 +2 x4

For T (v2) with [l1, l2] = [0, 0]:

H1 : − x1

H2 : − x2

H3 : − d2x3 − 2x4

H4 : d2x0 − 2x7

5



2. THE HYPERPLANES

2.2 RRP Hyperplanes

For T (v1):

H1 : l2x0 − x1

H2 : − l2x3 + x2

H3 : a2l
2
2x0 − a2x0 − 2l2x4 − 2x5

H4 : a2l
2
2x2 − a2x2 − 2l22x7 − 2l2x6

For T (d3):

H1 : a1l1x0 − 2x4

H2 : − a1x1 − 2l1x5

H3 : − a1x2 − 2l1x6

H4 : a1l1x3 − 2x7

For T (v2) with [a1, l2] = [0, 1]:

H1 : − l1v2x0 − l1v2x1 + l1x2 + l1x3 + v2x0 − v2x1 − x2 + x3

H2 : − l1v2x2 − l1v2x3 − l1x0 − l1x1 − v2x2 + v2x3 − x0 + x1

H3 : 2a2l
2
1v2x0 − 2a2l

2
1x2 − 2a2l1v2x0 + 2a2l1x2 + l31v2x2d2 + l31v2x4 − l31v2x5 + l31d2x1 + l31x6

− l31x7 + l21v2x2d2 − l21v2x4 − l21v2x5 + 2l21x0d2 + l21d2x1 − l21x6 − l21x7 + l1v2x2d2 − l1v2x4

+ l1v2x5 + 2l1x0d2 − l1d2x1 − l1x6 + l1x7 + v2x2d2 + v2x4 + v2x5 − d2x1 + x6 + x7

H4 : 2a2l
2
1v2x2 + 2a2l

2
1x0 + 2a2l1v2x2 + 2a2l1x0 − l31v2x0d2 + l31v2x6 − l31v2x7 + l31d2x3 − l31x4

+ l31x5 + l21v2x0d2 + l21v2x6 + l21v2x7 − 2l21x2d2 − l21d2x3 − l21x4 − l21x5 − l1v2x0d2 − l1v2x6

+ l1v2x7 + 2l1x2d2 − l1d2x3 + l1x4 − l1x5 + v2x0d2 − v2x6 − v2x7 + d2x3 + x4 + x5

For T (v2) with [a1, l2] = [0,−1]:

H1 : l1v2x0 − l1v2x1 + l1x2 − l1x3 + v2x0 + v2x1 + x2 + x3

H2 : l1v2x2 − l1v2x3 − l1x0 + l1x1 − v2x2 − v2x3 + x0 + x1

H3 : − 2a2l
2
1v2x0 − 2a2l

2
1x2 − 2a2l1v2x0 − 2a2l1x2 + l31v2x2d2 − l31v2x4 − l31v2x5 + l31d2x1 + l31x6

+ l31x7 − l21v2x2d2 − l21v2x4 + l21v2x5 + 2l21x0d2 − l21d2x1 + l21x6 − l21x7 + l1v2x2d2 + l1v2x4

+ l1v2x5 − 2l1x0d2 − l1d2x1 − l1x6 − l1x7 − v2x2d2 + v2x4 − v2x5 + d2x1 − x6 + x7

H4 : − 2a2l
2
1v2x2 + 2a2l

2
1x0 + 2a2l1v2x2 − 2a2l1x0 − l31v2x0d2 − l31v2x6 − l31v2x7 + l31d2x3 − l31x4

− l31x5 − l21v2x0d2 + l21v2x6 − l21v2x7 − 2l21x2d2 + l21d2x3 + l21x4 − l21x5 − l1v2x0d2 + l1v2x6

+ l1v2x7 − 2l1x2d2 − l1d2x3 + l1x4 + l1x5 − v2x0d2 − v2x6 + v2x7 − d2x3 − x4 + x5

For T (v2) with [l1, l2] = [0, 1]:

H1 :x0 − x1

H2 :x2 − x3

H3 : − d2x2 − x4 − x5

H4 : d2x0 − x6 − x7

6



3. THE INVERSE KINEMATIC ALGORITHM WITH AN EXAMPLE

For T (v2) with [l1, l2] = [0,−1]:

H1 : − x0 − x1

H2 : − x2 − x3

H3 : − d2x2 + x4 − x5

H4 : d2x0 + x6 − x7

The other linear forms for other 3-chain joint types can be similarly computed. They (esp.
RPR and PRR chains) can found in [1] and in an upcoming paper.

2.3 The Right Chain

We have so far displayed linear forms describing the linear space for the left chain. Our point of
reference is the base frame. Hyperplane from parameters of right chain can also be computed using
the following algorithm:

Algorithm 3: Computing hyperplanes parameterized by a joint in the right reversed 3-chain
Input: DH-parameter of the right 3-chain, end-effector transformation τ , T (νi)
Output: T (ν7−i) described by DH-parameter of the right-chain

1 Make the following substitutions in the equations of T (νi) (say for RRP):

[a1, a2, a3, l1, l2, l3, v1, v2, v3, d1, d2, d3] → [−a5,−a4, 0,−l5,−l4, 0,−v6,−v5,−v4,−d6,−d5,−d4]

2 Replace σ := (x0 : · · · : x7) with τσ
3 return new linear forms describing T (ν7−i) having reversed joint-types (say for PRR)

Due to lack of space, we will not show the linear forms for the right-chain. This is available in
the dataset [1]. In [2] we also include a Giac implementation of the algorithms (we us the giacpy
python wrapper of Giac, see [5,6]).

Clearly, in the algorithms presented the computation of resultant is the ‘bottleneck’ (the re-
sultant that one compute is that of two bivariate polynomials, with maximum total degree 14).
However, we do not focus on complexity analysis because neither the degree (at most 14) nor the
number of variables (two) will vary when computing the inverse kinematics of a general 6R/P
manipulator using the HuPf algorithm. Moreover, for the magnitude of our problem even a naive
resultant computation (e.g. using Sylvester matrix) would suffice and be fast enough. In fact,
HuPf runtime is fast. For instance, the maximum runtime for solving one inverse kinematic query
(C++ parallelized implementation) using HuPf in an Intel Core i5-6200U processor is 35ms. This
is a tolerable number even by industrial standards. However in the future, we plan to study an
extended version of HuPf algorithm devised to solve inverse kinematics of redundant manipulators
where we will need to focus on time complexity as joint number varies.

3 The Inverse Kinematic Algorithm with an Example

Finally we can show HuPf algorithm for solving inverse kinematics of general 6R/P manipulators.
We assume that the end-effector pose is reachable (i.e. the inverse kinematics has a real solution)
and that the IK solutions are finite (for 6-jointed manipulators we only want solutions of regular
values).

7



3. THE INVERSE KINEMATIC ALGORITHM WITH AN EXAMPLE

Algorithm 4: (HuPf) Computing IK of a general 6R/P manipulator for a general pose
Input: A reachable end-effector pose σ ∈ SE(3) whose IK solution is finite. Parameterized linear

spaces for the left-chain (see Algorithms 1 and 2) and right-chain (dependent on σ, see
Algorithm 3) by joint-parameters µ and ν.

Output: IK solutions to σ
1 Let L := {li}8i=1 be the linear forms describing the two linear spaces in the input
2 for j = 1, . . . , 8 do
3 Solve for (x0 : · · · : x7) ∈ P7(C(µ, ν)) satisfying all linear forms in L\{lj}
4 if x0 ̸= 0 or x1 ̸= 0 or x2 ̸= 0 or x3 ̸= 0 then break
5 end
6 Without loss of generality we may assume x0, . . . , x7 ∈ C[µ, ν]
7 Substitute x0, . . . , x7 into lj to obtain a polynomial f(µ, ν) ∈ C[µ, ν]\C
8 Set g :=

∑3
i=0 xixi+3 which is generally a polynomial in C[µ, ν]\C

9 Common zeros of f and g are computed via resultant and elimination theory
10 foreach common zero (µ′, ν′) of f and g do
11 Let x′

0, . . . , x
′
7 be the evaluations of x0, . . . , x7 (pose of the middle link)

12 foreach joint λ not µ and ν do
13 There is a unique solution of λ via backsubstition of x′

0, . . . , x
′
7 into a linear form

paramaterized by λ from Algorithms 1, 2 and 3
14 end
15 end
16 return all joint values

One can show, with assumption that the input is a reachable end-effector pose with finite IK
solution, the algorithm ends successfully. This reasoning is also used to prove that the for loop in
Line 2 will break successfully with one of the x0, x1, x3, x4 non-zero. Finally the finiteness of the
IK solution will also guarantee us that f and g in Lines 7 and 8 are not identically 0 (it is not a
constant because we have a solution to the IK problem).

We now show an example of an IK problem that we solve using Algorithm 4. Consider a 2R2P2R
manipulator (i.e. a serial manipulator consisting of first two joints that are revloute, third and
fourth joints that are prismatic and last two joints that are revolute) with DH-parameters given
in the table below.

If we apply Algorithm 4 we obtain 12 solutions to the IK problem for a generic pose of the
end-effector. In our case we chose a pose given by joint values 10, 30, 0.1,−0.1, 31, 55 (revolute
joint values given in degree) or 0.0875, 0.1763, 0.1,−0.1, 0.2773, 0.5206 (revolute joint values given
as tangent of half-angles). Generally only 4 of these solutions are real, the real solutions are given
in the table below and it is illustrated in the figure below

i vi di ai li
1 * 0 0.2 0.2035
2 * 0.3 0.2 0.2035
3 −0.4142 * 0.3 0.4142
4 0.7133 * 0.4 0.3153
5 * 0.3 0 0.1763
6 * 0 0 0

Table 2: DH parameters for a 2R2P2R manipulator in our example. Parameters involving twist or
rotation are tangent of half-angles.

8



3. THE INVERSE KINEMATIC ALGORITHM WITH AN EXAMPLE

Solution 1 Solution 2 Solution 3 Solution 4
v1 −0.0374 0.0875 1.2875 2.0551
v2 0.7075 0.1763 −0.6262 −0.7273
d3 −0.3786 0.1 0.0119 −0.3336
d4 0.6391 −0.1 0.5796 1.03798
v5 −1.4516 0.2773 0.0878 −0.3247
v6 −9.3357 0.5206 1.3693 5.1233

Table 3: Real inverse kinematics solutions to the given 2RP3R manipulator. Revolute joint values
are given in tangent of half-angles.

(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

Fig. 1: Real inverse kinematic solutions to a certain end-effector pose of the 2R2P2R chain given
in Table 2. The (light-blue) lines correspond to axis of rotations of the revolute joints and the
(yellow) thick rods are the direction where the prismatic joint translates the links.

9



3. THE INVERSE KINEMATIC ALGORITHM WITH AN EXAMPLE

References

1. J. Capco, S.M. Manongsong, Linear Spaces Associated to 3R/P Kinematic Image [Data set].
Zenodo 2019. doi: 10.5281/zenodo.3147394

2. J. Capco, S.M. Manongsong, Code: Implementing HuPf Algorithm for the inverse Kinematics of
General 6R/P Manipulators. Zenodo 2019. doi: 10.5281/zenodo.3157441

3. G.E. Collins, Quantifier Elimination by Cylindrical Algebraic Decomposition – Twenty Years of
Progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition (Editor: B.F. Caviness,
J.R. Johnson), Springer-Verlag 1998, p.8–23

4. D. Cox, J. Little, D. O’Shea, Ideals, Varieties and Algorithms, 3rd Edition, Springer 2007.
5. B. Parisse, R. De Graeve, Giac/Xcas.

Online: https://www-fourier.ujf-grenoble.fr/~parisse/giac.html, Accessed: 02.2019
6. F. Han, giacpy.

Online: https://gitlab.math.univ-paris-diderot.fr/han/giacpy, Accessed: 02.2019
7. M. Husty, M. Pfurner, H.-P. Schröcker, A new and efficient algorithm for the inverse kinematics

of a general serial 6R manipulator, Mech. Mach. Theory 2007, Vol. 42, p.66–81
8. M. Husty, H.-P. Schröcker, Kinematics and Algebraic Geometry, 21st Century Kinematics (Editor:

J.M. McCarthy), Springer 2012, p. 85–123.
9. M. Pfurner, Analysis of spatial serial Manipulators using kinematic mapping, Doctoral Thesis, In-

stitute for Basic Sciences in Engineering, Unit Geometry and CAD, University of Innsbruck, Oct.
2006

10. J.M. Selig, Geometric Fundamentals of Robotics, Monographs in Computer Science (Ed.: D. Gries,
F.B. Schneider), 2nd Edition, Springer 2005.

11. M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, John Wiley & Sons
2005.

10

http://doi.org/10.5281/zenodo.3147394
http://doi.org/10.5281/zenodo.3157441
https://www-fourier.ujf-grenoble.fr/~parisse/giac.html
https://gitlab.math.univ-paris-diderot.fr/han/giacpy

	Implementing HuPf Algorithm for the Inverse Kinematics of General 6R/P Manipulators

