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Abstract

In this paper, the global Mittag-Leffler stability issue of fractional-order neural networks (FNNs) with piecewise
constant argument is investigated. Firstly, a new inequality with respect to the fractional derivative of integer-order
variable upper limit integral is proposed, which not only is favorable to the construction of Lyapunov function but also
enriches the fractional order calculus theory. Secondly, based on topological degree theory, the existence and unique-
ness of equilibrium point is certified. In addition, under some suitable assumptions, by applying Picard successive
approximation technique, the proof of the existence and uniqueness of solution with the initial value is given. More-
over, by introducing integral term into Lyapunov functional, Lur’e Postnikov type Lyapunov functional is constructed,
and a sufficient condition is addressed in terms of linear matrix inequalities (LMIs) to guarantee that the considered
FNNs are Mittag-Leffler stable. Finally, an example is given to demonstrate the validity of the obtained results.

Keywords: Fractional neural network; Mittag-Leffler stability; Piecewise constant argument; Lur’e Postnikov type
Lyapunov function; LMIs;

1. Introduction

Since Mcculloch and Pitts firstly put forward the
mathematical model of neural networks on the basis of
the characteristic analysis of the neurons [1], neural net-
works have become the hottest issues and have been ap-
plied widely in many fields, such as the artificial signal
and image processing, switching in electronic circuits,
automatic control and so on. It deserves to point that, in
1982 [2], Hopfield proposed a famous Hopfield neural
networks model, and analyzed the stability of networks
by utilizing energy function approach firstly, which set
off a wave of worldwide researches on neural networks,
such as the research on dynamic characteristics of neu-
ral networks [3].

Compared with integer-order calculus, fractional-
order calculus provides a more accurate instrument for
the description of memory and hereditary properties of
various processes. Nowadays, it has found that frac-
tional calculus can be applied in viscoelastic system,
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electric polarization, electromagnetic waves, colored
noise, heat conduction, robotics, biological system, fi-
nance and so on [4-11], which can not be done by inte-
ger order calculus.

It is well known that neural networks can be utilized
to deal with many computational problems, which re-
quires the networks to accomplish some dynamical be-
haviors such as the stability. Only when neural networks
is stable, can it operates normally. So, the studying sta-
bility of neural networks is essential. Recently, some
excellent results in the stability analysis of FNNs have
been derived. In [12], Wu et al discussed Quasi-uniform
stability for FNNs with mixed time-varying delays. In
[13-15], the researchers discussed different FNNs and
established some sufficient conditions for global Mittag-
Leffler stability and synchronization. In [16], Zhang et
al addressed the stability analysis for fractional-order
Hopfield neural networks with discontinuous activation
functions. In [17-18], Rakkiyappan et al discussed the
stability and asymptotical periodicity of a fractional-
order complex-valued neural network with constant de-
lays and time varying delays.
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The dynamic study of differential equations with
piecewise constant argument was initiated by Cooke
and Wiener in [22]. Subsequently, an increasing number
of scholars are inspired to investigate differential equa-
tions with piecewise constant argument, owing to the
fact that it represents a hybrid of continuous and discrete
dynamical systems, and combines with the properties of
both the differential and difference equations. Based on
the above reason, differential equations with piecewise
constant argument can play a crucial role in handling
many real world problems in [23-26], such as oscilla-
tory motion, mechanical, biological system and so on.
Generally, the differential equation with piecewise con-
stant argument is investigated by reducing the equation
to an equivalent discrete equation [22,27]. However,
this method has heavy limitations to non-integer piece-
wise constant argument. Recently, in [28,29], Akhmet
reduced the differential equation with piecewise con-
stant argument to an equivalent integral equation, which
greatly promotes the application of this equation. It is
worthy to mention that the arguments in the differen-
tial equation with piecewise constant argument are not
only delayed but advanced. In [30, 31], Akhmet dis-
cussed the global stability of recurrent neural networks
and cellular neural networks with piecewise constant ar-
gument, respectively. In [32], Yu et al studied the sta-
bility of neural networks with periodic coefficients and
piecewise constant argument. In [33], the robust stabil-
ity of interval fuzzy Cohen-Grossberg neural networks
with piecewise constant argument of generalized type
was investigated. The synchronization issue of complex
dynamical networks with piecewise constant argument
of generalized type was considered in [34]. Very re-
cently, in [35], Wu et al studied the Mittag-Leffler sta-
bility of FNNs in the presence of generalized piecewise
constant arguments, the sufficient condition is given to
guarantee that the considered FNNs is Mittag-Leffler
stable.

It should be pointed out that, in the aforementioned
literature with respect to the stability of FNNs, the Lya-
punov function for solving the stability issue is the ab-
solute value functionV(t) =

∑n
i=0 |xi |, see [13-19], or

the positive definite quadratic functionV(t) = xT Px,
see [20-21, 35]. It is easy to see, the information from
neuron activation functions of the network is not applied
in the Lyapunov function construction. Hence, the ob-
tained stability results in the above papers have a certain
degree of conservatism. However, the introduction of
Lur’e Postnikov type Lyapunov functional could over-
come this shortcoming.

Motivated by the above discussions, in this paper, our
aim is to investigate the gtlobal Mittag-Leffler stability

of FNNs with piecewise constant argument of general-
ized type by applying Lur’e Postnikov type Lyapunov
functional approach . The crucial novelties of our con-
tribution lie in following aspects: 1. A new inequality
with respect to the fractional derivative of integer-order
variable upper limit integral is developed; 2. The exis-
tence and uniqueness of equilibrium point and solution
for FNNs with piecewise constant argument are certi-

fied, respectively; 3. The integral term
∫ zi (t)

0
fi(s)ds is

introduced into Lur’e Postnikov Lyapunov functional,
and the Mittag-Leffler stability condition is presented in
terms of LMIs.

The rest of this paper is organized as follows. In
Section 2, some definitions and lemmas are given, and
model description is introduced. In Section 3, the exis-
tence and uniqueness of equilibrium point and solution
with initial value are proved, respectively. Some suffi-
cient criteria for the global Mittag-Leffler stability are
derived. In Section 4, a numerical example is offered to
verify the validity of the obtained results. The conclu-
sion is drawn in Section 5.

Notation:Rdenotes the set of real numbers,N andR+

represent the sets of natural and nonnegative real num-
bers, respectively.Rn denotes then-dimensional Eu-
clidean space,Rm×n denotes the set of allm× n real ma-
trices. Given column vectorsx = (x1, x2, · · · , xn)T ∈ Rn

andy = (y1, y2, · · · , yn)T ∈ Rn, xTy =
∑n

i=1 xiyi denotes
the scalar product ofx andy, where the superscriptT
represents the transpose operator.‖x‖ = (

∑n
i=1 x2

i )
1
2 de-

notes the vector norm ofx. For real symmetricP, P > 0
(P < 0) means that the matrixP is a real symmetric
positive (negative) definite matrix,λmax(P) andλmin(P)
stand for the maximal and minimal eigenvalues ofP,
respectively. We take two real-valued sequenceθi , ξi ,
i ∈ N such that 0< θi < θi+1, θi < ξi < θi+1 for all
i ∈ N, θi → +∞.

2. Preliminaries and model description

2.1. Caputo fractional-order derivative

In this subsection, we recall some basic definitions
and lemmas with respect to fractional calculus.

Definition 2.1. ([36]) The fractional integral of orderα
for an integrable functionf (t): [0,+∞)→ R is defined
as

R
0 Iαt f (t) =

1
Γ(α)

∫ t

0

f (τ)
(t − τ)1−α dτ,

where0 < α < 1, andΓ(·) is the Gamma function which
is defined byΓ(z) =

∫ ∞
0

e−ttz−1dt (Re(z) > 0), where
Re(z) is the real part of z.
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Definition 2.2. ([36]) Caputo’s fractional derivative of
orderα for a function f ∈ Cn([0,+∞],R) is defined by

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0

f n(τ)
(t − τ)α−n+1

dτ,

wheret > 0 and n is a positive integer such thatn−1 <
α < n ∈ N. Particularly, when0 < α < 1,

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0

f
′
(τ)

(t − τ)α dτ.

Caputo’s fractional derivativeC0 Dα
t has the following

properties:

Lemma 2.1. ([37]).
(i) C

0 Dα
t

R
0 Iβt x(t) = C

0 Dα−β
t x(t), whereα ≥ β ≥ 0. Espe-

cially, whenα = β, C
0 Dα

t
R
0 Iβt x(t) = x(t).

(ii) Let n = [α] + 1 for α < N or n = α for α ∈ N. If
x(t) ∈ Cn[0,+∞), then

R
0 Iαt

C
0 Dα

t x(t) = x(t) −
n−1∑

k=0

x(k)(0)
k!

tk, t > 0.

In particular, if 0 < α ≤ 1 and x(t) ∈ C1[0,+∞], then
R
t Iα0

C
t Dα

0 x(t) = x(t) − x(0).
(iii) Let c be any constant, thenC0 Dα

t c = 0.
(iv) C

0 Dα
t (v1 f (t) + v2g(t)) = v1

C
0 Dα

t f (t) + v2
C
0 Dα

t g(t),
wherev1 andv2 are any constants.

Similar to the exponential function frequently used in
the solutions of integer-order systems, a function fre-
quently used in the solution of fractional-order systems
is the Mittag-Leffler function.

Definition 2.3. ([37]). (Mittag-Leffler function) A two-
parameter Mittag-Leffler function is defined as

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
,

whereα > 0, β > 0 and z ∈ C. For β = 1, its one-
parameter form is shown as

Eα(z) =

∞∑

k=0

zk

Γ(αk + 1)
= Eα,1(z),

especiallyE1,1(z) = ez, whereα = 1, β = 1.

Lemma 2.2. ([13]) If V(t) is a continuous function on
[0,+∞) and satisfies

C
0 Dα

t V(t) ≤ θV(t),

where0 < α < 1 andθ is a constant, then

V(t) ≤ V(0)Eα(θtα), t ≥ 0.

Lemma 2.3. Given any scalarε > 0, x, y ∈ Rn and
matrix A, then

xT Ay≤ 1
2ε

xT AAT x +
ε

2
yTy.

2.2. Model description

In this subsection, we give the network model de-
scription and propose some rational assumptions which
are needed in the development of this paper.

Consider the following FNNs described by differen-
tial equations with piecewise constant argument of gen-
eralized type:

C
0 Dα

t x(t) = −Ax(t) + B f(x(t)) + Cg(x(γ(t))) + I , (1)

or equivalently

C
0 Dα

t xi(t) = − ai xi(t) +

n∑

j=1

bi j f j(x j(t)) +

n∑

j=1

ci j g j(x j(γ(t)))

+ I i , i = 1,2, · · · ,n,
(2)

where 0< α < 1. If t ∈ [θk, θk+1), k ∈ N, t ∈ R+,
thenγ(t) = ζk. n corresponds to the number of units
in a neural network.x(t) = (x1(t), · · · , xn(t))T ∈ Rn,
xi(t) stands for the state of theith unit at timet. A =

diag(a1,a2, · · · ,an) represents self connection weight,
whereai > 0. B = (bi j )n×n represents interconnection
weight matrix, wherebi j denotes the strength of thejth
unit on theith unit at time t. C = (ci j )n×n also rep-
resents interconnection weight matrix, whereci j infers
the strength of thejth unit on theith unit at timeγ(t).
f , g : Rn → Rn are diagonal mapping,g(x(γ(t))) =

(g1(x1(γ(t))),g2(x2(γ(t))), · · · ,gn(xn(γ(t))))T , f (x(t)) =

( f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T , where f j andg j de-
note the measures of activation to its incoming poten-
tial of the units j at timeγ(t) and t, respectively. I =

(I1, I2, · · · , In)T is the external input vector.
The network system (1) is of mixed type system, that

is, the argumentγ(t) can change its deviation character
during the motion. Fixk ∈ N, and consider system (1)
on the interval [θk, θk+1), the identification functionγ(t)
is equal toζk. If t satisfiesθk ≤ t < ζk, thenγ(t) > t,
and system (1) is an equation with advanced argument.
Similarly, if ζk ≤ t < θk+1, thenγ(t) < t, and system (1)
is an equation with delayed argument. Consequently,
system (1) changes the type of deviation of the argument
during the process.

The following assumptions will be needed through-
out the paper:
(H1) the activation functionsf j , g j satisfy f j(0) = 0,

g j(0) = 0 for eachj = 1,2, · · · n.
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(H2) there exists constantsL1
i , L

2
i , L

3
i , L

4
i > 0 such that

L1
i <

fi(u) − fi(v)
u− v

< L2
i , L

3
i <

gi(u) − gi(v)
u− v

< L4
i

for all u, v ∈ Rn, i = 1,2, · · · ,n. L2 = diag(L2
1,

L2
2, · · · , L2

n), L4 = diag(L4
1, L

4
2, · · · , L4

n).
(H3) there exists a positive numberθ such thatθi+1−θi ≤

θ, i ∈ N.

(H4) θ
α(m1+m2)
Γ(1+α)

(
1

Eα(m1θα) − m2θ
α

Γ(1+α)

)−1
< 1.

(H5) m2θ
α

Γ(1+α) + m1θ
α

Γ(1+α)

(
1 + m2θ

α

Γ(1+α)

)
Eα(m1θ

α) < 1, where

m1 = max
1≤i≤n

ai + L2
i

n∑

j=1

|b ji |
 ,m2 = max

1≤i≤n

L4
i

n∑

j=1

|c ji |
 .

Definition 2.4. The constant vectorx∗ ∈ Rn is a equi-
librium point of the neural network system(1), if x∗ sat-
isfies the equation

−Ax∗ + B f(x∗) + Cg(x∗) + I = 0.

Definition 2.5. ([37] Mittag-Leffler stabillity). An equi-
librium point x∗ of the neural network system(1) is
said to be Mittag-Leffler stable, if there exist constants
M > 0, λ > 0 and b > 0, such that, the solutionx(t)
with initial valuex(0) = x0 of system(1) satisfies

‖ x(t) − x∗ ‖≤ {M ‖ x0 − x∗ ‖ Eα(−λtα)}b, t ≥ 0.

In this paper, the deviating argumentγ(t) is supposed
to be discontinuous, thus the right-hand side of system
(1) has discontinuities at momentsθi , i ∈ N. As a result,
we define a solutionx(t) of system (1) as a continuous
function onR+, and the derivativex′(t) exists at each
point t ∈ R+, with the possible exception of the pointsθi ,
i ∈ N, where a one-sided derivative exists. And system
(1) is satisfied byx(t) on each interval (θi , θi+1) as well.

2.3. Topological degree properties and Generalized
Gronwall-Bellman inequality

Let Ω be a nonempty, bounded and open subset of
Rn. The closure ofΩ is denoted byΩ, and the boundary
of Ω is denoted by∂Ω. Lemma 2.4 and Lemma 2.5
demonstrate two properties of the topological degree.

Lemma 2.4. ([38])Let H(λ, x) : [0,1] × Ω → Rn be a
continuous homotopy mapping. IfH(λ, x) = y has no
solution in∂Ω for λ ∈ [0,1] and y ∈ Rn \ H(λ, ∂Ω),
then the topological degreedeg(H(λ, x),Ω, y) of H(λ, x)
is a constant which is independent ofλ. In this case,
deg(H(0, x),Ω, y) = deg(H(1, x),Ω, y).

Lemma 2.5. ([38])Let H(x) : Ω→ Rn be a continuous
mapping. Ifdeg(H(x),Ω, y) , 0, then there exists at
least one solution ofH(x) = y in Ω.

Lemma 2.6. ([20])Supposex(t) ∈ Rn is continuous and
differentiable function,P ∈ Rn×n is a positive definite
matrix. Then, forα ∈ (0,1), the following inequality
holds

1
2

C
0 Dα

t xT(t)Px(t) ≤ xT(t)P C
0 Dα

t x(t).

Lemma 2.7. ([39]Generalized Gronwall-Bellman in-
equality). Suppose thatx(t), a(t) are non-negative, non-
decreasing and local integrable on0 ≤ t < T, andg(t)
is a non-negative, non-decreasing continuous function
defined on0 ≤ t < T, g(t) ≤ M and M is a constant,
α > 0 with

x(t) ≤ a(t) + g(t)
∫ t

0
(t − s)α−1x(s)ds

on this interval. Then

x(t) ≤ a(t)Eα(g(t)Γ(α)tα),

whereEα is the Mittag-Leffler function.

2.4. Fractional derivative of integer-order variable up-
per limit integral

In this subsection, we propose a new lemma about
fractional derivative of integer-order variable upper
limit integral, which will be used in the proof of the
main result.

Lemma 2.8. Suppose thatf , g : [0,+∞) → R are con-
tinuous function, andg is satisfied withτ1 < g(x) < τ2,
whereτ1, τ2 are positive constants. Then

S ign(
∫ t

0
f (x)dx) = S ign(

∫ t

0
g(x) f (x)ds), t > 0,

whereS ign(·) is the sign function.

Proof. According to 0< τ1 < g(x) < τ2, it fol-
lows that the value ofg(x) f (x) is betweenτ1 f (x) and
τ2 f (x). Taket as a fixed point. It is easily obtain that∫ t

0
g(x) f (x)dx is between

∫ t

0
τ1 f (x)dx and

∫ t

0
τ2 f (x)dx.

Due toτ1, τ2 > 0, we can derive that

S ign(
∫ t

0
f (x)dx) = S ign(

∫ t

0
g(x) f (x)dx).
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Figure 1: the graph ofsinx, 3sinxand (cosx+ 2)sinx

Remark 2.1. Let f (x) = sinx, g(s) = cosx + 2,x ∈
[0,+∞). It is easy to check that1 < g(x) < 3. Hence,
g(x) satisfies the assumption of Lemma 2.8. In the fol-
lowing, we apply Matlab tool to simulate and verify the
validity of Lemma 2.8.

In Fig.1, we depict the graphs ofsinx, 3 sinx and
(cosx+2) sinx. It is easy to see that the trace of(cosx+

2) sinx is betweensinx and3 sinx.
In Fig.2, we depict the graphs of

∫ t

0
sinxdx and∫ t

0
(cosx+2) sinxdx. Obviously, the sign of

∫ t

0
sinxdxis

the same as the sign of
∫ t

0
(cosx + 2) sinxdx.
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Figure 2: the graph of
∫ t
0 sinxdx,

∫ t
0 3 sinxdxand

∫ t
0 (cosx+2) sinxdx

Lemma 2.9. Suppose thatz(t) and f (t) ∈ R are contin-
uous functions, andf (t) satisfies

τ1 <
f (z(t)) − f (z(s))

z(t) − z(s)
< τ2,

whereτ1, τ2 are positive constants. Then

C
0 Dα

t

[∫ z(s)

0
f (t)dt

]
≤ f (z(t))C

0 Dα
t z(t), ∀α ∈ (0,1). (3)

Proof. The inequality (3) is equivalent to

f (z(t))C
0 Dα

t z(t) −C
0 Dα

t

[∫ z(s)

0
f (t)dt

]
≥ 0, ∀α ∈ (0,1).

(4)

According to Definition 2.2, we have

C
0 Dα

t z(t) =
1

Γ(1− α)

∫ t

0

z′(s)
(t − s)α

ds. (5)

C
0 Dα

t

[∫ z(s)

0
f (t)dt

]
=

1
Γ(1− α)

∫ t

0

(
∫ z(s)

0
f (t)dt)′

(t − s)α
ds

=
1

Γ(1− α)

∫ t

0

f (z(s))z′(s)
(t − s)α

ds.

(6)

Substituting (5) and (6) into (4), we obtain that

f (z(t))
Γ(1− α)

∫ t

0

z′(s)
(t − s)α

ds− 1
Γ(1− α)

∫ t

0

f (z(s))z′(s)
(t − s)α

ds≥ 0.

(7)

That is,

− 1
Γ(1− α)

∫ t

0

f (z(t)) − f (z(s))
(t − s)α

(−z′(s))ds≥ 0. (8)

(8) can be changed as

1
Γ(1− α)

∫ t

0

f (z(t)) − f (z(s))
(t − s)α(z(t) − z(s))

(z(t) − z(s))(−z′(s))ds

≤ 0.
(9)

Next, we prove that the inequality

1
Γ(1− α)

∫ t

0

(z(t) − z(s))(−z′(s))
(t − s)α

ds≤ 0 (10)

is true. For convenient, by taking variable transforma-
tion y(s) = z(t) − z(s), we discuss

1
Γ(1− α)

∫ t

0

y(s)y′(s)
(t − s)α

ds≤ 0. (11)

Applying integration by parts to (11) yields

y2(s)
2Γ(1− α)(t − s)α

|s=t − y2(s)
2Γ(1− α)(t − s)α

|s=0

− α

2Γ(1− α)

∫ t

0

y2(s)
(t − s)α+1

ds≤ 0,

(12)

5



which is equivalent to

− y2(s)
2Γ(1− α)(t − s)α

|s=t +
y2(0)

2Γ(1− α)tα

+
α

2Γ(1− α)

∫ t

0

y2(s)
(t − s)α+1

ds≥ 0.

(13)

The first term of (13) is singular whens = t, we consider
the corresponding limitation

lim
s→t

y(s)y(s)
2Γ(1− α)(t − s)α

= lim
s→t

(z(t) − z(s))(z(t) − z(s))
2Γ(1− α)(t − s)α

= lim
s→t

z2(t) − 2z(t)z(s) + z2(s)
2Γ(1− α)(t − s)α

.

(14)

By utilizing L′hôpital law to (14), it follows that

lim
s→t

y(s)y(s)
2Γ(1− α)(t − s)α

= lim
s→t

2z(t)z′(s) − 2z(s)z′(s)
2Γ(1− α)α(t − s)α−1

= lim
s→t

[2z(t)z′(s) − 2z(s)z′(s)](t − s)1−α

2Γ(1− α)α
= 0.

(15)

Thus, (13) is reduced to

y2(0)
2Γ(1− α)tα

+
α

2Γ(1− α)

∫ t

0

y2(s)
(t − s)α+1

ds≥ 0. (16)

Obviously, (16) is true. This proves the validity of (10).
Noting 0 < τ1 < f (z(t))− f (z(s))

z(t)−z(s) < τ2, and applying
Lemma 2.8, we conclude that (9) is true, which implies

C
0 Dα

t

[∫ z(s)

0
f (t)dt

]
≤ f (z(t))C

0 Dα
t z(t), ∀α ∈ (0,1).

The proof is completed.

3. Main results

3.1. Existence and uniqueness of solution

In this subsection, we give the proof for the existence
and uniqueness of equilibrium point and solution of the
network system (1) ont ≥ 0.

Theorem 3.1. Suppose that (H1) and (H2) hold, if there
exist diagonal matrixP > 0 and scalarε > 0 such that

∆ =PB+ (PB)T +
1
ε

(PC)(PC)T

+ ε((L1)−1L4)T(L1)−1L4 < 0,

then the neural network system (1) has a unique equi-
librium point.

Proof. (Existence) Set

U(x) = Ax− B f(x) −Cg(x) − I . (17)

Obviously, x∗ ∈ Rn is an equilibrium point of system
(1), if and only if, U(x∗) = 0. Construct a mapping
H(λ, x) : Rn→ Rn as

H(λ, x) = Ax− B f(x) −Cg(x) − I , λ ∈ [0,1].

It is easy to check thatH(λ, x) is a continuous homo-
topic mapping.

Next, we will construct a convex regionΩ, such that
H(λ, x) , 0, x ∈ ∂Ω, λ ∈ [0,1].

By the assumption (H1), it follows thatxi fi(xi) =

xi( fi(xi) − fi(0)) > 0. Combining Lemma 2.3 with as-
sumption (H2) yields

f T(x)PH(λ, x)

= f T(x)P (Ax− λ(B f(x) + Cg(x)) − λI )

≥ f T(x)(PA)x− λ f T(x)(PI) − λ
[
f T(x)(PB) f (x)+

1
2ε

f T(x)(PC)(PC)T f (x) +
ε

2
gT(x)g(x)

]

≥ f T(x)P(Ax− λI ) − λ
2

f T(x)

[
(PB) + (PB)T

1
ε

(PC)(PC)T + ε((L1)−1L4)T(L1)−1L4

]
f (x)

≥ f T(x)P(Ax− λI )

≥
n∑

i=1

[| fi(xi)|piai |xi | − | fi(xi)|pi |I i |]

≥
n∑

i=1

| fi(xi)|piai [|xi | − | I i

ai
|].

(18)

Under the assumption (H2), we have

lim
|xi |→+∞

fi(xi)piai xi ≥ lim
|xi |→+∞

L1
i piai x

2
i = +∞.

This implies that, for eachi ∈ {1,2, · · · ,n},

lim
|xi |→+∞

| fi(xi) | piai(| xi | − | I i

ai
|) = +∞. (19)

Let

Mi =

n∑

j=1, j,i

sup{| f j(x j) | p ja j(| x j | + |
I j

a j
|) :| x j |≤|

I j

a j
|}.

By (19), there exists scalarmi , mi > | I j

a j
|, such that for

any | xi |> mi , we have

| fi(xi) | piai(| xi | − | I i

ai
|) − Mi > 0. (20)
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SetΩ = {x ∈ Rn : |xi | < mi + 1, i = 1,2, · · · ,n}, Ω is an
open convex bounded set independent of parameterλ.
If x ∈ ∂Ω, there must exist ai0 ∈ {1,2, · · · ,n} such that
xi0 = mi0 + 1. For anyλ ∈ [0,1], we define following
two index sets:

Θ+ = {i ∈ {1,2, · · · ,n} : |xi | ≥ | I i

ai
|},

Θ− = {i ∈ {1,2, · · · ,n} : |xi | < | I i

ai
|} = {1,2, · · · ,n} \ Θ+.

By the expression ofMi and (20), for anyx ∈ ∂Ω and
λ ∈ [0,1], it follows that

f T(x)PH(λ, x)

≥
n∑

i=1

| fi(xi) | piai(| xi | − | I i

ai
|)

=
∑

i∈Θ+\{i0}
| fi(xi) | piai(| xi | − | I i

ai
|)

+ | fi0(xi0) | pi0ai0(| xi0 | − |
I i0

ai0
|)

+
∑

i∈Θ−
| fi(xi) | piai(| xi | − | I i

ai
|)

>0+ | fi0(xi0) | pi0ai0(| xi0 | − |
I i0

ai0
|) − Mi0

>0.

This implies thatH(λ, x) , 0 for anyx ∈ ∂Ω, λ ∈ [0,1].
By Lemma 2.4, we obtain that deg(H(1, x),Ω,0) =

deg(H(0, x),Ω,0), i.e., deg(U(x),Ω,0) = deg(Ax,Ω,0)
= Sgn|A| , 0, where |A| is the determinant of A. By
Lemma 2.5,U(x) = 0 has at least one solution inΩ.
This implies that the network system (1) has at least one
equilibrium point inΩ.

(Uniqueness) Suppose thatx∗1 andx∗2 are two different
equilibrium points of the system (1). Then

A(x∗1 − x∗2) = B[ f (x∗1) − f (x∗2)] + C[g(x∗1) − g(x∗2)]

Multiplying by 2[ f (x∗1) − f (x∗2)]T P, we obtain that

0 < 2[ f (x∗1) − f (x∗2)]T PA(x∗1 − x∗2)

=2[ f (x∗1) − f (x∗2)]T P(B[ f (x∗1) − f (x∗2)] + C[g(x∗1) − g(x∗2)])

≤[ f (x∗1) − f (x∗2)]T{PB+ (PB)T +
1
ε

(PC)(PC)T

+ ε((L1)−1L4)T(L1)−1L4}[ f (x∗1) − f (x∗2)]

≤[ f (x∗1) − f (x∗2)]T∆[ f (x∗1) − f (x∗2)]

<0.

This is a contradiction. The above discussion shows that
system (1) has a unique equilibrium point. This com-
pletes the proof.

Theorem 3.2. Suppose that assumptions (H1)-(H4) are
established. Then, for any(t0, x0) ∈ R+×Rn, there exists
a unique solutionx(t) = x(t, t0, x0) = (x1(t), · · · , xn(t))T

on [t0,+∞) for system (1), such thatx(t0) = x0.

Proof. (Existence) Fixk ∈ N. In generally, we as-
sume thatθk ≤ ζk < t0 ≤ θk+1. First of all, for every
(t0, x0) ∈ R+ × Rn, we shall prove that there exists a so-
lution x(t) = x(t, t0, x0) = (x1(t), · · · , xn(t)) of (1) under
the initial valuex(t0) = x0 = (x0

1, · · · , x0
n)T .

By Lemma 2.1, the fractional order differential equa-
tion (2) is equivalent to the corresponding fractional-
order integral equation

xi(t) =x0
i +R

t0 Iαt

[
− ai xi(s) +

n∑

j=1

bi j f j(x j(s))

+

n∑

j=1

ci j g j(x j(ζk)) + I i

]
.

Define a norm‖x(t)‖0 = max[ζk,t0] ‖x(t)‖ and construct
the sequence of iterationsxm

i (t), x0
i (t) ≡ x0

i , i =

1,2, · · · ,n, m≥ 0 as

xm+1
i (t) =x0

i +R
t0 Iαt

[
− ai x

m
i (s) +

n∑

j=1

bi j f j(x
m
j (s))

+

n∑

j=1

ci j g j(x
m
j (ζk)) + I i

]
.

It follows from (H2) that

‖xm+1(t) − xm(t)‖

≤ 1
Γ(α)

n∑

i=1

{∫ t

t0

(t − s)α−1

[ ai + L2
i

n∑

j=1

|b ji |
 |xm

i (s) − xm−1
i (s)|

+

L4
i

n∑

j=1

|c ji |
 |xm

i (ζk) − xm−1
i (ζk)|

]
ds

}
.

By the assumption (H3) and (H4), we obtain that

‖xm+1(t) − xm(t)‖0

≤ 1
Γ(α)

n∑

i=1

{∫ t

t0

(t − s)α−1

[
m1|xm

i (s) − xm−1
i (s)|

+ m2|xm
i (ζk) − xm−1

i (ζk)|
]
ds

}

≤ 1
Γ(α)

{∫ t

t0

(t − s)α−1

[
m1‖xm(s) − xm−1(s)‖

+ m2‖xm(ζk) − xm−1(ζk)‖
]
ds

}

≤ θα

Γ(1 + α)
(m1 + m2)‖xm(t) − xm−1(t)‖0.
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It is easy to get that

‖xm+1(t) − xm(t)‖0 ≤
(
(m1 + m2)θα

Γ(1 + α)

)m

‖x1(t) − x0(t)‖

≤
(
(m1 + m2)θα

Γ(1 + α)

)m

τ,

where

τ =
θα

Γ(1 + α)

(m1 + m2)‖x0‖ +

n∑

i=1

I i

 .

Thus, we conclude that there exists a solutionx(t) =

x(t, t0, x(t0)) for system (2) on [ζk, t0]. By the assump-
tion (H2), it follows thatx(t) can be continued toθk+1.
The above operation can be done once again on inter-
val (θk+1, θk+2]. By the mathematical induction, we con-
clude that there exists a solutionx(t, t0, x0) with x(t0) =

x0 on [t0,+∞) for system (1).
(Uniqueness) First, let us discuss theθk ≤ t0 ≤ θk+1.

Define byx1(t) = x(t, t0, x1), x2(t) = x(t, t0, x2) the solu-
tion of system (1).

By reduction to absurdity, for everyt ∈ [θk, θk+1], we
suppose thatx1 = (x1

1, · · · , x1
n), x2 = (x2

1, · · · , x2
n), x1 ,

x2, which means thatx1(t) , x2(t). Then

‖x1(t) − x2(t)‖

≤‖x1 − x2‖ +
1

Γ(α)

n∑

i=1

{∫ t

t0

(t − s)α−1

[ ai + L2
i

n∑

j=1

|b ji |
 |x1

i (s) − x2
i (s)|

+

L4
i

n∑

j=1

|c ji |
 |x1

i (ζk) − x2
i (ζk)|

]
ds

}

≤(‖x1 − x2‖ +
θα

Γ(1 + α)
m2‖x1(ζk) − x2(ζk)‖)

+
1

Γ(α)

∫ t

t0

(t − s)α−1m1‖x1(s) − x2(s)‖ds.

By Lemma 2.7, it follows that

‖x1(t) − x2(t)‖

≤
(
‖x1 − x2‖ +

θα

Γ(1 + α)
m2‖x1(ζk) − x2(ζk)‖

)
Eα(m1θ

α).

In particular,

‖x1(ζk) − x2(ζk)‖

≤
(
‖x1 − x2‖ +

θα

Γ(1 + α)
m2‖x1(ζk) − x2(ζk)‖

)
Eα(m1θ

α).

Therefore,

‖x1(t) − x2(t)‖ ≤
(

1
Eα(m1θα)

− m2θ
α

Γ(1 + α)

)−1

‖x1 − x2‖.
(21)

On the other hand, assume opposite that there existst ∈
[θk, θk+1] such thatx1(t) = x2(t). Then, we have

‖x1 − x2‖

=
1

Γ(α)

n∑

i=1

{∫ t

t0

(t − s)α−1

[
− ai(x

2
i (s) − x1

i (s))

+

n∑

j=1

bi j [ f j(x
2
j (s) − f j(x

1
j (s))

+

n∑

j=1

ci j [g j(x
2
j (ζk) − g j(x

1
j (ζk))

]
ds

}

=
1

Γ(α)

n∑

i=1

{∫ t

t0

(t − s)α−1

ai + L2
i

n∑

j=1

|b ji |


× |x1
i (s) − x2

i (s)| +
L4

i

n∑

j=1

|c ji |
 |x1

i (ζk) − x2
i (ζk)|ds

}

≤ θα

Γ(1 + α)
m2‖x1(ζk) − x2(ζk)‖

+
1

Γ(α)

∫ t

t0

(t − s)α−1m1‖x1(s) − x2(s)‖ds.

(22)

By substituting (21) into (22) and applying assumption
(H4), we obtain that

‖x1 − x2‖ ≤ θα(m1 + m2)
Γ(1 + α)

(
1

Eα(m1θα)
− m2θ

α

Γ(1 + α)

)−1

‖x1 − x2‖

< ‖x1 − x2‖.
(23)

This is a contradiction. This proves that the uniqueness
of solution fort ∈ [θk, θk+1]. The extension of the unique
solution onR+ is obvious. The proof is completed.

By substitutingx(t) = y(t) + x∗, system (2) can be
simplified as

C
0 Dα

t yi(t) = − aiyi(t) +

n∑

j=1

bi jϕ j(y j(t))

+

n∑

j=1

ci jψ j(y j(γ(t))), i = 1, · · · ,n.
(24)

whereϕ j(y j(t)) = f j(y j(t) + x∗j ) − f j(x∗j ), ψ j(y j(γ(t))) =

g j(y j(γ(t) + x∗j ))− g j(x∗j ) with ϕ j(0) = 0,ψ j(0) = 0. It is
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easy to see that the equilibrium point of system (24) is
the original point. The stability of system (24) is equal
to the stability of equilibriumx∗ of system (2). There-
fore, in the following, we only discuss the stability of
the zero solution of system (24).

First of all, we address the following lemma, which
is one of the important auxiliary results in this paper.

Lemma 3.1. Suppose that assumptions(H1)− (H5) are
satisfied. Lety(t) = (y1(t), · · · , yn(t))T be a solution of
system (24). Then, the following inequality

‖y(γ(t))‖ ≤ η‖y(t)‖ (25)

holds fort ∈ R+, where

η =
(
1− m2θ

α

Γ(1+α) − m1θ
α

Γ(1+α)

(
1 + m2θ

α

Γ(1+α)

)
Eα(m1θ

α)
)−1

.

Proof. Fix k ∈ N. Then, fort ∈ [θk, θk+1), we have

yi(t) =yi(ζk) +R
ζk

Iαt

[
− aiyi(s) +

n∑

j=1

bi jϕ j(y j(s))

+

n∑

j=1

ci jψ j(y j(ζk))

]
,

whereγ(t) = ζk, if t ∈ [θk, θk+1), t ∈ R+. Taking absolute
value of both sides of above expression for eachi =

1,2, · · · ,n, we obtain that

‖y(t)‖ ≤‖y(ζk)‖ +
1

Γ(α)

n∑

i=1

{∫ t

ζk

(t − s)α−1

[
ai |yi(s)|

+

n∑

j=1

|bi j ||ϕ j(y j(s))| +
n∑

j=1

|ci j ||ψ j(y j(ζk))|
]
ds

}

≤‖y(ζk)‖ +
1

Γ(α)

{∫ t

ζk

(t − s)α−1

[ n∑

i=1

ai + L2
i

n∑

j=1

|b ji |


|yi(s)| +
n∑

i=1

L4
i

n∑

j=1

|c ji |
 |yi(ζk)|

]
ds

}

≤‖y(ζk)‖ +
1

Γ(α)

{∫ t

ζk

(t − s)α−1

[
m1‖y(s)‖

+ m2‖y(ζk)‖
]
ds

}

=‖y(ζk)‖ +
m2‖y(ζk)‖

Γ(α)
× (t − ζk)α

α

+
m1

Γ(α)

∫ t

ζk

(t − s)α−1‖y(s)‖ds

=

(
1 +

m2θ
α

Γ(1 + α)

)
‖y(ζk)‖

+
m1

Γ(α)

∫ t

ζk

(t − s)α−1‖y(s)‖ds.

By applying Lemma 2.7, it yields

‖y(t)‖ ≤
(
1 +

m2θ
α

Γ(1 + α)

)
‖y(ζk)‖Eα(m1tα). (26)

Furthermore, fort ∈ [θk, θk+1), we have

‖y(ζk)‖ ≤‖y(t)‖ +
m2‖y(ζk)‖

Γ(α)
× (t − ζk)α

α

+
m1

Γ(α)

∫ t

ζk

(t − s)α−1‖y(s)‖ds

≤‖y(t)‖ +
m2θ

α‖y(ζk)‖
Γ(1 + α)

+
m1

Γ(α)

∫ t

ζk

(t − s)α−1‖y(s)‖ds.

(27)

Combining (26) with (27), we get

‖y(ζk)‖ ≤‖y(t)‖ +
m2θ

α‖y(ζk)‖
Γ(1 + α)

+
m1

Γ(α)

×
∫ t

ζk

(t − s)α−1

(
1 +

m2θ
α

Γ(1 + α)

)
‖y(ζk)‖Eα(m1tα)ds

≤‖y(t)‖ +
m2θ

α‖y(ζk)‖
Γ(1 + α)

+
m1

Γ(α)
× θ

α

α

×
(
1 +

m2θ
α

Γ(1 + α)

)
‖y(ζk)‖Eα(m1tα)

≤‖y(t)‖ +

[
m2θ

α

Γ(1 + α)
+

m1θ
α

Γ(1 + α)

×
(
1 +

m2θ
α

Γ(1 + α)

)
Eα(m1tα)

]
‖y(ζk)‖.

Therefore, by assumption (H5), it follows that

‖y(ζk)‖ ≤ η‖y(t)‖, t ∈ [θk, θk+1),

whereη =
(
1− m2θ

α

Γ(1+α) − m1θ
α

Γ(1+α)

(
1 + m2θ

α

Γ(1+α)

)
Eα(m1θ

α)
)−1

.
This implies that (25) holds fort ∈ R+. The proof is
completed.

3.2. Stability analysis
In this subsection, we establish some criteria for

global Mittag-Leffler stability of the network system
(1).

Theorem 3.3. Supposed that assumptions (H1)-(H5)
hold. If there exist a scalarε > 0 and matrix P =

diag(p1, p2, · · · , pn) > 0, such that

∆̃ =PB+ (PB)T +
1
ε

(PC)(PC)T

+ εη2((L1)−1L4)T(L1)−1L4 < 0,

then the network system (1) is globally Mittag-Leffler
stable.
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Proof. Consider Lur’e Postnikov type Lyapunov
functional

V(t) =
1
2

yT(t)Py(t) + β

n∑

i=1

pi

∫ yi (t)

yi (γ(t))
ϕi(s)ds.

Taking Caputo’s derivative of orderα of V(t) at t along
the trajectories of system (24), and applying Lemma 2.6
and 2.9, we have

C
0 Dα

t V(t) ≤ yT(t)P C
0 Dα

t y(t) + β

n∑

i=1

piϕi(yi(t))
C
0 Dα

t yi(t)

≤yT(t)P C
0 Dα

t y(t) + β

n∑

i=1

piϕi(yi(t)) ×
[
− aiyi(t)

+

n∑

j=1

bi jϕ j(y j(t)) +

n∑

j=1

ci jψ j(y j(t))

]

=yT(t)P C
0 Dα

t y(t) + β

[
ϕT(y(t))(−PA)y(t))

+ ϕT(y(t))(PB)ϕ(y(t)) + ϕT(y(t))(PC)ψ(y(γ(t)))

]

= − 1
2

yT(t)
(
PA+ (PA)T

)
y(t) + yT(t)(PB)ϕ(y(t)

+ yT(t)(PC)ψ(y(γ(t))) + β

[
ϕT(y(t))(−PA)y(t))

+
1
2
ϕT(y(t))

(
PB+ (PB)T

)
ϕ(y(t))

+ ϕT(y(t))(PC)ψ(y(γ(t)))

]
.

(28)

Applying Lemma 2.3 yields

yT(t)PBϕ(y(t)) ≤ 1
2ε

yT(t)(PB)(PB)Ty(t)

+
ε

2
ϕT(y(t))ϕ(y(t)).

(29)

yT(t)(PC)ψ(y(γ(t))) ≤ 1
2ε

yT(t)(PC)(PC)Ty(t)

+
ε

2
ψT(y(γ(t)))ψ(y(γ(t))).

(30)

ϕT(y(t))(PC)ψ(y(γ(t))) ≤ 1
2ε
ϕT(y(t))(PC)(PC)Tϕ(y(t))

+
ε

2
ψT(y(γ(t)))ψ(y(γ(t))).

(31)

According to assumption (H2), it follows that

ϕT(y(t))ϕ(y(t))

=[ f (y(t) + x∗) − f (x∗)]T [ f (y(t) + x∗) − f (x∗)]

≤yT(t)(L2)T L2y(t).

(32)

ψT(y(γ(t)))ψ(y(γ(t))) ≤ yT(γ(t))(L4)T L4y(γ(t)). (33)

By Lemma 3.1, we have

yT(γ(t))y(γ(t)) ≤ η2yT(t)y(t). (34)

Substituting (29)-(34) into (28), we have
C
0 Dα

t V(t)

≤ − 1
2

yT(t)(PA)y(t) +
1
2

yT(t)

(
1
ε

(PB)(PB)T

+ ε(L2)T L2 +
1
ε

(PC)(PC)T + εη2(L4)T L4

)
y(t)

+ βϕT(y(t))(−PA)y(t)) +
1
2
βyT(t)(L2)T

(
PB+ (PB)T

+
1
ε

(PC)(PC)T + εη2((L1)−1L4)T(L1)−1L4

)
L2y(t).

Let Σ = 1
ε
(PB)(PB)T + ε(L2)T L2 + 1

ε
(PC)(PC)T +

εη2(L4)T L4. Obviously,Σ > 0.
Takeβ > λmax(Σ)

λmin(−(L2)T ∆̃L2)
> 0. Then

C
0 Dα

t V(t)

≤ − 1
2

yT(t)(PA)y(t) + βϕT(y(t))(−PA)y(t))

+
1
2

yT(t)Σy(t) +
1
2
βyT(t)((L2)T∆̃L2)y(t)

≤ − 1
2

yT(t)(PA)y(t) + βϕT(y(t))(−PA)y(t))

≤ − λmin(A)

(
1
2

yT(t)Py(t) + β

n∑

i=1

pi

∫ yi (t)

yi (γ(t))
ϕi(s)ds

)
.

This implies that
C
0 Dα

t V(t) ≤ −λV(t), (35)

whereλ = λmin(A). By Lemma 2.2, from (35), we get

V(t) ≤ V(0)Eα(−λtα), t > 0.

Noting that

V(t) =
1
2

yT(t)Py(t) + β

n∑

i=1

pi

∫ yi (t)

yi (γ(t))
ϕi(s)ds

≥ 1
2

yT(t)Py(t)

≥ 1
2
λmin(P)‖y(t)‖2,
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we have

‖y(t)‖2 ≤ 2
λmin(P)

V(0)Eα(−λtα), t > 0.

Hence, we obtain that

‖x(t) − x∗‖2

≤ 2
λmin(P)

(
λmax(P)

2
‖x(0)− x∗‖2

+ β

n∑

i=1

pi

∫ x(0)−x∗

0
ϕi(s)ds

)
Eα(−λtα)

≤ 2
λmin(P)

(
λmax(P)

2
‖x(0)− x∗‖2+

βλmax(P)ϕT(x(0)− x∗)(x(0)− x∗)
)
Eα(−λtα)

≤λmax(P)
λmin(P)

(
1 + 2βL4

)
‖x(0)− x∗‖2Eα(−λtα),

i.e.,

‖x(t) − x∗‖ ≤
√
λmax(P)
λmin(P)

‖x(0)− x∗‖(Eα(−λtα))
1
2 ,

This shows that the network system (1) is global Mittag-
Leffler stable. This completes the proof.

Remark 3.1. It is easy to verify thatη > 1 in Theorem
3.3. Hence, from̃∆ < 0, we can conclude that∆ < 0
holds. This shows that, under the assumption of The-
orem 3.3, there exist a unique equilibrium point and a
unique solution with the initial value for the network
system (1).

Remark 3.2. In[13-19], Lyapunov function is con-
structed by using the absolute value functionV(t) =∑n

i=1 | xi(t) |. In [21-25, 35], Lyapunov func-
tion is considered by applying a positive definite
quadratic functionV(t) = xT(t)Px(t). However, in
the proof of Theorem 3.3., Lur’e Postnikov type Lya-
punov functional, which is composed of a positive def-
inite quadratic function1

2yT(t)Py(t) and the integral

term β
∑n

i=1

∫ zi (t)

0
fi(s)ds, is utilized. It is easy to see

that if β = 0, Lur’e Postnikov type Lyapunov func-
tional is changed into the common positive definite
quadratic function. Moreover, in Lur’e Postnikov type
Lyapunov functional, neuron activation functionf (x) is
used, which makes the obtained results possess less con-
servatism.

In addition, compared with algebraic criteria in [13-
19], the stability condition established in terms of LMIs
in Theorem 3.3 has a great application value in practi-
cal engineering.

4. An illustrative example

In this section, an example is provided to illustrate the
validity with respect to the results in this paper.

Example 1. In the network system (1) with the piece-
wise constant argumentγ(t), we take the system param-
etersα = 0.98,

A=

(
2 0
0 1.5

)
. B=

(
0.02 −0.03
0.01 −1

)
. C=

(
0.08 1
0.01 1

)
. I=

(
1
1

)
.

γ(t) = ζk, ζk = 2k+1
18 , k ∈ N. θk = k

9.
The active functionsfi(xi(t)) = tanh(xi(t)) + 0.5xi(t),

i = 1,2. g1(x1(t)) = tanh(x1(t)
7 ) + 0.5x1(t), g2(x2(t)) =

tanh(x2(t)
6 ) + 0.5x2(t).

It is easy to verify thatL2
1 = L2

2 = 3/2, L4
1 = 9/14,

L4
2 = 2/3, m1 = 2.0450, m2 = 1.3333, θ = 1/9,

Eα(m1θ
α) = 1.2712, η = 2.0321, and

θα(m1+m2)
Γ(1+α)

(
1

Eα(m1θα) − m2θ
α

Γ(1+α)

)−1
= 0.6272< 1,

m2θ
α

Γ(1+α) + m1θ
α

Γ(1+α)

(
1 + m2θ

α

Γ(1+α)

)
Eα(m1θ

α) = 0.5709< 1.
Obviously, the assumption (H1)-(H5) hold.
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Figure 3: the state trajectory with different initial values of the net-
work system (1) in Example 1

Setε = 1. In the following, we check the valid of
Theorem 3.3. To do so, by using LMI toolbox for solving
∆̃ < 0 in Theorem 3.3, we get that

P =

(
0.0041 0

0 0.5196

)
.

According to Theorem 3.3, we conclude that the
unique equilibriumx∗ = (0.5385,0.4424)of system (1)
is Mittag-leffler stable, which is verified in Fig.3.

Remark 4.1. It is worthwhile pointing out that, due
to the discontinuity of argumentγ(t), the solution of
the network system (1) has the non-smoothness at the
switching pointsθk, k ∈ N, however, this is not seen in
Fig.3. The reason is that we choose Lipschitz constants
with respect to the activation functions and a sufficiently
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smallθ to fulfill the assumptions of Theorem 3.3. So, the
sufficient smallθ ”hides” the turning point.

By taking appropriate parameters of the network sys-
tem (1), it enables that non-smoothness can be seen to
implement. Consider the network system

C
0 Dα

t x(t) = −
(
20 0
0 10

) (
x1(t)
x2(t)

)

+

(
2 1
8 0.2

) (
tanh(x1(t)) + 0.1x1(t)
tanh(x2(t)) + 0.1x2(t)

)

+

(
1 20
2 3

) (
tanh(x1(t)) + 0.1x1(t)
tanh( x2(t)

2 ) + 0.1x2(t)

)
(36)

whereθk = k
2, ζk = 2k+1

4 , k ∈ N. Obviously, in system
(36), Lipschitz coefficient with respect to the activation
function is bigger than the aforementioned in Example
1, andθ = 1

2 > 1
9. The state of system (36) is depicted

in Fig.4. From Fig.4, we can see clearly that the non-
smoothness of the solution has emerged at the switching
point θk, k ∈ N.

In addition, from Fig.4, we can see that, the solu-
tion of system (36) converges to the unique equilibrium
x∗ = (0.7598,0.9944)T . However, it is easy to verify
that the assumptions of Theorem 3.3 are not satisfied.
This indicates that the assumption of Theorem 3.3 is
only sufficient. That is to say, there exist some parame-
ters, which do not satisfy the condition of Theorem 3.3,
such that the network system (1) can also achieve the
global Mittag-Leffler stability.
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Figure 4: the state trajectory of the neural network system (36) with
θ = 1/2

5. Conclusion

In this paper, the global Mittag-Leffler stability has
be investigated for FNNs with piecewise constant ar-
gument. An inequality with respect to the fractional

derivative of integer-order variable upper limit integral
has been developed. The existence and uniqueness of
equilibrium point and solution of FNNs with piece-
wise constant argument have been proved, respectively.
Lur’e Postnikov type Lyapunov functional has be ap-
plied to address the Mittag-Leffler stability condition in
terms of LMIs. Numerical example has shown the va-
lidity of the obtained results via Matlab toolbox.

It would be interesting to extend the results proposed
in this paper to the synchronization of FNNs with piece-
wise constant argument. This issue will be the topic of
our future research.
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