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Abstract

In this paper, the global Mittag-lfer stability issue of fractional-order neural networks (FNNs) with piecewise
constant argument is investigated. Firstly, a new inequality with respect to the fractional derivative of integer-order
variable upper limit integral is proposed, which not only is favorable to the construction of Lyapunov function but also
enriches the fractional order calculus theory. Secondly, based on topological degree theory, the existence and unique-
ness of equilibrium point is certified. In addition, under some suitable assumptions, by applying Picard successive
approximation technique, the proof of the existence and uniqueness of solution with the initial value is given. More-
over, by introducing integral term into Lyapunov functional, Lur'e Postnikov type Lyapunov functional is constructed,
and a sfiicient condition is addressed in terms of linear matrix inequalities (LMIs) to guarantee that the considered
FNNs are Mittag-Léler stable. Finally, an example is given to demonstrate the validity of the obtained results.

Keywords: Fractional neural network; Mittag-Ifiéer stability; Piecewise constant argument; Lur'e Postnikov type
Lyapunov function; LMIs;

1. Introduction electric polarization, electromagnetic waves, colored
noise, heat conduction, robotics, biological system, fi-
nance and so on [4-11], which can not be done by inte-
ger order calculus.

Since Mcculloch and Pitts firstly put forward the
mathematical model of neural networks on the basis of
the characteristic analysis of the neurons [1], neural net-
works have become the hottest issues and have been ap- It is well known that neural networks can be utilized
plied widely in many fields, such as the artificial signal to deal with many computational problems, which re-
and image processing, switching in electronic circuits, quires the networks to accomplish some dynamical be-
automatic control and so on. It deserves to point that, in haviors such as the stability. Only when neural networks
1982 [2], Hopfield proposed a famous Hopfield neural is stable, can it operates normally. So, the studying sta-
networks model, and analyzed the stability of networks bility of neural networks is essential. Recently, some
by utilizing energy function approach firstly, which set excellent results in the stability analysis of FNNs have
off a wave of worldwide researches on neural networks, been derived. In [12], Wu et al discussed Quasi-uniform
such as the research on dynamic characteristics of neu-stability for FNNs with mixed time-varying delays. In
ral networks [3]. [13-15], the researchers discussetfatent FNNs and

Compared with integer-order calculus, fractional- established some ficient conditions for global Mittag-
order calculus provides a more accurate instrument for Leffler stability and synchronization. In [16], Zhang et
the description of memory and hereditary properties of al addressed the stability analysis for fractional-order
various processes. Nowadays, it has found that frac- Hopfield neural networks with discontinuous activation
tional calculus can be applied in viscoelastic system, functions. In [17-18], Rakkiyappan et al discussed the

stability and asymptotical periodicity of a fractional-
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The dynamic study of dierential equations with

of FNNs with piecewise constant argument of general-

piecewise constant argument was initiated by Cooke ized type by applying Lur'e Postnikov type Lyapunov
and Wiener in [22]. Subsequently, an increasing number functional approach . The crucial novelties of our con-

of scholars are inspired to investigatéfdiential equa-
tions with piecewise constant argument, owing to the

tribution lie in following aspects: 1. A new inequality
with respect to the fractional derivative of integer-order

fact that it represents a hybrid of continuous and discrete variable upper limit integral is developed; 2. The exis-
dynamical systems, and combines with the properties of tence and uniqueness of equilibrium point and solution

both the dfferential and diference equations. Based on
the above reason, fierential equations with piecewise

for FNNs with piecewise constant argument are certi-
fied, respectively; 3. The integral teryrgw) fi(s)dsis

constant argument can play a crucial role in handling introduced into Lur'e Postnikov Lyapunov functional,

many real world problems in [23-26], such as oscilla-
tory motion, mechanical, biological system and so on.
Generally, the dferential equation with piecewise con-

and the Mittag-Léler stability condition is presented in
terms of LMIs.

The rest of this paper is organized as follows. In

stant argument is investigated by reducing the equation Section 2, some definitions and lemmas are given, and

to an equivalent discrete equation [22,27]. However,

this method has heavy limitations to non-integer piece-

wise constant argument. Recently, in [28,29], Akhmet
reduced the dierential equation with piecewise con-

model description is introduced. In Section 3, the exis-
tence and uniqueness of equilibrium point and solution
with initial value are proved, respectively. Somefsu
cient criteria for the global Mittag-Lt#er stability are

stant argument to an equivalent integral equation, which derived. In Section 4, a numerical example fieced to

greatly promotes the application of this equation. It is
worthy to mention that the arguments in thdfelien-

tial equation with piecewise constant argument are not

only delayed but advanced. In [30, 31], Akhmet dis-

verify the validity of the obtained results. The conclu-
sion is drawn in Section 5.

Notation:Rdenotes the set of real numbdxsandR*
represent the sets of natural and nonnegative real num-

cussed the global stability of recurrent neural networks pers, respectively.R" denotes ther-dimensional Eu-
and cellular neural networks with piecewise constant ar- clidean spaceR™" denotes the set of aihx n real ma-

gument, respectively. In [32], Yu et al studied the sta-
bility of neural networks with periodic cdigcients and

piecewise constant argument. In [33], the robust stabil-

ity of interval fuzzy Cohen-Grossberg neural networks

trices. Given column vectors= (X3, X2, -+ , X,)" € R"
andy = (y,y2,---,¥n)' € R, X'y = 3L, %y denotes
the scalar product ok andy, where the superscrift
represents the transpose operalial = (3, xl?)% de-

with piecewise constant argument of generalized type notes the vector norm of For real symmetri®, P > 0
was investigated. The synchronization issue of complex (P < 0) means that the matriR is a real symmetric
dynamical networks with piecewise constant argument positive (negative) definite matriXma{P) and Amin(P)

of generalized type was considered in [34]. Very re-
cently, in [35], Wu et al studied the Mittag-Heer sta-
bility of FNNSs in the presence of generalized piecewise
constant arguments, thefBaient condition is given to
guarantee that the considered FNNs is Mittagiee
stable.

It should be pointed out that, in the aforementioned
literature with respect to the stability of FNNs, the Lya-
punov function for solving the stability issue is the ab-
solute value function/(t) = Y, Ixl, see [13-19], or
the positive definite quadratic functioi(t) = x"Px,
see [20-21, 35]. Itis easy to see, the information from
neuron activation functions of the network is not applied
in the Lyapunov function construction. Hence, the ob-

tained stability results in the above papers have a certain
degree of conservatism. However, the introduction of

Lur'e Postnikov type Lyapunov functional could over-
come this shortcoming.

stand for the maximal and minimal eigenvaluesRof
respectively. We take two real-valued sequefce;,
i € Nsuchthat O< 6 < 61, 6 < & < 6,1 for all
ieN,b - +c0.

2. Preliminaries and model description

2.1. Caputo fractional-order derivative

In this subsection, we recall some basic definitions
and lemmas with respect to fractional calculus.

Definition 2.1. ([36]) The fractional integral of orderr
for an integrable functiorf (t): [0, +o0) — Ris defined
as

1 t f(r)
I(e) Jo (t-7)t

Rof(t) = dr,

where0 < a < 1, andI'(-) is the Gamma function which

Motivated by the above discussions, in this paper, our is defined by['(2) = fowe*ttzfldt (R€2 > 0), where

aim is to investigate the gtlobal Mittag-tteer stability

Rd?2) is the real part of z.



Definition 2.2. ([36]) Caputo’s fractional derivative of
order « for a functionf € C"([0, +0], R) is defined by

0
r(n-a) Jo (t—7)rmi™"”

wheret > 0 and n is a positive integer such that 1 <
a < n e N. Particularly, wher0 < a < 1,

e g4
F(l -a) Jo (t- T)"

Caputo’s fractional derivatingt“ has the following
properties:

Lemma 2.1. ([37]).

(i) $DF RIfx(t) = Dy (), wherea > 8 > 0. Espe-
cially, whena = g, SD¢ RIZX(t) = X(t).
(i Letn=[a] + Lfora ¢ Norn=afora e N. If

X(t) € C"[0, +o0), then

DY (L) =

DI f() =

n-1 (K)

) Cra x990

R SDIxX(t) = x(t) - § k()k t> 0.
k=0

In particular, if 0 < & < 1 andx(t) € C}[0, +0], then
RIg EDgX(t) = x(t) — x(0).

(iii) Let c be any constant, theyD{c = 0.

(iv) §DF (va F () + vag(t)) = va SDF (1) + V2 $DF (D),
wherev; andv;, are any constants.

Similar to the exponential function frequently used in
the solutions of integer-order systems, a function fre-
guently used in the solution of fractional-order systems
is the Mittag-Lefler function.

Definition 2.3. ([37]). (Mittag-Leffler function) A two-
parameter Mittag-Lgler function is defined as

> &
Eus(2 = %; T(ak+5)’

wherea > 0,8 > 0andz € C. For 8 = 1, its one-
parameter form is shown as

> b
Ea(2) = ; Tak+1)

e, wherew = 1,8=1.

Ea,l(z) s

especiallyE; 1(2) =

Lemma 2.2. ([13]) If V(t) is a continuous function on
[0, +0) and satisfies

SDYV(H) < V().
where0 < @ < 1 andé is a constant, then

V(1) < V(0)E,(6t%), t> 0.

Lemma 2.3. Given any scalak > 0, x, y € R" and
matrix A, then

TAy< 1 TAATx+ yy

2.2. Model description

In this subsection, we give the network model de-
scription and propose some rational assumptions which
are needed in the development of this paper.

Consider the following FNNs described byfféren-
tial equations with piecewise constant argument of gen-
eralized type:

—AX(t) + BF(x(D)) + Calx(»(1)) + I,

or equivalently

SDIX() = (1)

SDEX(D) = —ax(®) + > b f04(0) + > GG (1)
j=1 =1

+1i, i=12--,n,
(2)

where O0< a < 1. Ift € [6k,6ki1), K € N, t € R,
theny(t) = . n corresponds to the number of units
in a neural network.x(t) = (xu(t),--- , % ()" € R,
xi(t) stands for the state of theh unit at timet. A =
diagy, ap, - - - ,a,) represents self connection weight,
whereg; > 0. B = (bjj)nxn represents interconnection
weight matrix, wherdy;; denotes the strength of thth
unit on theith unit at timet. C = (Gij)nxn also rep-
resents interconnection weight matrix, whergeinfers
the strength of thdth unit on theith unit at timey(t).

f, g : R — R" are diagonal mappingg(x(y(t))) =
(@1 (y(0)), QD)) -+, G (YT, F(X(V) =
(f1(xa(1)), F2062(1), - - - , fa(Xa(t)))T, wheref; andg; de-
note the measures of activation to its incoming poten-
tial of the unitsj at timey(t) andt, respectively.l =
(I3, 12, ---, 1) is the external input vector.

The network system (1) is of mixed type system, that
is, the argumeny(t) can change its deviation character
during the motion. Fixk € N, and consider system (1)
on the interval §, 6«,1), the identification function(t)
is equal tofy. If t satisfiest < t < &, theny(t) > t,
and system (1) is an equation with advanced argument.
Similarly, if x <t < 6k, 1, theny(t) < t, and system (1)
is an equation with delayed argument. Consequently,
system (1) changes the type of deviation of the argument
during the process.

The following assumptions will be needed through-
out the paper:

(H1) the activation functiond;, g; satisfy f;(0) = O,
0j(0) = 0foreachj=1,2,---n.



(H2) there exists constantg, L?, L3, L? > 0 such that

f (V)

Lt < f(“) <L213< —gi(ua —90M) s
forallu,ve R,i=12,- n L2 = diag(L2,
L3,---,L3), L= d|ag(l_4, e, L.

(H3) there eX|sts a positive numb@such that .1—-06; <
6,i € N.
i 1 o \71

(H4) S(T::)b : (Ea(mle“) - r?iia)) <1l

(H5) 1l + s (1 + s ) Ea(mu6?) < 1, where

n
m = max(a +L2 Z Ibj| ] m, = max[ '42 Icj |].
=1

=1

Definition 2.4. The constant vectax* € R" is a equi-
librium point of the neural network systgi), if X* sat-
isfies the equation

~AX + Bf(X) + Cg(X) + | = 0.

Definition 2.5. ([37] Mittag-Leffler stabillity). An equi-
librium point x* of the neural network systeifi) is

said to be Mittag-Lgler stable, if there exist constants

M > 0,4 > 0andb > 0, such that, the solution(t)
with initial value x(0) = x° of systen{1) satisfies

Il x(t) - X* || Eq(=At%)}P, t > 0.

X [l< (M ]| X -

In this paper, the deviating argumet) is supposed

Lemma 2.5. ([38])Let H(x) : Q — R" be a continuous
mapping. IfdegdH(x),Q,y) # 0, then there exists at
least one solution dfi(x) = yin Q.

Lemma 2.6. ([20])Supposex(t) € R"is continuous and
differentiable functionP € R™" is a positive definite
matrix. Then, forae € (0, 1), the following inequality
holds

1CD¢1

50 xT(HPX() < x (t)P DY X(t).

Lemma 2.7. ([39]Generalized Gronwall-Bellman in-
equality). Suppose tha{t), a(t) are non-negative, non-
decreasing and local integrable dh< t < T, andg(t)

is a hon-negative, non-decreasing continuous function
defined orD <t < T, g(t) < M and M is a constant,

a > 0with

t
x(t) < a(t) + g(t) f (t— 9 Ix(s)ds
0
on this interval. Then

X(t) < a(t)Eo (9T ()t?),

whereE, is the Mittag-Lefer function.

2.4. Fractional derivative of integer-order variable up-
per limit integral

In this subsection, we propose a new lemma about

to be discontinuous, thus the right-hand side of system fractional derivative of integer-order variable upper

(1) has discontinuities at momerssi € N. As a result,

we define a solutiox(t) of system (1) as a continuous

function onR*, and the derivative(t) exists at each
pointt € R*, with the possible exception of the poirits

limit integral, which will be used in the proof of the
main result.

Lemma 2.8. Suppose thaf, g : [0, +0) — Rare con-

i € N, where a one-sided derivative exists. And system tinuous function, ang is satisfied withr; < g(x) < 72,

(1) is satisfied by(t) on each interval4, 6,1) as well.

2.3. Topological degree properties and Generalized

Gronwall-Bellman inequality

wherery, T, are positive constants. Then

t t
Sigr(ﬁ f(x)dx) = Sigr(ﬁ g(x)f(x)ds), t>0,

Let Q be a nonempty, bounded and open subset of WhereSigr() is the sign function.

R". The closure of2 is denoted by, and the boundary

of Q is denoted byQ. Lemma 2.4 and Lemma 2.5
demonstrate two properties of the topological degree.

Lemma 2.4. ([38])Let H(1,X) : [0,1]x Q — R be a
continuous homotopy mapping. Hf(1, X) = y has no
solution indQ for 2 € [0,1] andy € R\ H(1,09Q),

then the topological degrededgH(4, X), Q,y) of H(4, X)

is a constant which is independent.af In this case,
dedH(0, x), Q,y) = dedH(1, X), Q,Y).

Proof. According to O0< 71 < g(X) < 72, it fol-
lows that the value o§(x)f(x) is betweenry f(x) and
7,f(X). Taket as a fixed point. It is easily obtain that
fot g(x) f(x)dxis betweenfot 71 F(X)dx andfot T2 f(X)dx
Due tor;, 12 > 0, we can derive that

t t
Sigr(f0 f(x)dx) = Sigr(fO ag(x) f(x)dx).



Figure 1: the graph ainx 3sinxand Cosx+ 2)sinx

Remark 2.1. Let f(X) = sinx, g(s) = cosx + 2,x €
[0, +0). It is easy to check thdt < g(x) < 3. Hence,

g(x) satisfies the assumption of Lemma 2.8. In the fol-
lowing, we apply Matlab tool to simulate and verify the

validity of Lemma 2.8.

In Fig.1, we depict the graphs a&finx, 3sinx and
(cosx+2) sinx. Itis easy to see that the trace(@bsx+
2) sinx is betweersinx and 3 sinx.

In Fig.2, we depict the graphs o];t sinxdx and
fot(cosx+ 2) sinxdx Obviously, the sign oﬁ sinxdxis

the same as the sign Sﬁ(cosx + 2) sinxdx

Figure 2: the graph ofot sinxdx, f; Ssinxdxandf.f(cosm 2) sinxdx

Lemma 2.9. Suppose that(t) and f (t) € Rare contin-
uous functions, and(t) satisfies

PRICOERICC)
Z(t) — z(s)

wherery, T, are positive constants. Then

T2’

SD¢ [ fo “ f(t)dt] < f(z()SDt), Ya € (0,1). (3)

Proof. The inequality (3) is equivalent to

Cna C no 9
f(2(t))SD(t) =S D [ fo f(t)dt} >0, Ya e (0,1).

(4)
According to Definition 2.2, we have
tZ(9)
Cnha — 5
Pt )y T ©)

NS 1 O f(t)dty
ser f“)dt]zr(l—) -9 °°

F@9NZ(9 4o
T Ira- a)f (t—9)
Substituting (5) and (6) into (4), we obtain that

f@t) 7 (S) f(Z(9)Z ()
f-a) )y T-9705 T a)f -9 0° :0

(6)

That s,

f(Z(t)) f(z(9)
r(1 @) f Y (-Z(s)ds>0. (8)
(8) can be changed as

f f(z(1)) - f(z(s)
1"(1 @) Jo (t—9)*(A) - «s))

(@) - A9)(-Z(9)ds

(9)

Next, we prove that the inequality

() - Z9))(-Z(9))
e a)f iog 950 (0

is true. For convenient, by taking variable transforma-
tion y(s) = z(t) — z(s), we discuss

1 CYOY(9)
fi-a)J, t-9° ds<O. (12)
Applying integration by parts to (11) yields
YA(9) e yA(9) -
2M(1- a)(t - s):’ s 2 A(L-a)(t-9' 12)
- ad y (S ds<0
A(L-a)Jo (t-9=t 7



which is equivalent to Proof. (Existence) Set

y2(9) y?(0) U(X) = Ax— Bf(x) - Cg(x) — I. a7
A1 -a)(t-9" ot + 2r(1 - a)te

(13) Obviously, x* € R" is an equilibrium point of system
L@ R AC) ds> 0 (1), if and only if, U(x*) = 0. Construct a mapping
A(l-a) Jo (t—9get 7 H(1,X):R"—> R as
The first term of (13) is singular when= t, we consider H(1,X) = Ax—- Bf(X) = Cg(x) - I, 2€]0,1].
the corresponding limitation It is easy to check thatl(4, x) is a continuous homo-
im YOS (@) -Z9@)-2Y)  topic mapping.
st 21 —-a)(t-9 st 2I(1-a)(t -9 Next, we will construct a convex regidR, such that
(1) - 220 () + (9 H(4,x) # 0,x € 0Q, 1 € [0,1].
= L[th AA-)t-9° By the assumption (H1), it follows tha fi(x) =

(14) xi(fi(x) — fi(0)) > 0. Combining Lemma 2.3 with as-
sumption (H2) yields

By utilizing L’hdpital law to (14), it follows that £T()PH(L %)

im — YOS =fT(x)P (Ax— A(Bf(X) + Cg(x)) - A1)
s>t 2I(1 — a)(t — 9)*
_iim 22(t)Z () — 22(9)Z (9) 15 >fT(X)(PAX - AfT(X)(PI) - A[fT(x)(PB)f(x)+
st 2I(L - @)af(t — 9)ot (15)
o [220Z(9) = 27(9)Z (It - 9 ifT(x)(PC)(PC)Tf(x) + 29T (0g(x)
=lim =0. 2¢ 2
st Ar(l-a)a
A
Thus, (13) is reduced to >fT(X)P(Ax—al) — sz(x)[(PB) +(PB)T 8)
18
y*(0) @ GG 1
Ao T AA— ) Jo Ggriooz (10 ~(PO(PO)" + e((u)lL“)T(Ll)lL“]f(x)
Obviously, (16) is true. This proves the validity of (10).  >fT(x)P(Ax— Al)
Noting 0 < 71 < IE-TED) < 7, and applying n
Lemma 2.8, we conclude that (9) is true, which implies > Z[| fi)Ipiailxi = [ fi)Ipillil]
i=1
Z(S)
CD(I/ f f f CD(l/ 1). n l:
oDt | J, (0] < FO)DEY, Ve (0.1) > ) Ifoopalixi -1
i=1
The proofis completed. Under the assumptiorHp), we have
3. Main results I)JLWLO fi(x)piaix > |)JLVTLX) Lipiaix? = +co.
3.1. Existence and unigueness of solution This implies that, for eache {1,2,--- ,n},
In this subsection, we give the proof for the existence , l;
and uniqueness of equilibrium point and solution of the m','_rf]rm k) I paill x| =1 a ) = +eo. (19)
network system (1) oh> 0. Let
Theorem 3.1. Suppose that (H1) and (H2) hold, if there n I .
exist diagonal matri¥P > 0 and scalare > 0 such that M; = Z sud] fj(x;) | pjaj(l Xj | + | ;J Nl x <] ;J [}.
eyt j j

j=Lj=#i

1
A =PB+ (PB)" + =(PC)(PC)" , -
+(PB) + s( )(PC) By (19), there exists scalam, m > |;—'i|, such that for

+e(LhY ILHTLh Lt <o, any| x |[> m, we have

then the neural network system (1) has a unique equi- | (%) | piai(l % | — | I ) — M > 0. (20)
librium point. g



SetQ={xeR":|x|<m+1Li=212---,n}, Qis an
open convex bounded set independent of parameter
If x € 0Q, there must exist g € {1,2,---,n} such that
Xi, = m, + 1. For anya € [0, 1], we define following
two index sets:

O, ={ie{l2 - ,n:

O.={ief{L2:---, {1,2,---,n}\ O,.

By the expression oM; and (20), for anyx € 9Q and
A €[0,1], it follows that

fT(X)PH(A, X)

f(m)lp.a(|x||—|—|)
|fi(Xi)|piai(|Xi|—|a|)

|.
+ 1 fio(%io) | Pio@io(l Xig | — | # 1)

+Z|f(x.)|p.a4(|m—|—l)

i€e®_

>0+ | fig (%) | Piodio(l %o | — | a— ) - M

0

>0.

This implies thatH(4, X) # 0 for anyx € 9Q, 4 € [0, 1].

By Lemma 2.4, we obtain that ddd(1, x), Q,0) =
degH(0, x), Q,0), i.e., deg((x), Q, 0) = degAx Q, 0)
= SgnAl # 0, where|A| is the determinant of A. By
Lemma 2.5,U(xX) = 0 has at least one solution .
This implies that the network system (1) has at least one
equilibrium point inQ.

(Uniqueness) Suppose thgtandx;, are two diferent
equilibrium points of the system (1). Then

A =) = BIT(x)) = TO)] + Cla(xy) — 9(%)]

Multiplying by 2[f(x}) - f(x;)]TP, we obtain that

0 < 2[f(x}) - ()T PAG - X5)
=2[f () - F()1"P(BLF (X)) = fO)] + Cla() — 9()])
<[f(x%) - f(x)]"{(PB+ (PB)" + %(PC)(PC)T
+ (LYY LA 0) - O]
<[f0q) - FORITALT () — (6]
<0.

This is a contradiction. The above discussion shows that
system (1) has a unique equilibrium point. This com-
pletes the proof.

Theorem 3.2. Suppose that assumptions (H1)-(H4) are
established. Then, for arftp, x°) € R* xR", there exists

a unique solutiorx(t) = x(t, to, X°) = (X¢(t), -+, X (t))"
on|[ty, +co) for system (1), such tha(ty) = x°.

Proof. (Existence) Fixk € N. In generally, we as-
sume thaty < & < tg < 6,1. First of all, for every
(to, X°) € R* x R", we shall prove that there exists a so-
lution x(t) = X(t, tg, X°) = (X1(t), - - - , Xa(t)) of (1) under
the initial valuex(to) = x° = (0, -+, x)T.

By Lemma 2.1, the fractional orderftiérential equa-
tion (2) is equivalent to the corresponding fractional-
order integral equation

Xi() =X+ 17| = ax(9) + > by fi(x(9)
=1

+ G0 (xi(g) + i |
j=1

Define a normx(t)llo = Max. ] IIX(t)Il and construct
the sequence of iterationg™(t), x°(t) X, 0 =
1,2,---,n, m>0as

X =X+ 1

_ aiXim(S) + Z bij fj(XEn(S))
=1

+ GG 0¢M(@) + i
j=1

It follows from (H2) that
””1(0 - X"l

Sri { f (t—9" 1[[a+LZZ|b,.|] (9 - XM
=1
( Zlcu] m(gk)—&W1(§k)|}ds}.
1

By the assumption (H3) and (H4), we obtain that

@
+ MG - xr”(gkn]ds}

1 ! a-1 m m-1
s@{ f t-9 [mlux (9 - XS

MG - x“(gk)u]ds}

IX™H(t) = X ()llo
n t
<ty o { [ -9 mixee - i

i=1

(02

Sﬁ(ml + Mp)[IX™(t) = X™ L (t)llo.



It is easy to get that

nwﬂm—xwmmseggfgﬁ)uﬁm— 0]
<[ rm)@“)”“r
“\ T'l+a
where
= Fis )(my+mmmu+§j

Thus, we conclude that there exists a solutidt) =

X(t, to, X(to)) for system (2) ondy, to]. By the assump-
tion (H2), it follows thatx(t) can be continued téy, ;.

The above operation can be done once again on inter-
val (61, 6k:2]. By the mathematical induction, we con-
clude that there exists a solutiott, to, x°) with x(t) =

x° on [to, +o0) for system (1).

(Uniqueness) First, let us discuss the< ty < y1.
Define byx(t) = x(t, to, x1), X2(t) = X(t, to, X?) the solu-
tion of system (1).

By reduction to absurdity, for evetye [0, Ok:1], we
suppose thax® = (x},--- ,x}), X2 = (6%, --- ,x3), Xt #
x?, which means that'(t) # x?(t). Then

IXt(t) = X2l

<Xt = ¥+ —

t
e )Z{ (=9
[a+ﬁ§]mwﬁ@—ﬁ©|
=
{ﬁZm@ﬂm—ﬁm%%
=

mplIx* (&) -

X2l

1 2
<(IIx* = x7 +

0“
I1+a)

(t - 9" myl|x(s) - X*(9)llds
to

" T@

By Lemma 2.7, it follows that

IX(t) = X0l

s@%—ﬁurj &M@ - ﬁMQQWWﬂ
In particular,

X (Zi) = (&l

S@%_ﬂ|rﬂ )wn%w %@W Eo(Mué”).

Therefore,

-1
Xt =\,

(21)

1
Ea(mlga)

mpo”
I'l+a)

u%m—%mus(

On the other hand, assume opposite that there exésts
[0k, Bk.1] Such thatx}(t) = x2(t). Then, we have

Xt =
n t
5 2 [ 97 -a0ée - )
i=1 0

+ D bilfi0G(9) ~ fi66(9)
j=1

n

2][w%@)QWWm

&

t n
:m ;{fto(t— S)“_l{ai + L.ZJZ_; |bjil]

LIAZ [Cji

j=1

Mﬁ@—ﬁ@u[ qwmw—%@m%

mplIx" (%) — X&)l

r(1 a)

t B ) ,
" T@) fto(t = 9 myIx*(s) — x*(9)llds
(22)

By substituting (21) into (22) and applying assumption
(H4), we obtain that

This is a contradiction. This proves that the uniqueness
of solution fort € [0, Ok+1]. The extension of the unique
solution onR* is obvious. The proof is completed.

By substitutingx(t) = y(t) + x*, system (2) can be
simplified as

-1

1
[Ixt

Ecz(mlga)

a rr}zell/
I'l+a)

6% (M + my)
I'l+a)
- X

12 2
lIx* = x| < - X7l

<Xt
(23)

DRI = - avi(t) + > bije; ()
= (24)
= 1’ <N

+ ) euio)). |
=1

whereg;(yj(t)) = fi(yi(t) + xj) = £;0), ¥;(y;(x())) =
9; (y; (r(t) + 7)) — gj (X)) with ¢;(0) = 0,y(0) = 0. Itis



easy to see that the equilibrium point of system (24) is By applying Lemma 2.7, it yields

the original point. The stability of system (24) is equal

to the stability of equilibriunx* of system (2). There-
fore, in the following, we only discuss the stability of
the zero solution of system (24).

First of all, we address the following lemma, which

is one of the important auxiliary results in this paper.

Lemma 3.1. Suppose that assumptiofi$1)— (H5) are
satisfied. Lew/(t) = (y(t),---,ya(t))" be a solution of
system (24). Then, the following inequality

lyG )l < nlly@®ll
holds fort € R", where
" -1
n=(1- ey ~ ey (1+ rlefjr)) Eq(mu6”))
Proof. Fix k € N. Then, fort € [6k, 6k:1), we have

(25)

yilt) =Yi(di) +5 1f

—ayi(9) + ) bieiyi(9)
=1

> Cij‘ﬁi(Yj((k))},
=1

wherey(t) = &, if t € [6k, Ok+1), t € R". Taking absolute
value of both sides of above expression for each
1,2,---,n, we obtain that

1 & t
IO <Y+ Fes z;{ f( (t- s)“'l[anyi(s»
+ D il + Y et
= ¢ = n n
<lIy(Zill + m{f( - S)"‘l[i; [a.- + L?; |bji I]
WS+ Z; [Lf‘ I |] " @k»]ds}
i= i=

_||y(§k)||+i{ (t- )‘I‘l[mlny(s)n

e
+ mzlly(g“k)ll]dS}
iy + T =60

my ! a
+@f(t—s) Yy(s)lids
mp6*
=(1 F(l ))||Y(§k)||

a-1
ris JLa- 9 ivses

O < 1+ s JIMGIE ). (29)
Furthermore, fot € [k, 6k:1), we have
Il <0l + ng(é;k)” x (8
a-1
r( ) (t s)*liy(s)llds on
Iy + —mﬁﬁ”i’@;)”
_ Qa1
v (t 9" Iv(lds
Combining (26) with (27), we get

M lly(gll
I'l+a)

f (t-9 l(1+ m Mot ))ny(.zk)nEa(mlt”)ds

mpa|ly(Zi)l| 0°
Tl+a) F(a/) o

x (1 N F(Tze )) IVGIE (myte)

Iyl <lly®ll + (@)

<ly®Ill +

+ m 6%
I'l+a)

myg*
I'l+a)

<ly®Il +

(02

mp0 o
X (1 + m) Ea(mt )}||Y(§k)||-
Therefore, by assumption (H5), it follows that

Iy(Zi)ll < nlly@)Il, t € [6k, Oks1),

wheren = (1 - {2 — 0 (1+ mefa )Ea (mla‘”))
This implies that (%5) holds for € R". The proof is
completed.

3.2. Stability analysis
In this subsection, we establish some criteria for
global Mittag-Leffler stability of the network system

(1).

Theorem 3.3. Supposed that assumptions (H1)-(H5)
hold. If there exist a scalae > 0 and matrixP =
diag(p1, P2, - - - », Pn) > 0, such that

A =PB+ (PB)" + %(PC)(PC)T
+'8U2((L1)_1L4)T(Ll)_lL4 < 0’

then the network system (1) is globally Mittagftey
stable.



Proof.
functional

1 n (0
VO = 3 OPO +£ ) p JIRCE

Taking Caputo’s derivative of orderof V(t) att along

the trajectories of system (24), and applying Lemma 2.6

and 2.9, we have

SOV <y (OP SOV + 8 ) P (D)5 DEYi(t)
i=1

<y P §DIYO) +B8 ) pipi(i() x
i=1

- ayi(t)

+ Z bij(pj(yj(t)) + Z Cijlﬂj(Yj(t))
j=1 j=1

=y" ()P 5DFY(t) + Bl (VD) (-PAY(L)

+ " (YD) (PB)e(y(t) + ¢" (y(t»(Pcwy(y(t»)]
=- %yT ® (PA+ (PAT) () + Y O(PB¢(y(t)

+y" (OPCW YD) + B¢ (YD) (-PAYD)

+ 267 060) (PB+ (PBT) ()
vy (y(t))(PC)w(y(y(t)»].
(28)

Applying Lemma 2.3 yields

Y (OPBAY(D) <5 ¥ OPBIPBTY() 09
+ 2¢O 0).
Y OFPCHHHO) <5y OFCHPOTYY

+ SUTYOONO))-

" (YO)(POW(Y( (1)) Sz—lssoT (YO)(PO(PC) ¢ (y(1)

+ U YOONYO)):
(31)
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Consider Lur'e Postnikov type Lyapunov According to assumption (H2), it follows that

" (YD) (1)
=[F(y(®) +x) = FOOTTFYO +x7) = F(x)]
<y" (O Ly().

(32)

vT YO YOWM) <Y GO)LHLYOD). (33)
By Lemma 3.1, we have
Y YD) < 77y OV()-
Substituting (29)-(34) into (28), we have
5DiV()

(34)

<~ T OEAY) + 50 EBEET
+&(LA)TL? + %(PC)(PC)T +en?(LYT L4)y(t)
+Be" (YO)(-PAY(D) + %ﬁyT (t)(Lz)T(PB+ (PB)T
+ %(PC)(PC)T - snz((Ll)—lL“)T(Ll)—ll_“)l_zy(t).
Let= = LY(PB(PBT + &(LA)TL? + L(PO)(PO) +

en?(L*TL*. Obviously,> > 0.
Takeg > —m=®___ 5 0 Then

5DV
<~ 2T OPAYO + 6T (O)-PAYY)
+ 2 50 + 5B ORI

<- %yT OPAY) + B¢ (VB)(-PAYD)

1, n yi ()
<@ OPYO 80 [ (90,
i=1 yi(y(1)
This implies that
SDYV() < —AV(Y), (35)

whered = Amin(A). By Lemma 2.2, from (35), we get
V(t) < V(O)E,(-at?), t>0.
Noting that

Vi (1)

VO = 3 OPY0+83 b [
i=1 !
1

¢i(s)ds
(y(V)

>

yT (H)PY()

/lmin(P)HY(t)”Z,

>

NI NI



we have
2
1)1 <
ly®ll o (P)
Hence, we obtain that
lIX(t) - x*|I?

L2 (amax(P)
_/lmin(P) 2

n X(0)—x*
i i(9)ds|E,(—t*
+ﬂ;pfo (9 s) ()
2

=y
/lmin(P)
Bma(PeT (X(0) - X)(X(0) ~ x*))E(,(—w)

</1max(P)
B /lmin(P)

i.e.,

V(0)E, (~At%), t> 0.

[IX(0) — x*|?

/lmaX(P)

> IX(0) - X |2+

(1 + 2/3L“)||x(0) - X|PEy (- AtY),

/lmax(P)

/lmin(P)

This shows that the network system (1) is global Mittag-
Leffler stable. This completes the proof.

IX(t) - X'|| < IX(0) — X I(Ea(-At"))?,

Remark 3.1. Itis easy to verify thag > 1in Theorem
3.3. Hence, from\ < O, we can conclude that < 0
holds. This shows that, under the assumption of The-
orem 3.3, there exist a unique equilibrium point and a
unique solution with the initial value for the network
system (1).

Remark 3.2. In[13-19], Lyapunov function is con-
structed by using the absolute value functié(t) =
>, 1 %) . In [21-25, 35], Lyapunov func-
tion is considered by applying a positive definite
quadratic functionV(t) = x"(t)Px(t). However, in
the proof of Theorem 3.3., Lur'’e Postnikov type Lya-
punov functional, which is composed of a positive def-
inite quadratic function%yT(t)Py(t) and the integral
term By, foz(t) fi(s)ds is utilized. It is easy to see
that if 8 = 0, Lur'e Postnikov type Lyapunov func-
tional is changed into the common positive definite
guadratic function. Moreover, in Lur'e Postnikov type
Lyapunov functional, neuron activation functié(x) is

4. Anillustrative example

In this section, an example is provided to illustrate the
validity with respect to the results in this paper.

Example 1. In the network system (1) with the piece-
wise constant argumentt), we take the system param-

etersae = 0.98,

2 0 002 -0.03 008 1\ , (1
A‘(o 15)' B‘(0.01 1 ) C"(0.01 1)' '—(1)-
Y(t) =§kié’k: 2?__-51, k e N. Qk = g

The active functiongi(x;(t)) = tanh(x;(t)) + 0.5x;(t),
i = 1,2 gi0u(t) = tanh() + 0.5x(1), G0%() =
tanh(22) + 0.5%,(t).

It is easy to verify that? = L3 = 3/2, L = 9/14,
L‘Z1 = 2/3, m 2.0450 m, = 1.3333 ¢ 1/9,
E,(my6%) = 1.2712 5 = 2.0321, and

6% (Mg +Mmp) 1 mp6” -1 _
F(ZLl+a) (En(mlgrv) - r(]_Jra)) =0.6272< 1,

6 6 6 ) —
oy + Hies (1+ r'(“fw))_ E,(m6?) = 0.5709< 1.
Obviously, the assumption (H1)-(H5) hold.
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3 4 5 6 7 8 9 10
L

-5

L L L L L L
3 4 5 6 7 8 9
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Figure 3: the state trajectory withférent initial values of the net-
work system (1) in Example 1

Sete = 1. In the following, we check the valid of
Theorem 3.3. To do so, by using LMI toolbox for solving
A < 0in Theorem 3.3, we get that

0

0.5196)'

According to Theorem 3.3, we conclude that the
unique equilibriumx= = (0.5385 0.4424)of system (1)
is Mittag-leffler stable, which is verified in Fig.3.

0.0041
P-(*%

used, which makes the obtained results possess less conRemark 4.1. It is worthwhile pointing out that, due

servatism.

In addition, compared with algebraic criteria in [13-
19], the stability condition established in terms of LMIs
in Theorem 3.3 has a great application value in practi-
cal engineering.

11

to the discontinuity of argument(t), the solution of

the network system (1) has the non-smoothness at the
switching pointgk, k € N, however, this is not seen in
Fig.3. The reason is that we choose Lipschitz constants
with respect to the activation functions and gi&iently



smallé to fulfill the assumptions of Theorem 3.3. So, the derivative of integer-order variable upper limit integral

syficient smalld "hides” the turning point. has been developed. The existence and uniqueness of
By taking appropriate parameters of the network sys- equilibrium point and solution of FNNs with piece-

tem (1), it enables that non-smoothness can be seen towise constant argument have been proved, respectively.

implement. Consider the network system Lur'e Postnikov type Lyapunov functional has be ap-
20 0 plied to address the Mittag-Ifiéer stability condition in
Cnha Xl(t) :
oDEX(t) = - ( 0 10) (Xg(t)) terms of LMIs. Numerical example has shown the va-
lidity of the obtained results via Matlab toolbox.
4 (2 1 )(tanﬂxl(t)) + 0-1X1(t)) (36) It would be interesting to extend the results proposed
8 0.2]\tanh(Xz(t)) + 0.1xx(t) in this paper to the synchronization of FNNs with piece-
1 20\ (tanh(xy(t)) + 0.1x3(t) wise constant argument. This issue will be the topic of
(2 3) (tanr(XZT(t)) +0.1%(t) ) our future research.

wheredy = &, £ = &H, k € N. Obviously, in system
(36), Lipschitz cogicient with respect to the activation ~Acknowledgment
function is bigger than the aforementioned in Example
1, and¢ = § > 3. The state of system (36) is depicted
in Fig.4. From Fig.4, we can see clearly that the non-
smoothness of the solution has emerged at the switching

pointéy, k € N.

The authors are extremely grateful to anonymous re-
viewers for their careful reading of the manuscript and
insightful comments, which help to enrich the content
of the paper.

In addition, from Fig.4, we can see that, the solu-  11is work was jointly supported by the National Nat-
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such that the network system (1) can also achieve the
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