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Abstract

In this paper, we propose a generalisation of Dung’s abstract argumentation
framework that allows representing higher-order attacks and supports, that is
attacks or supports whose targets are other attacks or supports. We follow
the necessary interpretation of the support, based on the intuition that the
acceptance of an argument requires the acceptance of each supporter. We
propose semantics accounting for acceptability of arguments and validity of
interactions, where the standard notion of extension is replaced by a triple
of a set of arguments, a set of attacks and a set of supports. Our framework
is a conservative generalisation of Argumentation Frameworks with Neces-
sities (AFN). When supports are ignored, Argumentation Frameworks with
Recursive Attacks are recovered.
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1 Introduction

Abstract argumentation frameworks have greatly eased the modelling and study of argu-
mentation. Whereas Dung’s framework [11] only accounts for an attack relation between
arguments, two natural generalisations have been developed in order to allow positive in-
teractions (usually expressed by a support relation) and higher-order interactions (attacks
or supports that target other attacks or supports). Here is an example in the legal field,
borrowed from [1], that illustrates both generalisations (this example corresponds to a
dynamic process of exchange of pieces of information, each one being considered as an
“argument”).

Ex. 1 The prosecutor says that the defendant has intention to kill the victim (argument b).
A witness says that she saw the defendant throwing a sharp knife towards the victim
(argument a). Argument a can be considered as a support for argument b. The lawyer
argues back that the defendant was in a habit of throwing the knife at his wife’s foot once
drunk. This latter argument (argument c) is better considered attacking the support from
a to b, than arguments a or b themselves. Now the prosecutor’s argumentation seems no
longer sufficient for proving the intention to kill.

Different interpretations for the notion of support were proposed: deductive support [3],
evidential support [15], necessary support [14], that are compared in [7, 8]. Recent works
have focused on the necessary interpretation, for instance in Argumentation Frameworks
with Necessities (AFN) [13], and in [9, 10, 4]. In [16], correspondences are provided
between a framework with evidential support and an AFN. In evidential argumentation
standard arguments need to be supported by special (called prima-facie) arguments in or-
der to be considered as acceptable. So arguments need to be able to trace back to prima-
facie arguments. With the necessary interpretation of support as in AFN, arguments need
to be able to trace back to arguments that require no support in order to be considered as
acceptable.
It is worth to note that [7, 16, 13] do not allow the representation of higher-order interac-
tions. In contrast, higher-order interactions (attacks as well as supports) have been con-
sidered in [9, 10, 4], with different ways for defining acceptability semantics: a translation
into a standard Dung’s AF [9], meta-argumentation techniques [4], a direct characteriza-
tion of extension-based acceptability semantics [10].
Very recently, a new framework has been proposed that allows representing higher-order
attacks and higher-order evidential supports [6]. In this framework, called Recursive
Evidence-Based Argumentation Framework (REBAF), the semantics handle both accept-
ability of arguments and validity of interactions (attacks or supports), and account for the
fact that acceptability of arguments may depend on the validity of interactions and vice-
versa. As a consequence, the standard notion of extension is replaced by a triple of a set
of arguments, a set of attacks and a set of supports, called “structure”.

In this paper, our purpose is to propose a Recursive Argumentation Framework with Ne-
cessities (RAFN) with semantics accounting for acceptability of arguments and validity
of interactions, in the case of higher-order attacks and higher-order necessary supports.
Moreover, we are interested in a conservative generalisation of AFN. Taking advantage of
the correspondences that have been established between evidential and necessary support
in [16], our methodology and definitions draw on the REBAF of [6].
The paper is organized as follows: Section 2 gives some background about necessary
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support and about the REBAF; the definition and semantics for the RAFN are proposed
in Section 3; in Section 4 we prove a one-to-one correspondence with AFN in the case
of first-order interactions, and we give a comparison with recent work about recursive
attacks and supports [10]; and we conclude in Section 5. Proofs are given in Appendix B.

2 Background

We next review some basic background about the works the paper is based on: an abstract
argumentation framework handling first-order necessary supports (AFN), and a recent
approach dealing with higher-order attacks and evidential supports (REBAF).

First-order necessary support (AFN). Binary necessary support was initially intro-
duced in [14], then discussed in [9, 10, 4] in a more general context (particularly with
higher-order interactions). Let a and b be two arguments, “a necessarily supports b”
means that the acceptance of a is necessary to get the acceptance of b, or equivalently that
the acceptance of b implies the acceptance of a. Necessary support has been extended
to express the fact that a given argument requires at least one element among a set of
arguments. In [13], an Argumentation Framework with Necessities (AFN) is defined as
follows:

Def. 1 (AFN [13]) An Argumentation Framework with Necessities (AFN) is a tuple 〈A,
R, N〉 , where A is a finite and non-empty set of arguments, R ⊆ A×A represents the
attack relation and N⊆ (2A \∅)×A represents the necessity relation.

For E ⊆ A, ENb reads “E is a necessary support for b”, which means that if no argu-
ment of E is accepted then b cannot be accepted, or equivalently that the acceptance of
b requires the acceptance of at least one element of E. Moreover, in AFN semantics,
acyclicity of the support relation is required among accepted arguments. Intuitively, in
a given extension, support for each argument is provided by at least one of its necessary
arguments and there is no risk of a deadlock due to necessity cycles. These requirements
have been formalized in [13] and can be reformulated as follows:

Def. 2 (Semantics in AFN) Given AFN = 〈A,R,N〉 and T ⊆ A.

T is support-closed iff for each a ∈ T , if ENa, then E ∩T 6=∅.

Assume that T is support-closed. a ∈ T is support-cycle-free in T iff ∀E ⊆ A such
that ENa, there is b ∈ E ∩T such that b is support-cycle-free in T \{a}.

T is coherent iff T is support-closed and every a ∈ T is support-cycle-free in T .

a ∈ A is deactivated by T iff ∀C ⊆ A coherent subset containing a, T RC (i.e. there
is x ∈ T and c ∈C such that xRc).

a∈A is acceptable w.r.t. T iff (i) T ∪{a} is coherent and (ii) ∀b∈A such that bRa,
b is deactivated by T .

T is admissible iff T is conflict-free, coherent, and every a in T is acceptable w.r.t.
T .
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T is a complete extension iff T is admissible and ∀a ∈A, if a is acceptable w.r.t. T ,
then a ∈ T .

T is a preferred extension iff T is a ⊆-maximal complete extension.

T is a stable extension iff T is complete and ∀a ∈ A, a ∈ A\T iff a is deactivated
by T .

T is a grounded extension iff T is a ⊆-minimal complete extension.

Ex. 2 Consider the framework representing an attack from a to b and no necessary sup-
port. The unique extension under complete, preferred, stable and grounded semantics is
{a}. Indeed, the AFN framework is a conservative generalisation of Dung’s framework.

Ex. 3 Consider the framework representing a necessary support from {a} to b and no
attack. {} and {a} are admissible sets. However, due to the necessary support, an ad-
missible set containing b must also contain a. So, {b} is not admissible, and the unique
complete extension is {a,b}.

Ex. 4 Consider the framework representing a cycle of necessary supports between a and
b, and no attack. This cycle is represented by {a}Nb and {b}Na. There is no non-empty
admissible set. Indeed, there is no way to trace back with a chain of supports from a
(resp. b) to arguments that require no support.

Ex. 5 Consider the framework representing k necessary supports to a: a ∈ A, X1, . . . ,Xk
are non-empty subsets of A such that XiNa, i = 1. . . k. Let E be an admissible set contain-
ing a. Then ∀i = 1. . . k, at least one argument of Xi must belong to E.

Recursive Evidence-Based Argumentation Frameworks (REBAF). Recently introduced
in [6], the REBAF allows representing higher-order attacks and higher-order supports. It
is a generalisation of the Evidence-Based Argumentation Framework (EBAF) [16]. In
these frameworks, the “evidential” understanding of the support relation allows to dis-
tinguish between two different kinds of arguments: prima-facie and standard arguments.
Prima-facie arguments are justified whenever they are not defeated. On the other hand,
standard arguments are not assumed to be justified and must inherit support from prima-
facie arguments through a chain of supports. In the REBAF, the semantics handle both
acceptability of arguments and validity of interactions (attacks or supports), and account
for the fact that acceptability of arguments may depend on the validity of interactions and
vice-versa. As a consequence, the standard notion of extension is replaced by a triple of
a set of arguments, a set of attacks and a set of supports, called “structure”. We briefly
recall the main definitions.

Def. 3 (Recursive EBAF and structure) A Recursive Evidence-Based Argumentation Frame-
work (REBAF) is a sextuple 〈A,R,S,s, t,P〉, where A, R and S are three pairwise dis-
junct sets respectively representing arguments, attacks and supports names, and where
P ⊆ A∪R∪S is a set representing the prima-facie elements that do not need to be sup-
ported.1 Functions s : (R∪S) −→ 2A and t : (R∪S) −→ (A∪R∪S) respectively map

1Note that the set P may contain several prima-facie elements (arguments, attacks and supports) without any
constraint (they can be attacked or supported).
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each attack and support to its source and its target.
A structure of 〈A,R,S,s, t,P〉 is a triple U = (T,Γ,∆) with T ⊆ A, Γ⊆ R and ∆⊆ S.

A REBAF can be graphically represented: a support named α (with s(α) = {a} and
t(α) = c) being the target of an attack β with s(β ) = {b} is represented by:

{a} α c

{b} β

(arguments are in a simple circle, sets of argu-
ments in a double circle, attack/support names in
a square, and attacks – resp. supports – are repre-
sented with simple – resp. double arrows –)

The notion of structure allows characterizing which arguments are regarded as “accept-
able” and which attacks and supports are regarded as “valid” with respect to a given
framework. It is the basis of defining the semantics for recursive frameworks. Intuitively,
the set T represents the set of “acceptable” arguments w.r.t. the structure U , while Γ and ∆

respectively represent the set of “valid attacks” and “valid supports” w.r.t. U . For the rest
of this section, we consider a REBAF 〈A,R,S,s, t,P〉 and a structure U of this REBAF.
An element x (argument, attack or support) is defeated w.r.t. U iff there is a “valid attack”
w.r.t. U that targets x and whose source is “acceptable” w.r.t. U . As for the notion of
supported elements w.r.t. a structure, the prima-facie elements of a REBAF are supported
w.r.t. any structure. Then, a standard element is supported if there exists a chain of sup-
ported supports, leading to it, which is rooted in prima-facie arguments. Formally, the set
of defeated (resp. supported) elements is defined as follows:

Def. 4 ([6]) De fX (U)= {x∈X/∃α ∈Γ,s(α)⊆ T and t(α)= x} with X ∈{A,R,S}. Let
U−x denote (T \ {x},Γ \ {x},∆ \ {x}). Supp(U) = P∪{t(α)/∃α ∈ (∆∩ Supp(U−t(α)))
with s(α)⊆ (T∩ Supp(U−t(α))))}.

Drawing on the notions of defeated elements and supported elements, the supportable
elements can be defined. An element is supportable if there exists some non-defeated
support with all its source elements non-defeated and regarded as supportable. Formally,
an element x is supportable w.r.t. U iff x is supported w.r.t. U ′=(De fA(U),R,De fS(U)).2

Elements that are defeated or unsupportable cannot be accepted. UnAcc(U) = De f (U)∪
Supp(U ′) denotes the set of unacceptable elements w.r.t. U . Moreover, an attack α ∈ R
is unactivable3 iff either it is unacceptable or some element in its source is unacceptable.
UnAct(U) = {α ∈ R/α ∈UnAcc(U) or s(α)∩UnAcc(U) 6=∅}.

Ex. 6 Consider the framework 〈A,R,S,s, t,P〉 where A = {a,b,c,d}, R = {β ,δ}, S =
{α} and P = {a,c,α,β} corresponding to the graph depicted in the following figure
(prima-facie elements are represented with dashed lines; as the source of each interaction
is a singleton, it can be represented by an argument):

a α b δ d

c β

2Let U be a structure, X ∈ {A,R,S} and fX (U) a subset of X . fX (U) denotes the set X \ fX (U). Moreover,
f (U) is short for fA(U)∪ fR(U)∪ fS(U). And as usual, f (U) denotes A∪R∪S\ f (U).

3 Intuitively, such an attack cannot be “activated” in order to defeat the element that it is targeting.
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Let U be the structure (T = {a,c},Γ = {β},∆ = {α}). Supp(U) = {a,b,c,β}. Note
that a, c and β are supported because they are prima-facie elements. Let us prove that
b ∈ Supp(U): b = t(α) with α ∈ ∆ and s(α) = {a} ⊆ T . As α and a both belong to P,
s(α) and α both belong to Supp(U \{b}). However, b is unsupportable w.r.t. U since α

is defeated by β . As a consequence, the attack δ is unactivable w.r.t. U.

Finally, an element is acceptable w.r.t. U iff it is supported w.r.t. U and, in addition, every
attack against it is unactivable w.r.t. U , because either some argument in its source or
itself has been regarded as unacceptable w.r.t. U .

Def. 5 (Acceptability [6]) Let x ∈ A∪R∪S. x is acceptable w.r.t. U iff (i) x ∈ Supp(U)
and (ii) for each attack α ∈ R with t(α) = x, α ∈UnAct(U). Acc(U) denotes the set of
all elements that are acceptable w.r.t. U.

Semantics are defined as follows:

Def. 6 (Semantics in REBAF [6]) A structure U = (T,Γ,∆) is said:

1. self-supporting iff (T ∪Γ∪∆)⊆ Supp(U),

2. conflict-free iff T ∩De fA(U) =∅, Γ∩De fR(U) =∅ and ∆∩De fS(U) =∅,

3. admissible iff it is conflict-free and (T ∪Γ∪∆)⊆ Acc(U),

4. complete iff it is conflict-free and (T ∪Γ∪∆) = Acc(U),

5. preferred iff it is a ⊆-maximal4 admissible structure,

6. stable iff (T ∪Γ∪∆) =UnAcc(U).

3 Handling higher-order necessary supports

Our purpose is to propose a framework that allows representing higher-order attacks and
higher-order necessary supports, using similar definitions as those at work in the REBAF.
First, we provide a definition of a “recursive AFN”. Then we show that, in presence of
higher-order interactions, the translation from an AFN to an EBAF proposed in [16] can-
not be extended. That leads us to provide direct definitions for the semantics of recursive
AFNs.

Def. 7 (Recursive AFN) A Recursive Argumentation Framework with Necessities (RAFN)
is a tuple 〈A,R,N,s, t〉, where A, R and N are three pairwise disjunct sets respec-
tively representing arguments, attacks and supports names, s is a function from R∪N
to (2A \∅) mapping each interaction to its source,5 and t is a function from R∪N to
(A∪R∪N) mapping each interaction to its target. It is assumed that ∀α ∈ R,s(α) is a
singleton.
A structure of 〈A,R,N,s, t〉 is a triple U = (T,Γ,∆) with T ⊆ A, Γ⊆ R and ∆⊆ N.

4For any pair of structures U = (T,Γ,∆) and U = (T ′,Γ′,∆′), U ⊆U ′ means that (T ∪Γ∪∆)⊆ (T ′∪Γ′∪∆′).
5In contrast with ASAF (see [10]), the source of a support in a RAFN is a set of arguments.
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Turning a recursive AFN into a recursive EBAF? In the particular case of first-order
interactions, a one-to-one correspondence between a REBAF and a finite EBAF has been
proved, by considering only one prima-facie argument denoted by η [6]. Besides, corre-
spondences have been provided between an AFN and an EBAF, that preserve the seman-
tics [16] using the following definition (the basic idea is that unsupported arguments in
an AFN correspond to arguments supported by the special argument η in an EBAF, or
equivalently to prima-facie arguments in a REBAF):

Def. 8 (From AFN to EBAF [16]) Let 〈A,R,N〉 be an AFN. The corresponding EBAF
〈A′,R′,S〉 is defined by (η serves as a representation of the prima-facie elements):

A′ = A∪{η} and for (a,b) ∈ R, put ({a},b) in R′.

Let a ∈ A and X = {X1, . . . ,Xk} be the collection of all sets Xi such that XiNa. If X
is empty, add ({η},a) to S. Otherwise, for all X ′ ∈ (X1× . . .×Xk) add (X ′s ,a) to S,
where X ′s denotes the set of all elements in X ′.

This construction can be illustrated by the following example:

Ex. 7
Let AFN = 〈{a,b,c}, ∅,
{({b},a),({c},a)}〉. Following
Def. 8, we obtain an EBAF with
a support β from the set {b,c}
to a:

α b

{η} {b,c} β a

δ c

It has been proved in [16] that T ⊆ A is a σ -extension of an AFN iff T ∪{η} is a σ -
extension of the associated EBAF, for σ ∈ {admissible, pre f erred,complete,stable}.
A natural idea would be to generalize the construction proposed in Def. 8. However,
in that construction, it is worth to notice that if an argument a receives several supports
in an AFN (let αi denote the support XiNa), new supports β j to a are created in the
corresponding EBAF (see Ex. 7). Assume now that one of the supports αi is attacked,
it is impossible to know which one of the new supports should be attacked.This point is
illustrated on Ex. 8.

Ex. 8 Let RAFN = 〈{a,b,c,d},{α3},{α1,α2},s, t〉with s(α1)= {b},s(α2)= {c},s(α3)=
{d}, t(α1) = t(α2) = a, t(α3) = α1 (it is obtained from the AFN given in Ex. 7 by naming
the supports and adding an attack to one of the supports).

Creating a support β from the set {b,c} to a would not enable to take into account the
fact that α1 is attacked. In particular it would not be sound to create an attack from d to
β .

Moreover, in the higher-order framework and even in the particular case when each ele-
ment (argument, attack or support) receives at most one support, whose source is reduced
to one argument (case of binary supports), the different understanding of evidential and
necessary supports implies that the construction proposed in Def. 8 cannot be extended.
This point is illustrated on the two following examples.

6



Ex. 9 Consider the RAFN framework 〈A,R,N,s, t,〉 where A = {a,b,c}, R = {β} and
N = {α}, with s(α) = {a}, s(β ) = {c}, t(α) = b and t(β ) = α . Generalizing Def. 8
would produce the corresponding REBAF 〈A,R,N,s, t,P〉 with P = {a,c,α,β} (indeed,
following the understanding of necessary support, each element that is not supported
can be considered as prima-facie). Let U = ({a,c},{β},∅). As shown in [6], with the
REBAF semantics, b has no support w.r.t. U as α /∈ U, so b cannot be accepted. In
contrast, considering necessary supports, we should be able to say that b is supported
w.r.t. U : As α /∈ U, there is no necessary support to be considered for ensuring the
acceptance of b.

Ex. 10 Consider now RAFN′ obtained from RAFN given in Ex. 9 by replacing the attack
β from c to α with a support δ from c to α . Let U = ({a},∅,{α,δ}). With the REBAF
semantics, b has no support w.r.t. U, since α has no support from U (as c /∈ U). In
contrast, considering necessary supports, as c /∈ U, α cannot be valid, so there is no
necessary support to be considered for ensuring the acceptance of b, so we should be
able to say that b is supported w.r.t. U.

Semantics of a recursive AFN. Even if a direct translation from RAFN to a REBAF is
not possible, the analogy between prima-facie arguments in REBAF and non-supported
arguments in RAFN suggests to draw on the REBAF approach. So we next provide direct
definitions for the semantics of recursive AFNs, based on the notion of structure, in a
similar way as for a REBAF.

Let us consider a RAFN 〈A,R,N,s, t〉 and a structure U of this RAFN. We keep the
definition for an element being defeated recalled in Section 2 (which can be simplified as
∀α ∈R,s(α) is a singleton). In contrast, a difference appears with the notion of supported
elements: elements (arguments, attacks, supports) which receive no necessary support do
not require any support, so they are supported w.r.t. any structure. That corresponds to the
set P in Def. 9 below. Moreover, in an AFN, for E ⊆ A, ENx means that the acceptance
of x requires the acceptance of at least one element of E. Then, an element x is supported
w.r.t. U if for each support α (which can be regarded as supported), the source of α

contains at least one argument of U that can be regarded as supported. Formally, we
have:

Def. 9 Given a structure U = (T,Γ,∆)

De fX (U) = {x ∈ X/∃α ∈ Γ,s(α) ∈ T and t(α) = x} with X ∈ {A,R,N}.

Let P= {x∈A∪R∪N/ there is no α ∈N with t(α) = x}. Supp(U) =P∪{x/∀α ∈
∆ such that t(α) = x, if α ∈ Supp(U−x) then s(α)∩ (T ∩Supp(U−x)) 6=∅}.

U is self-supporting iff (T ∪Γ∪∆)⊆ Supp(U).

Pursuing the analogy with REBAF, an element of a RAFN is considered as being still
supportable as long as for each non-defeated support, there exists at least one argument
in it source, which is non-defeated and regarded as supportable. Formally, an element x
is supportable w.r.t. U iff x is supported w.r.t. U ′ = (De fA(U),R, De fN(U)). Drawing
on these new notions of supported (resp. unsupportable) element, we keep the definitions
used in a REBAF for unacceptable elements and unactivable attacks. Namely, elements
that are defeated or that are unsupportable are said to be unacceptable (they cannot be
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accepted). Then an attack α ∈ R is unactivable (such an attack cannot be “activated” in
order to defeat the element that it is targeting) iff either it is unacceptable or its source is
unacceptable. Finally we keep the definition for acceptability used in a REBAF.

Def. 10 Given a structure U = (T,Γ,∆), let U ′ = (De fA(U),R,De fN(U)).

UnSupp(U) = Supp(U ′).

UnAcc(U) =De f (U)∪UnSupp(U) denotes the set of unacceptable elements w.r.t.
U.

UnAct(U) = {α ∈ R/α ∈ UnAcc(U) or s(α) ⊆ UnAcc(U)} denotes the set of
unactivable attacks w.r.t. U.

x ∈ A∪R∪N is acceptable w.r.t. U iff x ∈ Supp(U) and for each α ∈ R with
t(α)= x, α ∈UnAct(U). Acc(U) denotes the set of all elements that are acceptable
w.r.t. U.

The two following examples illustrate the previous definitions.

Ex. 11 Consider the framework RAFN = 〈{a,x,y,z, t},{β}, {α1,α2,α3},s, t〉with s(α1)=
{a}, s(α2) = {z}, s(α3) = {t}, s(β ) = {y}, t(α1) = x, t(α2) = y, t(α3) = y, t(β ) = x.
Let U = ({a},{β},{α1,α2,α3}). U ′ = (A,R,N). x ∈ Supp(U). However, x /∈ Acc(U)
as it is the target of the attack β , s(β ) = {y} and y /∈UnAcc(U). Indeed y is not attacked
and y ∈ Supp(U ′) since α2 and α3 belong to P and z and t do not belong to De fA(U).

Ex. 12 Consider the RAFN obtained by adding an attack γ from a to z in the RAFN of
Ex. 11 and the new structure U = ({a},{β ,γ},{α1,α2,α3}). With this new structure, we
have z ∈ De fA(U). So y /∈ Supp(U ′) and therefore x becomes acceptable w.r.t. U.

Note that the Fundamental Lemma cannot be generalized. Indeed, the function Supp is
not monotonic as shown by the following examples.

Let us consider Ex. 3 modified as follows: RAFN = 〈{a,b,c},∅,{α,δ},s, t〉 with
s(α) = {a}, s(δ ) = {c}, t(α) = b, t(δ ) = α . Let U = ({b},∅,{α,δ}). b ∈
Supp(U) since c /∈ T and so α is not supported. However, b /∈ Supp(U ∪ {c})
since a /∈ T .

As a second example consider RAFN obtained from AFN of Ex. 7 just by naming
supports: s(α1) = {b}, s(α2) = {c}, t(α1) = t(α2) = a. Let U = ({b},∅,{α1}).
a ∈ Supp(U) and U ∪{a} is self-supporting. Moreover U is admissible and a and
α2 both belong to Acc(U). However, a /∈ Supp(U ∪{α2}). So a /∈ Acc(U ∪{α2}).

As a consequence, semantics are defined as follows:6

Def. 11 (Semantics in RAFN) A structure U = (T,Γ,∆) is said:

1. conflict-free iff T ∩De fA(U) =∅, Γ∩De fR(U) =∅ and ∆∩De fN(U) =∅,

6As there is no Fundamental Lemma, preferred and stable extensions are assumed to be complete sets.
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2. admissible iff it is conflict-free and (T ∪Γ∪∆)⊆ Acc(U),

3. complete iff it is conflict-free and (T ∪Γ∪∆) = Acc(U),

4. preferred iff it is a ⊆-maximal complete structure,

5. stable iff it is complete and (T ∪Γ∪∆) =UnAcc(U),

6. grounded iff it is a ⊆-minimal complete structure.

Note that an admissible structure is also self-supporting.

Ex. 8 (cont’d) Consider the case of two supports α1 (from b to a) and α2 (from c to a),
α1 being the target of the attack α3 from d. We have P = {b,c,d,α1,α2,α3}. Let us study
different structures:

Let U1 = (T1,Γ1,∆1) with T1 = {a,b,c,d}, Γ1 = ∅, ∆1 = {α1,α2}. U1 is conflict-
free (as α3 /∈ Γ1) and self-supporting. b,c,d,α1,α2 belong to Supp(U1) (as P ⊆
Supp(U1). And a ∈ Supp(U1) since α1, α2, s(α1), s(α2) belong to P hence to
Supp(U1−a). However, α1 /∈ Acc(U1). Indeed α3 /∈ Unact(U1) as α3 and s(α3)

both belong to P and to De f (U1). So U1 is not admissible.

Let U2 = (T2,Γ2,∆2) with T2 = {a,c,d}, Γ2 = {α3}, ∆2 = {α2}. U2 is conflict-free
(as α1 /∈ Γ2) and self-supporting. As c,d,α2,α3 belong to P, we just have to prove
that a ∈ Supp(U2). As α2 is the unique support in ∆2 targeting a, due to Def. 9, we
just have to prove that if α2 ∈ Supp(U2−a), then c ∈ T2∩Supp(U2−a). That is true
since c ∈ (T2 ∩P). U2 is admissible since U2 is self-supporting and no element of
U2 is attacked. It is worth to note that in the structure U2, a is accepted without b
being accepted. This is due to the fact that the necessary support α1 is defeated by
U2 hence unacceptable w.r.t. U2. So, α1 does not have to considered as a necessary
support for a.

U3 = ({a,b,c,d},{α3},{α2}) is the unique preferred structure.

Ex. 13 Consider the framework RAFN = 〈{a,b,c,d,e},{α3}, {α1,α2},s, t〉with s(α1)=
{b,c}, s(α2)= {d}, s(α3)= {e}, t(α1)= t(α2)= a, t(α3)= b. We have P= {b,c,d,e,α1,
α2, α3}. Let us study different structures:

U1 = ({a,b,d,e},∅,{α1,α2}). U1 is conflict-free (as α3 /∈ Γ1) and self-supporting.
As b,d,e,α1,α2 belong to P, we just have to prove that a ∈ Supp(U1). Due to
Def. 9, we have to consider α1 and α2, the supports in ∆1 that target a. As both
of them belong to P, we have to consider their source. s(α2) = {d} ⊆ P∩ T1,
and s(α1) contains b that is an element of T1 ∩P. So a ∈ Supp(U1). However,
b /∈ Acc(U1). Indeed α3 /∈ Unact(U1) as α3 and s(α3) both belong to P and to
De f (U1). So U1 is not admissible.

U2 = ({a,c,d,e},∅,{α1,α2}). U2 is conflict-free. It is also self-supporting (it can
be proved as for U1 replacing b by c) and no element of U2 is attacked. So U2 is
admissible.
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U3 = ({a,c,d,e},{α3},{α1,α2}) is the unique preferred structure. Note that U3
follows the intuition behind Def. 9, that at least one element in the source of the
support α1 has to be accepted (here c) in order to accept the target (here a).

Ex. 4 (cont’d) Consider the RAFN corresponding to the AFN (α1 and α2 being the names
of the supports). U = (∅,∅,{α1,α2}) is the unique stable structure. So differently from
Dung’s approach, it can be the case that an element is not in the stable structure even if
it is not defeated by it (it is left out because it is unsupported by the structure).

4 Related works

First, we consider the particular case of RAFN without support, then we compare our
framework with AFN and ASAF.

RAFN without support. In that case we get exactly the definitions of the Recursive Ar-
gumentation Framework (RAF) of [5]. Besides, [5] provided correspondences between
RAF-structures and AFRA-extensions of [2]. The RAFN without support also corre-
sponds to the REBAF without support (in the particular case of binary attacks). Moreover,
a RAFN with only first-order attacks and without support is a RAF with only first-order
attacks. That case has been proved to be a conservative generalisation of Dung’s frame-
work in [5].

Relation with AFN. We show that the RAFN is a conservative generalisation of the
AFN. Given an AFN, we give a translation into a RAFN, and prove a one-to-one corre-
spondence between complete (resp. preferred, stable, grounded) extensions of the AFN
and complete (resp. preferred, stable, grounded) structures of the corresponding RAFN.
Let us start by giving the RAFN corresponding to a given AFN. We just have to name the
interactions.

Def. 12 Given AFN = 〈A,R,N〉, the corresponding RAFN is 〈A,R′,N′,s′, t ′〉, where R′
and N′ are two disjunct sets with the same cardinality as R and N respectively, and s′ and
t ′ map each interaction to their corresponding source and target, that is:

for (a,b)∈R, and α the associated name in R′, we have s′(α) = {a} and t ′(α) = b.

for (X ,b) ∈N, and β the associated name in N′, we have s′(β ) = X and t ′(β ) = b.

Following Def. 9, P′ = {x ∈ A/ there is no α ∈ N′ with t ′(α) = x}∪R′∪N′.
Note that in an AFN, each attack (resp. support) can be considered as “valid”, as it
is neither attacked nor supported. Hence, in the corresponding RAFN, such an inter-
action must be acceptable w.r.t. any structure. Accordingly, given a set T ⊆ A, by
UT = (T,R′,N′) we denote its corresponding structure. Given AFN = 〈A,R,N〉, and
its corresponding RAFN = 〈A,R′,N′,s′, t ′〉, the semantics of RAFN are given by Def. 11
and rely upon Def. 9. Given T ⊆A, U = (T,R′,N′), and x ∈A, the structure U−x is equal
to (T \ {x},R′,N′) and exactly corresponds to the structure UT\{x}. Then Supp(UT ) =
P′ ∪ {x ∈ A/∀α ∈ N′ such that t ′(α) = x, s′(α)∩ (T ∩ Supp(UT\{x})) 6= ∅} (as each
support belongs to P′). Then the following propositions hold.
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Prop. 1 Let T ⊆ A.

1. Let a ∈ T . If T is support-closed in AFN, then a ∈ Supp(UT ) iff a is support-cycle-
free in T . Moreover UT is self-supporting in RAFN iff T is coherent in AFN.

2. Let a ∈ A. If a is acceptable w.r.t. T in AFN, then a is acceptable w.r.t. UT in
RAFN. If T is self-supporting and a is acceptable w.r.t. UT in RAFN, then a is
acceptable w.r.t. T in AFN.

Prop. 2 Let T ⊆ A. T is an admissible (resp. complete, preferred, stable, grounded)
extension of AFN iff UT is an admissible (resp. complete, preferred, stable, grounded)
structure of the corresponding RAFN.

Relation with ASAF. We next compare the RAFN semantics with ASAF semantics [10].
We consider particular cases of RAFN, as ASAF excludes cycles of necessary supports,
and assumes that interactions are binary ones (the source of an attack or a support is a
unique argument). The common idea is that the extensions may not only include argu-
ments but also attacks and supports. However, several differences can be outlined. First,
in ASAF, attacks and supports are combined to obtain extended (direct or indirect) de-
feats. Conflict-freeness for a set of elements (arguments, attacks, supports) is defined
w.r.t. these extended defeats. So the conflict-freeness requirement takes support into ac-
count. In contrast, in RAFN, the notions of support and attack are dealt with separately
(see Def. 9). As for acceptability, in ASAF, an element is acceptable w.r.t. a set of ele-
ments whenever it can be defended against each defeat. So, in the particular case when
there is no attack, each argument would be acceptable w.r.t. any set. In contrast, Def. 10
explicitly requires a support.

Ex. 3 (cont’d) The corresponding RAFN of AFN is 〈{a,b},∅,{α},s, t〉 with s(α) = {a},
t(α) = b. With ASAF semantics, the set {b,α} is admissible, whereas the structure ({b},
∅, {α}) is not admissible in RAFN.

Another difference was already pointed in [5], where correspondences have been provided
between a RAF and an ASAF without support. Indeed, in an ASAF, an attack is not
acceptable whenever its source is not acceptable (Prop. 2 in [10]).

Ex. 12 (cont’d) With RAFN semantics, β is not attacked and not supported so β must
belong to each complete structure. With ASAF semantics, if β is acceptable w.r.t. a set E,
then y must be also acceptable w.r.t. E. If E is a complete extension, E contains a, γ and
α2. As y is defeated by γ given α2 it cannot be the case that y is acceptable w.r.t. E. So β

cannot belong to any complete extension.

So, following the work of [5], we define the following mappings:

Let 〈A,R,N,s, t〉 be a RAFN. Given a structure U = (T,Γ,∆), by EU = T ∪{α ∈ Γ

such that s(α)⊆ T} ∪∆, we denote the corresponding ASAF extension.

Let 〈A,R,N〉 be an ASAF. Given E ⊆ (A∪Γ∪N) an ASAF extension, by UE =
(TE ,ΓE ,∆E), we denote the corresponding RAFN structure, where TE = A∩ E,
ΓE = (R∩E)∪ {α ∈ (R∩Acc(U ′E)) such that s(α) /∈ E} with U ′E denoting the
structure (TE ,R∩E,N∩E) and ∆E = (N∩E)∪ (N∩Acc(U ′E)).
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Our intuition is that, despite the differences between conflict-free and acceptability re-
quirements, the above mappings will enable to achieve correspondences between ASAF
and RAFN for the complete (and also grounded and preferred) semantics.

Ex. 12 (cont’d) Consider the unique complete structure U =({a,x, t},{β ,γ},{α1,α2,α3}).
The corresponding ASAF extension is EU = {a,x, t,γ,α1,α2,α3}. It can be checked that
it is an ASAF complete extension. Conversely, let E = {a,x, t,γ,α1,α2,α3}. We have
U ′E = ({a,x, t},{γ},{α1,α2,α3}). Obviously, β ∈ Acc(U ′E) as β is neither attacked nor
supported. So β can be added to ΓE and UE =U.

5 Conclusion

We have proposed an abstract framework that deals with higher-order interactions, using
two types of interaction: attacks and necessary supports. That framework generalises both
abstract frameworks with necessities (AFN, see [14, 13]) and recursive abstract frame-
works (RAF, see [5]), and so is called RAFN. We have defined semantics accounting for
acceptability of arguments and also validity of interactions. As a source of inspiration,
we have used the approach presented in [6] that does a similar work for REBAF, another
framework dealing with higher-order interactions using evidential supports in place of
necessary ones. In the literature, there exist few works handling higher-order attacks and
necessary supports, except the ASAF framework [9, 10]. However, ASAF excludes cy-
cles of support and is restricted to binary interactions. Our framework is a conservative
generalisation of AFN and RAF, and we are able to outline the differences with ASAF
semantics proposed in [10]. In this work, we have defined structure-based semantics in
a similar way as done in [6] for evidential support. That paves the way for studying a
more general framework capable of taking into account both necessary supports and ev-
idential supports. We aim to address that issue as future work. We also plan to connect
RAFN to Logic Programming, following existing works relating Dung’s framework to
logic programs and ASP (for instance [12]).
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A Examples

Note that for each example, we give at least two results:

one corresponding to our approach using Def. 10,

the last one corresponding to the approach for the ASAF given in [10].

Then, according to the architecture of the framework, we also give Dung’s extensions,
RAF extensions and AFN extensions.

The following examples illustrate some differences between our approach and that of
[10]:

either because of cycles in the argumentation framework: Examples 4, 32,

or because some supports have a set as a source: Examples 13, 31, 33,

or because of the definition of defeats in the ASAF: Examples 12, 14, from 20 to
25, from 27 to 29.

Note that, following Prop. 2, there is a one to one correspondence between AFN and our
approach when the argumentation framework does not contain higher-order interactions.

Similarly, following Sect. 4, there is a one to one correspondence:

between RAF and our approach when the argumentation framework does not con-
tain supports, and

between Dung’s semantics and our approach when the argumentation framework
does not contain supports and contains only first-order attacks.

So our approach is conservative, since the RAFNs are extensions of the AFNs and the
RAFs.

Moreover, there are some correspondences between ASAF and our approach.
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A.1 Examples used in Comma paper

Ex. 2 (cont’d) Consider the RAFN framework corresponding to the graph depicted in
Figure 1.

a α b

Figure 1

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a},{α},{})
preferred ({a},{α},{})

stable ({a},{α},{})
grounded ({a},{α},{})

Some interesting extensions using [10]:

complete {a,α}
preferred {a,α}

stable {a,α}
grounded {a,α}

There is a one to one correspondence between our approach and [10].

Moreover, since this example is also a classical AF, if we consider Dung’s semantics, the
resulting extensions are:

complete {a}
preferred {a}

stable {a}
grounded {a}

This example is also an AFN. In this case, the resulting extensions are:

complete {a}
preferred {a}

stable {a}
grounded {a}

This example is also a RAF. In this case, the resulting structures are:

complete ({a},{α})
preferred ({a},{α})

stable ({a},{α})
grounded ({a},{α})
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Ex. 3 (cont’d) Consider the RAFN framework corresponding to the graph depicted in
Figure 2.

a α b

Figure 2

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b},{},{α})
preferred ({a,b},{},{α})

stable ({a,b},{},{α})
grounded ({a,b},{},{α})

Some interesting extensions using [10]:

complete {a,b,α}
preferred {a,b,α}

stable {a,b,α}
grounded {a,b,α}

There is a one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b}
preferred {a,b}

stable {a,b}
grounded {a,b}
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Ex. 4 (cont’d) Consider the framework represented in Figure 3.

a α2 b

α1

Figure 3

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({},{},{α1,α2})
preferred ({},{},{α1,α2})

stable ({},{},{α1,α2})
grounded ({},{},{α1,α2})

Due to the existence of a cycle of supports, definitions given in [10] cannot be applied.

This example is also an AFN. In this case, the resulting extensions are:

complete {}
preferred {}

stable {}
grounded {}
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Ex. 11 (cont’d) Consider the framework depicted in Figure 4.

t α3 y β x

α2 α1

z a

Figure 4

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,y,z, t},{β},{α1,α2,α3})
preferred ({a,y,z, t},{β},{α1,α2,α3})

stable ({a,y,z, t},{β},{α1,α2,α3})
grounded ({a,y,z, t},{β},{α1,α2,α3})

Some interesting extensions using [10]:

complete {a,y,z, t,β ,α1,α2,α3}
preferred {a,y,z, t,β ,α1,α2,α3}

stable {a,y,z, t,β ,α1,α2,α3}
grounded {a,y,z, t,β ,α1,α2,α3}

There is a one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a,y,z, t}
preferred {a,y,z, t}

stable {a,y,z, t}
grounded {a,y,z, t}
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Ex. 12 (cont’d) Consider the RAFN obtained by adding an attack γ from a to z in the
RAFN given in Ex. 11 (see figure 5).

t α3 y β x

α2 α1

z γ a

Figure 5

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,x, t},{β ,γ},{α1,α2,α3})
preferred ({a,x, t},{β ,γ},{α1,α2,α3})

stable ({a,x, t},{β ,γ},{α1,α2,α3})
grounded ({a,x, t},{β ,γ},{α1,α2,α3})

Some interesting extensions using [10]:

complete ({a,x, t,γ,α1,α2,α3})
preferred ({a,x, t,γ,α1,α2,α3})

stable ({a,x, t,γ,α1,α2,α3})
grounded ({a,x, t,γ,α1,α2,α3})

There is no one to one correspondence between our approach and [10] (particularly since
β does not belong to the extensions defined for the ASAF).

This example is also an AFN. In this case, the resulting extensions are:

complete {a,x, t}
preferred {a,x, t}

stable {a,x, t}
grounded {a,x, t}
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Ex. 13 (cont’d) Consider the framework RAFN2 depicted in Figure 6.

e α3 b

{b,c} α1

c a

{d} α2

Figure 6

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,c,d,e},{α3},{α1,α2})
preferred ({a,c,d,e},{α3},{α1,α2})

stable ({a,c,d,e},{α3},{α1,α2})
grounded ({a,c,d,e},{α3},{α1,α2})

Due to the fact that a source of a support is a set, definitions given in [10] cannot be
applied.

This example is also an AFN. In this case, the resulting extensions are:

complete {a,c,d,e}
preferred {a,c,d,e}

stable {a,c,d,e}
grounded {a,c,d,e}
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A.2 Some other examples

Ex. 7 (cont’d) Let AFN = 〈{a,b,c},∅,{({b},a),({c},a)}〉 and RAFN be the recursive
AFN obtained from AFN just by naming the supports (see Figure 7).

{b} α1

a

{c} α2

Figure 7

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c},{},{α1,α2})
preferred ({a,b,c},{},{α1,α2})

stable ({a,b,c},{},{α1,α2})
grounded ({a,b,c},{},{α1,α2})

Some interesting extensions using [10]:

complete {a,b,c,α1,α2}
preferred {a,b,c,α1,α2}

stable {a,b,c,α1,α2}
grounded {a,b,c,α1,α2}

There is a one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b,c}
preferred {a,b,c}

stable {a,b,c}
grounded {a,b,c}
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Ex. 8 (cont’d) Consider RAFN′ obtained from RAFN given in Ex. 7 by adding an attack
from an argument d to α1 (see Figure 8).

{b} α3 d

α1

a

{c} α2

Figure 8

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c,d},{α3},{α2})
preferred ({a,b,c,d},{α3},{α2})

stable ({a,b,c,d},{α3},{α2})
grounded ({a,b,c,d},{α3},{α2})

Some interesting extensions using [10]:

complete {a,b,c,d,α3,α2}
preferred {a,b,c,d,α3,α2}

stable {a,b,c,d,α3,α2}
grounded {a,b,c,d,α3,α2}

There is a one to one correspondence between our approach and [10].
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Ex. 9 (cont’d) Consider the RAFN framework corresponding to the graph depicted in
Figure 9.

a α b

β

c

Figure 9

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c},{β},{})
preferred ({a,b,c},{β},{})

stable ({a,b,c},{β},{})
grounded ({a,b,c},{β},{})

Some interesting extensions using [10]:

complete {a,b,c,β}
preferred {a,b,c,β}

stable {a,b,c,β}
grounded {a,b,c,β}

There is a one to one correspondence between our approach and [10].
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Ex. 10 (cont’d) Consider the RAFN framework corresponding to the graph depicted in
Figure 10.

a α b

δ

c

Figure 10

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c},{},{α,δ})
preferred ({a,b,c},{},{α,δ})

stable ({a,b,c},{},{α,δ})
grounded ({a,b,c},{},{α,δ})

Some interesting extensions using [10]:

complete {a,b,c,α,δ}
preferred {a,b,c,α,δ}

stable {a,b,c,α,δ}
grounded {a,b,c,α,δ}

There is a one to one correspondence between our approach and [10].
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Ex. 14 Consider the RAFN framework corresponding to the graph depicted in Figure 11.

a α b β c

Figure 11

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,c},{α,β},{})
preferred ({a,c},{α,β},{})

stable ({a,c},{α,β},{})
grounded ({a,c},{α,β},{})

Some interesting extensions using [10]:

complete {a,c,α}
preferred {a,c,α}

stable {a,c,α}
grounded {a,c,α}

There is no one to one correspondence between our approach and [10] (since β does not
belong to the extensions given in [10]).

Moreover, since this example is also a classical AF, if we consider Dung’s semantics, the
resulting extensions are:

complete {a,c}
preferred {a,c}

stable {a,c}
grounded {a,c}

This example is also an AFN. In this case, the resulting extensions are:

complete {a,c}
preferred {a,c}

stable {a,c}
grounded {a,c}

This example is also a RAF. In this case, the resulting structures are:

complete ({a,c},{α,β})
preferred ({a,c},{α,β})

stable ({a,c},{α,β})
grounded ({a,c},{α,β})
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Ex. 15 Consider the RAFN framework corresponding to the graph depicted in Figure 12.

a α b

β

c

Figure 12

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c},{β},{})
preferred ({a,b,c},{β},{})

stable ({a,b,c},{β},{})
grounded ({a,b,c},{β},{})

Some interesting extensions using [10]:

complete {a,b,c,β}
preferred {a,b,c,β}

stable {a,b,c,β}
grounded {a,b,c,β}

There is a one to one correspondence between our approach and [10].

This example is also a RAF. In this case, the resulting structures are:

complete ({a,b,c},{β})
preferred ({a,b,c},{β})

stable ({a,b,c},{β})
grounded ({a,b,c},{β})
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Ex. 16 Consider the RAFN framework corresponding to the graph depicted in Figure 13.

a α b β c

Figure 13

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b},{β},{α})
preferred ({a,b},{β},{α})

stable ({a,b},{β},{α})
grounded ({a,b},{β},{α})

Some interesting extensions using [10]:

complete {a,b,β ,α}
preferred {a,b,β ,α}

stable {a,b,β ,α}
grounded {a,b,β ,α}

There is a one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b}
preferred {a,b}

stable {a,b}
grounded {a,b}
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Ex. 17 Consider the RAFN framework corresponding to the graph depicted in Figure 14.

a α b β c

Figure 14

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a},{α},{β})
preferred ({a},{α},{β})

stable ({a},{α},{β})
grounded ({a},{α},{β})

Some interesting extensions using [10]:

complete {a,α,β}
preferred {a,α,β}

stable {a,α,β}
grounded {a,α,β}

There is no one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a}
preferred {a}

stable {a}
grounded {a}
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Ex. 18 Consider the RAFN framework corresponding to the graph depicted in Figure 15.

a α b β c

Figure 15

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c},{},{α,β})
preferred ({a,b,c},{},{α,β})

stable ({a,b,c},{},{α,β})
grounded ({a,b,c},{},{α,β})

Some interesting extensions using [10]:

complete {a,b,c,α,β}
preferred {a,b,c,α,β}

stable {a,b,c,α,β}
grounded {a,b,c,α,β}

There is a one to one correspondence between our approach and [10].

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b,c}
preferred {a,b,c}

stable {a,b,c}
grounded {a,b,c}
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Ex. 19 Consider the RAFN framework corresponding to the graph depicted in Figure 16.

a α b

β

c

Figure 16

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,c},{α},{β})
preferred ({a,c},{α},{β})

stable ({a,c},{α},{β})
grounded ({a,c},{α},{β})

Some interesting extensions using [10]:

complete {a,c,α,β}
preferred {a,c,α,β}

stable {a,c,α,β}
grounded {a,c,α,β}

There is a one to one correspondence between our approach and [10].
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Ex. 20 Consider the RAFN framework corresponding to the graph depicted in Figure 17.

a α b

β

Figure 17

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({},{α,β},{}), ({a},{α,β},{}), ({b},{α,β},{})
preferred ({a},{α,β},{}), ({b},{α,β},{})

stable ({a},{α,β},{}), ({b},{α,β},{})
grounded ({},{α,β},{})

Some interesting extensions using [10]:

complete {}, {a,α}, {b,β}
preferred {a,α}, {b,β}

stable {a,α}, {b,β}
grounded {}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α and β cannot be accepted together.

Moreover, since this example is also a classical AF, if we consider Dung’s semantics, the
resulting extensions are:

complete {}, {a}, {b}
preferred {a}, {b}

stable {a}, {b}
grounded {}

This example is also an AFN. In this case, the resulting extensions are:

complete {}, {a}, {b}
preferred {a}, {b}

stable {a}, {b}
grounded {}

This example is also a RAF. In this case, the resulting structures are:

complete ({},{α,β}), ({a},{α,β}), ({a},{α,β})
preferred ({a},{α,β}), ({b},{α,β})

stable ({a},{α,β}), ({b},{α,β})
grounded ({},{α,β})
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Ex. 21 Consider the RAFN framework corresponding to the graph depicted in Figure 18.

a α b

δ β

c

Figure 18

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({},{α,β ,δ},{})
preferred ({},{α,β ,δ},{})

stable no stable
grounded ({},{α,β ,δ},{})

Some interesting extensions using [10]:

complete {}
preferred {}

stable no stable
grounded {}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α , β and δ cannot be accepted together.

Moreover, since this example is also a classical AF, if we consider Dung’s semantics, the
resulting extensions are:

complete {}
preferred {}

stable no stable
grounded {}

This example is also an AFN. In this case, the resulting extensions are:

complete {}
preferred {}

stable no stable
grounded {}

This example is also a RAF. In this case, the resulting structures are:

complete ({},{α,β ,δ})
preferred ({},{α,β ,δ})

stable no stable
grounded ({},{α,β ,δ})

32



Ex. 22 Consider the RAFN framework corresponding to the graph depicted in Figure 19.

a α b δ c

β

Figure 19

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({},{α,β},{δ}), ({a},{α,β},{δ}), ({b,c},{α,β},{δ})
preferred ({a},{α,β},{δ}), ({b,c},{α,β},{δ})

stable ({a},{α,β},{δ}), ({b,c},{α,β},{δ})
grounded ({},{α,β},{δ})

Some interesting extensions using [10]:

complete {δ}, {a,α,δ}, {b,c,β ,δ}
preferred {a,α,δ}, {b,c,β ,δ}

stable {a,α,δ}, {b,c,β ,δ}
grounded {δ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α and β cannot be accepted together.

This example is also an AFN. In this case, the resulting extensions are:

complete {}, {a}, {b,c}
preferred {a}, {b,c}

stable {a}, {b,c}
grounded {}
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Ex. 23 Consider the RAFN framework corresponding to the graph depicted in Figure 20.

a α b γ d

δ β

c

Figure 20

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({},{α,β ,δ},{γ})
preferred ({},{α,β ,δ},{γ})

stable no stable
grounded ({},{α,β ,δ},{γ})

Some interesting extensions using [10]:

complete {γ}
preferred {γ}

stable no stable
grounded {γ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α , β and δ cannot be accepted together.

This example is also an AFN. In this case, the resulting extensions are:

complete {}
preferred {}

stable no stable
grounded {}
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Ex. 24 Consider the RAFN framework corresponding to the graph depicted in Figure 21.

a α b δ c

β

Figure 21

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({c},{α,β},{δ}), ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})
preferred ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})

stable ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})
grounded ({c},{α,β},{δ})

Some interesting extensions using [10]:

complete {c,δ}, {a,c,α,δ}, {b,c,β ,δ}
preferred {a,c,α,δ}, {b,c,β ,δ}

stable {a,c,α,δ}, {b,c,β ,δ}
grounded {c,δ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α and β cannot be accepted together.

This example is also an AFN. In this case, the resulting extensions are:

complete {c}, {a,c}, {b,c}
preferred {a,c}, {b,c}

stable {a,c}, {b,c}
grounded {c}
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Ex. 25 Consider the RAFN framework corresponding to the graph depicted in Figure 22.

a α b γ d

δ β

c

Figure 22

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({d},{α,β ,δ},{γ})
preferred ({d},{α,β ,δ},{γ})

stable no stable
grounded ({d},{α,β ,δ},{γ})

Some interesting extensions using [10]:

complete {d,γ}
preferred {d,γ}

stable no stable
grounded {d,γ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α , β and δ cannot be accepted together.

This example is also an AFN. In this case, the resulting extensions are:

complete {d}
preferred {d}

stable no stable
grounded {d}
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Ex. 26 Consider the RAFN framework corresponding to the graph depicted in Figure 23.

a α b

β

δ

c

Figure 23

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,c},{δ ,α},{})
preferred ({a,c},{δ ,α},{})

stable ({a,c},{δ ,α},{})
grounded ({a,c},{δ ,α},{})

Some interesting extensions using [10]:

complete {a,c,δ ,α}
preferred {a,c,δ ,α}

stable {a,c,δ ,α}
grounded {a,c,δ ,α}

There is a one to one correspondence between our approach and [10].

This example is also a RAF. In this case, the resulting structures are:

complete ({a,c},{δ ,α})
preferred ({a,c},{δ ,α})

stable ({a,c},{δ ,α})
grounded ({a,c},{δ ,α})
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Ex. 27 Consider the RAFN framework corresponding to the graph depicted in Figure 24.

a α b

β

δ

c

Figure 24

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({c},{α,β},{δ}), ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})
preferred ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})

stable ({a,c},{α,β},{δ}), ({b,c},{α,β},{δ})
grounded ({c},{α,β},{δ})

Some interesting extensions using [10]:

complete {c,δ}, {a,c,α,δ}, {b,c,β ,δ}
preferred {a,c,α,δ}, {b,c,β ,δ}

stable {a,c,α,δ}, {b,c,β ,δ}
grounded {c,δ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α and β cannot be accepted together.
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Ex. 28 Consider the RAFN framework corresponding to the graph depicted in Figure 25.

a α b

δ β

γ c

d

Figure 25

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,c,d},{α,β ,γ},{})
preferred ({a,c,d},{α,β ,γ},{})

stable ({a,c,d},{α,β ,γ},{})
grounded ({a,c,d},{α,β ,γ},{})

Some interesting extensions using [10]:

complete {a,c,d,α,γ}
preferred {a,c,d,α,γ}

stable {a,c,d,α,γ}
grounded {a,c,d,α,γ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α , β and δ cannot be accepted together.

This example is also a RAF. In this case, the resulting structures are:

complete ({a,c,d},{α,β ,γ})
preferred ({a,c,d},{α,β ,γ})

stable ({a,c,d},{α,β ,γ})
grounded ({a,c,d},{α,β ,γ})
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Ex. 29 Consider the RAFN framework corresponding to the graph depicted in Figure 26.

a α b

δ β

γ c

d

Figure 26

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({d},{α,β ,δ},{γ})
preferred ({d},{α,β ,δ},{γ})

stable no stable
grounded ({d},{α,β ,δ},{γ})

Some interesting extensions using [10]:

complete {d,γ}
preferred {d,γ}

stable no stable
grounded {d,γ}

There is no one to one correspondence between our approach and [10]. Indeed, with the
approach proposed by [10], α , β and δ cannot be accepted together.
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Ex. 30 Consider the RAFN framework corresponding to the graph depicted in Figure 27.

a α b γ d

β δ

c e

Figure 27

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c,d,e},{β},{γ,δ})
preferred ({a,b,c,d,e},{β},{γ,δ})

stable ({a,b,c,d,e},{β},{γ,δ})
grounded ({a,b,c,d,e},{β},{γ,δ})

Some interesting extensions using [10]:

complete {a,b,c,d,e,β ,γ,δ}
preferred {a,b,c,d,e,β ,γ,δ}

stable {a,b,c,d,e,β ,γ,δ}
grounded {a,b,c,d,e,β ,γ,δ}

There is a one to one correspondence between our approach and [10].
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Ex. 31 Consider the RAFN depicted in Figure 28.

{b,c} α1

a

{d} α2

Figure 28

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c,d},{},{α1,α2})
preferred ({a,b,c,d},{},{α1,α2})

stable ({a,b,c,d},{},{α1,α2})
grounded ({a,b,c,d},{},{α1,α2})

Due to the fact that a source of a support is a set, definitions given in [10] cannot be
applied.

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b,c,d}
preferred {a,b,c,d}

stable {a,b,c,d}
grounded {a,b,c,d}
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Ex. 32 Consider the framework RAFN depicted in Figure 29.

b α3

{b} α1

a {a}

{d} α2

Figure 29

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({d},{},{α1,α2,α3})
preferred ({d},{},{α1,α2,α3})

stable ({d},{},{α1,α2,α3})
grounded ({d},{},{α1,α2,α3})

Due to the existence of a cycle of supports, definitions given in [10] cannot be applied.

This example is also an AFN. In this case, the resulting extensions are:

complete {d}
preferred {d}

stable {d}
grounded {d}
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Ex. 33 Consider now the framework RAFN′ depicted in Figure 30.

b α3

{b,c} α1

c a {a}

{d} α2

Figure 30

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c,d},{},{α1,α2,α3})
preferred ({a,b,c,d},{},{α1,α2,α3})

stable ({a,b,c,d},{},{α1,α2,α3})
grounded ({a,b,c,d},{},{α1,α2,α3})

Due to the fact that a source of a support is a set, definitions given in [10] cannot be
applied.

This example is also an AFN. In this case, the resulting extensions are:

complete {a,b,c,d}
preferred {a,b,c,d}

stable {a,b,c,d}
grounded {a,b,c,d}
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Ex. 34 Consider the framework depicted in Figure 31.

{b} α3 d

α1

a

{c} α2

Figure 31

Some interesting structures in our approach corresponding to the notion of acceptability
given in Def. 10:

complete ({a,b,c,d},{},{α1,α2,α3})
preferred ({a,b,c,d},{},{α1,α2,α3})

stable ({a,b,c,d},{},{α1,α2,α3})
grounded ({a,b,c,d},{},{α1,α2,α3})

Some interesting extensions using [10]:

complete {a,b,c,d,α1,α2,α3}
preferred {a,b,c,d,α1,α2,α3}

stable {a,b,c,d,α1,α2,α3}
grounded {a,b,c,d,α1,α2,α3}

There is a one to one correspondence between our approach and [10].
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B Proofs

Lemma 1 Let T1 ⊆ T2 ⊆ A. Supp(UT1)⊆ Supp(UT2)

Proof: Let T ⊆ A. Supp(UT ) = P′ ∪{x ∈ A/∀α ∈ N′ such that t ′(α) = x,s′(α)∩
(T ∩Supp(UT\{x})) 6=∅}. If T1 ⊆ T2 ⊆ A, we have T1 \{x} ⊆ T2 \{x} ⊆ A. So the
proof just follows by induction. 2

Lemma 2 Given AFN and its corresponding RAFN, given T ⊆ A, T is conflict-free in
AFN iff UT is a conflict-free structure in RAFN.

Proof: Note that De fR′(UT ) = De fN′(UT ) =∅, as interactions target only arguments
in RAFN. It follows that UT is a conflict-free structure in RAFN iff T ∩De fA(UT ) =
∅, which is equivalent to T being conflict-free in AFN, due to the definition of RAFN.
2

Lemma 3 Given AFN and its corresponding RAFN, let T ⊆ A and x ∈ A.
If x ∈ Supp(UT ), ∀α ∈ N′ such that t ′(α) = x, ∃y ∈ (s′(α)∩T \{x}∩Supp(UT\{x})).

Proof:
Let x ∈ Supp(UT ). ∀α ∈ N′ such that t ′(α) = x, ∃y ∈ (s′(α) ∩ T ∩ Supp(UT\{x})).
Assume that for some α0 with t ′(α0) = x we have (s′(α0)∩T ∩Supp(UT\{x})) = {x}
(1). Then x ∈ T and x ∈ Supp(UT\{x}). So, as t ′(α0) = x, ∃z ∈ (s′(α0)∩T \ {x}∩
Supp(UT\{x})). We have z 6= x and z ∈ (s′(α0)∩ T ∩ Supp(UT\{x})), which is in
contradiction with the assumption (1). 2

Lemma 4 Given AFN and its corresponding RAFN, let T ⊆ A and x ∈ A.
If x ∈ T and x ∈ Supp(UT ), then ∃C ⊆ T such that x ∈C and C is coherent in AFN.

Proof: Let x∈ Supp(UT ). Either x∈P′ or x is supported. In the first case, let C = {x}.
Obviously, C is coherent and C ⊆ T , as x ∈ T .
Let us consider the case when x is supported. Let α1, . . . ,αk be the supports of x.
For each i, there is yi ∈ (s′(αi)∩T ∩ Supp(UT\{x})), and from Lemma 3, it can be
assumed that yi ∈ T \ {x}. Let S1(x) = {y1, . . . ,yk}. We have S1(x) ⊆ (T \ {x} ∩
Supp(UT\{x})). We consider C1 = {x}∪S1(x).

If S1(x) ⊆ P′, it is easy to see that C1 is support-closed and every a ∈ C1 is
support-cycle-free in C1. So C1 is coherent.

In the other case, for each y ∈ S1(x) such that y /∈ P′, as y ∈ Supp(UT\{x}), as
done for x, we can build a set of arguments S(y)⊆ (T \{x,y}∩Supp(UT\{x,y})).
We add all these sets S(y) to C1.

This construction is iterated and will end as T is reduced at each step (T then
T \{x} then T \{x,y}, ...).

2

Lemma 5 Given AFN and its corresponding RAFN, let T ⊆ A and x ∈ A.

1. If x ∈UnSupp(UT ) then x is deactivated by T in AFN.

2. If x is deactivated by T in AFN and x ∈ De fA(UT ) then x ∈UnSupp(UT ).
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Proof:
By definition, UnSupp(UT ) = Supp(U ′T ) where U ′T = (De fA(UT ),R′,De f ′N(UT )).
As noted before, De f ′N(UT ) = ∅. So, U ′T = (De fA(UT ),R′,N′) = U ′T where T ′ de-
notes De fA(UT ). Note that T ′ contains the arguments that are not attacked by T .

1. We assume that x ∈UnSupp(UT ). By definition, x /∈ Supp(U ′T ) (1). Assume
that x is not deactivated by T in AFN. There exists C ⊆ A coherent subset
containing x, such that T attacks no argument of C. It follows that C ⊆ T ′. As
C is coherent in AFN, due to Prop 1, we have that UC is self-supporting. So,
C ⊆ Supp(UC). Moreover, due to Lemma 1, we have Supp(UC)⊆ Supp(U ′T ).
By transitivity, we obtain C ⊆ Supp(U ′T ). As C contains x, we conclude that
x ∈ Supp(U ′T ) which is in contradiction with the assumption (1).

2. We assume that x is deactivated by T in AFN and x ∈De fA(UT ) = T ′. Assume
that x /∈UnSupp(UT ). Then x∈ Supp(U ′T ). From Lemma 4, ∃C⊆ T ′ such that
x ∈C and C is coherent in AFN. So C is a coherent set containing x such that
T attacks no argument of C. That is in contradiction with x being deactivated
by T .

2

Proof of Prop. 1: Let T ⊆ A.

1. Let a ∈ T . Let us assume that T is support-closed in AFN. By definition, a is support-
cycle-free in T iff ∀E ⊆ A such that ENa, there is b ∈ E ∩T such that b is support-
cycle-free in T \{a}.
a ∈ Supp(UT ) means ∀α ∈ N′ such that t ′(α) = x, s′(α)∩ (T ∩ Supp(UT\{x})) 6= ∅
or equivalently, ∀α ∈ N′ such that t ′(α) = x, there is b ∈ s′(α)∩ T such that b ∈
Supp(UT\{x}).
So the proof just follows by induction.

Assume that UT is self-supporting. Then T ⊆ Supp(UT ). It follows that T is support-
closed in AFN. Then, due to the first part of the proof, every a ∈ T is support-cycle-
free in T . As T is support-closed, it follows that T is coherent.
Conversely, assume that T is coherent, so that every a ∈ T is support-cycle-free in
T . From the first part of the proof, it follows that T ⊆ Supp(UT ). As R′ and N′ are
included in P′, it follows that UT is self-supporting.

2. Let a ∈ A.

a is acceptable w.r.t. T in AFN means that T ∪{a} is coherent and ∀b ∈ A such that
bRa, b is deactivated by T .
If T ∪ {a} is coherent, from Prop 1.1 and Lemma 3, it is easy to prove that a ∈
Supp(UT ) (i).
Let α ∈ R′ with t ′(α) = a. By definition of RAFN, there is b ∈ A such that s′(α) =
{b} and bRa. As a is acceptable w.r.t. T in AFN, b is deactivated by T . Due to
Lemma 5, it follows that either b ∈ De fA(UT ) or b ∈UnSupp(UT ), or equivalently
either s′(α) ⊆ De fA(UT ) or s′(α) ⊆ UnSupp(UT ). In both cases, α ∈ UnAct(UT )
(ii).
So we have proved that a is acceptable w.r.t. UT in RAFN.

Let us assume that T is self-supporting. a is acceptable w.r.t. UT in RAFN means
that a ∈ Supp(UT ) and for each attack α ∈ R′ with t ′(α) = a, α ∈ UnAct(U). As
attacks are neither attacked nor supported in RAFN, α ∈UnAct(U) means s′(α) ⊆
UnAcc(UT ) = (De fA(UT )∪UnSupp(UT ).
As T is self-supporting, and a ∈ Supp(UT ), due to Lemma 1, it is easy to prove that
T ∪{a} is also self-supporting and from Prop 1.1 it follows that T ∪{a} is coherent
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(i).
Let b∈A such that bRa. By definition of RAFN, there is α ∈R′ such that s′(α) = {b}
and t ′(α) = a. As a is acceptable w.r.t. UT in RAFN, we have that b ∈UnAcc(UT ) =
(De fA(UT )∪UnSupp(UT )). We have two cases:

– If b ∈UnSupp(UT ), from Lemma 5, we conclude that b is deactivated by T in
AFN.

– If b ∈ De fA(UT ), there is c ∈ T such that cRb in AFN. This is a particular case
when b is deactivated by T . Indeed, if T attacks b, T attacks any coherent set
containing b.

In both cases, b is deactivated by T (ii).
So we have proved that a is acceptable w.r.t. T in AFN.

2

Proof of Prop. 2: Let T ⊆ A.

1. Admissible semantics

Assume that T is an admissible extension of AFN. By definition, T is conflict-free,
coherent, and each argument of T is acceptable w.r.t. T . From Lemma 2, UT is a
conflict-free structure of RAFN. From Prop 1, each argument of T is acceptable w.r.t.
UT in RAFN. It is also the case for the other elements of the structure, as they are
neither attacked nor supported. So, UT is an admissible structure in RAFN.

Assume that UT is an admissible structure in RAFN. By definition, UT is conflict-free
and each argument of UT is acceptable w.r.t. UT in RAFN. From Lemma 2, T is a
conflict-free in AFN. As UT is an admissible structure, it is self-supporting, so from
Prop 1, we have that T is coherent. Lastly, from Prop 1, we have that each argument
of T is acceptable w.r.t. T . So T is an admissible extension of AFN.

2. Complete semantics
The result follows from the definitions and Prop 1.

3. Preferred semantics
In RAFN, UT is a preferred structure iff it is a ⊆-maximal complete structure. In AFN, T is
a preferred extension iff T is a ⊆-maximal complete extension.
Assume that UT is a preferred structure. Then, from the second item of Prop. 2, T is com-
plete. If T is not ⊆-maximal complete, there is T ′ ⊆-maximal complete extension strictly
containing T . Then, we know that UT ′ is complete and obviously UT ′ strictly contains UT .
That is in contradiction with UT being preferred. So T is a preferred extension.
Conversely, assume that T is a preferred structure in AFN. Then, from the second item of
Prop. 2, UT is complete. If UT is not ⊆-maximal complete, there is a complete structure
U ′ that strictly contains UT . As UT has the form (T,R′,N′), it follows that U ′ has the form
(T ′,R′,N′) with T ′ strictly containing T . As U ′ is complete, we have that T ′ is complete,
which is in contradiction with T being preferred. So UT is a preferred structure.

4. Stable semantics
In AFN, T is a stable extension iff T is complete and ∀a ∈ A, a ∈ A\T iff a is deactivated
by T . In RAFN, UT is a stable structure iff UT is complete and (T ∪R′∪N′) =UnAcc(UT ).
From the second item of Prop. 2, we know that T is complete in AFN iff UT is a complete
structure of RAFN. Moreover, UnAcc(UT ) = (De fA(UT )∪UnSupp(UT )) so UnAcc(UT )⊆
A (indeed, as each interaction belongs to P′, UnSupp(UT )∩ (R′ ∪N′) = ∅). And as said
above in the proof of Prop 1, each argument in De fA(UT ) is deactivated by T , so from
Lemma 5, we have that x ∈UnAcc(UT ) iff x is deactivated by T . It follows that ∀a ∈ A,
(a ∈ A\T iff a is deactivated by T ) is equivalent to ( a ∈ (T ∪R′∪N′) iff a ∈UnAcc(UT )),
in other words, T is a stable extension of AFN iff UT is a stable structure in RAFN.
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5. Grounded semantics
In AFN, T is a grounded extension iff T is a ⊆-minimal complete extension. In RAFN, UT
is a grounded structure iff UT is a ⊆-minimal complete structure.
Assume that T is a grounded extension. From the second item of Prop. 2, we know that
UT is complete. If UT is not a ⊆-minimal complete structure, there is a complete structure
U ′ = (T ′,Γ′,∆′) such that T ′∪Γ′∪∆′ is strictly included in T ∪R′∪N′. As U ′ is complete,
we have U ′ = Acc(U ′). As (R′ ∪N′)⊆ P′, and as no interaction is attacked, we have (R′ ∪
N′) ⊆ Acc(U ′), so (R′ ∪N′) ⊆U ′. Hence U ′ = UT ′ where T ′ ⊂ T . As U ′ is complete, we
know that T ′ is complete in AFN. So we have T ′ a complete extension of AFN strictly
included in T ⊆-minimal complete extension. There is a contradiction. So, we have proved
that UT is a grounded structure.
Conversely, assume that UT is a grounded structure. From the second item of Prop. 2, we
know that T is a complete extension. If T is not a ⊆-minimal complete extension, there
is a complete extension T ′ such that T ′ ⊂ T . As T ′ is complete we have that UT ′ is a
complete structure. Obviously we have UT ′ ⊂UT , which is in contradiction with UT being
a ⊆-minimal complete structure. So we have proved that T is a grounded extension.

2
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