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Numerical solutions of generalized fractional pantograph equations with variable coefficients using shifted Chebyshev polynomials
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In this paper, an efficient numerical technique based on the shifted Chebyshev polynomials (SCPs) is established to obtain numerical solutions of generalized fractional pantograph equations with variable coefficients. These polynomials are orthogonal and have compact support on [0, L]. We use these polynomials to approximate the unknown function. Using the properties of the SCPs, we derive the generalized pantograph operational matrix of SCPs and the one of fractional-order differentiation. Then the original problems can be transformed to a system of algebraic equations based on these matrices. By solving these algebraic equations, we can obtain numerical solutions. In addition, we investigate the error analysis and introduce the process of error correction for improving the precision of numerical solutions. Lastly, by giving some examples and comparing with other existing methods, the validity and efficiency of our method is demonstrated.

Introduction

Fractional calculus is a branch of calculus theory, which makes calculus theory more perfect. In recent decades, fractional calculus have been widely used in various areas, such as viscoelasticity [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity[END_REF][START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF], economics [START_REF] Baillie | Long memory processes and fractional integration in econometrics[END_REF], control theory [START_REF] Liu | Non-asymptotic fractional order differentiator for a class of fractional order linear systems[END_REF][START_REF] Wei | Non-asymptotic state estimation for a class of fractional order linear systems[END_REF], and fractals dynamics [START_REF] Mainardi | Fractional relaxation-oscillation and fractional diffusion-wave phenomena[END_REF]. One of the interesting research topics is the design of fractional differentiators [START_REF] Liu | Fractional order differentiation by integration and error analysis in noisy environment[END_REF] to compute fractional differentials of unknown signals in a noisy environment. With the application of fractional differential equations in more and more scientific fields, the study of numerical calculations of the differential equations of fractional order is particularly important. At present, the majority of scholars have studied different kind of vigorous numerical methods to obtained an approximate solution of fractional differential equations. These methods include Chebyshev collocation method [START_REF] Khader | Numerical study for the fractional differential equations generated by optimization problem using Chebyshev collocation method and FDM[END_REF], Laplace transform method [START_REF] Kaze | Exact solution of some linear fractional differential equations by Laplace transform[END_REF], differential transform method [START_REF] Ertrk | Solving systems of fractional differential equations using differential transform method[END_REF][START_REF] Yang | A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach[END_REF], Adomian decomposition method [START_REF] Momani | Numerical solutions for systems of fractional differential equations by the decomposition method[END_REF], Legendre operational matrix [START_REF] Saadatmandi | A new operational matrix for solving fractional-order differential equations[END_REF], and CAS wavelet method [START_REF] Saeedi | Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets[END_REF], etc. Delay differential equations have many applications in different fields, such as biological, industrial, electronic, chemical and transportation systems [START_REF] Ajello | A model of stage structured population growth with density depended time delay[END_REF][START_REF] Buhmann | Stability of the discretized pantograph differential equation[END_REF][START_REF] Doha | A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order[END_REF]. To obtain the numerical solutions of delay differential equations, Many researchers have studied different kind of vigorous techniques [START_REF] Ramadan | Numerical solution of system of first-order delay differential equations using polynomial spline functions[END_REF]. The functional differential equations with proportional delay are generally called to pantograph equations or generalized pantograph equations. As the one of the most important types of delay differential equations, the pantograph equation or the generalized pantograph equation can explaining various physical phenomena. And they are used in many fields. In recent years, there have been many numerical methods for solving pantograph differential equations or generalized pantograph equations of integer order, such as Chebyshev polynomials [START_REF] Sedaghat | Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials[END_REF], Bernoulli polynomials [START_REF] Tohidi | A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation[END_REF], variational iteration method [START_REF] Yu | Variational iteration method for solving the multi-pantograph delay equation[END_REF], etc. Further, [START_REF] Huang | Discretized stability and error growth of the nonautonomous pantograph equation[END_REF] introduces the stability properties of many numerical techniques for nonlinear generalized pantograph equations.

The fractional delay differential equation is a generalization of the delay differential equation to arbitrary non-integer order. Fractional delay differential equations are adapted to many fields, such as hydraulic networks, automatic control, long transmission lines, economy and biology [START_REF] Magin | Fractional calculus models of compled dynamics in biological tissnes[END_REF]. The numerical calculation of fractional delay differential equations has also attracted the attention of many scholars. Because the fractional delay differential equations cannot be analytically solved, different numerical methods [START_REF] Moghaddam | A numerical method based on finite difference for solving fractional delay differential equations[END_REF][START_REF] Morgado | Analysis and numerical methods for fractional differential equations with delay[END_REF][START_REF] Saeed | Hermite wavelet method for fractional delay differential equations[END_REF] have been devoted to obtain the approximate solutions. Sherif et al. [START_REF] Sherif | Numerical solution of fractional delay differential equations using Spline functions[END_REF] considered the Spline functions to solve fractional delay differential equation. Authors of [START_REF] Iqbal | Modified Laguerre Wavelets method for delay differential equations of fractional-order, Egypt[END_REF] investigated modified Laguerre wavelets method. Modified Chebyshev wavelet methods and a operational matrix based on Bernoulli wavelets are utilized in [START_REF] Saeed | Modified Chebyshev wavelet methods for fractional delay-type equations[END_REF][START_REF] Rahimkhani | A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations[END_REF]. However, there are few scholars that pay attention to study the numerical methods of fractional pantograph delay differential equations. From these works we can mention, Y Yang and Y Huang [START_REF] Yang | Spectral-collocation methods for fractional pantograph delay-integrodifferential equations[END_REF] have studied the existence of solutions of nonlinear fractional pantograph equations with the order of the derivative is in [0, 1]; Using spectral-collocation methods, Yang and Huang [START_REF] Balachandran | Existence of solutions of nonlinear fractional pantograph equations[END_REF] obtained the approximate solution for fractional pantograph delay-integro-differential equations; the approximate solution of fractional pantograph differential equations can be obtained by using the explicit formula of the generalized fractional-order Bernoulli wavelet in [START_REF] Rahimkhani | Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet[END_REF].

The polynomial approximation theory is an important branch of the function approximation theory. As the name suggests, polynomials are used to approximate a function whose analytical form is more complex or whose analytical form is unknown. In general, the polynomial has many advantages, such as its structure is clear, its calculation is simple and it is relatively easy to integral and derivative. For some complex problems, applying polynomials to approximate function , and then studying the laws of actual problems, the problems can be simplified. At present, polynomial approximation theory has been widely used in different fields, such as numerical approximation theory, engineering calculation, and practical life. In this paper, based on the properties of the shifted Chebyshev polynomials, we derive SCPs generalized pantograph operational matrix. And with the aid of the operational matrix of fractional differentiation of SCPs, generalized pantograph operational matrix of fractional-order differentiation is obtained. We combine polynomial approximation theory and operational matrix to solve the following generalized fractional pantograph equation with variable coefficients

c D β u (t) = b (t) u (t) + J ∑ j=0 r-1 ∑ n=0 v j,n (t) c D αn u (q j,n t -r j,n ) + g (t) , 0 ≤ t ≤ L, (1)
subject to the initial conditions

u (n) (0) = d n , n = 0, 1, • • • , r -1, (2) 
where d n , q j,n and r j,n are real or complex coefficients, r - The rest of the paper is organized as follows: Section 2 introduces some mathematical preliminaries of fractional calculus. In Section 3, we review the basic definitions of shifted Chebyshev polynomials and discuss the polynomial approximation theory. In Section 4, we derive the SCPs generalized pantograph operational matrix and the one of fractional-order differentiation. In Section 5, we apply the proposed method to solve the generalized fractional pantograph equations. The error correction and error analysis are given in Section 6. In Section 7, the proposed approach is tested through several numerical examples.

1 < α ≤ r, 0 < α 0 < α 1 < • • • < α r-1 < β, while b (t), v j,n (t)
Finally, a conclusion is given in Section 8.

Basic definitions of fractional calculus

In this section, we review the necessary definitions and preliminaries of fractional calculus theory that will be used in this article.

Definition 1. The Riemann-Liouville fractional integral operator of f (t) is defined as

RL I β f (t) =        1 Γ (β) ∫ t 0 (t -T ) β-1 f (T ) dT, β > 0, t > 0, f (t), β = 0. (3) 
The Riemann-Liouville fractional differential operator of order β is derived by the definition of the Riemann-Liouville fractional integral operator

RL D β f (t) =        1 Γ (n -β) d n dt n ∫ t 0 f (T ) (t -T ) β-n+1 dT , β > 0, n -1 ≤ β < n, d n f (t) dt n , β = n, t > 0. ( 4 
)
Definition 2. The fractional differential operator of order β in the Caputo sense is defined as

c D β f (t) =        1 Γ (n -β) ∫ t 0 f (n) (T ) (t -T ) β-n+1 dT , n -1 ≤ β < n, d n f (t) dt n , β = n, t > 0. (5) 
For the Caputo differential operator, we have

c D β t t m =      0, f or m ∈ N 0 and m < ⌈β⌉ , Γ (m + 1) Γ (m + 1 -β) t m-β , f or m ∈ N 0 and m ≥ ⌈β⌉ or m / ∈ N 0 and m > ⌊β⌋ . ( 6 
)
where N 0 = {0, 1, 2, • • • }.

Shifted Chebyshev polynomials

Properties of the shifted Chebyshev polynomials

The well-known Chebyshev polynomials are defined on the interval [-1, 1],

and are derived by orthogonalizing the sequence {1, t,

• • • t n • • • }.
The specific form of the Chebyshev polynomials can be obtained by the following recurrence relation 

T i+1 (z) = 2 (2z -1) T i (z) -T i-1 (z) , i = 1, 2
H L,i+1 (t) = 2 ( 2t L -1 ) H L,i (t) -H L,i-1 (t) , i = 1, 2, • • • where H L,0 (t) = 1 and H L,1 (t) = 2t L -1 .
The analytical form of the shifted Chebyshev polynomials H L,i (t) of degree i is given by

H L,i (t) = T i ( 2t L -1 ) = i i ∑ k=0 (-1) i-k (i + k -1)! (2k)! (i -k)! (2) 2k L k (t) k , i = 1, 2, • • • (7)
where

H L,i (0) = (-1) i and H L,i (L) = 1.
The shifted Chebyshev polynomials satisfy the following orthogonality rela-

tion ∫ L 0 H L,j (t) H L,k (t) ω L (t) dt = h κ , ( 8 
)
where the weight function ω

L (t) = 1 √ Lt-t 2 and h k =    b k 2 π, k = j, 0, k ̸ = j, b 0 = 2, b k = 1, k ≥ 1.

Function approximation

A function u (t) ∈ L 2 ([0, L]) can be expanded in terms of the shifted Chebyshev polynomials as follows

u (t) = ∞ ∑ i=0 c i H L,i (t), (9) 
where the coefficients c i are obtained by

c i = 1 h i ∫ L 0 u (t)H L,i (t) ω L (t) dt, i = 0, 1, 2, • • •
If we consider truncated series in Eq. ( 9), we can get

u (t) ≈ m ∑ i=0 c i H L,i (t) = C T Φ m (t) , ( 10 
)
where

C = [c 0 , c 1 , • • • , c m ] T , Φ m (t) = [H L,0 (t) , H L,1 (t) , • • • , H L,m (t)] T . ( 11 
)
4. SCPs operational matrix for solving the pantograph equations 120

In this part, we derive the necessary SCPs generalized pantograph operational matrix and the fractional generalized pantograph operational matrix .

From Eq. ( 7), Φ m (t) can be denoted by the product of two matrices

Φ m (t) = AZ m (t) , ( 12 
)
where

Z m (t) = [1, t, • • • , t m ] T .
The matrix A is SCPs coefficient matrix and we assume each item of the 125 matrix A can be write as follows 

A =         P 0,0 0 ... 0 P 1,0 P 1,
        , ( 13 
)
where

             P 0,0 = 1, P i,j = 2 ( 2 L P i-1,j-1 -P i-1,j
) -P i-2,j , P i,j = 0, f or i < j or i < 0 or j < 0.

According to [START_REF] Hei | A method of solving inverse of a matrix[END_REF], inverse matrix of the coefficient matrix A can be expressed as follows

A -1 =               P -1 0,0 0 0 • • • 0 0 P -1 0,0 a 1,2 P -1 1,1 0 • • • 0 0 P -1 0,0 a 1,3 P -1 1,1 a 2,3 P -1 2,2 • • • 0 0 . . . . . . . . . . . . . . . . . . P -1 0,0 a 1,m P -1 1,1 a 2,m P -1 2,2 a 3,m • • • P -1 m-1,m-1 0 P -1 0,0 a 1,m+1 P -1 1,1 a 2,m+1 P -1 2,2 a 3,m+1 • • • P -1 m-1,m-1 a m,m+1 P -1 m,m               , ( 14 
)
where

         a i,i+1 = -P -1 i,i P i,i-1 , i = 1, 2, • • • m, a i,j = -P -1 j-1,j-1   P j-1,i-1 + ∑ i<k<j a i,k P j-1,k-1   , i = 1, 2, • • • m -1, j = 3, 4, • • • m + 1.

SCPs generalized pantograph operational matrix

The shifted Chebyshev vector with delay parameter r (0 < r < 1) and pan-

tograph coefficient q (0 < q < 1) is given as follows Φ m (qt -r) = [H L,0 (qt -r) , H L,1 (qt -r) , • • • , H L,i (qt -r) , • • • , H L,m (qt -r)] T . ( 15 
)
Theorem 1. Let Φ m (qt) be the special case of r = 0 in Eq. ( 15) and suppose

0 < q < 1, then Φ m (qt) = F Φ m (t) , ( 16 
)
where the matrix F is called the pantograph operational matrix of SCPs, and it is defined as follows

F =            f 0,0 0 • • • 0 0 f 1,0 f 1,1 • • • 0 0 . . . . . . . . . . . . . . . f m-1,0 f m-1,1 • • • f m-1,m-1 0 f m,0 f m,1 • • • f m,m-1 f m,m           
where

f i,j =        P -1 j,j ( P i,j q j + i ∑ l=j+1 P i,l q l a j+1,l+1
)

, i ̸ = j q i , i = j i = 0, 1, • • • , m. Proof. The H L,i (qt) , i = 0, 1, • • • m must be expanded in terms of ( H L,j (t) ) j=0,1,•••i . Let H L,i (qt) = i ∑ j=0 f i,j H L,j (t).
And then we can get

Φ m (qt) =            f 0,0 0 • • • 0 0 f 1,0 f 1,1 • • • 0 0 . . . . . . . . . . . . . . . f m-1,0 f m-1,1 • • • f m-1,m-1 0 f m,0 f m,1 • • • f m,m-1 f m,m            Φ m (t) = F Φ m (t) , ( 17 
)
where

F =            f 0,0 0 • • • 0 0 f 1,0 f 1,1 • • • 0 0 . . . . . . . . . . . . . . . f m-1,0 f m-1,1 • • • f m-1,m-1 0 f m,0 f m,1 • • • f m,m-1 f m,m            .
According to Eq. ( 12), we get

145 Φ m (qt) = AZ m (qt) = A            1 qt q 2 t 2 . . . q m t m            = A            1 0 0 • • • 0 0 q 0 • • • 0 0 0 q 2 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • q m                       1 t t 2 . . . t m            = A            1 0 0 • • • 0 0 q 0 • • • 0 0 0 q 2 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • q m            A -1 Φ m (t) .
By substituting the formula of matrix A -1 into the above equation, we obtain

Φ m (qt) =          1 0 • • • 0 P -1 0,0 (P 1,0 + P 1,1 qa 1,2 ) q • • • 0 . . . . . . . . . . . . P -1 0,0 ( P m,0 + m ∑ i=1 P m,i q i a 1,i+1 ) P -1 1,1 ( P m,1 q + m ∑ i=2 P m,i q i a 2,i+1 ) • • • q m          Φ m (t) ,
Combining the above equation with Eq. ( 17), we can get the recurrence formula of f i,j

f i,j =        P -1 j,j ( P i,j q j + i ∑ l=j+1 P i,l q l a j+1,l+1
)

, i ̸ = j q i , i = j
Theorem. 1 is proved .

Theorem 2. Consider Φ m (qt -r) is the shifted Chebyshev vector defined in 150

Eq. ( 15) and suppose 0 < q < 1, 0 < r < 1, then

Φ m (qt -r) = W Φ m (t) , ( 18 
)
where the matrix W is called the generalized pantograph operational matrix of SCPs, and it is defined as follows

W = [ w 0 , w 1 , • • • , w i , • • • , w m ] T , i = 0, 1, • • • m,
where

w i = i ∑ j=0 P i,j N j , 155 N j = j ∑ k=0   j k   (-r) j-k [α 0 , α 1 , • • • , α n , • • • α k , 0, • • • , 0] ,
where

α n = k ∑ l=n P -1 l,l a l+1,k+1 f l,n ,
where

f l,n =      P -1 n,n ( P l,n q n + l ∑ s=n+1 P l,s q s a n+1,s+1 ) , l ̸ = n, q l , l = n.
Proof. By Eq. ( 12), we have

Φ m (qt -r) = AZ m (qt -r) = A                  1 qt -r (qt -r) 2 . . . (qt -r) i . . . (qt -r) m                  . ( 19 
)
We expand the formula (qt -r) i in Eq. ( 19)

(qt -r) i = i ∑ k=0   i k   (-r) i-k (qt) k . ( 20 
)
And by Eq. ( 12), we get

160 Z m (qt) =                  1 qt (qt) 2 . . . (qt) i . . . (qt) m                  = A -1 Φ m (qt) , therefore (qt) i = A -1 [i+1] Φ m (qt) , ( 21 
)
where

A -1 [i+1] is the (i + 1) th row of A -1 , i = 0, 1, • • • , m.
By substituting Eqs. ( 16) and ( 21) into Eq. ( 20), we obtain

(qt -r) i = i ∑ k=0   i k   (-r) i-k A -1 [k+1] F Φ m (t) .
Using the formula of A -1 and Eq. ( 16), A -1

[k+1] F can be written as follows

A -1 [k+1] F = [α 0 , α 1 , • • • , α n , • • • α k , 0, • • • , 0] ,
where

165 α n = k ∑ l=n P -1 l,l a l+1,k+1 f l,n .
In conclude

Φ m (qt -r) = A               N 0 N 1 . . . N i . . . N m               Φ m (t) = W Φ m (t) ,
where

N i = i ∑ k=0   i k   (-r) i-k [α 0 , α 1 , • • • , α n , • • • α k , 0, • • • , 0] . ( 22 
) W = A               N 0 N 1 . . . N i . . . N m               =               P 0,0 N 0 P 1,0 N 0 + P 1,1 N 1 . . . P i,0 N 0 + P i,1 N 1 + • • • + P i,i N i . . . P m,0 N 0 + P m,1 N 1 + • • • + P m,m N m               . Let W = [w 0 , w 1 , • • • , w i , • • • w m ]
T , hence the precise expression of w i can be concluded as follows

170 w i = i ∑ j=0 P i,j N j . ( 23 
)
By substituting Eq. ( 22) into Eq. ( 23), Theorem. 2 is proved .

SCPs operational matrix of derivative

In order to build the SCPs operational matrix of derivative, the differentiation of vector Φ m (t) can be expressed by

Φ (1) m (t) = P (1) Φ m (t) , ( 24 
)
where P (1) is called the (m + 1)×(m + 1) SCPs operational matrix of derivative.

According to Eq. ( 12), we can get

Φ (1) m (t) = A         0 1 . . . mt m-1         = AV (m+1)×m Z * m (t) , ( 25 
)
where

V (m+1)×m =            0 0 • • • 0 1 0 • • • 0 0 2 • • • 0 . . . . . . . . . . . . 0 0 • • • m            , Z * m (t) =            1 t . . . t m-2 t m-1           
.

We now expand vector Z * m (t) in terms of Φ m (t). From Eq. ( 12), we have

Z * m (t) = B * Φ m (t) , (26) 
where

180 B * =         A -1 [1] A -1 [2]
. . .

A -1 [m]         , A -1 [k] is the k th row of A -1 , k = 1, 2, • • • , m.
Then Eq. ( 25) can be rewritten as

Φ (1) m (t) = AV (m+1)×m B * Φ m (t) . ( 27 
)
Therefore we have the operational matrix of derivative as

P (1) = AV (m+1)×m B * .
Further, we can get

Φ (n) m (t) = ( P ( 1 
)
) n Φ m (t) , n = 1, 2, • • • ( 28 
)
When n = 1, from Eq. ( 24), we get Φ (1) m (t) = P (1) Φ m (t) .

Suppose Eq. ( 28) is correct, when n = s. Then we obtain

Φ (s) m (t) = ( P (1) 
) s Φ m (t) .

Thus, when n = s + 1, we have

Φ (s+1) m (t) = ∂ s ∂t s ( ∂Φ m (t) ∂t ) = P (1) ∂ s ∂t s Φ m (t)
= P (1) ( P (1) ) s Φ m (t) = ( P (1) ) s+1 Φ m (t)

.

For any integer s, the Eq. ( 28) holds.

Therefore, Eq. ( 28) can be proved.

SCPs generalized pantograph operational matrix of fractional-order differentiation

In order to build the operational matrix of fractional-order differentiation of SCPs. Let

c D β Φ m (t) = P β (t) Φ m (t) , β > 0, (29) 
where Φ m (t) is the shifted Chebyshev vector defined in Eq. ( 10) and the matrix P β is called the SCPs operational matrix of fractional derivatives.

Theorem 3. Suppose P β is the SCPs operational matrix of Caputo fractional-order differentiation of order β > 0, then the elements of P β are given as follows

P β (t) =                      0 • • • 0 • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 • • • 0 • • • 0 S β (⌈β⌉ , 0) • • • S β (⌈β⌉ , ⌈β⌉) • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . S β (i, 0) • • • S β (i, ⌈β⌉) • • • S β (i, i) • • • 0 . . . . . . . . . . . . . . . . . . . . . S β (m, 0) • • • S β (m, ⌈β⌉) • • • S β (m, i) • • • S β (m, m)                      , where S β (i, j) = i ∑ k=⌈β⌉ t -β P -1 j,j a j+1,k+1 P i,k Γ (k + 1) Γ (k + 1 -β) , i = ⌈β⌉ , ⌈β⌉ + 1, • • • , m.
Proof. From Eq. ( 12) , we get

200 c D β Φ m (t) = A c D β Z m (t) = A c D β            1 t t 2 . . . t m            . ( 30 
)
Using Eq. ( 6), we can derive c D β Z m (t) in Eq. ( 30) as

c D β Z m (t) =                      0 . . . 0 Γ(⌈β⌉+1) Γ(⌈β⌉+1-β) t ⌈β⌉-β . . . Γ(i+1) Γ(i+1-β) t i-β . . . Γ(m+1) Γ(m+1-β) t m-β                      , i = ⌈β⌉ , ⌈β⌉ + 1, • • • , m. ( 31 
)
Define the (m + 1) × (m + 1) matrix V * (m+1)×(m+1) (t) as

V * (m+1)×(m+1) (t) =                      0 • • • 0 0 • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 • • • 0 • • • 0 0 • • • 0 Γ(⌈β⌉+1) Γ(⌈β⌉+1-β) t -β • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 • • • Γ(i+1) Γ(i+1-β) t -β • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 • • • 0 • • • Γ(m+1) Γ(m+1-β) t -β                      .
Eq. ( 31) may be restated as

c D β Z m (t) = V * (m+1)×(m+1) (t) Z m (t) . ( 32 
)
Using Eq. ( 12), Eq. ( 28) can be rewritten as

c D β Z m (t) = V * (m+1)×(m+1) (t) A -1 Φ m (t) .
Therefore, we have

205 c D β Φ m (t) = AV * (m+1)×(m+1) (t) A -1 Φ m (t) = P β (t) Φ m (t) (33) 
Substituting the formulas of A and A -1 into Eq. ( 33), we get

P β (t) =                      0 • • • 0 • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 • • • 0 • • • 0 S β (⌈β⌉ , 0) • • • S β (⌈β⌉ , ⌈β⌉) • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . S β (i, 0) • • • S β (i, ⌈β⌉) • • • S β (i, i) • • • 0 . . . . . . . . . . . . . . . . . . . . . S β (m, 0) • • • S β (m, ⌈β⌉) • • • S β (m, i) • • • S β (m, m)                      , where S β (i, j) = i ∑ k=⌈β⌉ t -β P -1 j,j a j+1,k+1 P i,k Γ (k + 1) Γ (k + 1 -β) .
Theorem. 3 is proved.

Theorem 4. Let Φ m (qt -r) be the shifted Chebyshev vector defined in Eq. ( 15) and suppose 0 < q < 1, 0 < r < 1, then

c D β Φ m (qt -r) = K β Φ m (t) , ( 34 
)
where the matrix K β is called the generalized pantograph operational matrix of fractional-order differentiation, and the elements are given

K β = [ 0, 0, • • • , 0, τ ⌈β⌉ , • • • , τ i , • • • , τ m ] T , ( 35 
)
where

τ i = i ∑ j=0 x β (i, j) ω j , i = ⌈β⌉, ⌈β⌉ + 1, • • • , m,
where

x β (i, j) = i ∑ k=⌈β⌉ (qt -r) -β P -1 j,j a j+1,k+1 P i,k Γ (k + 1) Γ (k + 1 -β) ,
The formula of ω j can be represented as Eq. ( 18).
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Proof. By Eqs. ( 18) and ( 29), we have

c D β Φ m (qt -r) = P β (qt -r) Φ m (qt -r) = P β (qt -r) W Φ m (t) = K β Φ m (t) , ( 36 
)
where

K β = P β (qt -r) W .
According to the formula of P β (t), we can derive the expression of P β (qt -r)

P β (qt -r) =                      0 • • • 0 • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 • • • 0 • • • 0 x β (⌈β⌉ , 0) • • • x β (⌈β⌉ , ⌈β⌉) • • • 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . x β (i, 0) • • • x β (i, ⌈β⌉) • • • x β (i, i) • • • 0 . . . . . . . . . . . . . . . . . . . . . x β (m, 0) • • • x β (m, ⌈β⌉) • • • x β (m, i) • • • x β (m, m)                      , ( 37 
)
where

x β (i, j) = i ∑ k=⌈β⌉ (qt -r) -β P -1 j,j a j+1,k+1 P i,k Γ (k + 1) Γ (k + 1 -β) , i = ⌈β⌉ , ⌈β⌉+1, • • • , m. ( 38 
)
Substuting the concrete formulas of W and P β (qt -r) into Eq. ( 36), we get

K β = P β (qt -r) W =                      0 . . . 0 τ ⌈β⌉ . . . τ i . . . τ m                      ,
where

τ i = i ∑ j=0 x β (i, j) ω j , i = ⌈β⌉, ⌈β⌉ + 1, • • • , m.
Theorem. 4 is proved by substituting Eqs. ( 18) and (38) into the above equation .

SCPs operational matrix of product

Let C be the vector with the parameters c i given in Eq. [START_REF] Yang | A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach[END_REF]. By multiplying C with the outer product of two shifted orthonormal Chebyshev polynomial vectors, we can get the row vector. And this row vector can be approximated based on the shifted Chebyshev polynomial vector.

Let

C T Φ m (t) Φ T m (t) ≈ Φ T m (t) C. ( 39 
)
C which satisfies in the above relation is called the operational matrix of product of two shifted Chebyshev polynomial vectors.

To derive the operational matrix of product, inserting Eq. ( 12) into Eq.

(39), we can get

C T Φ m (t) Φ T m (t) = C T Φ m (t) Z m (t) T A T = [ C T Φ m (t) , t ( C T Φ m (t) ) , t 2 ( C T Φ m (t) ) , • • • , t m ( C T Φ m (t) )] A T = [ m ∑ i=0 c i H L,i (t), m ∑ i=0 c i tH L,i (t), m ∑ i=0 c i t 2 H L,i (t), • • • , m ∑ i=0 c i t m H L,i (t) ] A T . ( 40 
)
For each of t y H L,i (t), y = 0, 1, • • • , m, it can be approximated by the shifted 235 Chebyshev polynomials , then

t y H L,i (t) ≈ m ∑ k=0 e y,i k H L,k (t) = E T y,i Φ m (t)
,

where E T y,i = [ e y,i 0 , e y,i 1 , • • • , e y,i m ] , y = 0, 1, • • • , m, i = 0, 1, • • • , m, e y,i k = 1 h k ∫ L 0 t y H L,i (t) H L,k (t) ω L (t) dt. Thus, we obtain m ∑ i=0 c i t y H L,i (t) ≃ m ∑ i=0 c i ( m ∑ k=0 e y,i k H L,k (t) ) = m ∑ k=0 H L,k (t) ( m ∑ i=0 c i e y,i k ) = Φ T m (t) [E y,0 , E y,1 , • • • , E y,m ] C = Φ T m (t) U y,c , (41) 
where

U y,c = [E y,0 , E y,1 , • • • , E y,m ] C. 240 By defining matrix U c = [U 0,c , U 1,c , • • • , U m,c
], and substituting Eq. ( 41) into Eq. ( 40), we can get

C T Φ m (t) Φ T m (t) = Φ T m (t) U c A T , ( 42 
) therefore C ≈ U c A T .

Numerical algorithms

For the generalized fractional pantograph equation Eq. ( 1) that satisfies the initial condition Eq. ( 2), we first approximate

u (t) ≈ C T Φ m (t) , ( 43 
) b (t) ≈ B T Φ m (t) , ( 44 
)
g (t) ≈ G T Φ m (t) , ( 45 
) v j,n (t) ≈ C T vjn Φ m (t) , ( 46 
)
where

G T = {g i } m i=0 , C vjn T = {c i,vjn } m i=0 , B T = {b i } m i=0 .
Now, using Eqs. ( 29) and ( 43), we have

c D β u (t) ≈ c D β C T Φ m (t) = C T P β (t) Φ m (t) . ( 47 
)
For solving c D αn u (q j,n t -r j,n ) in Eq. ( 1), by using Eqs. ( 34) and (43) , we

obtain c D αn u (q j,n t -r j,n ) ≈ C T K αn j,n Φ m (t) . ( 48 
)
Moreover, by the product operational matrix of SCPs and Eq. ( 46), we have

v j,n (t) c D αn u (q j,n t -r j,n ) ≈ C T vjn Φ m (t) C T K αn j,n Φ m (t) = C T vjn Φ m (t) Φ T m (t) ( C T K αn j,n ) T ≈ Φ T m (t) C vjn ( C T K αn j,n ) T = C T K αn j,n ( C vjn ) T Φ m (t) = D (jn) T Φ m (t) , ( 49 
)
where C vjn is product operational matrix for the vector C vjn , D (jn

) T = C T K αn j,n ( C vjn ) T .
And we also have

b (t) u (t) ≈ B T Φ m (t) C T Φ m (t) = B T Φ m (t) Φ T m (t) C ≈ Φ T m (t) BC = C T ( B ) T Φ m (t) = R T Φ m (t) , ( 50 
)
where B is product operational matrix for the vector

B, R T = C T ( B ) T .
Substituting Eqs. ( 45), ( 47), ( 49) and (50) into Eq. ( 1), we obtain

C T P β (t) Φ m (t) = R T Φ m (t) + J ∑ j=0 r-1 ∑ n=0 D (jn) T Φ m (t) +G T Φ m (t) . ( 51 
)
For the initial conditions, we can write

f = C T ( P ( 1 
)
) n Φ m (0) . ( 52 
)
We collocate this system at the following points

260 t i = 2i -1 2 (m + 1) , i = 1, 2, • • • , m + 1.
These equations can be transferred to algebraic equations. Combining Matlab soft-ware and least square method, the unknown vector C can be solved.

Error analysis and error correction

Error analysis

Lemma 1. We assume that u ∈ C m+1 [0, L] with m ∈ N * , and β < m with

265 β ∈ R + \N. Let ξ = -r + qt, then we have c D β u (ξ) = m ∑ i=n (ξ) i-β Γ (i -β + 1) u (i) (0)+ 1 Γ (m -β + 1) ∫ ξ 0 (ξ -T ) m-β u (m+1) (T ) dT where n -1 < β < n ≤ m with n ∈ N * .
Proof. Let ξ = -r + qt. Using Eq. ( 5), we obtain

c D β u (ξ) = 1 Γ (n -β) ∫ ξ 0 (ξ -T ) n-1-β u (n) (T ) dT. ( 53 
)
By applying m -n + 1 times integration by parts in Eq. ( 53), we have

c D β u (ξ) = m ∑ i=n (ξ) i-β Γ (i -β + 1) u (i) (0)+ 1 Γ (m -β + 1) ∫ ξ 0 (ξ -T ) m-β u (m+1) (T ) dT. Lemma. 1 is proved . Lemma 2. Assume that u ∈ C m+1 [0, L] with m ∈ N * , and β < m with β ∈ R + \N. Let Y = span {H L,o , H L,1 , • • • , H L,m }, u m = C T Φ m is the approximate function to u from Y . Let ξ = -r + qt, then we have c D β u m (ξ) = ∫ L o c D β Q (t, ξ) u (t) dt, ( 54 
)
where

Q (t, ξ) = m ∑ i=0 1 h i H L,i (t) ω L (t) H L,i (ξ).
Proof. Let ξ = -r + qt. From Eqs. ( 9) and ( 10), we get

u m (ξ) = m ∑ i=0 c i H L,i (ξ) = m ∑ i=0 1 h i ∫ L o u (t) H L,i (t) ω L (t) dtH L,i (ξ) = ∫ L o ( m ∑ i=0 1 h i H L,i (t) ω L (t) H L,i (ξ) ) u (t) dt = ∫ L o Q (t, ξ) u (t) dt,
where

Q (t, ξ) = m ∑ i=0 1 h i H L,i (t) ω L (t) H L,i (ξ).
And we can obtain

c D β u m (ξ) = ∫ L o c D β Q (t, ξ) u (t) dt.
Lemma. 2 is proved .

Theorem 5. Suppose that u ∈ C m+1 [0, L] with m ∈ N * , and β < m with β ∈ R + \N. Let Y = span {H L,o , H L,1 , • • • , H L,m }, u m = C T Φ m is the approximate function to u from Y . u (i) (i = 0, 1, 2, • • • , m + 1) are continuous functions. Let ξ = -r + qt, the error of c D β u (ξ) and c D β u m (ξ) is represented as follows e (t) = ∫ L o c D β Q (t, ξ) I 1 (t) dt + I 2 (ξ) , ( 55 
)
where Q (t, ξ) is given by Lemma. 2, and

I 1 (t) = t m+1 ∫ 1 0 (1 -T ) m m! u (m+1) (tT ) dT, 285 I 2 (ξ) = ξ m-β+1 Γ (m -β + 1) ∫ 1 0 (1 -T ) m-β u (m+1) (ξT ) dT. If M m = u (m+1) ∞ = sup { u (m+1) (t) , t ∈ R } exists
, then e (t) can be bounded as follows

|e (t)| ≤ M m+1 ( ∫ L o c D β Q (t, ξ) t m+1 (m + 1)! dt + ξ m-β+1 Γ (m -β + 2) ) .
Proof. u (t) can be expanded into Taylor formula as

u (t) = m ∑ i=0 (t) i i! u (i) (0) + ∫ t 0 (t -T ) m m! u (m+1) (T ) dT. ( 56 
)
Then, we define the following truncated Taylor series expansion

290 u m (t) = m ∑ i=0 (t) i i! u (i) (0) . ( 57 
)
Let ξ = -r + qt, from Eqs. ( 56) and (57), we get

u (ξ) = m ∑ i=0 (ξ) i i! u (i) (0) + ∫ ξ 0 (ξ -T ) m m! u (m+1) (T ) dT, ( 58 
)
u m (ξ) = m ∑ i=0 (ξ) i i! u (i) (0) . ( 59 
)
Hence, the β th order derivative of Eq. ( 59) can be calculated as follows

c D β u m (ξ) = m ∑ i=n (ξ) i-β Γ (i -β + 1) u (i) (0) . ( 60 
)
Let us consider the following equality

e (ξ) = ( c D β u m (ξ) -c D β u m (ξ) ) + ( c D β u m (ξ) -c D β u (ξ)
) .

Similar to the proof process of Lemma. 2, we get

295 u m (ξ) = m ∑ i=0 g i H L,i (ξ) = m ∑ i=0 1 h i ∫ L o u m (t)H L,i (t) ω L (t) dtH L,i (ξ) = ∫ L o ( m ∑ i=0 1 h i H L,i (t) ω L (t) H L,i (ξ) ) u m (t)dt = ∫ L o Q (t, ξ) u m (t)dt.
The β th order derivative of u m (ξ) can be calculated as follows

c D β u m (ξ) = ∫ L o c D β Q (t, ξ) u m (t)dt. Therefore c D β u m (ξ) -c D β u m (ξ) = ∫ L o c D β Q (t, ξ) u (t) dt - ∫ L o c D β Q (t, ξ) u m (t)dt = ∫ L o c D β Q (t, ξ) ( u (t) -u m (t) ) dt. . (61) 
According to Eqs. ( 56) and (57) , we obtain

I 1 (t) = u (t) -u m (t) = ∫ t 0 (t -T ) m m! u (m+1) (T ) dT. ( 62 
)
Applying the following change of variables T → tT in Eq. ( 62)

I 1 (t) = ∫ t 0 (t -T ) m m! u (m+1) (T ) dT = t m+1 ∫ 1 0 (1 -T ) m m! u (m+1) (tT ) dT.
The β th order derivative of Eq. ( 58) can be represented as follows According to Eq. (60) and Lemma. 1, we get

I 2 (ξ) = 1 Γ (m -β + 1) ∫ ξ 0 (ξ -T ) m-β u (m+1) (T ) dT (63)
Applying the following change of variables T → ξT in Eq. ( 63)

I 2 (ξ) = ξ m-β+1 Γ (m -β + 1) ∫ 1 0 (1 -T ) m-β u (m+1) (ξT ) dT.
Using Eqs. ( 61), ( 62) and (63), we get

e (t) = ∫ L o c D β Q (t, ξ) I 1 (t) dt + I 2 (ξ) .
Finally, this proof can be completed by taking the absolute value of e (t) and the following inequalities

305 |I 1 (t)| ≤ M m+1 t m+1 (m + 1)! |I 2 (t)| ≤ M m+1 ξ m-β+1 Γ (m -β + 2) .
. Theorem. 5 is proved .

Error correction

For Eq. ( 1), we consider the following residual function

310 R m (t) = L [u m (t)] -g (t) , (64) 
where

L [u m (t)] = c D β u m (t) -b (t) u m (t) - J ∑ j=0 r ∑ n=0 v j,n (t) c D αn u m (q j,n t -r j,n ) .
Eq. (64) satisfies the following form

L [u m (t)] = R m (t) + g (t) .
It needs to be pointed out, u m (t) is the approximate solution for u (t), and u (t) is the exact solution of Eq. ( 1).

Defining the error function, as follows e m (t) = u (t) -u m (t), then we can get the differential equation about the error function

L [e m (t)] = L [u (t)] -L [u m (t)] = g (t) -R m (t) -g (t) = -R m (t) .
The formula of the error function is giving

L [e m (t)] = c D β e m (t) -b (t) e m (t) - J ∑ j=0 r ∑ n=0 v j,n (t) c D αn e m (q j,n t -r j,n ) = -R m (t) . ( 65 
)
In order to construct the approximate e * m (x, t) to e m (t), only Eq. ( 65) needs to be recalculated in the same way as we did before for the solution of Eq. ( 1).

And we define the e * m (t) as the approximate error function.

According to the numerical solution u m (t) of Eq. ( 1) and the numerical solution e * m (t) of Eq. (65), corrective solution u * (t) is obtained

u * (t) = u m (t) + e * m (t) . ( 66 
)
From Eq.(66), we can get the corrective error function e r (t) = e m (t) -e * m (t) = u (t) -u m (t) -e * m (t) .

Numerical experiments

In this section, to demonstrate the applicability and accuracy of our method, we shows some numerical examples in the form Eq. ( 1) with intial conditions.

All the numerical computations have been done using Matlab.

Example 1. Consider the fractional pantograph differential equation with variable coefficients

D β u (t) = 1 2 e t 2 u ( t 2 ) + 1 2 u (t) , 0 < β ≤ 1, 0 ≤ t ≤ 1, u (0) = 1.
In the case, when β = 1, the exact solution is u (t) = e t .

Table 1 shows the comparison of the absolute errors of the proposed method for m = 9, 10, 11 with that of the Taylor method [START_REF] Sezer | A Taylor polynomial approach for solving generalized pantograph equations with nonhomogeneous term[END_REF] for N = 9. Also we do correction for the numerical solutions with m = 9, and obtain the absolute corrective errors for m = 9, me = 11. We see that the approximation solutions obtained by the present method have good agreement with the exact solution, and the absolute errors of corrective solutions are smaller than the absolute errors of numerical solutions. 

D β u (t) = -u (t) -u ( t 2 -0.3 ) + g (t) , 0 < β ≤ 3, u (0) = 1, u (1) (0) = -1, u (2) (0) = 1.
In the case, when β = 3, g (t) = e -1 2 t+0.3 , the exact solution is u (t) = e -t .

Table 2 shows the absolute errors between the exact solution and approximate solutions of our method for different values of m. From Table 2, we can In the case, when β = 1, the exact solution is u (t) = 1 + 67 6 t + 1675 72 t 2 + 12157 1296 t 3 . In Table 3, we compare the absolute errors of our method for m = 3 with those of the GFBWFs method of [START_REF] Rahimkhani | Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet[END_REF] for k = 2, M = 4 on various intervals. to exact solution than numerical solutions.

D β u (t) = - 5 6 u (t) + 4u ( 1 2 t ) + 9u ( 1 3 t ) + t 2 -1, 0 < β ≤ 1, u (0) = 1.

Example 4. Consider the fractional neutral pantograph differential equation

D β u (t) = -u (t) + 0.1u (qt) + 0.5D β u (qt) + (0.32t -0.5) e -0.8t + e -t , 0 < β ≤ 1, u (0) = 0.
In the case, when β = 1, q = 0.8, the exact solution is u (t) = te -t . In Table 4, the compassion, the absolute errors of the proposed method 365 for m = 6, 8, 10 with those of the one-Leg θ [START_REF] Wang | On the one-leg θ-methods for solving nonlinear neutral functional differential equations[END_REF] with θ = 0.8, h = 0.01, the variational iteration method (V-I method) [START_REF] Chen | The variational iteration method for solving a neutral functional-differential equation with proportional delays[END_REF] for m = 6, and the GFBWFs method (G method) [START_REF] Rahimkhani | Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet[END_REF] for k = 2, M = 6 on the interval [0, 1], is given.In Figure 5, we do correction for the numerical solutions with m = 6, and obtain the absolute corrective errors for m = 6, me = 10. Also, the Figure 6 displays the numerical results for m = 10, β = 1 on [0, 2], when q takes different values. And by comparing these results and exact solution, we can see that, as q approaches 0.8, the numerical solutions converge to the exact solution. 

Conclusion

In this article, applying the properties of the shifted Chebyshev polynomials, we have derived the generalized pantograph operational matrix. Also, according to the SCPs fractional differential operational matrix, the generalized pantograph operational matrix of fractional-order differentiation is introduced. These matrices combined with collocation method are used to simplify and effectively calculate the numerical solutions of the generalized fractional pantograph delay equations. By constructing the generalized fractional pantograph delay equations of error function, we obtain the approximate error function to correct numerical solutions . Numerical examples show our method is effective. From examples, it is seen that with the increasing value of m, the absolute error is smaller and the convergence effect between the numerical solutions and the exact solution is better. The corrective solutions have better convergence to exact solutions than the numerical solutions. In addition, we find that the present method is an excellent mathematical method, when the function defined on the interval [0, L] and various order β > 0.

  and g (t) are continuous functions in the interval [0, L] , c D β and c D αn denote fractional derivatives in the Caputo's sense.
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 2 Figure 2: The comparison of u (t) for m = 7, with β = 2.65, 2.75, 2.85, 2.95, 1, and the exact solution for Example 2.
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 3 Figure 3: The comparison of u (t) for m = 3, with β = 0.75, 0.85, 0.95, and the exact solution for Example 3.
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 5 Figure 5: The absolute errors for m = 6, and the absolute corrective errors for m = 6, me = 10 for Example 4.
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 6 Figure6: The comparison of u (t) for m = 10, β = 1 with q = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and the exact solution for Example 4.

Table 1 :

 1 Absolute errors at some points for Example 1.

				Present method with	
	t	Taylor method				
			m = 9	m = 9 ,me = 11	m = 10	m = 11
	0.2	0.70 × 10 -14	3.03 × 10 -11	3.18 × 10 -14	1.03 × 10 -12	2.82 × 10 -14
	0.4	0.10 × 10 -10	3.76 × 10 -11	3.86 × 10 -14	1.26 × 10 -12	3.42 × 10 -14
	0.6	0.29 × 10 -9	4.69 × 10 -11	4.69 × 10 -14	1.53 × 10 -12	4.29 × 10 -14
	0.8	0.38 × 10 -8	5.75 × 10 -11	5.73 × 10 -14	1.88 × 10 -12	5.20 × 10 -14
	1	0.29 × 10 -7	7.10 × 10 -11	7.11 × 10 -14	2.26 × 10 -12	6.35 × 10 -14
	Example 2. Consider the generalized fractional pantograph differential equa-
	tion					

Table 2 :

 2 Absolute errors for different values of m for Example 2.

	t			m = 6		m = 8	m = 10	m = 12
	0.2		5.18 × 10 -7		1.45 × 10 -9	2.86 × 10 -12	5.22 × 10 -15
	0.4		1.93 × 10 -6		5.24 × 10 -9	1.21 × 10 -11	2.39 × 10 -14
	0.6		3.27 × 10 -6		1.21 × 10 -8	2.77 × 10 -11	5.67 × 10 -14
	0.8		5.34 × 10 -6		2.13 × 10 -8	4.99 × 10 -11	1.03 × 10 -13
	1		8.62 × 10 -6		3.29 × 10 -8	7.80 × 10 -11	1.62 × 10 -13
	0 4.5	0.2	0.4	0.6	0.8	1

Table 3 :

 3 The absolute errors for various intervals for Example 3.

		[0, 5]		[0, 10]	
	t				
		GFBWFs method Present method GFBWFs method Present method
	0	1.60 × 10 -10	5.34 × 10 -12	1.31 × 10 -9	7.28 × 10 -12
	1	5.49 × 10 -9	4.31 × 10 -10	5.31 × 10 -8	4.13 × 10 -10
	2	2.33 × 10 -8	1.93 × 10 -9	2.26 × 10 -7	1.48 × 10 -9
	3	3.31 × 10 -6	5.36 × 10 -9	5.85 × 10 -7	3.05 × 10 -9
	4	1.20 × 10 -5	1.16 × 10 -8	1.19 × 10 -6	4.98 × 10 -9
	5	5.18 × 10 -7	2.14 × 10 -8	2.13 × 10 -6	7.12 × 10 -9

Table 4 :

 4 The comparison of the absolute errors with other methods for Example 4.

c D β u m (ξ) -c D β u (ξ) = I 2 .

Acknowledgements

This work is supported by the Natural Science Foundation of Hebei Province (A2017203100) in China and the LE STUDIUM RESEARCH PROFESSOR-SHIP award of Centre-Val de Loire region in France.

the corrective solutions obtained by doing correction have better convergence