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Abstract:

In liver tissue engineering, cell culture in spheroids is now well 
recognized to promote the maintenance of hepatic functions. However, 
the process leading to spheroids formation is time consuming, costly, 
and not easy to scale-up for further use in human bioartificial liver (BAL) 
applications. In this study, we encapsulated HepaRG cells (precursors of 
hepatocyte-like cells) in alginate 1.5% without pre-forming spheroids. 
Starting from a given hepatic biomass, we analysed cell differentiation 
and metabolic performance for further use in fluidized-bed BAL. We 
observed that cells rearranged as aggregates into the beads and 
adequately differentiated over time, in the absence of any differentiating 
factors classically used. At day 14 post-encapsulation, cells displayed a 
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large set of hepatic features necessary for the treatment of a patient in 
acute liver failure. These activities include albumin synthesis, ammonia 
and lactate detoxification and the efficacy of the enzymes involved in the 
xenobiotic metabolism (such as CYP1A1/2).
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Impact statement

It is recognized that culturing cells in spheroids is advantageous since they better recapitulate the three-

dimensional physiological microenvironment. This approach can be exploited in bioartificial liver 

applications, where getting a functional hepatic biomass is the major pitfall. Our study describes an 

original method of culturing hepatic cells in alginate beads that allows the autonomous formation of 

spheroids after three days of culture. In turn, cells adequately differentiate and display a large set of 

hepatic features. They are also able to treat a model of pathological plasma. Finally, this setup can be 

easily scaled-up for the treatment of acute liver failure.
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1. Introduction

Fulminant liver failure is a life-threatening critical illness with an extremely high mortality rate, even if 

intensive care is provided (1). To date, liver transplantation is the only available treatment for patients 

with end-stage liver disease such as acute liver failure (ALF) (2). The growing gap between the number 

of patients on waiting list and the number of donor organs available has highlighted the need for 

alternative therapies as a bridge to transplantation or liver regeneration. Extracorporeal liver support 

systems could represent a valid solution for this problematic and nowadays two types of devices are 

considered: artificial (ALs) and bioartificial liver support systems (BALs). ALs are designed to remove 

water-soluble toxins from patient’s plasma in order to improve clinical state (3) while BALs are meant 

to fulfil the maximum number of synthetic and detoxification liver functions (4). The key component of 

a BAL is the bioreactor, the cell-housing component. Its expected role is to allow a patient in ALF to 

survive until an available liver donor or to stimulate autonomous liver regeneration.

Access to a bioactive mass (or biomass) is the main pitfall in the context of human BALs. Although 

primary human hepatocytes are still considered the gold standard, their limited availability, the 

phenotypic instability (5), as well as logistical issues, hamper their use in BALs. In the past, most of the 

BALs in clinical or preclinical studies relied on primary porcine hepatocytes, due to their easy 

availability and high functional activities (6),(7),(8). However, transfer of zoonotic diseases (9), protein-

protein incompatibility between species and possible immune responses generated during treatment 

remain challenges for the use of xenogeneic hepatocytes (10). Recently, the focus has been put on the 

use of induced pluripotent stem cells and embryonic stem cells as innovative cell source for BAL, 

especially for their great proliferative capacity and their potential to show metabolic functions close to 

those of human hepatocytes. Despite great efforts in this direction, today these cell types are not able 

yet to exhibit full functions of mature hepatocytes in terms of metabolic performance and efforts have 

still to be made to allow their clinical use (11).

Currently, human cell lines keep thus a great potential for BAL application. The main advantages of 

hepatocyte cell lines are their almost unlimited proliferative capacity and the relatively cheap culture 

process. They demonstrate some metabolic functionalities comparable to human hepatocytes and also 

to be safe and non-tumorigenic (12). HepG2 and its sub-clone present limited metabolic functions (5) 
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for BAL applications, although encouraging results were recently presented by the group of Selden on 

a pig model of ALF. HepaRG is a hepatic progenitor cell line able to differentiate into hepatocyte-like 

cells after 14 days of specific culture (13). Investigators already demonstrated that HepaRG cell line 

was suitable for BAL application for their proliferation capacity and their enhanced hepatic metabolism 

in three-dimensional (3D) configuration (14).

In the context of BAL, hepatic cell microencapsulation in alginate porous beads has been recognized as 

an interesting alternative to classical cell immobilization in hollow fibre membranes. This material is 

quite inert, not toxic regarding cells and ensures an adequate biocompatibility. In addition, its relatively 

low cost and gelation capacity by divalent cations such as Ca2+ makes the process suitable for hepatocyte 

encapsulation (15). In vitro liver models combined with tissue engineering approaches provide a 3D 

microenvironment which can be expected to mimic in vivo conditions. In the process of encapsulation, 

cells are entrapped within spherical alginate microbeads that protect them from mechanical stress while 

ensuring exchanges of nutrients or waste molecules within the surrounding medium. The immuno-

isolation provided by alginate encapsulation is undoubtedly the major advantage of this technology (16).

For BAL application, the challenge is to induce/maintain the hepatic functions over time starting from 

an initial biomass, taking into account parameters such as costs, manipulation ease for the operator, and 

scaling-up feasibility. Recently, some authors successfully enhanced biosynthetic and xenobiotic 

performance of HepaRG functions, cultivating cells as spheroids (SPHs) before encapsulation, without 

the use of dimethyl sulfoxide (DMSO) (17). Nevertheless, the technologies available nowadays for the 

production of large amounts of spheroids (such as rotating or shaking reactors) may lead to an 

unacceptable loss of cells that reduces considerably the initial biomass. Indeed, the majority of these 

studies are focused on toxicology approaches in which it is important to evaluate the metabolic activity 

“per cell”. In the context of BAL, the challenge is not to determine the best activity “per cell” but rather 

“per bioreactor”, taking into account logistic hurdles or costs due to additional manipulation. 

Therefore, in this study we propose to analyse cell differentiation and metabolic performance of an 

initial biomass of encapsulated HepaRG in alginate 1.5%, for further use in fluidized-bed BAL.

2. Materials and Methods
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2.1. 2D cell culture

HepaRG from Biopredic (Rennes, France) cells were expanded in two-dimensional (2D) monolayers 

following the indications reported by the supplier. Cells were passaged every 2 weeks until passage 18, 

with proliferation culture medium William’s E (WE, with sodium bicarbonate, without L-glutamine and 

phenol red, Sigma-Aldrich, with added Biopredic 710 proliferation media) replenishment thrice a week. 

The cultures were maintained in a humidified environment at 37°C, 5 % CO2. After that, cells were 

detached by trypsin-ethylenediaminetetraacetic acid (EDTA) 0.25% (ThermoFisher scientific) from the 

culture flasks and used for the cell encapsulation process (explained in paragraph 2.2).

2.2. Alginate microencapsulation

Cells were encapsulated in alginate (Manucol LKX from FMC BioPolymer) 1.5% (w/v), sterilized by 

successive filtrations (0.8, 0.45, and 0.22 µm pore size membrane filters). The encapsulation was 

performed with a home-made system based on a coaxial air flow extrusion method (18). Briefly, the 

alginate solution containing cells was extruded through a 24 G nozzle and the droplets fell into a gelation 

bath (NaCl 154 mM, HEPES 10 mM and CaCl2 115 mM, pH 7.4). Droplets produced were allowed to 

settle for 15 min in the gelation bath to ensure gel formation. After that, the microbeads were washed 

three times in WE medium and then resuspended in proliferation culture media. Finally, the encapsulated 

cells were transferred in culture dishes and maintained for 14 days in continuous orbital shaking (60 

rpm) in a humidified environment at 37 °C, 5 % CO2. Proliferation culture medium was replaced every 

2 days. Empty microbeads (without cells) were also produced as control for the following metabolic 

tests.

2.3. Cell aggregates diameter measurement

The diameter of the cellular aggregates was determined by measuring their diameter using ImageJ 

software version 1.52h. For each experiment, the diameter of 10 aggregates in different beads was 

measured orthogonally by optical microscopy. Mean and standard deviation were calculated.

2.4. Cell performance experimental setup
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The experimental setup designed to assess cell metabolic performance is shown in figure 1. At day 0, 

cells were encapsulated in alginate 1.5%. Cell differentiation was studied via immunofluorescence 

staining (paragraph 2.6) at day 0, 7, 10 and 14 post-encapsulation and metabolic test (albumin synthesis) 

between days 0-1, 6-7, 9-10, 13-14 post-encapsulation. At day 7 and 14 post-encapsulation, the cell 

performance was tested through metabolic and xenobiotic tests. The latter were conducted in intervals 

of up to 2 hours of incubation and, at each time-point (time 0 and time 2 hours), aliquots of supernatant 

were collected for further analysis. At the end of each experiment, microbeads were recovered and 

assessed for cell viability. The quantity of marker analysed was calculated and normalized by the number 

of hours of incubation and the number of cells seeded. Moreover, in order to avoid artefacts, all the 

metabolic activities tested were normalized by the quantity at time zero and the control (empty 

microbeads).

In order to study the differentiation of cells, at day 0, 7, 10, and 14 post-encapsulation the subcellular 

localization of proteins typically expressed by hepatoblasts and mature hepatocytes was assessed by 

immunofluorescence (figure 4). At day 0 post-encapsulation, hepatoblasts are present since we observe 

their typical markers such as AFP, HNF 6 and CK-19. During the differentiation process, the level of 

hepatoblasts markers decreases while the mature hepatocytes markers show up (ALB, HNF 4α). The 

CYP 3A4 is constantly expressed and functional at day 7 and 14. Those qualitative observations are 

recapitulated in table 2. In parallel, synthesis of albumin remains overall stable over 14 days of culture 

with a tendency to increase at day 10 (data not shown).

3. Discussion

In this study, we analysed the metabolic activities of a biomass of micro-encapsulated HepaRG for 

subsequent treatment of acute liver failure. Such engineered liver tissues could be used in fluidized-bed 

BAL, a technology developed in our laboratory and in others (25). With a similar bioreactor hosting 

HepG2 grown in alginate beads, Selden’s group recently published the improvements of clinical 

parameters in a surgical porcine model of liver failure (26). Zhou et al., 2016 also obtained prolonged 

survival time for pigs with D-galactosamine induced ALF using a fluidized bed BAL hosting porcine 

primary hepatocytes encapsulated in alginate-chitosan beads. 
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As stated in the introduction, further clinical applications request the production of large amounts of 

encapsulated cells to get a functional and cost effective biomass at human scale. The required hepatic 

cells’ functions are mainly protein synthesis (albumin and clotting factors), ammonia and lactate 

elimination (both implicated in hepatic encephalopathy and cerebral oedema), xenobiotic detoxification 

(enzyme machinery involved in cleaning toxins accumulating during ALF) (5). In the present study, we 

demonstrated that HepaRG microencapsulated in alginate beads were able to produce albumin, detoxify 

ammonia and lactate, and to express the enzymes involved in the xenobiotic machinery, with highest 

activity at day 14. 

Our results show that cell viability was affected neither by the encapsulation process nor by the long-

time culture cells, nor by the exposition to a toxic culture media, containing typical ALF toxins. 

Interestingly, within the alginate microbeads, cells were able to rearrange forming cell spheroids, a 

phenomenon already observed with HepG2/C3A that are highly proliferative (28) (29). In addition, 

mature hepatocytes markers were present, demonstrating that, when encapsulated, these progenitor cells 

were able to fully differentiate over time, in the absence of differentiation agents such as growth factors 

or DMSO, that are classically employed in vitro. The 3D reorganization and the alginate environment 

are thus promoting cell differentiation in contrast with 2D culture.

Regarding cells functions, we performed a large set of assessment. It is of note that encapsulated 

HepaRG are responsive to the ICG tests. The uptake of this dye is carried out by the transporters 

OATP1B3 and NTCP that are expressed at the basolateral plasma membrane of hepatocytes (20) and 

excretion is regulated by the transporters MDR3 and MRP2 (21), expressed in the hepatocytes apical 

(canalicular) membrane (30). Moreover, F-actin accumulating at cellular junctional sites of the cell 

aggregates resembled interconnected bile canalicular structures. This observation has also been noticed 

by Rebelo et al., 2014. Both facts indicate a highly polarized cellular organization favouring cell 

maturation (31). Cell aggregates’ dimension increased over the days of culture but remained in a range 

(maximum 120 µm) where mass transfer was not affected, and where oxygen gradient can take place 

(32). In addition, it has been observed that when HepaRG in 2D configuration are cultured in orbital 

shaking, hepatic differentiation and metabolic functions are both positively affected due to higher 

mitochondrial biogenesis (33). Also in our experimental setup, the encapsulated cells are kept in orbital 
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shaking. These last two phenomena described could induce a gain of function in the whole cell metabolic 

performances that can explain why some of our activities are stronger in comparison with other authors.

The group of Chamuleau seeded HepaRG in the Amsterdam Medical Center Bioartificial Liver (AMC-

BAL), a membrane based bioreactor in which cells are in direct contact with plasma. They reported 

ammonia (around 0.04 nmol/h/106) and lactate (around 9.3 nmol/h/106) detoxification with lower rates 

in comparison with our results (respectively 119±20 nmol/h/106 and 167±24 nmol/h/106). These 

differences can be explained by the fact that in our system cells formed spheroids, on the one hand, and 

are protected from the shear stress by the alginate structure, on the other hand. In addition, these data 

were obtained with total plasma and the authors suspected that large molecules in plasma could have a 

deleterious effect on cells’ functions (34). Compared to HepG2/C3A, we can observe that albumin 

production was in the order of magnitude, and that all phases of enzymatic biodegradation were present, 

although they are lower than those of primary human hepatocytes just after their collection. Considering 

Selden’s promising results in preclinical studies with HepG2, the same could be expected with HepaRG. 

As a cell line, issued from hepatocarcinoma, the same protection should be envisaged for safety use in 

patients, such as the presence of filters downstream the bioreactor (26). 

Going back to the encapsulation process, Rebelo et al., 2014 also entrapped HepaRG in alginate beads, 

with reported high performances regarding biotransformation, interesting toxicological issues. 

However, they encapsulated pre-formed spheroids and not individual cells, as proposed in the present 

work. When encapsulating a biomass for long time cultures, it is important to consider different 

logistical parameters influencing the whole process of manipulation for a future scaling-up for clinical 

BAL application. From our own experience (Supplementary data), we observed a loss of cells when 

preparing aggregates/spheroids before encapsulation, especially using processes that can be upscaled 

such as rotating or shaking reactors. This loss is limited with hanging drop or microfluidic techniques 

(35), but these latter cannot treat billions of cells as requested for a human BAL size. In addition, 

aggregates pre-formation request at least 3 days of specific culture, before encapsulation, and additional 

handling that make the GMP production more complex and not cost-effective. As our preliminary results 

did not show any evidence of better performances of encapsulated pre-formed HepaRG spheroids, we 
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conclude that their self-reorganization with alginate beads with appropriate density should be preferred 

in a clinical application strategy.

In conclusion, in this study we demonstrated that HepaRG cells were able to self-organize as spheroids 

when entrapped in 1.5% alginate beads. After 14 days of culture, these encapsulated cells presented a 

wide range of functions (protein synthesis, enzymatic activities and biotransformation of toxins) that are 

in the range or above those presented in other studies about bioartificial liver.  Waiting for fully mature 

hepatic cells issued from pluripotent stem cells, this HepaRG based bioconstruct demonstrated its 

potential for further use for extracorporeal treatment of acute liver failure. The next step will thus be to 

characterize the biomass activity in fluidized-bed BAL, a setup known to favour the mass exchange 

between the plasma of a patient in ALF and the immobilized cells.
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Table 1: list of antibodies

Protein Reference Type

AFP (alpha-fetoprotein) SC 8399 mouse monoclonal IgG

ALB (albumin) Sigma A6684 mouse monoclonal IgG

CK-19 (cytokeratin 19) DAKO M0888 mouse monoclonal IgG

CYP3A4 (cytochrome P450 3A4) SC 53850 mouse monoclonal IgG

HNF 4α (hepatocyte nuclear factor 4α) SC 8987 rabbit polyclonal IgG

HNF 6 (hepatocyte nuclear factor 6) SC 13050 rabbit polyclonal IgG
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Table 2: evolution of cell differentiation over time

Legend:  increasing expression,  decreasing expression,  constant expression

Cell state Marker Day 0 Day 7 Day 10 Day 14

HNF 6

CK-19Hepatoblasts

AFP

HNF 4α

ALB
Mature 

Hepatocytes
CYP 3A4
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Figure Legend

Fig. 1 experimental setup (see text for the details of the protocol)

Fig. 2 beads morphology (bright field microscopy) and cell viability (confocal microscopy). In 
green (Calcein AM): viable cells, in red (ethidium homodimer-1): dead cells, in blue (Hoechst 
33342 dye): cell nuclei. Scale bar: 100 µm

Fig. 3 cells self-rearranged in aggregates: diameters over time (A). F-actin (phalloidin, in green) 
and nuclei (DAPI, in blue) staining at day 14 (B) (confocal microscopy). Scale bar: 20 µm

Fig. 4 immunofluorescence staining over time (confocal microscopy). Hepatoblast markers (Hb): 
HNF 6 in red, CK-19 in green, AFP in green, nuclei in blue. Mature hepatocyte markers (MH): 
HNF 4α in red, ALB in green, CYP 3A4 in green, nuclei in blue. Scale bar: 20 µm

Fig. 5 metabolic activities of encapsulated cells at day 7 and day 14. Albumin secretion rate (A, 
significance analysed by Wilcoxon matched-pairs signed-ranks test), ICG releasing rate by the 
transporters MDR3 and MRP2 (B), CYP1A1/2 activity (C), CYP3A4 activity (D)

Fig. 6 CYP1A1/2 activity after induction by β-naphthoflavone 100 µM and rifampicin 10 µM at 
day 7 (A) and 14 (B), significance analysed by Mann-Whitney Test

Fig. 7 metabolic activities of encapsulated cells in BAL function test medium at day 7 and 14. 
Albumin synthesis rate (A), ammonia (B) and lactate (C) detoxification rate

Fig. 8 cell viability after exposition to BAL function test medium at day 7 and 14 (confocal 
microscopy). In green (Calcein AM): viable cells, in red (ethidium homodimer-1): dead cells, in 
blue (Hoechst 33342 dye): cell nuclei. Scale bar: 100 µm
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beads morphology (bright field microscopy) and cell viability (confocal microscopy). In green (Calcein AM): 
viable cells, in red (ethidium homodimer-1): dead cells, in blue (Hoechst 33342 dye): cell nuclei. Scale bar: 

100 µm 
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cells self-rearranged in aggregates: diameters over time (A). F-actin (phalloidin, in green) and nuclei (DAPI, 
in blue) staining at day 14 (B) (confocal microscopy). Scale bar: 20 µm 

159x52mm (300 x 300 DPI) 
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immunofluorescence staining over time (confocal microscopy). Hepatoblast markers (Hb): HNF 6 in red, CK-
19 in green, AFP in green, nuclei in blue. Mature hepatocyte markers (MH): HNF 4α in red, ALB in green, 

CYP 3A4 in green, nuclei in blue. Scale bar: 20 µm 

139x95mm (300 x 300 DPI) 
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metabolic activities of encapsulated cells at day 7 and day 14. Albumin secretion rate (A, significance 
analysed by Wilcoxon matched-pairs signed-ranks test), ICG releasing rate by the transporters MDR3 and 

MRP2 (B), CYP1A1/2 activity (C), CYP3A4 activity (D) 

160x154mm (300 x 300 DPI) 
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CYP1A1/2 activity after induction by β-naphthoflavone 100 µM and rifampicin 10 µM at day 7 (A) and 14 (B), 
significance analysed by Mann-Whitney Test 

160x80mm (300 x 300 DPI) 
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metabolic activities of encapsulated cells in BAL function test medium at day 7 and 14. Albumin synthesis 
rate (A), ammonia (B) and lactate (C) detoxification rate 

159x58mm (300 x 300 DPI) 
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cell viability after exposition to BAL function test medium at day 7 and 14 (confocal microscopy). In green 
(Calcein AM): viable cells, in red (ethidium homodimer-1): dead cells, in blue (Hoechst 33342 dye): cell 

nuclei. Scale bar: 100 µm 

99x99mm (300 x 300 DPI) 
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1. Supplementary

In a preliminary study, pre-formed spheroids were generated in order to test their metabolic performance 

at day 7. In particular, after cell amplification in 2D monolayers, cells at passage 18 were detached, 

mixed with the alginate solution at density of 5x106 cells per mL and encapsulated. In order to obtain 

cell spheroids, 5x106 cells were inoculated in glass culture dishes (50 mm x 15mm), coated with an anti-

adhesive coating (Sigmacote®, SL2 Sigma-Aldrich). Cells were subjected to continuous orbital agitation 

at 60 rpm with oscillation amplitude of 16 mm (SSL1 orbital shaker, Stuart) in a humidified environment 

at 37°C and 5% CO2. Proliferation culture medium was replaced one time during the spheroid’s 

formation. After 3 days of aggregation, spheroids were encapsulated. Aggregate size was determined by 

measuring Feret’s diameter using ImageJ software version 1.52h.

Here we report a comparison between the diameter of pre-formed spheroids and the spheroids formed 

inside the beads, discussed in this article, at day 7 (figure 1 and 2 supplementary data).

Figure 1 supplementary

Figure 2 supplementary

The analyses carried out at day 7 post-encapsulation, show that the cell density (recorded by DNA 

quantification) and the metabolic activities of the two experimental setups remain equivalent (data not 

shown). Since working with pre-formed spheroids is complicated in logistical terms (especially the 

scaling-up for human applications), we opted to work with directly encapsulated cells that rearrange into 

spheroids within the beads.
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pre-formed spheroids (A) and cells in beads rearranged in spheroids (B) (bright field microscopy). Scale bar: 
100 µm 

109x36mm (300 x 300 DPI) 
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diameter of pre-formed spheroids and cells in beads rearranged in spheroids at day 7 post-encapsulation 

99x59mm (300 x 300 DPI) 
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