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A closed-loop and ergonomic control for prosthetic wrist rotation

Mathilde Legrand1, Nathanaël Jarrassé1, Florian Richer1 and Guillaume Morel1

Abstract— Beyond the ultimate goal of prosthetics, repairing
all the capabilities of amputees, the development line of upper-
limb prostheses control mainly relies on three aspects: the
robustness, the intuitiveness and the reduction of mental fatigue.
Many complex structures and algorithms are proposed but
no one question a common open-loop nature, where the user
is the one in charge of correcting errors. Yet, closing the
control loop at the prosthetic level may help to improve the
three main lines of research cited above. One major issue to
build a closed-loop control is the definition of a reliable error
signal; this paper proposes to use body compensations, naturally
exhibited by prostheses users when the motion of their device
is inaccurate, as such. The described control scheme measures
these compensatory movements and makes the prosthesis move
in order to bring back the user into an ergonomic posture. The
function of the prosthesis is no longer to perform a given motion
but rather to correct the posture of its user while s/he focus
on performing an endpoint task. This concept was validated
and compared to a standard open-loop scheme, for the control
of a prosthetic wrist, with five healthy subjects completing a
dedicated task with a customized transradial prosthesis. Results
show that the presented closed-loop control allows for more
intuitiveness and less mental burden without enhancing body
compensation.

I. INTRODUCTION

Upper limb prostheses aim at replacing the amputated
limb of their users, to give them back some autonomy and
capabilities. This substitution calls on developments in two
main areas: mechatronics and control. Mechatronics now
provides devices with multiple degrees of freedom (DOF),
such as polydigital hands [1], [2], 2-DOF wrist [3] or whole
multiple DOF arm[4] but the control of these devices still
remains a challenge.
Two main control approaches exist: myoelectric and
movement-based; each one tries to bring a solution to the
identified issues of prosthetic control, such as intuitiveness,
reduced fatigue and mental burden, or robustness [5]–[8].
The most common one, used in daily life, is conventional
myoelectric control, that takes the electrical signals of some
flexor and extensor muscles of the residual limb to control
the actuators of an externally-powered prosthetic joint [9].
When there are several DOF to control, the user cannot make
a simultaneous motion but has to switch from one joint to
another, either with a co-contraction or by modulating finely
the muscle contraction amplitude with proportional control
approaches [10]. This sequential control is cumbersome and
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leads to muscular fatigue [5]. To overtake these limitations,
pattern recognition relies on muscular synergies to simplify
the access to several joint motions and to reduce mental
burden [8], [11], [12], but without solving the issues of ro-
bustness and easy access to good electromyogram measure-
ments. Movement-based control techniques choose to make
use of joints motions instead of muscles signals, claiming for
more intuitiveness and less complexity in signal processing.
Some of them artificially link the motion of one functional
joint to a prosthetic joint (joint-to-joint correspondence) [13],
[14], others use functional joints as joystick to control the
end-effector trajectory (for shoulder amputees only) [15] and
others employ models of joint synergies [16]–[18].
Each of these techniques has pros and cons but one major
issue remains common to all: they are open-loop control
schemes. Whether the prosthesis motion corresponds to the
user’s intention is never considered by the system itself.
Each technique leaves this correction step to the user, which
increases his/her mental burden and leads to a high re-
action time. To improve this aspect, two approaches can
be developped: either optimizing the control algorithms in
order to eliminate every possible errors, or finding ways to
close the control loop. The first approach seems unrealistic:
first, because achieving an effective intention decoding is
a very complex challenge (particularly because of human
variability); second because even the slightest error can
discourage an everyday prosthesis user. Considering pattern
recognition for instance, an algorithm that would achieve
99% of correct outputs would probably not be good enough:
the 1% of error could put the user in uncomfortable or
dangerous situations and thus still ask for a correction
from the user him/herself. Alternatively, the closed-loop
approaches may have not been developped yet because of
the hurdle to define an error signal as the goal of the task is
rarely known to the robotic limb. Indeed, how to perfectly
determine the task to perform or the object to grasp in an
unmonitored environment, where the only reliable source of
information is the amputee him/herself and when the human-
robot communication channel relies on very limited signals
(muscular contractions or joint motions)? An attempt to
identify the intended motion is gaze-tracking-based solutions
[19]. Still, they are not very accurate - making the control not
very robust - because of the resolution of the cameras used
and the intrinsic human eye limitation [20]. They also force
the user to lock his/her gaze on the target and to constantly
wear eye-tracker glasses.

When the movement of a prosthesis does not perfectly
correspond to its user’s intention, a common behavior stands
out: the user tends to exhibit compensatory motions, in
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Fig. 1: Illustration of typical body compensations (use of
trunk and upper-arm) exhibited to counteract an impaired

or motionless wrist when rotating an object.

order to compensate the unadapted position/orientation of
the end-effector [21], [22] (see Figure 1). This often allows
for faster, more accurate and less cumbersome correction
than re-sending input signals (e.g. muscle contractions). We
propose here to use these body compensations as an error
signal to close the control loop. Oyama et al., in [23], had
build a control law for wrist prono-supination that aimed at
minimizing body compensations. Yet, there is no error or
closed-loop considerations, since the wrist rotation is merely
proportional to a weighted combination of shoulder angles.
We rather focus on these two aspects and consider that the
function of the prosthesis is not to perform a given motion
but to correct the posture of its user, while letting him/her
executing an endpoint task. The control of the end-effector
grasping function is then counted as a separate case.
In this paper, we present this concept we called ergonomic
control, and apply it to the pronosupination of a prosthetic
wrist. We setup an experiment in which we compare a
standard open-loop with our closed-loop control. Considering
that body compensations are physiologically armful and may
lead to musculo-skeletal disorders [24], [25], this study does
not only verify that the proposed concept is functional but
also that it does not enhance compensatory motions, as
suggested by recent upper limb motions assessments [26]–
[28].

II. METHODS

A. Closed-loop ergonomic control for wrist pronosupination

Conventional myoelectric control is kept for the grasping
function as it seems good enough when used to control
only the hand; the difficulty arises when additional DOF
are added. We are thus interested in testing first our control
approach on the wrist joint.
Our hypothesis is that, if a prosthesis does not move or not
as expected, a given task is still achieved by the subject
but with body compensations. The approach described here,
ergonomic control (EC), detects and employs these compen-
satory motions to control the robotic joint, whose motion
will then make the user go back to a comfortable ergonomic
position while s/he is performing the task.

When wrist pronosupination is absent or not correct, it
can be supplanted by trunk and arm compensatory motions
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Fig. 2: Diagram showing the definition of the reference
frame used to compute XYZ Euler angles and obtained ε,

and the definition of ω.

[21], [22], [26]. However, (i) these compensations may differ
depending on the subject’s posture and (ii) all trunk and arm
motions are not compensations. We could artificially map
trunk and arm movements to the prosthesis’ motions but
this would create rigid coordinations between functional and
robotic joints and limit the overall mobility of the subject.
We worked instead at a more distal level. To complete the
uncorrect or replace the missing wrist pronosupination, trunk
and arm compensatory motions aim at changing the hand
orientation, rotating the forearm around its longitudinal axis
(elbow-hand axis). We directly measure this rotation since
it simplifies the data to record and thus the type and the
number of sensors to use.
When the forearm orientation is modified, it means that trunk
and/or arm are moving to compensate; prosthetic wrist has
to move to make the subject going back to a more ergonomic
posture. The error signal is then set as

ε(t) = ωfa(t)− ω0 (1)

with ωfa the forearm rotation angle around its longitudinal
axis, i.e. the Z-Euler angle of XYZ sequence (see Figure 2),
and ω0 a reference forearm orientation, which defines the
ergonomic posture to go back to. The reference definition is
set here as the initial forearm orientation but can change if
necessary, depending on the task. This generated error vector
is simpler to measure than any spatial error related to an
action in space.
ε can be used as the input of a simple control law, which
pilots the prosthetic wrist angular velocity, ω̇, as defined in
the following equation:

ω̇(t) =

{
0 if |ε(t)| < ε0

λ(ε(t)− δε0) otherwise,
(2)

where ε0 is a deadzone threshold (here set to 5 deg), δ =
sign(ε(t) − ε0), and λ is a scalar gain (set to 2) that tunes
the rate of correction. The frequency of the control loop is
100Hz. The values of ε0 and λ were chosen experimentally
to ensure stability.



B. Experimental set-up

Five healthy subjects (two females and three males, 22
to 25 years old, one left-handed and four right-handed)
performed the wire loop task of the Powered Arm Prosthetic
Race of the Cybathlon c©[29]. The goal of the task is to bring
the handle through the wire loop in a minimum time and
without touching the wire. The shape of the wire requires the
participants to continuously adjust their hand orientation with
pronosupination. Attached to their left arm, the subjects wore
a prosthetic prototype composed of a Touch Bionics hand
(I-LimbTMUltra) and a motorized wrist rotator. The hand
was pre-positioned holding the handle and kept still during
the experiment (see Figure 3); the wrist angular velocity
was controlled by a DC motor driver (Ion motor control,
Ltd), itself controlled by a Raspberry Pi 3 c©. We used an
Optitrack (NaturalPoints Inc.) motion capture system both
for EC and for post-experiment analyses. Seven rigid bodies
(or clusters), made of Optitrack markers, were tracked: two
on the hips, one on the torso, two on the shoulders, one on
the device’s forearm and one on the handle. Two Inertial
Measurement Units were also placed on the trunk and the
upper arm respectively for post-experiment analyses (see
Figure 4). Optitrack was convenient in lab environment and
for post-experiment analyses but the data used for EC could
have easily been replaced by gyroscope data from an Inertial
Measurement Unit.
Two control schemes of the device were compared:

1) an open-loop control (OL). A pair of push-buttons
mounted on a handle was grasped by the free hand
of the subjects (see Figure 4(a)). One push-button
controlled the forward wrist rotation, the other the
backward rotation. The joint angular velocity was fixed
at 50 deg/s. When no push-button was pressed, the de-
vice stayed still. This command was used as a reference
as it is a discrete open-loop control and thus mimicks
most of the myoelectric controllers currently available
for lower arm amputees (on/off, proportional switch or
even pattern recognition) [30], while avoiding all the
practical problems of EMG measurements [5], [31].

2) ergonomic control (EC). The forearm rotation, ωfa,
was computed in the initial forearm frame, from
quaternions of the Optitrack cluster placed on the
device’s forearm and sent in real time to the prosthesis.
As subjects naturally tended to stay parallel to the wire
during the whole experiment, the reference posture,
ω0, was supposed to be fixed and was set as the initial
position of the forearm. For more complex or changing
tasks, the reference shall be updated, either in a very
simple way, by the user himself with an external signal,
or with a dedicated algorithm.

Before each recording session, subjects were allowed to
train a few times on the wire loop task. They trained
between two and five times. A recording session consisted
in five trials and there were three recording sessions: one
”natural” (N) with the own left forearm of the subjects,
which provides a baseline from natural motions, one with

Fig. 3: Cybathlon wire-loop task with the adapted
prosthetic device. The upper left insert shows the handle

hold by the prosthetic hand.

OL, one with EC. Subjects always began with N while
EC/OL order was randomized, to avoid measuring any
effect of task learning.
Post-experiment analyses were conducted with Matlab,
Mathworks Inc. This experiment was carried out in
accordance with the recommendations of Université Paris
Descartes ethic committee CERES, which approved the
protocol. All participants gave their written informed
consent in accordance with the Declaration of Helsinki.

III. RESULTS

EC was assessed on several criteria and compared to the
standard OL control. The metrics characterize the good real-
ization of the task but also the smoothness of the movement
and the amount of generated body compensations.

A. Task realization

The task performance was described with the time of the
task and the number of touches (see Figure 5). Figure 5(a)
shows the time for each trial of the two modes, with the mean
difference between the two modes and the 95% confidence
intervals (CI). This representation was selected because it
allows for a more transparent statistical analysis than the p-
value [32], especially for small populations. If the 95% CI of
the mean difference does not cross the zero dotted line, the
two modes are statistically significantly different. The green
lines are the minimum and maximum times obtained with
N, during natural achievement of the task by each subject. It
can be noticed that the natural times of the task are shorter
for S1 because this subject was left-handed, but handedness
did not affect any other results. We see here that for three out
of five participants (S1, S2 and S4), the time is statistically
significantly shorter with EC than with OL. For S5, the time
with EC is longer but without a real significant difference.
S3 stands out from the others as EC times are significantly
longer than OL ones. On Figure 5(b), we observe that the
number of touches does not really distinguish OL and EC,
except for S1. The lattest touched the wire in four out of five
trials with OL and never with EC, but this is partly due to the
fact that this subject wanted to be fast before being precise.
Overall, it can also be noticed that EC generates touches in
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Fig. 4: Experimental set-up. (a) OL control set-up. (b) EC
set-up. 1: Optitrack markers; 2: Inertial Measurement Units.

only one trial out of the 25 (total of all trials for all subjects)
whereas OL does in 7 trials.

B. Smoothness of wrist motions

While healthy motions are naturally smooth [33], pros-
thetic motions are often jerky, due to the discrete nature of
the command [34]. Since EC allows for a continuous control
of the movements, we infer that the smoothness of prosthetic
motions with EC is improved, which would be a significant
benefit. Figure 6 shows the wrist pronosupination angle and
the wrist angular velocity of the prosthesis for one typical
subject, for OL and EC respectively. We see on Figure 6(a)
that the OL wrist angular velocity must be a series of pulses
to obtain a motion as continuous as possible. Yet, it is clear
that the wrist angular trajectory with OL is jerky (it is a step
function) while the one with EC is smooth and continuous
(see Figure 6(b)). This difference in smoothness can be
illustrated by the high number of times the push-buttons were
pressed compared to the low number of deadzone crossings
with EC. These measures can also represent the involvement
required from the subject, as pressing the push-buttons or
exhibiting compensations to move the wrist increase the
mental charge. Figure 7(a) shows these two metrics, with
their mean and standard deviation, for all trials of the five
participants. It highlights the fact that the prosthesis user is
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Fig. 5: Task realization performance metrics. (a) Time of
the task: all trials of each of the five subjects, with the 95%

confidence interval and the mean difference between the
two control modes. (b) Number of handle touching the wire

for each trial. The green lines are (a) the maximum and
minimum values of the time and (b) the maximum number
of touches when the subject performed the task with his/her

own hand. OL is open-loop and EC ergonomic control.

much more involved when using OL than when using EC:
(i) s/he has to focus on individual wrist motions while EC
allows to focus only on the end-effector motion and (ii) s/he
is her/himself the corrector that closes the control loop.
To quantitatively evaluate smoothness, we used the spectral
arc length of the wrist angular velocity [35] (Figure 7(b),
the more negative, the less smooth). The same statistical
representation as above, with 95% confidence intervals and
difference mean, was employed. There is no doubt that
for the five participants, EC wrist motions are significantly
smoother than OL wrist motions.
Yet, one can criticize the fact that the low smoothness of
OL is intrinsic to its binary nature. As often done in on/off
prosthetic control, finer velocity profiles, e.g. trapezoidal,
could have been implemented. However, this would not have
created a fully continuous control, as enabled by EC.

C. Joint motions

Another important point in upper limb motions assessment
is to which extent the subject has to modify his/her joint
movements and coordinations. It is particularly relevant in
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Fig. 6: Prosthetic wrist pronosupination angle and angular
velocity for one trial of one typical subject with (a)

open-loop control and (b) ergonomic control. The dashed
lines indicate when the push-buttons are pressed (OL) or

when the subject’s forearm angle went out of the deadzone
(EC).

our case, where one may think that, due to its intrinsic
characteristics, EC could potentially increase some trunk
and arm compensatory motions. We focus on the study
of the arm aperture angle, α, and the lateral bending of
the trunk, ψ (see definitions on Figure 8(a)), to verify that
the action of the prosthesis is fast enough to prevent any
important and undesirable compensations.
Figure 8(b) is the mean and standard deviation of the
angular trajectories, normalized in time, for each participant.
Green dashed lines represent the maximum and minimum
values of each subject’s natural angular trajectories. We first
note that the timing of the angular variations are similar
between the two modes of control. α (up panel) shows
variations of amplitude between OL and EC but, except for
S4, both always stay into the subject’s natural baseline. For
S4, even if α with EC shows higher values than with OL
and exceeds the individual’s natural values, the maximum
is still lower than some natural maximum of other subjects.
Contrary to α, ψ is a bit heightened with EC, especially for
left-side bending (negative values). This observation points
out the issue of the reference definition, which can affect the
exhibited compensatory motions. Indeed, prosthetic wrist
pronation is induced either by arm internal aperture (internal
α, see Figure 8(a)) or by trunk left bending (negative ψ).
Because we chose, for this experiment, the reference as
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Fig. 7: Wrist motion metrics. (a) Involvement of the
subjects measured by the number of times the push-buttons

are pressed (OL) and the number of deadzone crossings
(EC). (b) Motion smoothness measured by the spectral arc
length of wrist angular velocity: 95% of confidence interval

and mean difference between the two control modes.

the initial position of the subject, with the arm along the
body, the amplitude of internal α was limited. The latter
was so difficult to perform that it was nearly not exhibited
and, to induce wrist pronation, the subject used only left
lateral bending. This phenomenon can be prevented by
optimizing the choice of the reference position. If subjects
were given the instruction to begin with a small external α,
the amplitude of internal angle would have been increased,
avoiding a too important use of the trunk to obtain pronation.
We are currently working to find a reference posture that
does not promote pronation or supination but allows an
easy realization of both without enhancing trunk or arm
compensations.

IV. CONCLUSIONS

Ergonomic control was used with a 1-DOF prosthetic
wrist, by five subjects performing a dedicated task, the wire
loop of Powered Arm Prosthetic Race of the Cybathlon c©.
EC was compared to OL, a discrete open-loop control that
mimicks existing on/off prosthetic control, like myoelectric.
EC shows better results than OL for the time of the task,
the number of touches and also for mental burden, which
is a great advantage over existing controls of prostheses.
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Moreover, closing the control loop on body compensations
naturally reduces them.
The wire loop experiment thus illustrates the interest for
closed-loop ergonomic control for an artificial pronosupina-
tion joint. It exploits natural strategies of compensatory
movements to close the control loop, without any necessity to
know the environment or the task. The two main advantages
of the proposed control are its intuitiveness and its simplicity.
Indeed, it was mastered by all the participants without
considerable training session and the control law has only
two parameters to tune (the threshold, ε0, and the gain,
λ). This ensures easy generalization to all users as well as
robustness. The prosthesis user only has to focus on the
endoint task while the prosthesis corrects his/her posture.
EC is thus much less cumbersome than most of the existing
open-loop control schemes with which the user has to focus
on the motions of individual joints.
The validation of ergonomic control was performed here on
healthy subjects. Upcoming developments will thus include
in-depth study with amputated participants. EC was also
tested on only one task and for one DOF. Future works
will aim at using Inertial Measurement Units instead of
motion capture system for an easy transfer to daily life (raw
gyroscope values can be sufficient, avoiding drift issues),
studying EC use with a broader set of tasks and adapting
it to more DOF (e.g. adding the elbow joint). This should

allow for a simultaneous control of several prosthetic joints
without more mental burden for the user.
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